WorldWideScience

Sample records for monolithic ceramic cross

  1. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  2. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  3. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  5. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  6. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  7. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Viscoplastic Constitutive Theory Demonstrated for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1999-01-01

    Development of accurate three-dimensional (multiaxial) inelastic stress-strain models is critical in utilizing advanced ceramics for challenging 21st century high-temperature structural applications. The current state of the art uses elastic stress fields as a basis for both subcritical crack growth and creep life prediction efforts aimed at predicting the time dependent reliability response of ceramic components subjected to elevated service temperatures. However, to successfully design components that will meet tomorrow's challenging requirements, design engineers must recognize that elastic predictions are inaccurate for these materials when subjected to high-temperature service conditions such as those encountered in advanced heat engine components. Analytical life prediction methodologies developed for advanced ceramics and other brittle materials must employ accurate constitutive models that capture the inelastic response exhibited by these materials at elevated service temperatures. A constitutive model recently developed at the NASA Lewis Research Center helps address this issue by accounting for the time-dependent (inelastic) material deformation phenomena (e.g., creep, rate sensitivity, and stress relaxation) exhibited by monolithic ceramics exposed to high-temperature service conditions. In addition, the proposed formulation is based on a threshold function that is sensitive to hydrostatic stress and allows different behavior in tension and compression, reflecting experimental observations obtained for these material systems.

  9. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    Science.gov (United States)

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  10. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Dissolution of Ceramic Monolith of Spent Catalytic Converters by Using Hydrometallurgical Methods / Rozpuszczanie Monolitu Ceramicznego Zużytych Katalizatorów Na Drodze Hydrometalurgicznej

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-12-01

    Full Text Available Catalytic converters contain the catalytic substance in their structure, which is a mixture of Platinum Group Metals (PGMs: platinum, palladium and rhodium. The prices of these metals and a growing demand for them in the market, make it necessary to recycle spent catalytic converters and recovery of PGMs. The ceramic monolith of catalytic converters is still a predominant material in its construction among of multitude of catalytic converters which are in circulation. In this work attempts were made to leach additional metals (excluding Pt from comminuted ceramic monolith. Classic leachant oxidizing media 10M H2SO4, HCl and H3PO4 were used considering the possibility of dissolution of the ceramic monolith.

  12. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  13. Acquisition of a Scanning Ultrasound Analyzer for Gelation and Drying Studies in Sol-Gel Ceramic Coatings and Monoliths

    National Research Council Canada - National Science Library

    Archer, Lynden

    1997-01-01

    The overall goal of this research project was to develop a fundamental understanding of how colloid chemistry influences structure and properties of ceramic monoliths fabricated by sol-gel synthesis...

  14. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  15. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped

  16. Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite.

    Science.gov (United States)

    Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand

    2016-10-10

    A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of unencapsulated ceramic monolithic and MOS thin-film capacitors (25 to 3000C)

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-01-01

    Several commercial monolithic ceramic and thin-film MOS chip capacitors were evaluated for use in high temperature (300 0 C) geothermal instrumentation. Characteristics of the commonly used dielectric materials (NPO, X7R, BX) and temperature dependence of the insulation resistance are briefly discussed. Some ceramic capacitors with NPO dielectric materials had insulation resistances above 10 megohms at 300 0 C and less than 2% change in capacitance from 25 0 C to 300 0 C, while the X7R and BX dielectric materials exhibited insulation resistances below 10 megohm and changes in capacitance greater then 50%. The thin-film capacitors showed good stability at 300 0 C. However, during aging, bonds and bond pads presented a problem causing intermittently open circuits for some of the devices

  18. A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Yi, Yuanping; Wang, Xuesong; Guo, Jiawen; Li, Ding; He, Lin; Zhang, Shaofeng

    2017-10-01

    This study evaluated the wear performance and wear mechanisms of four dental glass-ceramics, based on the microstructure and mechanical properties in the progressive wear process. Bar (N = 40, n = 10) and disk (N = 32, n = 8) specimens were prepared from (A) lithium disilicate glass-ceramic (LD), (B) leucite reinforced glass-ceramic (LEU), (C) feldspathic glass-ceramic (FEL), and (D) fluorapatite glass-ceramic (FLU). The bar specimens were tested for three-point flexural strength, hardness, fracture toughness and elastic modulus. The disk specimens paired with steatite antagonists were tested in a pin-on-disk tribometer with 10N up to 1000,000 wear cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 200,000 wear cycles. Wear loss of steatite antagonists was calculated by measuring the weight and density using sensitive balance and Archimedes' method. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). The crystalline phase compositions were determined using X-ray diffraction (XRD). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pair-wise comparison of means was performed by Tukey's post-hoc test. LD showed the highest fracture toughness, flexural strength, elastic modulus and crystallinity, followed by LEU and FEL, and FLU showed the lowest. However, the hardness of LD was lower than all the other three types of ceramics. For steatite antagonists, LD produced the least wear loss of antagonist, followed by LEU and FEL, and FLU had the most wear loss. For glass-ceramic materials, LD exhibited similar wear loss as LEU, but more than FLU and FEL did. Moreover, fracture occurred on the wear surface of FLU. In the progressive wear process, veneering porcelains showed better wear resistance but fluorapatite veneering porcelains appeared fracture surface. Monolithic lithium disilicate glass-ceramics with higher mechanical properties showed more wear loss, however

  19. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  20. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  1. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  2. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  3. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  4. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  5. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  6. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  7. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  8. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  9. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    Science.gov (United States)

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p SEM analysis of polished surfaces revealed regular morphology with some striations. The OptraFine system created smoother and more uniform surfaces in terms of quantity (p < 0.03 for Ra, p < 0.01 for Rz) and quality of roughness compared to glazing. The flexural

  10. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  11. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  12. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  13. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Science.gov (United States)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  14. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  15. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M.

    2009-01-01

    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen) 3 ,-Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with X U 7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows nano particles size on coat. The microstructure evaluation showed that the improved properties can be related to the existence of nano particles on coating

  16. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  17. Ceramic technology for advanced heat engines project: Semiannual progress report, October 1986-March 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains four subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, and (4) Joining. Ceramic research conducted within the Monolithics subelement currently includes work activities on green state ceramic fabrication, characterization, and densification and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon carbide and oxide-based composites, which, in addition to the work activities cited for Monolithics, include fiber synthesis and characterization. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-base coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong stable joints between zirconia ceramics and iron-base alloys. A major objective of the research in the Materials and Processing project element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide US companies with new or improved ways for producing economical highly reliable ceramic components for advanced heat engines.

  18. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    Science.gov (United States)

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  19. preparation, characterization and formulation of nano-ceramic materials to be used for the separation of some heavy metals

    International Nuclear Information System (INIS)

    Zayed, S.L.M.

    2006-01-01

    the synthesis of asymmetric composite and monolithic ceramic filters, with high performance quality, to be used in heavy metals separation is the aim of this study. asymmetric composite ceramic filter consisted of a macroporous or mesoporous substrate coated with several layers having lower pore size than the substrate usually microporous film. on the other hand, asymmetric monolithic ceramic filter is monolithic system having dual pore size distribution. ceramic filters synthesis was performed using polymeric sol-gel process. the optimization of synthesis parameters as well as the characterization was achieved to obtain ceramic filters with high separative properties. the synthesized ceramic filters were characterized using mercury porosimeter for pore size distribution analysis, BET method for specific surface areas measurements and BJH pore size distribution analysis, XRD analysis for crystalline phase identification and SEM for microstructure and morphology studies

  20. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    International Nuclear Information System (INIS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-01-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm −3 respectively, pore linear density of ±35 cm −1 , linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively

  1. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia); Ginta, Turnad Lenggo [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tro (Malaysia); Parman, Setyamartana [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Abustaman, Mohd Zikri Ahmad [Kebabangan Petroleum Operating Company Sdn Bhd, Lvl. 52, Tower 2, PETRONAS Twin Towers, KLCC, 50088 Kuala Lumpur (Malaysia)

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  2. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  3. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1997-05-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  4. Evaluation of Monolithic Ceramics and Ceramic Thermal Barrier Coatings for Diesel Engine Applications

    National Research Council Canada - National Science Library

    Swab, Jeffrey J

    2001-01-01

    The Metals and Ceramics Research Branch (MCRB) of the Weapons and Materials Research Directorate is providing ceramic material characterization and evaluation to the Tank Automotive Research, Development, and Engineering Center (TARDEC...

  5. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  6. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  7. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  8. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  9. Acquisition and visualization of cross section surface characteristics for identification of archaeological ceramics

    NARCIS (Netherlands)

    Boon, Paul; Pont, Sylvia C.; van Oortmerssen, Gert J.M.

    2007-01-01

    This paper describes a new system for digitizing ceramic fabric reference collections and a preliminary evaluation of its applicability to archaeological ceramics identification. An important feature in the analysis of ceramic fabrics is the surface texture of the fresh cross section. Visibility of

  10. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Camargo, R; Rippe, M P; Amaral, M; Kleverlaan, C J; Valandro, L F

    2016-06-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped specimens (Zirlux FC, Ivoclar Vivadent) were manufactured according to ISO 6872 (2008) and divided in accordance with two factors: "grinding - 3 levels" and "LTD - 2 levels". Grinding was performed using a contra-angle handpiece under constant water-cooling with different grit-sizes (extra-fine and coarse diamond burs). LTD was simulated in an autoclave at 134°C, under a pressure of 2 bar, over a period of 20h. Surface topography analysis showed an increase in roughness based on surface treatment grit-size (Coarse>Xfine>Ctrl), LTD did not influence roughness values. Both grinding and LTD promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. According to existing literature the increase of m-phase content is a direct indicative of Y-TZP degradation. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl), while for LTD, distinct effects were observed (Ctrlgrinding showed not to be detrimental to the mechanical properties of Zirlux FC Y-TZP ceramic. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dental ceramics: a review of new materials and processing methods.

    Science.gov (United States)

    Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco

    2017-08-28

    The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  12. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  13. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  14. Microwave processing for ceramic materials in microsystem technology

    International Nuclear Information System (INIS)

    Rhee, S.

    2002-11-01

    In this study, the applicability of microwaves for sintering of monolithic ceramics and ceramic microcomponents was investigated. Experiments with 2.45 GHz and 30 GHz microwaves were conducted and contrasted to conventional thermal processing. The advantages and disadvantages of microwave processing were then assessed. Nanoscale zirconia and sub-micron lead-zirconate-titanate electroceramics were selected for the evaluation. (orig.)

  15. Dental ceramics: a review of new materials and processing methods

    Directory of Open Access Journals (Sweden)

    Lucas Hian da SILVA

    2017-08-01

    Full Text Available Abstract The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I monolithic zirconia restorations; II multilayered dental prostheses; III new glass-ceramics; IV polymer infiltrated ceramics; and V novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  16. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  17. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  18. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  19. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  20. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  1. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  2. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  3. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  4. Fatigue limit of polycrystalline zirconium oxide ceramics: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Amaral, M.; Rippe, M.P.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to

  5. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  6. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  7. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Klym, H; Shpotyuk, O; Hadzaman, I; Ingram, A; Filipecki, J

    2011-01-01

    The new transition-metal manganite Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  8. Comparative study of the performance of three cross-flow ceramic ...

    African Journals Online (AJOL)

    Several tests using water as effluent are used to analyse the performance of three types of microfiltration cross-flow ceramic membranes. Two of these membranes are commercial (Atech and Membralox/US Filter) and the third one is experimental. The main differences between them lie in their chemical composition ...

  9. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  10. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  11. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  12. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    Science.gov (United States)

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  13. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  14. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  15. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  16. Cross-flow micro-filtration using ceramic membranes

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Marajofsky, Adolfo; Rossi, Federico; La Gamma, Ana M.; Chocron, Mauricio

    2004-01-01

    Pressurized Heavy Water Reactors have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting on an activated charcoal bed-strong cationic-anionic resin and a final polishing anionic bed resin. Traces of oils are retained by the charcoal bed but some of them pass through and could be responsible for the resins fouling. The process of micro filtration using ceramic materials is particularly applied to the treatment of waters with oil micro droplets. We describe the development stages of single and double layer filtration ceramic tubes, their characterization and the adaptation to test equipment. The efficiency was evaluated by means of tangential ('cross-flow') filtration of aqueous solutions containing dodecane at the micrograms per ml concentration level. This compound simulates the properties of a typical oil contaminant. A 100-fold reduction in the amount of dodecane in water was observed after the filtration treatment. (author)

  17. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  18. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  19. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  20. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  1. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  2. Improvement of microstructure and mechanical properties of high dense SiC ceramics manufactured by high-speed hot pressing

    International Nuclear Information System (INIS)

    Voyevodin, V.; Sayenko, S.; Lobach, K.; Tarasov, R.; Zykova, A.; Svitlychnyi, Ye.; Surkov, A.; Abelentsev, V.; Ghaemi, H.; Szkodo, M.; Gajowiec, G.; Kmiec, M.; Antoszkiewicz, M.

    2017-01-01

    Non-oxide ceramics possess high physical-mechanical properties, corrosion and radiation resistance, which can be used as a protective materials for radioactive wastes disposal. The aim of the present study was the manufacturing of high density SiC ceramics with advanced physical and mechanical parameters. The high performance on the properties of produced ceramics was determined by the dense and monolithic structure. The densified silicon carbide samples possessed good mechanical strength, with a high Vickers micro hardness up to 28.5 GPa.

  3. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  4. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography.

    Science.gov (United States)

    Wang, Yu; Deng, Qi-Liang; Fang, Guo-Zhen; Pan, Ming-Fei; Yu, Yang; Wang, Shuo

    2012-01-27

    A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm(+)Cl(-)) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0-12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ~6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ~147,000 plates m(-1) for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  6. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  7. Immobilization of transuranic sludge in glass-ceramic materials

    International Nuclear Information System (INIS)

    Welch, J.M.; Schuman, R.P.; Flinn, J.E.

    1982-03-01

    Studies were performed to determine the effectiveness of glass-ceramic waste forms, particularly iron-enriched basalt, for immobilizing transuranic waste sludges from the Rocky Flats plant operations. Two sludges were used in the study - one was nonradioactive and the other contained approx. 2200 dps/mg of 241 Am. The glass-ceramic waste forms were produced from laboratory-scale melting operations with subsequent controlled cooling. The waste forms were examined to assess the microstructures which resulted from systematically varied compositions and controlled cooling sequences. Leach tests in deionized water were performed on small monolithic specimens of the various glass-ceramic materials. The test results showed a rather strong temperature dependence for leach rates. Also, for some of these materials, marked differences in the 241 Am leaching behavior were seen in measurements obtained on acidified versus neutral aliquots of the spent leachates. 8 figures, 12 tables

  8. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Silvestre

    2015-01-01

    Full Text Available Due to their prominent properties (mechanical, stiffness, strength, thermal stability, ceramic composite materials (CMC have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMCs can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMCs are now changing from classical reinforcement (e.g., microscale fibres to new types of reinforcement at nanoscale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMCs: Ceramics Nanocomposites (CNCs.

  9. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  10. Advanced Ceramics for NASA's Current and Future Needs

    Science.gov (United States)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  11. Mechanical behavior of a ceramic matrix composite material. M.S. Thesis Final Report

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1991-01-01

    Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to small material imperfections, reinforced ceramic materials were developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure. A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) was studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen. Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software was written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material. The measured AU parameters are compared to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced x ray radiography.

  12. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    Directory of Open Access Journals (Sweden)

    Kanchapogu Suresh

    2017-09-01

    Full Text Available The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived from TiCl4 and NH4OH solution. Cross flow microfiltration investigations were carried out by utilizing oil-water emulsion concentration of 200 mg/L at three distinct applied pressures (69–207 kPa and three cross flow velocities (0.0885, 0.1327, and 0.1769 m/s. Compared to ceramic support, TiO2 composite membrane demonstrates better performance in terms of flux and removal efficiency of oil and also the rate of flux decline during filtration operation is lower due to highly hydrophilic surface of the TiO2 membrane. TiO2 membrane displays the oil removal efficiency of 99% in the entire range of applied pressures investigation, while ceramic support shows 93–96% of oil removal.

  13. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  14. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography

    International Nuclear Information System (INIS)

    Wang Yu; Deng Qiliang; Fang Guozhen; Pan Mingfei; Yu Yang; Wang Shuo

    2012-01-01

    Highlights: ► ILs as functional monomer for capillary monolithic column. ► Separation of alkylbenzenes, thiourea analogues, and amino acids. ► The column generate a stable reversed EOF from pH 2.0 to 12.0. ► The column efficiency of 147,000 plates m −1 was obtained for thiourea. - Abstract: A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm + Cl − ) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0–12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ∼6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ∼147,000 plates m −1 for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC.

  15. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  16. Strength of normal sections of NPP composite monolithic constructions with ribbed reinforced panels

    International Nuclear Information System (INIS)

    Klyashitskij, V.I.; Kirillov, A.P.

    1980-01-01

    Strength characteristics and recommendations on designing composite-monolytic structures of NPP with ribbed reinforced panels are considered. Ribbed reinforced panel consists of a system of cross ribs joined with a comparatively thin (25 mm thick) plate. The investigations were carried on using models representing columns symmetrically reinforced with reinforced panels with a low percent of reinforcing. The monolithic structures consisting of ribbed reinforced panels and cast concrete for making monoliths as well as monolithic having analogous strength characteristics of extended and compressed zones have similar strengths. It is shown that calculation of supporting power of composite-monolithic structures is performed according to techniques developed for monolithic structures. Necessity of structural transverse fittings no longer arises in case of corresponding calculational substitution of stability of compressed parts of fittings. Supporting power of a structure decreases not more than by 10% in the presence of cracks in the reinforced panels of the compressed zone. Application of composite-monolithic structures during the construction of the Kursk, Smolensk and Chernobylskaya NPPs permitted to decrease labour content and reduce periods of accomplishment of these works which saves over 6 million roubles

  17. Effective Diffusivities and Pore-Transport Characteristics of Washcoated Ceramic Monolith for Automotive Catalytic Converter

    Czech Academy of Sciences Publication Activity Database

    Starý, T.; Šolcová, Olga; Schneider, Petr; Marek, M.

    2006-01-01

    Roč. 61, č. 18 (2006), s. 5934-5943 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA104/05/2616; GA AV ČR(CZ) IAA4072404 Institutional research plan: CEZ:AV0Z40720504 Keywords : effective diffusivity * monolith catalyst * chromatography Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.629, year: 2006

  18. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  19. Reliability Estimation for Single-unit Ceramic Crown Restorations

    Science.gov (United States)

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  20. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  1. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    Science.gov (United States)

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  4. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, J.

    1988-09-01

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate result previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.

  5. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  6. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  7. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  8. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  9. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  10. Making ceramics used for compound environment into multi-composite and evaluation of their multi-dimensional system

    International Nuclear Information System (INIS)

    Mitsuhashi, Takefumi

    1996-01-01

    In order to advance current nuclear power technology greatly, the development of the boundary materials suitable to between the environments with largely different properties is indispensable. In the research of first period, the ceramic having the corrosion resistance in liquid sodium which is far superior to metals was found. As boundary material, in addition, thermal, mechanical and radiation resistant properties are required. In the project of second period, it is aimed at to establish the basic technology for the synthesis techniques for multi-composite materials that possess the combination of the excellent characteristics of individual monolithic system ceramics. The liquid sodium immersion test of various ceramics in the research of first period is reported. The diffusion of sodium in ceramics was also examined. As the simplified quick evaluation technique, the corrosion test in KOH solution was carried out. As for ceramic multi-composites, Y ions were implanted in the surface of alumina, and the changes of structure and corrosion resistance were examined. The surface condition of ceramics and the adsorption of alkali metals were investigated. (K.I.)

  11. Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics

    International Nuclear Information System (INIS)

    Da-Wei, Wang; De-Qing, Zhang; Quan-Liang, Zhao; Hong-Mei, Liu; Zhi-Ying, Wang; Mao-Sheng, Cao; Jie, Yuan

    2009-01-01

    A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb 1–3x/2 Nd x Zr 0.52 Ti 0.48 O 3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate after the reaction of zirconium nitrate with tetrabutyl titanate in the ethylene glycol system for preparing PNZT with an exact fraction of titanium content. It has been observed that the dopant of excess Nd ions can effectively improve the sintered densification and activity of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric properties of the PNZT ceramics are remarkably enhanced as compared with those of monolithic lead zirconate titanate (PZT). Especially, the supreme values of piezoelectric constant (d 33 ) and dielectric constant ( element of ) for the PNZT are both about two times that of the monolithic PZT and moreover, the remnant polarization (P r ) also increases by 30%. According to the analysis of the structures and properties, we attribute the improvement in electrical properties to the lead vacancies caused by the doping of Nd ions

  12. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    Science.gov (United States)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  13. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  14. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    OpenAIRE

    Kanchapogu Suresh; G. Pugazhenthi

    2017-01-01

    The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...

  15. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  16. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  17. Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion

    Science.gov (United States)

    Garg, Rajeev

    The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique

  18. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  19. Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Michaela Klotz

    2018-05-01

    Full Text Available In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ and atomic layer deposition (ALD of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  20. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    Science.gov (United States)

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  2. Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Balitska, V.; Brunner, M.; Hadzaman, I.; Klym, H.

    2015-01-01

    Thermally-induced electronic relaxation in structurally-modified Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics

  3. Identification of Technological Parameters of Ni-Alloys When Machining by Monolithic Ceramic Milling Tool

    Science.gov (United States)

    Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej

    2017-12-01

    The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.

  4. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  5. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

    DEFF Research Database (Denmark)

    Rasmussen, Søren B.; Bañares, Miguel A.; Bazin, Philippe

    2012-01-01

    . The observations reported here serve as a demonstration of the great potential for the application of operando spectroscopy on monolithic systems. This cross disciplinary approach aims to identify reaction pathways, active sites, intermediate- and spectator-species for catalytic reactions under truly industrial...

  6. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  7. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  8. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  9. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  10. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  11. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  12. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  14. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    Science.gov (United States)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  15. Composite Laser Ceramics by Advanced Bonding Technology

    Science.gov (United States)

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  16. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  17. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  18. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    Science.gov (United States)

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  19. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Clara Musa

    2016-06-01

    Full Text Available In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4 in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

  20. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  1. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Mora, L. [Institute Eduardo Torroja for Construction Sciences-CSIC, Madrid (Spain); Department of Materials, University of Oxford (United Kingdom); Lowe, T. [Manchester X-ray Imaging Facility, The University of Manchester (United Kingdom); Zhao, S. [Department of Materials, University of Oxford (United Kingdom); Lee, P.D. [Research Complex at Harwell, Rutherford Appleton Laboratory (United Kingdom); Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester (United Kingdom); Marrow, T.J., E-mail: james.marrow@materials.ox.ac.uk [Department of Materials, University of Oxford (United Kingdom)

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  2. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  3. The Structural Ceramics Database: Technical Foundations

    Science.gov (United States)

    Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.

    1989-01-01

    The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397

  4. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  5. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  6. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials.

    Science.gov (United States)

    Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan

    2018-03-01

    To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.

  7. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    OpenAIRE

    Malakhova Anna Nikolaevna

    2016-01-01

    One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor ...

  8. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. - Highlights: • First investigation on chromatographic selectivity of AlMA-DVB monolithic columns. • Good run-to-run/column-to-column repeatability (<3%) on AlMA-DVB monolithic columns. • Efficient separation of phenylurea herbicides and sulfonamides on AlMA-DVB columns.

  9. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    Science.gov (United States)

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-05-01

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ceramics among Eurasian hunter-gatherers: 32 000 years of ceramic technology use and the perception of containment

    Directory of Open Access Journals (Sweden)

    Mihael Budja

    2016-12-01

    Full Text Available We present two parallel and 32 000 years long trajectories of episodic ceramic technology use in Eurasian pre-Neolithic hunter-gatherer societies. In eastern, Asian trajectory the pottery was produced from the beginning. Ceramic figurines mark the western, European trajectory. The western predates the eastern for about eleven millennia. While ceramic cones and figurines first appeared in Central Europe at c. 31 000 cal BC the earliest vessels in eastern Asia was dated at c. 20 000 cal BC. We discuss women’s agency, perception of containment, ‘cross-craft interactions’, and evolution of private property that that may influenced the inventions of ceramic (pyrotechnology.

  11. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  12. Inlay-Retained Fixed Dental Prosthesis: A Clinical Option Using Monolithic Zirconia

    Directory of Open Access Journals (Sweden)

    Davide Augusti

    2014-01-01

    Full Text Available Different indirect restorations to replace a single missing tooth in the posterior region are available in dentistry: traditional full-coverage fixed dental prostheses (FDPs, implant-supported crowns (ISC, and inlay-retained FDPs (IRFDP. Resin bonded FDPs represent a minimally invasive procedure; preexisting fillings can minimize tooth structure removal and give retention to the IRFDP, transforming it into an ultraconservative option. New high strength zirconia ceramics, with their stiffness and high mechanical properties, could be considered a right choice for an IRFDP rehabilitation. The case report presented describes an IRFDP treatment using a CAD/CAM monolithic zirconia IRFDP; clinical and laboratory steps are illustrated, according to the most recent scientific protocols. Adhesive procedures are focused on the Y-TZP and tooth substrate conditioning methods. Nice esthetic and functional integration of indirect restoration at two-year follow-up confirmed the success of this conservative approach.

  13. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Science.gov (United States)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  14. Ceramic nuclear waste forms. II. A ceramic-waste composite prepared by hot pressing. Progress report and preprint

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1975-01-01

    A feasibility study was conducted to determine whether nuclear waste calcine and a crystalline ceramic matrix can be fabricated by hot pressing into a composite waste form with suitable leaching resistance and thermal stability. It was found that a hard, dense composite could be formed using the typical commercial waste formulation PW-4b and a matrix of α-quartz with a small amount of a lead borosilicate glass added as a consolidation aide. Its density, waste loading, and leaching resistance are comparable to the glasses currently being considered for fixation of nuclear wastes. The hot pressed composite offers a closer approach to thermodynamic stability and improved thermal stability (in monolithic form) compared to glass waste forms. Recommendations for further optimization of the hot pressed waste form are given. (U.S.)

  15. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  16. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics-Three Decades of High-Quality, Technically-Rigorous Normalization

    Science.gov (United States)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high-quality, technically-rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards contain testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards are used to generate accurate, reliable, repeatable and complete data. Within Committee C28, users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, 50 standards since the Committee's founding in 1986. This paper provides a detailed retrospective of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of standards for advanced ceramics to demonstrate their practical applications.

  18. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics, Three Decades of High-quality, Technically-rigorous Normalization

    Science.gov (United States)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high quality, rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards provide accurate, reliable, repeatable and complete data. Within Committee C28 users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, nearly 50 standards since the Committees founding in 1986. This paper provides a retrospective review of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of advanced ceramics standards to demonstrate their practical applications.

  19. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p Empress Esthetic/CAD groups. Monolithic core

  1. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  2. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    Science.gov (United States)

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  3. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  4. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    Science.gov (United States)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  5. Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid.

    Science.gov (United States)

    Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-01-02

    To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Institute of Physics, Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42200 Poland (Poland); Balitska, V. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv State University of Vital Activity Safety, 35, Kleparivska Street, Lviv 79007 (Ukraine); Brunner, M. [Fachhochschule Köln/University of Applied Sciences, 2, Betzdorfer Strasse, Köln 50679 (Germany); Hadzaman, I. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Drohobych Ivan Franko State Pedagogical University, 24, I. Franko Street, Drohobych 82100 (Ukraine); Klym, H. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, Bandera Street, Lviv 79013 (Ukraine)

    2015-02-15

    Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics.

  7. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  8. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  9. Synthesis of boronate-functionalized organic-inorganic hybrid monolithic column for the separation of cis-diol containing compounds at low pH.

    Science.gov (United States)

    Zhao, Heqing; Lyu, Haixia; Qin, Wenfei; Xie, Zenghong

    2018-04-01

    In this work, an organic-inorganic hybrid boronate affinity monolithic column was prepared via "one-pot" process using 4-vinylphenylboronic acid as organic monomer and divinylbenzene as cross-linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis-diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed-interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run-to-run, day-to-day and batch-to-batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  12. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Science.gov (United States)

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  14. Monolithically interconnected Silicon-Film{trademark} module technology: Annual technical report, 25 November 1997--24 November 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.; Ford, D.H.; Rand, J.A.; Ingram, A.E.

    1999-11-11

    AstroPower continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin, light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected array. This report summarizes the work carried out over the first year of a three-year, cost-shared contract, which has yielded the following results: Development of a low-cost, insulating, ceramic substrate that provides mechanical support at silicon growth temperatures, is matched to the thermal expansion of silicon, provides the optical properties required for light trapping through random texturing, and can be formed in large areas on a continuous basis. Different deposition techniques have been investigated, and AstroPower has developed deposition processes for the back conductive layer, the p-type silicon layer, and the mechanical/chemical barrier layer. Polycrystalline films of silicon have been grown on ceramics using AstroPower's Silicon-Film{trademark} process. These films are from 50 to 75 {micro}m thick, with columnar grains extending through the thickness of the film. Aspect ratios from 5:1 to 20:1 have been observed in these films.

  15. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564

  17. Solid oxide fuel cell having monolithic cross flow core and manifolding

    International Nuclear Information System (INIS)

    Poeppel, R.B.; Dusek, J.T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another

  18. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia.

    Science.gov (United States)

    Prado, Rodrigo Diniz; Pereira, Gabriel Kalil Rocha; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe

    2017-11-06

    Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm), grinding and aging (low-temperature degradation) on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter) were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors 'grinding with diamond bur' and 'aging in autoclave'. Surface topography (roughness, 3D profilometry and SEM), phase transformation, flexural strength and structural reliability (Weibull) analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia's thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.

  19. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture.

    Science.gov (United States)

    Zhang, Jingwei; Barbieri, Davide; ten Hoopen, Hetty; de Bruijn, Joost D; van Blitterswijk, Clemens A; Yuan, Huipin

    2015-03-01

    The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture. © 2014 Wiley Periodicals, Inc.

  20. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  2. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    Science.gov (United States)

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  3. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    Directory of Open Access Journals (Sweden)

    Haiyun Huang

    2015-10-01

    Full Text Available This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  4. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  5. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  6. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  7. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  8. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  9. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  10. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  11. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    NARCIS (Netherlands)

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  12. Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications

    International Nuclear Information System (INIS)

    Colombo, P.; Riccardi, B.; Donato, A.; Scarinci, G.

    2000-01-01

    Using a preceramic polymer, joints between SiC/SiC f ceramic matrix composites were obtained. The polymer, upon pyrolysis at high temperature, transforms into a ceramic material and develops an adhesive bonding with the composite. The surface morphology of 2D and 3D SiC/SiC f composites did not allow satisfactory results to be obtained by a simple application of the method initially developed for monolithic SiC bodies, which employed the use of a pure silicone resin. Thus, active or inert fillers were mixed with the preceramic polymer, in order to reduce its volumetric shrinkage which occurs during pyrolysis. In particular, the joints realized using the silicone resin with Al-Si powder as reactive additive displayed remarkable shear strength (31.6 MPa maximum). Large standard deviation for the shear strength has nevertheless been measured. The proposed joining method is promising for the realization of fusion reactor blanket structures, even if presently the measured strength values are not fully satisfactory

  13. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  14. Creating deep soil core monoliths: Beyond the solum

    Science.gov (United States)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  15. Mechanical response of cross-ply Si3N4/BN fibrous monoliths under uniaxial and biaxial loading

    International Nuclear Information System (INIS)

    Singh, D.; Cruse, T. A.; Hermanson, D. J.; Goretta, K. C.; Zok, F. W.; McNulty, J. C.

    2000-01-01

    Mechanical properties of hot-pressed Si 3 N 4 /BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0degree/90degree and ±45degree, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy

  16. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia

    Directory of Open Access Journals (Sweden)

    Rodrigo Diniz PRADO

    2017-11-01

    Full Text Available Abstract Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm, grinding and aging (low-temperature degradation on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors ‘grinding with diamond bur’ and ‘aging in autoclave’. Surface topography (roughness, 3D profilometry and SEM, phase transformation, flexural strength and structural reliability (Weibull analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia’s thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.

  17. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  18. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  19. Data quality objectives summary report for the 105-N monolith off-gas issue

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  20. Microstructure origin of hot spots in textured laser zone melting Bi-2212 monoliths

    International Nuclear Information System (INIS)

    Lera, F; Angurel, L A; Rojo, J A; Mora, M; Recuero, S; Arroyo, M P; Andres, N

    2005-01-01

    Hot spots are one of the main limitations in the development of large-scale high-power applications with superconducting materials. The application of digital speckle interferometry to detect inhomogeneous heating on ceramic superconductors allows the determining of a hot spot location in these materials before any damage is caused to the material. The technique detects deformations that are induced in the material due to dilatation, attaining a resolution of 0.45 μm /fringe. In this paper this technique has been applied to analyse the heating generation in Bi-2212 superconducting monoliths at room temperature and in operation conditions. In the first case a homogeneous heating is obtained, leading to a parallel fringe pattern. In the second case, a situation with an inhomogeneous heating origin has been detected. Once the position of this hot spot is determined, microstructure studies have been performed to determine which defects are responsible for hot spot generation

  1. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  2. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  3. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds.

    Science.gov (United States)

    Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping

    2018-06-06

    An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.

  5. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  6. Decomposition of monolithic web application to microservices

    OpenAIRE

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  7. Low-friction arthroplasty of the hip using alumina ceramic and cross-linked polyethylene. A 17-year follow-up report.

    Science.gov (United States)

    Wroblewski, B M; Siney, P D; Fleming, P A

    2005-09-01

    We report the results of our continued review of 11 total hip arthroplasties using 22.225 mm alumina ceramic femoral heads on a Charnley flanged stem, articulating with chemically cross-linked polyethylene. There was an initial bedding-in of up to 0.41 mm at the articular surface in the first two years. This had not progressed further, at a minimum follow-up of 15 years. Radiographically no femoral or acetabular component showed loosening or osteolysis.

  8. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives.

    Science.gov (United States)

    Bernard, Samuel; Miele, Philippe

    2014-11-21

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  9. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives

    Directory of Open Access Journals (Sweden)

    Samuel Bernard

    2014-11-01

    Full Text Available Boron nitride (BN is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylaminoborazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  10. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  11. Characterization of SOI monolithic detector system

    Science.gov (United States)

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  12. Theoretical and Experimental Study of Thermoacoustic Engines

    Science.gov (United States)

    1991-12-31

    possible. In particulbr, we have considered use of extruded ceramic monolithic catalyst supports (for example, the ceramic used in some automobile...approximation. Heat exchangers retaken r be of negligible thickness and thus not to affect near-standing wave phasing. The TAB (or snack ) of length d is assumed...Heat exchangers were parallel plates of copper and the TAE is a monolithic catalyst support extruded ceramic. 13 15 The two-microphone-technique

  13. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  14. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.

    Science.gov (United States)

    Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling

    2016-01-01

    Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (pceramics (pceramics (pceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  16. Immobilisation of shredded soft waste in cement monolith

    International Nuclear Information System (INIS)

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  17. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C.; Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Herrero-Martínez, J.M.

    2017-01-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch"®), or mixtures of H_2O_2 and H_2SO_4, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  18. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Catalá-Icardo, M., E-mail: mocaic@qim.upv.es [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C. [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G. [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain); Herrero-Martínez, J.M., E-mail: jmherrer@uv.es [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain)

    2017-04-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch{sup ®}), or mixtures of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  19. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  20. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  1. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  2. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  3. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty.

    Science.gov (United States)

    Sato, Taishi; Nakashima, Yasuharu; Akiyama, Mio; Yamamoto, Takuaki; Mawatari, Taro; Itokawa, Takashi; Ohishi, Masanobu; Motomura, Goro; Hirata, Masanobu; Iwamoto, Yukihide

    2012-12-01

    The purpose of this study was to examine the effects of ceramic femoral head material, size, and implantation periods on the wear of annealed, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (XLPE) in total hip arthroplasty compared to non-cross-linked conventional UHMWPE (CPE). XLPE was fabricated by cross-linking with 60 kGy irradiation and annealing. Femoral heads made from zirconia and alumina ceramics and cobalt-chrome (CoCr) of 22 or 26 mm diameter were used. In this retrospective cohort study, the femoral head penetration into the cup was measured digitally on radiographs of 367 hips with XLPE and 64 hips with CPE. The average follow-up periods were 6.3 and 11.9 years, respectively. Both XLPE creep and wear rates were significantly lower than those of CPE (0.19 mm vs. 0.44 mm, 0.0001 mm/year vs. 0.09 mm/year, respectively). Zirconia displayed increased wear rates compared to alumina in CPE; however, there was no difference among head materials in XLPE (0.0008, 0.00007, and -0.009 mm/year for zirconia, alumina, and CoCr, respectively). Neither head size or implantation period impacted XLPE wear. In contrast to CPE, XLPE displayed low wear rates surpassing the effects of varying femoral head material, size, implantation period, and patient demographics. Further follow-up is required to determine the long-term clinical performance of the annealed XLPE. Copyright © 2012 Orthopaedic Research Society.

  4. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  5. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  6. Tannin-based monoliths from emulsion-templating

    International Nuclear Information System (INIS)

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  7. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  8. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  9. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  10. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  11. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  12. Crosstalk performance of integrated optical cross-connects

    NARCIS (Netherlands)

    Herben, C.G.P.; Leijtens, X.J.M.; Maat, D.H.P.; Blok, H.; Smit, M.K.

    1999-01-01

    Crosstalk performance of monolithically integrated multiwavelength optical cross-connects (OXC's) depends strongly on their architecture. In this paper, a semiquantitative analysis of crosstalk in 11 different architectures is presented. Two architectures are analyzed numerically in more detail and

  13. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  14. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  15. Surface characteristics and antibacterial activity of a silver-doped carbon monolith

    Directory of Open Access Journals (Sweden)

    Marija Vukčević et al

    2008-01-01

    Full Text Available A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.

  16. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    DEFF Research Database (Denmark)

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  17. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  18. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  19. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  20. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S; Chrisey, Douglas B; Tomozawa, M

    2011-01-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr 0.2 Ti 0.80 )O 3 ] 1-x -[(Ba 0.70 Ca 0.30 )TiO 3 ] x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P s ∼ 3-6 μC cm -2 ) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/ε versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ∼1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ∼47-73 kV cm -1 with an energy density of 0.05-0.6 J cm -3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  1. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  2. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  3. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    Science.gov (United States)

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  5. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    Science.gov (United States)

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  7. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    Science.gov (United States)

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  8. Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants.

    Science.gov (United States)

    Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2013-05-24

    A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  10. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  11. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  12. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  13. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  14. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  15. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  16. The production of grain oriented lanthanum titanate (La2Ti2O7) ceramics by uniaxial hot-forging process for improved fracture toughness

    International Nuclear Information System (INIS)

    Ceylan, Ali

    2008-01-01

    The layered-structural ceramics, such as lanthanum titanate (La 2 Ti 2 O 7 ), have been known for their good electrical and optical properties at high frequencies and temperatures. However, few studies have been conducted on the mechanical properties of these ceramics. The interest in ceramic hot-forging (HF) has been greatly increased recently due to the enhancement in fracture toughness via bridging effect of oriented grains. In this study, grain oriented lanthanum titanate was produced by the hot-forging process. The characterizations of the samples were achieved by density measurement, scanning electron microscopy (SEM), optical microscopy, X-ray diffraction (XRD), Vickers indentation and three-point bending test. According to X-ray diffraction patterns, the orientation factor (f) was found to be 0.73 for certain hot-forging conditions resulting an improved fracture toughness. The improved fracture toughness of La 2 Ti 2 O 7 (3.2 MPa m 1/2 ) reached to the value of monolithic alumina (Al 2 O 3 ) between 3 and 4 MPa m 1/2

  17. Assessment of methods for immobilizing reprocessed radioactive waste

    Science.gov (United States)

    Murthy, M. K.; Baranyi, A. D.

    1980-05-01

    Nuclear waste forms presently used for the disposal of high level wastes and other potential waste forms under development were studied. The following waste forms were considered: Borosilicate glass, high silica glass, glassceramics, supercalcine ceramics, synroc ceramics, borosilicate glass beads in a metal matrix, supercalcine and synroc ceramics in a metal matrix and coated ceramics. The best developed wasteform, both in terms of overall product quality and process development, is monolithic borosilicate glass. However, hydrothermal instability is a major concern. Borosilicate glass in metal matrix waste form has better properties than monolithic borosilicate glass waste form. The process was proven on a pilot scale. Hence, it is considered very close to monolithic glass in terms of overall development. The product qualities of the other waste forms are better than borosilicate glass. However, process development for these alternative waste forms is still in a conceptual stage.

  18. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  19. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  20. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  2. Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers.

    Science.gov (United States)

    Ginzburg, Madlen; MacLachlan, Mark J; Yang, San Ming; Coombs, Neil; Coyle, Thomas W; Raju, Nandyala P; Greedan, John E; Herber, Rolfe H; Ozin, Geoffrey A; Manners, Ian

    2002-03-20

    The ability to form molded or patterned metal-containing ceramics with tunable properties is desirable for many applications. In this paper we describe the evolution of a ceramic from a metal-containing polymer in which the variation of pyrolysis conditions facilitates control of ceramic structure and composition, influencing magnetic and mechanical properties. We have found that pyrolysis under nitrogen of a well-characterized cross-linked polyferrocenylsilane network derived from the ring-opening polymerization (ROP) of a spirocyclic [1]ferrocenophane precursor gives shaped macroscopic magnetic ceramics consisting of alpha-Fe nanoparticles embedded in a SiC/C/Si(3)N(4) matrix in greater than 90% yield up to 1000 degrees C. Variation of the pyrolysis temperature and time permitted control over the nucleation and growth of alpha-Fe particles, which ranged in size from around 15 to 700 A, and the crystallization of the surrounding matrix. The ceramics contained smaller alpha-Fe particles when prepared at temperatures lower than 900 degrees C and displayed superparamagnetic behavior, whereas the materials prepared at 1000 degrees C contained larger alpha-Fe particles and were ferromagnetic. This flexibility may be useful for particular materials applications. In addition, the composition of the ceramic was altered by changing the pyrolysis atmosphere to argon, which yielded ceramics that contain Fe(3)Si(5). The ceramics have been characterized by a combination of physical techniques, including powder X-ray diffraction, TEM, reflectance UV-vis/near-IR spectroscopy, elemental analysis, XPS, SQUID magnetometry, Mössbauer spectroscopy, nanoindentation, and SEM. Micromolding of the spirocyclic [1]ferrocenophane precursor within soft lithographically patterned channels housed inside silicon wafers followed by thermal ROP and pyrolysis enabled the formation of predetermined micron scale designs of the magnetic ceramic.

  3. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  4. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  5. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  6. Broadband EM Performance Characteristics of Single Square Loop FSS Embedded Monolithic Radome

    Directory of Open Access Journals (Sweden)

    Raveendranath U. Nair

    2013-01-01

    Full Text Available A monolithic half-wave radome panel, centrally loaded with aperture-type single square loop frequency selective surface (SSL-FSS, is proposed here for broadband airborne radome applications. Equivalent transmission line method in conjunction with equivalent circuit model (ECM is used for modeling the SSL-FSS embedded monolithic half-wave radome panel and evaluating radome performance parameters. The design parameters of the SSL-FSS are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance from L-band to X-band as compared to the conventional monolithic half-wave slab of identical material and thickness. The superior EM performance of SSL-FSS embedded monolithic radome wall makes it suitable for the design of normal incidence and streamlined airborne radomes.

  7. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  8. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  9. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  10. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  11. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  12. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  13. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  14. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    Science.gov (United States)

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  15. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S [SPECLAB, Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Chrisey, Douglas B; Tomozawa, M, E-mail: rkatiyar@uprrp.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States)

    2011-10-05

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr{sub 0.2}Ti{sub 0.80})O{sub 3}]{sub 1-x}-[(Ba{sub 0.70}Ca{sub 0.30})TiO{sub 3}]{sub x} (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P{sub s} {approx} 3-6 {mu}C cm{sup -2}) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/{epsilon} versus (T) plots revealed ferroelectric DPT behaviour with estimated {gamma} values of {approx}1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of {approx}47-73 kV cm{sup -1} with an energy density of 0.05-0.6 J cm{sup -3} for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  16. Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Amaral, M; Rippe, M P; Kleverlaan, C J; Valandro, L F

    2016-08-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to ISO:6872-2008 and assigned in accordance with two factors: (1) "surface treatment"-without treatment (as-sintered, Ctrl), grinding with coarse diamond bur (181µm; Grinding); and (2) "low-temperature aging (LTD)" - presence and absence. Grinding was performed using a contra-angle handpiece under constant water-cooling. LTD was simulated in an autoclave at 134°C under 2-bar pressure for 20h. Mean flexural fatigue limits (20,000 cycles) were determined under sinusoidal loading using stair case approach. For Lava ceramic, it was observed a statistical increase after grinding procedure and different behavior after LTD stimuli (Ctrl

  17. Stanley Kubrick and B.F. Skinner : Is a Teaching Machine a Monolith ?

    OpenAIRE

    浜野, 保樹; ハマノ, ヤスキ; Yasuki, Hamano

    1990-01-01

    The teaching machine invented by B.F. Skinner was recog-nized as one of few clear achievements of scientific pedagogy and even appeared in SF. Arthur C. Clarke who wrote the script of the SF movie "2001: A Space Odyssey" with Stanley Kubrick wanted to scientifically define a monolith to be a God who had given intelligence to our ancestors. In other words, he wanted to describe a monolith as a teaching machine as well as a God. However Kubrick did not want to make clear about what a monolith i...

  18. III–Vs on Si for photonic applications—A monolithic approach

    International Nuclear Information System (INIS)

    Wang, Zhechao; Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech; Lourdudoss, Sebastian

    2012-01-01

    Highlights: ► Monolithic evanescently coupled silicon laser (MECSL) structure treated. ► Optical mode profiles and thermal resistivity of MECSL optimized by simulation. ► MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. ► Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. ► Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III–Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO 2 through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO 2 as the first step which paves the way for realizing active photonic devices on Si/SiO 2 waveguides, e.g. an MECSL.

  19. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  20. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    Science.gov (United States)

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  1. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  2. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    Science.gov (United States)

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  4. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a measure of the chemical durability of a simulated or radioactive monolithic waste form, such as a glass, ceramic, cement (grout), or cermet, in a test solution at temperatures <100°C under low specimen surface- area-to-leachant volume (S/V) ratio conditions. 1.2 This test method can be used to characterize the dissolution or leaching behaviors of various simulated or radioactive waste forms in various leachants under the specific conditions of the test based on analysis of the test solution. Data from this test are used to calculate normalized elemental mass loss values from specimens exposed to aqueous solutions at temperatures <100°C. 1.3 The test is conducted under static conditions in a constant solution volume and at a constant temperature. The reactivity of the test specimen is determined from the amounts of components released and accumulated in the solution over the test duration. A wide range of test conditions can be used to study material behavior, includin...

  5. Three-Dimensional Glass Monolithic Micro-Flexure Fabricated by Femtosecond Laser Exposure and Chemical Etching

    Directory of Open Access Journals (Sweden)

    Viktor Tielen

    2014-09-01

    Full Text Available Flexures are components of micro-mechanisms efficiently replacing classical multi-part joints found at the macroscale. So far, flexures have been limited to two-dimensional planar designs due to the lack of a suitable three-dimensional micromanufacturing process. Here we demonstrate and characterize a high-strength transparent monolithic three-dimensional flexural component fabricated out of fused silica using non-ablative femtosecond laser processing combined with chemical etching. As an illustration of the potential use of this flexure, we propose a design of a Hoecken linkage entirely made with three-dimensional cross-spring pivot hinges.

  6. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells.

    Science.gov (United States)

    Tahmasebi Birgani, Zeinab; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-03-01

    Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.

  7. III-Vs on Si for photonic applications-A monolithic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhechao, E-mail: Zhechao.Wang@intec.ugent.be [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Lourdudoss, Sebastian, E-mail: slo@kth.se [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Monolithic evanescently coupled silicon laser (MECSL) structure treated. Black-Right-Pointing-Pointer Optical mode profiles and thermal resistivity of MECSL optimized by simulation. Black-Right-Pointing-Pointer MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. Black-Right-Pointing-Pointer Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. Black-Right-Pointing-Pointer Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III-Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO{sub 2} through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO{sub 2} as the first step which paves the way for realizing active photonic devices on Si/SiO{sub 2} waveguides, e.g. an MECSL.

  8. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  9. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.; Miller, Brian W.; Lee, Brady D.; Buck, Edgar C.; Washton, Nancy M.; Bowden, Mark E.; Lawter, Amanda R.; McElroy, Erin M.; Serne, R Jeffrey

    2016-09-30

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms and a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.

  10. Comparison of two bond strength testing methodologies for bilayered all-ceramics.

    Science.gov (United States)

    Dündar, Mine; Ozcan, Mutlu; Gökçe, Bülent; Cömlekoğlu, Erhan; Leite, Fabiola; Valandro, Luiz Felipe

    2007-05-01

    This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucite-reinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N=40, n=10/group for SBS test method, N=5 blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3mm; diameter, 5mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa+/-S.D.) and modes of failures were recorded. Significant difference between the two test methods and all-ceramic types were observed (P<0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41+/-8 MPa) than those to low leucite (28+/-4 MPa), glass-infiltrated (26+/-4 MPa) and leucite-reinforced (23+/-3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15+/-2 MPa) than those of leucite (12+/-2 MPa), glass-infiltrated (9+/-1 MPa) and lithium disilicate ceramic (9+/-1 MPa) (ANOVA, P<0.05). Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics

  11. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  12. Recent progress in low-temperature-process monolithic three dimension technology

    Science.gov (United States)

    Yang, Chih-Chao; Hsieh, Tung-Ying; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Yeh, Wen-Kuan; Wu, Meng-Chyi

    2018-04-01

    Monolithic three-dimension (3D) integration is an ultimate alternative method of fabricating high density, high performance, and multi-functional integrated circuits. It offers the promise of being a new approach to increase system performance. How to manage the thermal impact of multi-tiered processes, such as dopant activation, source/drain silicidation, and channel formation, and to prevent the degradation of pre-existing devices/circuits become key challenges. In this paper, we provide updates on several important monolithic 3D works, particularly in sequentially stackable channels, and our recent achievements in monolithic 3D integrated circuit (3D-IC). These results indicate that the advanced 3D architecture with novel design tools enables ultrahigh-density stackable circuits to have superior performance and low power consumption for future artificial intelligence (AI) and internet of things (IoTs) application.

  13. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    OpenAIRE

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  14. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  15. Environmental Effects on Non-oxide Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  16. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  17. Comparative effectiveness of ceramic-on-ceramic implants in stemmed hip replacement: a multinational study of six national and regional registries.

    Science.gov (United States)

    Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy

    2014-12-17

    The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard

  18. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  19. Surface texturing of sialon ceramic by femtosecond pulsed laser

    CSIR Research Space (South Africa)

    Tshabalala, Lerato C

    2017-01-01

    Full Text Available AlONSi(sub3)N(sub4) ceramic using the Ti: Sapphire Femtosecond laser system was investigated. Parametric analysis was conducted using surface drilling, unidirectional and cross-hatching machining procedures performed on the substrate at a varied power...

  20. Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu

    2018-05-01

    This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

  1. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  2. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  3. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  4. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  5. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  6. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Science.gov (United States)

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  7. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  8. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  9. New 'monolithic' templates and improved protocols for soft lithography and microchip fabrication

    International Nuclear Information System (INIS)

    Pallandre, Antoine; Pal, Debjani; Lambert, Bertrand de; Viovy, Jean-Louis; Fuetterer, Claus

    2006-01-01

    We report a new method for fast prototyping and fabrication of polydimethylsiloxane (PDMS) and plastic microfluidic chips. These methods share in common the preparation of monolithic masters which includes the fabrication of the planar support, the 'negative pattern' of the microchannels and the fluidic connectors. The monolithic templates are extremely robust compared to conventional ones made of silicon and SU-8, and easier to produce and cheaper than all-silicon or electroplated templates. In contrast to the above-mentioned methods, our process allows one to cast both micrometre- (e.g. the microchannel) and millimetre-sized structures (e.g. the fluidic connection to the outer world) in a single fabrication step. The 'monolithic template' strategy can be used to fabricate both elastomeric (e.g. poly(dimethyl siloxane (PDMS)) polyester thermoset masters and glassy polymeric (e.g. cyclic olefin copolymer (COC)) devices. In this study we also report on one step fabrication of elastomer chips and on surface modifications of the above mentioned monolithically fabricated masters in order to improve separation of the chip from the template

  10. Development of laundry drainage treatment system with ceramic ultra filter

    International Nuclear Information System (INIS)

    Kanda, Masanori; Kurahasi, Takafumi

    1995-01-01

    A compact laundry drainage treatment system (UF system hereafter) with a ceramic ultra filter membrane (UF membrane hereafter) has been developed to reduce radioactivity in laundry drainage from nuclear power plants. The UF membrane is made of sintered fine ceramic. The UF membrane has 0.01 μm fine pores, resulting in a durable, heat-resistant, and corrosion-resistant porous ceramic filter medium. A cross-flow system, laundry drainage is filtrated while it flows across the UF membrane, is used as the filtration method. This method creates less caking when compared to other methods. The UF membrane is back washed at regular intervals with permeated water to minimize caking of the filter. The UF membrane and cross-flow system provides long stable filtration. The ceramic UF membrane is strong enough to concentrate suspended solids in laundry drainage up to a weight concentration of 10%. The final concentrated laundry drainage can be treated in an incinerator. The performance of the UF system was checked using radioactive laundry drainage. The decontamination factor of the UF system was 25 or more. The laundry drainage treatment capacity and concentration ratio of the UF system, as well as the service life of the UF membrane were also checked by examination using simulated non-radioactive laundry drainage. Even though laundry drainage was concentrated 1000 times, the UF system showed good permeated water quality and permeated water flux. (author)

  11. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  13. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  14. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    Science.gov (United States)

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  16. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  17. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  18. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    Science.gov (United States)

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  19. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  20. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  1. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    Science.gov (United States)

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The preparation of HfC/C ceramics via molecular design.

    Science.gov (United States)

    Inzenhofer, Kathrin; Schmalz, Thomas; Wrackmeyer, Bernd; Motz, Günter

    2011-05-07

    Polymer derived ceramics have received lots of attention throughout the last few decades. Unfortunately, only a few precursor systems have been developed, focusing on silicon based polymers and ceramics, respectively. Herein, the synthesis of novel hafnium containing organometallic polymers by two different approaches is reported. Dialkenyl substituted hafnocene monomers were synthesized and subsequently polymerized via a free radical mechanism. Salt metathesis reactions of hafnocene dichloride with bifunctional linkers led to the formation of polymeric materials. NMR spectroscopic methods--in solution as well as in the solid state--were used to characterize the organometallic polymers. Ceramics were finally obtained after cross-linking and thermal treatment under argon (T(max) = 1800 °C). SEM investigations, elemental analyses, Raman spectroscopy and XRD investigations identified the pyrolyzed products as partially crystalline HfC/C mixed phases.

  3. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Jue, Jan-Fong, E-mail: dennis.keiser@inl.gov; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U–Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U–10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: • A typical Zr diffusion barrier with a thickness of 25 μm. • A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. • Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt.%. • Decomposed areas containing plate-shaped low-Mo phase. • A typical Zr/cladding interaction layer with a thickness of 1–2 μm. • A visible UZr{sub 2} bearing layer with a thickness of 1–2 μm. • Mo-rich precipitates (mainly Mo{sub 2}Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr{sub 2}-bearing layer and the U–Mo matrix. • No excessive interaction between cladding and the uncoated fuel edge. • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O

  4. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  5. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry.

    Science.gov (United States)

    Spross, Jens; Sinz, Andrea

    2010-02-15

    We describe the preparation of a capillary trypsin immobilized monolithic enzyme reactor (IMER) for a rapid and efficient digestion of proteins down to the femtomole level. Trypsin was immobilized on a poly(glycidyl methacrylate-co-acrylamide-co-ethylene glycol dimethycrylate) monolith using the glutaraldehyde technique. Digestion efficiencies of the IMER were evaluated using model proteins and protein mixtures as well as chemically cross-linked lysozyme regarding the addition of denaturants and increasing digestion temperature. The trypsin IMER described herein is applicable for the digestion of protein mixtures. Even at a 1000-fold molar excess of one protein, low-abundance proteins are readily identified, in combination with MS/MS analysis. An online setup of the IMER with reversed phase nano-HPLC separation and nano-ESI-MS/MS analysis was established. The great potential of the trypsin IMER for proteomics applications comprise short digestion times in the range of seconds to minutes, in addition to improved digestion efficiencies, compared to in-solution digestion.

  6. An assessment of methods for immobilizing reprocessed radioactive waste

    International Nuclear Information System (INIS)

    Murthy, M.K.; Baranyi, A.D.

    1980-05-01

    Nuclear waste forms presently used for the disposal of high-level wastes and other potential waste forms under development were studied using information available in the literature and by visits to the laboratories. The following waste forms were considered: Borosilicate glass, high-silica glass, glassceramics, supercalcine ceramics, synroc ceramics, borosilicate glass beads in a metal matrix, supercalcine and synroc ceramics in a metal matrix and coated ceramics. The following conclusions have been reached: To date the best developed wasteform, both in terms of overall product quality and process development, is monolithic borosilicate glass. However, hydrothermal instability is a major concern. Borosilicate glass in metal matrix waste form has better properties than monolithic borosilicate glass waste form. The process has been proven on a pilot scale. Hence, it is considered very close to monolithic glass in terms of overall development. The product qualities of the other waste forms are better than borosilicate glass. However, process development for these alternative waste forms is still in a conceptual stage. The technological basis for processing ceramic waste forms exists in a well developed state. Nevertheless, adaptation of the technology to continuous hot-cell operation, although feasible, has not been demonstrated. In view of the product potential of ceramic waste forms it is felt that their development should be given emphasis at this time. (auth)

  7. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  8. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  9. Highly porous ceramic oxide aerogels having improved flexibility

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  10. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    Science.gov (United States)

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  11. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  12. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  13. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  14. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  15. Test of the TRAPPISTe monolithic detector system

    Science.gov (United States)

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  16. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics.

    Science.gov (United States)

    Kulkarni, Aditi; Rothrock, James; Thompson, Jeffery

    2018-01-14

    To test the impact of exposure to artificial gastric acid combined with toothbrush abrasion on the properties of dental ceramics. Earlier research has indicated that immersion in artificial gastric acid has caused increased surface roughness of dental ceramics; however, the combined effects of acid immersion and toothbrush abrasion and the impact of increased surface roughness on mechanical strength and optical properties have not been studied. Three commercially available ceramics were chosen for this study: feldspathic porcelain, lithium disilicate glass-ceramic, and monolithic zirconium oxide. The specimens (10 × 1 mm discs) were cut, thermally treated as required, and polished. Each material was divided into four groups (n = 8 per group): control (no exposure), acid only, brush only, acid + brush. The specimens were immersed in artificial gastric acid (50 ml of 0.2% [w/v] sodium chloride in 0.7% [v/v] hydrochloric acid mixed with 0.16 g of pepsin powder, pH = 2) for 2 minutes and rinsed with deionized water for 2 minutes. The procedure was repeated 6 times/day × 9 days, and specimens were stored in deionized water at 37°C. Toothbrush abrasion was performed using an ISO/ADA design brushing machine for 100 cycles/day × 9 days. The acid + brush group received both treatments. Specimens were examined under SEM and an optical microscope for morphological changes. Color and translucency were measured using spectrophotometer CIELAB coordinates (L*, a*, b*). Surface gloss was measured using a gloss meter. Surface roughness was measured using a stylus profilometer. Biaxial flexural strength was measured using a mechanical testing machine. The data were analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p gloss, and surface roughness for porcelain and e.max specimens. No statistically significant changes were found for any properties of zirconia specimens. The acid treatment affected the surface roughness, color, and gloss of porcelain and e

  17. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  18. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Rui M., E-mail: ruimnovais@ua.pt; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A.

    2016-11-15

    Highlights: • Porous fly ash containing-geopolymer monoliths for lead adsorption were developed. • Geopolymers’ porosity and pH of the ion solution controls the adsorption capacity. • Lead adsorption by the geopolymer monoliths up to 6.34 mg/g was observed. • These novel adsorbents can be used in packed beds that are easily collected. • The reuse of biomass fly ash wastes as raw material ensures waste valorization. - Abstract: In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44 g/cm{sup 3}) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers’ porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34 mg{sub lead}/g{sub geopolymer}. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs.

  19. Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Bao

    2015-02-01

    Full Text Available Monolithic columns are gaining interest as excellent substitutes to conventional particle-packed columns. These columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monoliths possess also great potential for the clean-up and preparation of complex mixtures. In situ polymerization inside appropriate supports allows the development of several microextraction formats, such as in-tube solid-phase and pipette tip-based extractions. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, time-saving LC columns and preparative applications applied to the analysis of residues and contaminants in food in 2010–2014 are described, focusing on recent improvements in design and with emphasis in automated on-line systems and innovative materials and formats.

  20. LePIX: First results from a novel monolithic pixel sensor

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.; Wyss, J.

    2013-01-01

    We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55 Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics

  1. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  2. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  3. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  4. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  5. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  6. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  7. A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array

    International Nuclear Information System (INIS)

    Toeppen, J.S.; Bliss, E.S.; Long, T.W.; Salmon, J.T.

    1991-07-01

    we have developed a video Hartmann wavefront sensor that incorporates a monolithic array of microlenses as the focusing elements. The sensor uses a monolithic array of photofabricated lenslets. Combined with a video processor, this system reveals local gradients of the wavefront at a video frame rate of 30 Hz. Higher bandwidth is easily attainable with a camera and video processor that have faster frame rates. When used with a temporal filter, the reconstructed wavefront error is less than 1/10th wave

  8. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  9. Neutron activation analysis of medieval and early modern times ceramics

    International Nuclear Information System (INIS)

    Kies, A.; Reitsamer, G.; Bauer, W.

    1985-01-01

    Provenience studies of medieval and early modern times ceramics from the Eastern Danube area of Austria have been performed by instrumental neutron activation analysis. All sherds examined were selected from pottery which was specially charactrized by pottery marks ('Cross Potent', 'Crossmark within a circle', 'Latin Cross', 'Cross Paty'). With respect to the chemical composition five different pottery groups could be evaluated by cluster analysis. Archaeological results: The'Cross Patent' was used by different potter's workshops whereas the 'Crossmark within a circle' was more likely restricted to one manufacture entre. The distribution of the 'Latin Cross' and The 'Cross Paty' over all five clusters indicated the usage of clay from different deposits. The assignment of the 'Cross Paty' exclusively to the area of Passau could be disproved. (Author)

  10. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  11. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  12. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  13. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2016-01-01

    Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs

  14. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  15. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    Science.gov (United States)

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  17. Comparative Results From a National Joint Registry Hip Data Set of a New Cross-Linked Annealed Polyethylene vs Both Conventional Polyethylene and Ceramic Bearings.

    Science.gov (United States)

    Epinette, Jean-Alain; Jolles-Haeberli, Brigitte M

    2016-07-01

    Major concerns in hip arthroplasty concern the fate of bearing surfaces. Highly cross-linked polyethylene materials (HXLPE) currently demonstrate successful in vitro results with new technical procedures of cross-linking the polyethylene material, whereas processing the polyethylene below its melting temperature to produce so-called "annealed HXLPE" would allow retention of important mechanical properties. Data released by the National Joint Registry of England and Wales addressing in 45,877 hips the same Trident uncemented cup, allowed us to compare the performance of a consecutive cohort of patients implanted with the newest generation of annealed HXLPE acetabular bearings (X3: 21,470) vs 2 consecutive nonselected cohorts, one with conventional polyethylene (N2vac: 8225) and one with ceramic-on-ceramic (CoC) hip bearings (AL: 16,182). The main end point in survivorship has been first defined as revision for any cause, then for any cause which could be related to a failure of the bearing couple. At 6-year follow-up, all Trident cups demonstrated encouraging global survival cumulative rates all between 95% and 99%. A first study demonstrated better survivorship with X3-HXLPE liners vs conventional ultrahigh molecular weight polyethylene. On the second parallel study, the cumulative survival rates were better for X3 liners as compared to CoC bearings. Moreover, when ranking the yearly cumulative percent revision rates, again the best results were obtained with X3 liners with small alumina heads (cumulative percent revision rate at 0.298). Within the frame of this Trident study, the use of this X3 highly cross-linked annealed polyethylene could be considered as a reliable alternate solution to CoC bearings. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Microchemical Systems and Their Applications Workshop Held on 16-18 June 1999 in Reston, Virginia

    Science.gov (United States)

    2000-03-29

    USABLE BY- PRODUCT HYDROGEN, BUT COST OF THE PT COATED CERAMIC TUBES IS HIGH, HEAT TRANSFER EFFICIENCY IS LIMITED, AND THE RISK ASSOCIATED WITH...Monolith reactor Monolith Catalyst A Gas mixture i quartz tube T 1 Radiation Shields GC / analysis 3M Monolith Catalysts *-v.V...polyamide. MicroChannel patterned laminates are fabricated from polyamide while microfin -patterned laminates are fabricated from copper. In addition to

  20. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  1. Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.

    Science.gov (United States)

    Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo

    2018-01-31

    Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.

  2. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  3. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  4. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  5. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  6. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  7. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  8. Fiber-based monolithic columns for liquid chromatography.

    Science.gov (United States)

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  9. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  10. High-density 3D graphene-based monolith and related materials, methods, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  11. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  12. Field-effect piezoresistors for vibration detection of nanobeams by using monolithically integrated MOS capacitors

    International Nuclear Information System (INIS)

    Cheng, Haitao; Yang, Heng; Li, XinXin; Wang, Yuelin

    2013-01-01

    A novel piezoresistive sensing method is presented herein for the detection of nanobeam resonator based on a monolithically integrated MOS (metal–oxide–semiconductor) capacitor structure. The bottom layer of the nanobeam located beneath the MOS capacitor is utilized as a piezoresistor for the detection of internal stress resulting from nanobeam deformation, and therefore the challenging process of ultra-shallow junction doping is avoided. When a bias voltage applied on the MOS gate exceeds the threshold, the depletion layer width is built up to the maximum, and the piezoresistive cancellation effect beside the neutral plane is eliminated. Based on a conventional microelectromechanical (MEMS) process, an MOS capacitor is fabricated at the terminal of a double-clamped nanobeam with dimensions of 46 µm × 7 µm × 149 nm. The measured R–V curve of this MOS structure presents a 64.7 nm thick piezoresistor which closely agrees with the design. This double-clamped nanobeam is excited into mechanical resonance by mounting it on a piezoelectric ceramic, and the amplitude–frequency response is measured by a network analyzer. The measured resonant frequency is 3.97 MHz and the quality (Q)-factor is 82 in atmosphere environment. Besides, this piezoresistive sensing method is verified by a laser-Doppler vibrometry. (paper)

  13. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  14. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  15. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    Science.gov (United States)

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    Science.gov (United States)

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  18. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    Science.gov (United States)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  19. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Science.gov (United States)

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  20. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  1. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  2. Low frequency seismic noise acquisition and analysis with tunable monolithic horizontal sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Vilasi, Silvia; Barone, Fabrizio

    2011-04-01

    In this paper we describe the scientific data recorded mechanical monolithic horizontal sensor prototypes located in the Gran Sasso Laboratory of the INFN. The mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock. The main goal of this experiment is to characterize seismically the sites in the frequency band 10-4 ÷ 10Hz and to get all the necessary information to optimize the sensor.

  3. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths.

    Science.gov (United States)

    Guo, Jialiang; Xiao, Yuan; Lin, Yuanjing; Zhang, Qiaoxuan; Chang, Yiqun; Crommen, Jacques; Jiang, Zhengjin

    2016-05-15

    In order to investigate the effect of the linking spacer on the enantioseparation ability of β-cyclodextrin (β-CD) functionalized polymeric monoliths, three β-CD-functionalized organic polymeric monoliths with different spacer lengths were prepared by using three amino-β-CDs, i.e. mono-6-amino-6-deoxy-β-CD, mono-6-ethylenediamine-6-deoxy-β-CD, mono-6-hexamethylenediamine-6-deoxy-β-CD, as starting materials. These amino-β-CDs reacted with glycidyl methacrylate to produce functional monomers which were then copolymerized with ethylene dimethacrylate. The enantioseparation ability of the three monoliths was evaluated using 14 chiral acidic compounds, including mandelic acid derivatives, nonsteroidal anti-inflammatory drugs, N-derivatized amino acids, and chiral herbicides under optimum chromatographic conditions. Notably, the poly(GMA-NH2-β-CD-co-EDMA) column provides higher enantioresolution and enantioselectivity than the poly(GMA-EDA-β-CD-co-EDMA) and poly(GMA-HDA-β-CD-co-EDMA) columns for most tested chiral analytes. Furthermore, the enantioseparation performance of triazole-linker containing monoliths was compared to that of ethylenediamine-linker containing monoliths. The results indicate that the enantioselectivity of β-CD monolithic columns is strongly related to the length and type of spacer tethering β-CD to the polymeric support. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microstructure and fracture analysis of fully ceramic microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO 2 fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO 2 is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO 2 kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated

  5. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  6. Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors

    DEFF Research Database (Denmark)

    Lafleur, Josiane P; Senkbeil, Silja; Novotny, Jakub

    2015-01-01

    A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning...... electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro...

  7. Development of high power ceramic lasers and possible application to nuclear fusion

    International Nuclear Information System (INIS)

    Yanagitani, Takagimi; Yagi, Hideki; Ueda, Ken-ichi; Lu, Jianren; Kaminskii, Alexander A.

    2003-01-01

    We have succeeded in fabricating high-transparent Y 3 Al 5 O 12 (YAG) and Y 2 O 3 laser ceramic materials using vacuum sintering method. Compared with single crystal, ceramics have the following advantages, namely: (1) Ease of fabrication; (2) Less expensive; (3) Fabrication of large size and high concentration; (4) Multi-layer and multi-functional ceramic structure; (5) Mass production, etc. On the base of Nd 3+ :YAG ceramics, we performed high efficient and high power (up to 1.46 kW) CW lasers with laser diode pumping. Optical properties of Nd:YAG ceramics, such as absorption, emission and fluorescence lifetime, were found to be similar to those of Nd:YAG single crystal. The thermal conductivity of Nd:YAG ceramics was measured, which is also found to be very similar to that of Nd:YAG single crystal. The simulated emission cross section of Nd 3+ :Y 2 O 3 happened to be in the range that is required for laser fusion driver. This makes Nd:Y 2 O 3 a potential candidate for being used in laser fusion system. Some optical properties of Nd:Y 2 O 3 ceramics were investigated and for the first time, CW room-temperature laser oscillation at two wavelength (1074.6 nm and 1078.6 nm) of 4 F 3/2 → 4 I 11/2 channel was obtained with a slope efficiency of 32%. (author)

  8. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test.

    Science.gov (United States)

    Carrabba, Michele; Keeling, Andrew J; Aziz, Aziz; Vichi, Alessandro; Fabian Fonzar, Riccardo; Wood, David; Ferrari, Marco

    2017-05-01

    To compare three different compositions of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) ceramic and a lithium disilicate ceramic in terms of flexural strength and translucency. Three zirconia materials of different composition and translucency, Aadva ST [ST], Aadva EI [EI] and Aadva NT [NT](GC Tech, Leuven, Belgium) were cut with a slow speed diamond saw into beams and tabs in order to obtain, after sintering, dimensions of 1.2×4.0×15.0mm and 15.0×15.0×1.0mm respectively. Blocks of IPS e.max CAD LT were cut and crystallized in the same shapes and dimensions and used as a reference group [LD]. Beams (n=15) were tested in a universal testing machine for three-point bending strength. Critical fracture load was recorded in N, flexural strength (σ in MPa), Weibull modulus (m) and Weibull characteristic strength (σ 0 in MPa) were then calculated. Tabs (n=10) were measured with a spectrophotometer equipped with an integrating sphere. Contrast Ratios were calculated as CR=Yb/Yw. SEM of thermally etched samples coupled with lineal line analysis (n=6) was used to measure the tested zirconia grain size. Data were statistically analyzed. Differences in translucency, flexural strength and grain size were found to be statistically significant. CR increased and flexural strength decreased in the following order ST(σ 1215±190MPa, CR 0.74±0.01)>EI(σ 983±182MPa, CR 0.69±0.01)>NT(σ 539±66MPa, CR 0.65±0.01)>LD (σ 377±39Mpa, CR 0.56±0.02). The average grain size was different for the three zirconia samples with NT(558±38nm)>ST(445±34nm)>EI(284±11nm). The zirconia composition heavily influenced both the flexural strength and the translucency. Different percentages of Yittria and Alumina result in new materials with intermediate properties in between the conventional zirconia and lithium disilicate. Clinical indications for Zirconia Aadva NT should be limited up to three-unit span bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  10. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  11. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  12. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  13. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  14. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.

    Science.gov (United States)

    Li, Qianjin; Liu, Zhen

    2015-01-01

    Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

  15. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  16. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  17. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  18. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  19. Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available To improve the durability of dye-sensitized solar cells (DSCs, monolithic DSCs with ionic liquid electrolyte were studied. Deposited by screen printing, a carbon layer was successfully fabricated that did not crack or peel when annealing was employed beforehand. Optimized electrodes exhibited photovoltaic characteristics of 0.608 V open-circuit voltage, 6.90 cm−2 mA short-circuit current, and 0.491 fill factor, yielding 2.06% power conversion efficiency. The monolithic DSC using ionic liquid electrolyte was thermally durable and operated stably for 1000 h at 80°C.

  20. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  1. Design for an 8 Meter Monolithic UV/OIR Space Telescope

    Science.gov (United States)

    Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.

    2009-01-01

    ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.

  2. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  3. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  4. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  5. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  6. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  7. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  8. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  9. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  10. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  11. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  12. Preparation and characterization of Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Bartlomiej; Lambrechts, Kalle [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Oye, Gisle, E-mail: gisle.oye@chemeng.ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A facile method for preparing Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical porosity. Black-Right-Pointing-Pointer Continuous-flow testing of the monoliths in liquid-phase oxidation of glucose. Black-Right-Pointing-Pointer Increased catalytic activity in the presence of cerium oxide (stirred-batch tests). - Abstract: Porous CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical pore structure were prepared by mixing boehmite particles with solutions containing different amounts of cerium chloride and aluminum nitrate. The monoliths were functionalized with gold nanoparticles using the incipient wetness method. The resulting materials were characterized by X-ray diffraction, nitrogen sorption, mercury porosimetry, UV-vis spectroscopy and transmission electron microscopy. The catalysts were tested in liquid phase glucose oxidation, comparing continuously stirred batch reactor and continuous-flow fix-bed reactor setups.

  13. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  14. Fabrication of a novel hemin-based monolithic column and its application in separation of protein from complex bio-matrix.

    Science.gov (United States)

    Jiang, Xiaoya; Zhang, Doudou; Li, Xueying; Wang, Xixi; Bai, Ligai; Liu, Haiyan; Yan, Hongyuan

    2017-05-10

    A novel polymer-based monolithic column was prepared via redox initiation system within the confines of a stainless steel column with 4.6mm i.d. In the processes, hemin and lauryl methacrylate were used as co-monomers; ethylene dimethacrylate as crosslinking agent; n-butyl alcohol, ethanediol, and N, N-dimethylformamide as tri-porogens; benzoyl peroxide and N, N-dimethyl aniline as redox initiation system. The resulting polymer-based monolithic columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption instrument, and mercury intrusion porosimeter, respectively. The results illustrated that the improved monolith had relative uniform porous structure, good permeability, and low back pressure. Aromatic compounds were used to test the chromatographic behavior of the monolith, resulting in highest column efficiency of 19 880 plates per meter with reversed-phase mechanism. Furthermore, the homemade monolith was used as the stationary phase of high performance liquid chromatography to separate proteins from complex bio-matrix, including human plasma, egg white, and snailase. The results showed that the monolithic column occupied good separation ability with these complex bio-samples. Excellent specific character of the homemade hemin-based monolith was that it could simultaneously remove high-abundance proteins (including human serum albumin, immunoglobulin G, and human fibrinogen) from human plasma and separate other proteins to different fractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  16. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  17. Investigation of medieval ceramics from Ras by physicochemical methods

    Directory of Open Access Journals (Sweden)

    Zindović Nataša D.

    2008-01-01

    Full Text Available Although early medieval Serbian ceramic is well described by the archeologists and historians, knowledge of the Balkan ceramic production is still limited. Archaeometric study of ceramics provenance, technology of preparation and used pigments as well as influence of neighboring countries and specific characteristics of different workshops has never been performed so far. The detailed knowledge of the micro-chemical and micro-structural nature of an archaeological artifact is critical in finding solutions to problems of restoration, conservation, dating and authentication in the art world. In this work we present results of systematic investigation of pottery shards from archeological site Ras. The term Ras, which signifies both the fortress and the region encompassing the upper course of Raška River, used to be the center of the medieval Serbian state. Both the ceramic body and the polychromatic glaze of the artifacts were studied by a multianalitical approach combining optical microscopy (OM, FT-IR spectroscopy and X-ray fluorescence (XRF. Mineralogical composition of pottery shards has been determined combining results obtained by FT-IR spectroscopy, after deconvolution of the spectra, and XRPD analysis. Firing temperature has been estimated based on the mineralogical composition and positions of Si-O stretching (-1000 cm-1 and banding (-460 cm-1 vibrations. Investigated samples have been classified into two groups based on the mineralogical composition, cross sections and firing temperature. Larger group consists of samples of fine-grained, homogeneous ceramics with firing temperatures bellow 800 °C which indicates imported products. Second, smaller group consists of inhomogeneous ceramics with firing temperatures between 850 and 900 °C produced in the domestic workshops. The obtained results will be used to build up a national database for the compositions of bodies, glazes and pigments.

  18. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  19. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  20. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  1. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  2. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean

    International Nuclear Information System (INIS)

    Zhai, Haiyun; Su, Zihao; Chen, Zuanguang; Liu, Zhenping; Yuan, Kaisong; Huang, Lu

    2015-01-01

    Highlights: • A new GO-MISPE monolithic capillary column was prepared. • The column showed ability of impurities removal and excellent selectivity. • Phloxine B existed in real sample was enriched more than 90 times. • The GO-MISPE column presented good recovery and high stability. • The method was prospered to analyze phloxine B and LOD achieved 0.3 ng g −1 . - Abstract: A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC–LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001–2.0 μg mL −1 (r = 0.9995) with the detection limit (S/N = 3) of 0.075 ng mL −1 . Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC–LIF method can be applied to sensitively determine phloxine B in coffee bean

  3. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Haiyun, E-mail: zhaihaiyun@126.com [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Su, Zihao [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Chen, Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China); Liu, Zhenping; Yuan, Kaisong; Huang, Lu [College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2015-03-20

    Highlights: • A new GO-MISPE monolithic capillary column was prepared. • The column showed ability of impurities removal and excellent selectivity. • Phloxine B existed in real sample was enriched more than 90 times. • The GO-MISPE column presented good recovery and high stability. • The method was prospered to analyze phloxine B and LOD achieved 0.3 ng g{sup −1}. - Abstract: A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC–LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001–2.0 μg mL{sup −1} (r = 0.9995) with the detection limit (S/N = 3) of 0.075 ng mL{sup −1}. Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC–LIF method can be applied to sensitively determine phloxine B in coffee bean.

  4. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  5. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  6. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.; Švec, František; Frechet, Jean

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  7. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  8. Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization.

    Science.gov (United States)

    Nakajima, M; Watanabe, A; Jimbo, N; Nishizawa, K; Nakao, S

    1989-02-20

    A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 microm support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion.

  9. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  10. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  11. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  12. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  13. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  14. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Natalita Maulani Nursam

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSC are widely developed due to their attractive appearance and simple fabrication processes. One of the challenges that arise in the DSSC fabrication involves high material cost associated with the cost of conductive substrate. DSSC with monolithic configuration was then developed on the basis of this motivation. In this contribution, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass using porous ZrO2 as spacer. Herein, the catalytic material for the counter-electrode was varied using carbon composite and platinum in order to analyze their effect on the solar cell efficiency. Four-point probe measurement revealed that the carbon composite exhibited slightly higher conductivity with a sheet resistance of 9.8 Ω/sq and 10.9 Ω/sq for carbon and platinum, respectively. Likewise, the photoconversion efficiency of the monolithic cells with carbon counter-electrode almost doubled the efficiency of the cells with platinum counter-electrode. Our results demonstrate that carbon could outperform the performance of platinum as catalytic material in monolithic DSSC.

  15. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  16. Mathematical Modelling of Optimization of Structures of Monolithic Coverings Based on Liquid Rubbers

    Science.gov (United States)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Mussabekov, R.; Sartayev, D. T.

    2018-05-01

    The paper considers optimization of monolithic coatings compositions using a computer and MPE methods. The goal of the paper was to construct a mathematical model of the complete factorial experiment taking into account its plan and conditions. Several regression equations were received. Dependence between content components and parameters of rubber, as well as the quantity of a rubber crumb, was considered. An optimal composition for manufacturing the material of monolithic coatings compositions was recommended based on experimental data.

  17. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  18. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  19. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  20. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  1. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.

    Science.gov (United States)

    Zeng, Jiao; Liu, Shengquan; Wang, Menglin; Yao, Shouzhuo; Chen, Yingzhuang

    2017-05-01

    In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused-silica capillaries via photo-initiated thiol-ene click polymerization of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3-mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c-LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic.

    Science.gov (United States)

    Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N

    2015-09-01

    Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (PVita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (PVitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II

  4. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  5. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  6. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  7. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  8. Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC

    CERN Document Server

    Kinsho, Michikazu; Ogiwara, Norio; Saito, Yoshio

    2005-01-01

    It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or elect...

  9. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  10. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  11. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  12. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  13. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

    1999-01-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: ρd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density (ρd: 1.4--2.0 Mg/m 3 ) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10 -13 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite

  14. Corrosion behavior of ceramic-coated ZIRLO™ exposed to supercritical water

    Science.gov (United States)

    Mandapaka, Kiran K.; Cahyadi, Rico S.; Yalisove, Steven; Kuang, Wenjun; Sickafus, K.; Patel, Maulik K.; Was, Gary S.

    2018-01-01

    The corrosion behavior of ceramic coated ZIRLO™ tubing was evaluated in a supercritical water (SCW) environment to determine its behavior in high temperature water. Two coating architectures were analyzed; a 4 bi-layer TiAlN/TiN coating with Ti bond coat, and a TiN monolithic coating with Ti bond layer on ZIRLO™ tubes using cathodic arc physical vapor deposition (CA-PVD) technique. Femtosecond laser ablation was used to introduce reproducible defects in some of the coated tubes. On exposure to deaerated supercritical water at 542 °C for 48 h, coated tubes exhibited significantly higher weight gain compared to uncoated ZIRLO™. Examination revealed formation of a uniform ZrO2 layer beneath the coating of a thickness similar to that on the uncoated tube inner surface. The defects generated during the coating process acted as preferential paths for diffusion of oxygen resulting in the oxidation of substrate ZIRLO™. However, there was no delamination of the coating. There were insignificant differences in the oxidation weight gain between laser ablated and non-ablated tubes and the laser induced defects did not spread beyond their original size.

  15. Metallized ceramic vacuum pipe for particle beams

    International Nuclear Information System (INIS)

    Butler, B.L.; Featherby, M.

    1990-01-01

    A ceramic vacuum chamber segment in the form of a long pipe of rectangular cross section has been assembled from standard shapes of alumina ceramic using glass bonding techniques. Prior to final glass bonding, the internal walls of the pipe are metallized using an electroplating technology. These advanced processes allow for precision patterning and conductivity control of surface conducting films. The ability to lay down both longitudinal and transverse conductor patterns separated by insulating layers of glass give the accelerator designer considerable freedom in tailoring longitudinal and transverse beam pipe impedances. Assembly techniques of these beam pipes are followed through two iterations of semi-scale pipe sections made using candidate materials and processes. These demonstrate the feasibility of the concepts and provide parts for electrical characterization and for further refinement of the approach. In a parallel effort, a variety of materials, joining processes and assembly procedures have been tried to assure flexibility and reliability in the construction of 10-meter long sections to any required specifications

  16. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  17. Specially Treated Aramid Fiber Stabilized Gel-Emulsions: Preparation of Porous Polymeric Monoliths and Highly Efficient Removing of Airborne HCHO.

    Science.gov (United States)

    Liu, Jianfei; Chen, Xiangli; Wang, Pei; Fu, Xuwei; Liu, Kaiqiang; Fang, Yu

    2017-08-01

    Porous polymeric monoliths with densities as low as ≈0.060 g cm -3 are prepared in a gel-emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy-consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity (M6) is ≈2700 mg g -1 , the best result that is reported until now. More importantly, the monoliths can be reused after drying. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  19. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    Science.gov (United States)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  1. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  2. Effect of preceramic and Zr coating on impregnation behaviors of SiC ceramic composite

    Science.gov (United States)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    SiC fiber-reinforced ceramic composites were fabricated using a polymer impregnation and pyrolysis process. To develop the low temperature process, the pyrolysis was conducted at 600 °C in air. Both a microstructural observation and a mechanical test were utilized for the evaluation of the impregnation. For the impregnation, two kinds of polycarbosilane having a different degree of cross-linking were used. The level of cross-linking affected the ceramic yield of the composites. The cross-linking under oxygen containing atmosphere resulted in a dense matrix and high density of filling. However, tight bonding between the matrix and fibers in the fully dense composite samples, which was obtained using a cross-linking agent of divinylbenzene, turned out to be deteriorative on the mechanical properties. The physical isolation of fibers from matrix phase in the composites was very important to attain a mechanical ductility. The brittle fracture was alleviated by introducing an interphase coating with metallic Zr. The combination of forming the dense matrix and interphase coating should be a necessary condition for the SiCf/SiC fiber-reinforce composite, and it is practicable by controlling the process parameters.

  3. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  4. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (RsHKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  6. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  7. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  8. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  9. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  10. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  11. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  12. 10Gbps monolithic silicon FTTH transceiver for PON

    Science.gov (United States)

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  13. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  14. A compact narrow-linewidth laser with a low-Q monolithic cavity

    International Nuclear Information System (INIS)

    Peng, Yu

    2013-01-01

    We demonstrate an approach to narrowing the linewidth of a diode laser to around 15×10 3 Hz with a compact setup of confocal and parallel monolithic Fabry–Perot cavities (MFCs). Resonances of the confocal and parallel MFCs with low finesse are obtained. Diode lasers with optical feedback from confocal and parallel monolithic MFCs are demonstrated. The frequency could be tuned 80×10 6 Hz by changing the grating position of the external cavity diode laser based on the confocal MFC, and 100×10 6 Hz by tuning the temperature of the plane MFC over 0.02 ° C for the external cavity diode laser based on the parallel MFC. (paper)

  15. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  16. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  17. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride.

    Science.gov (United States)

    Bernard, Samuel; Fiaty, Koffi; Cornu, David; Miele, Philippe; Laurent, Pierre

    2006-05-11

    A complete kinetic modeling of the polymer-derived ceramics (PDCs) route is achieved for the first time through the investigation of the solid-state decomposition of a typical melt-spinnable poly[B-(methylamino)borazine] into boron nitride fibers at various heating rates. Through the use of the Lorentz fitting approach, it is shown that the two-step weight loss associated with the polymer-to-ceramic conversion is governed by a complex interplay of five diffusion-type transport mechanisms that are independent of the applied heating schedule. The application of the Friedman method to dynamic thermogravimetry data yields Ea and ln A values that are seen to increase with the extent of the ceramic conversion from region one (Ea = 38.73 kJ mol(-1)) to region five (Ea = 146.64 kJ mol(-1)). This fact indicates that both the mechanisms within those regions are parallel routes to the formation of the final solid-state material and their complexity increases with the conversion progress. The cross-linking process (first weight loss) of the polymer is governed by three dependent poorly energetic mechanisms. The first weight loss is activated by ammonolysis reactions that provide a modified polymer capable of undergoing condensation reactions in regions two and three to yield a highly cross-linked polymer. A large evolution of methylamine is identified during this process. Mineralization (region four) and ceramization (region five) steps are represented by two highly energetic multistep mechanisms. The mineralization step is associated with a large evolution of methylamine and occurs during the transition between the cross-linking and ceramization processes through the cleavage of the inter-ring B-N bonds. Ceramization represents the end of the polymer-to-ceramic conversion in which the planar consolidation of BN hexagons occurs through complex structural rearrangements of the borazine units (cleavage of the intraring B-N bonds) accompanied with an ammonia evolution. Finally

  18. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  19. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  20. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    Science.gov (United States)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  1. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  2. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  3. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  4. Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics.

    Science.gov (United States)

    Kong, Jie; Wang, Minjun; Zou, Jianhua; An, Linan

    2015-04-01

    High-temperature stable siliconborocarbonitride (SiBCN) ceramics produced from single-source preceramic polymers have received increased attention in the last two decades. In this contribution, soluble and meltable polyborosilazanes with hyperbranched topology (hb-PBSZ) were synthesized via a convenient solvent-free, catalyst-free and one-pot A2 + B6 strategy, an aminolysis reaction of the A2 monomer of dichloromethylsilane and the B6 monomer of tris(dichloromethylsilylethyl)borane in the presence of hexamethyldisilazane. The amine transition reaction between the intermediates of dichlorotetramethyldisilazane and tri(trimethylsilylmethylchlorosilylethyl)borane led to the formation of dendritic units of aminedialkylborons rather than trialkylborons. The cross-linked hb-PBSZ precursors exhibited a ceramic yield higher 80%. The resultant SiBCN ceramics with a boron atomic composition of 6.0-8.5% and a representative formula of Si1B(0.19)C(1.21)N(0.39)O(0.08) showed high-temperature stability and retained their amorphous structure up to 1600 °C. These hyperbranched polyborosilazanes with soluble and meltable characteristics provide a new perspective for the design of preceramic polymers possessing advantages for high-temperature stable polymer-derived ceramics with complex structures/shapes.

  5. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  6. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  7. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  8. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  9. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  10. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  11. Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2016-04-01

    Full Text Available Silica monoliths featuring either mesopores or flow-through macropores and mesopores in their skeleton are prepared by combining spinodal phase separation and sol-gel condensation. The macroporous network is first generated by phase separation in acidic medium in the presence of polyethyleneoxides while mesoporosity is engineered in a second step in alkaline medium, possibly in the presence of alkylammonium cations as surfactants. The mesoporous monoliths, also referred as aerogels, are obtained in the presence of alkylpolyethylene oxides in acidic medium without the use of supercritical drying. The impact of the experimental conditions on pore architecture of the monoliths regarding the shape, the ordering, the size and the connectivity of the mesopores is comprehensively discussed based on a critical appraisal of the different models used for textural analysis.

  12. The Health Risk Assessment of Pb and Cr leachated from fly ash monolith landfill

    International Nuclear Information System (INIS)

    Hung, Ming-Lung; Wu, Sheng-Yao; Chen, Yen-Chuan; Shih, Hsiu-Ching; Yu, Yue-Hwa; Ma, Hwong-wen

    2009-01-01

    As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater. The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks. Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E-07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.

  13. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  14. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  15. Synthesis and applications of crack-free SiO2 monolith containing CdSe/ZnS quantum dots as passive lighting sources.

    Science.gov (United States)

    Yi, Dong Kee

    2008-09-01

    A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.

  16. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  17. Long-lived monolithic micro-optics for multispectral GRIN applications.

    Science.gov (United States)

    Lepicard, Antoine; Bondu, Flavie; Kang, Myungkoo; Sisken, Laura; Yadav, Anupama; Adamietz, Frederic; Rodriguez, Vincent; Richardson, Kathleen; Dussauze, Marc

    2018-05-09

    The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5-10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10 -2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

  18. FY 1993 Research and development of ceramic gas turbines. Development of methods of testing and evaluating ceramic member bonding techniques; 1993 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Ceramic buzai setsugo gijutsu no shiken hyoka hoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    Studies are conducted to establish the methods of testing and evaluating applicability of ceramic-metal bonding for ceramic gas turbines, and the FY 1993 results are reported. The program involves measurement of residual stress by the X-ray method and durability tests for the joints of silicon nitride and austenitic stainless steel with copper as the intermediate layer, and analysis and classification of the strength/durability test results obtained until the previous fiscal year by the finite element method, to evaluate applicability of the joining. For the strength characteristics at high temperature, the test pieces tend to lose strength at 400 degrees C and higher, and high-temperature strength as cross-head displacement speed increases. The upper limit of bending strength at room temperature decreases as number of thermal cycles increases. The test pieces subjected to thermal cycles have a higher bending strength at high temperature than at room temperature. The results of the two-dimensional plasticity analysis of the residual stress in the joint by the finite element method are in good agreement with the results by the X-ray method. (NEDO)

  19. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    Science.gov (United States)

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  20. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    Science.gov (United States)

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.