WorldWideScience

Sample records for monolayered pbs nanoparticles

  1. A novel electrochemical preparation of PbS nanoparticles

    International Nuclear Information System (INIS)

    Yang Yujun

    2006-01-01

    A simple one-step anodic sonoelectrochemical method to synthesize PbS nanoparticles has been developed. With the lead foil as the sacrificing anode, Pb(II) was anodically dissolved from the lead electrode into the aqueous solution of sodium sulfide, supporting electrolyte (potassium nitrate) and capping agent (PVA) at a constant potential, and then the produced Pb(II) reacted with the sulfide anion to form PbS nanoparticles under ultrasonic irradiation. The effects of the applied potential, capping agent and ultrasound in the formation of PbS nanoparticles are discussed, and the results suggest that the anodic sonoelectrochemical method may be a general and convenient way to prepare metal sulfide nanoparticles

  2. Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties

    International Nuclear Information System (INIS)

    Chen Shuang; Liu Weimin

    2006-01-01

    Oleic acid (OA) capped PbS nanoparticles were chemically synthesized and characterized by means of Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray electron diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The triboligical properties of the capped PbS nanoparticles as additive in liquid paraffin was investigated using a four-ball machine. The lubricating mechanisms were discussed along with the analyses results of XPS and scanning electron microscope (SEM). Results show that OA-capped PbS nanoparticles, with an average diameter of about 8 nm, are able to prevent water adsorption, oxidation and are capable of being dispersed stably in organic solvents or mineral oil. OA-capped PbS nanoparticles as an additive in liquid paraffin perform good antiwear and friction-reduction properties owing to the formation of a boundary film

  3. Facile synthesis of organically capped PbS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nejo, Ayorinde O.; Nejo, Adeola A.; Pullabhotla, Rajasekhar V.S.R. [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa (South Africa); Revaprasadu, Neerish, E-mail: nrevapra@pan.uzulu.ac.za [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa (South Africa)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Hexadecylamine and tri-n-octylphosphine oxide capped PbS nanoparticles have been synthesized. Black-Right-Pointing-Pointer By varying the reaction conditions various morphologies were formed. Black-Right-Pointing-Pointer The formation of the anisotropic particles is due to different growth mechanisms. - Abstract: PbS nanocubes and nanorods were successfully synthesized through a facile route using hexadecylamine (HDA) and tri-n-octylphosphine oxide (TOPO) as surfactants. The structure and morphology of the as-prepared PbS nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM. The morphology of the PbS was influenced by the variation in lead source and organic surfactant. Particles in the shape of spheres, perfect cubes and rods were obtained by variation in reaction conditions. A possible growth mechanism to explain the formation of these PbS nanocubes and nanorods is also discussed.

  4. Structure, transport and photoconductance of PbS quantum dot monolayers functionalized with a copper phthalocyanine derivative

    NARCIS (Netherlands)

    André, A.; Theurer, C.; Lauth, J.D.; Maiti, S.; Hodas, M.; Samadi Khoshkhoo, M.; Kinge, S; Meixner, A. J.; Schreiber, F.; Siebbeles, L.D.A.; Braun, K; Scheele, M.

    2017-01-01

    We simultaneously surface-functionalize PbS nanocrystals with Cu 4,4′,4′′,4′′′-tetraaminophthalocyanine and assemble this hybrid material into macroscopic monolayers. Electron microscopy and X-ray scattering reveal a granular mesocrystalline structure with strong coherence between the atomic

  5. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  6. Na-A4 zeolites as host of PbS nanoparticles

    International Nuclear Information System (INIS)

    Flores A, M.; Perez S, R.; Aceves T, R.; Arizpe C, H.; Sotelo L, M.; Ramirez B, R.

    2006-01-01

    In this work we report the optical and structural properties of composite materials based on the semiconductor PbS enclosed in type A zeolite. The composite materials were obtained by chemical reaction in several steps of the zeolite in alkaline aqueous solutions containing Pb 2+ and S 2- ions successively. Three samples were prepared at temperatures of 40, 50 and 60 C during the chemical reaction with S 2- ions. The obtained materials were studied by x-ray diffraction, scanning and transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence. The experimental results show the formation of spherical-shaped PbS particles with nano metric size and cubic crystalline structure embedded in the zeolite matrix. The absorption spectra of the samples display a well defined absorption band at about 300 nm due to the PbS nanoparticles in the zeolite matrix. In addition, an absorption peak appears in the absorption spectra at about 400 nm assigned to exciton transitions. (Author)

  7. Self-assembled colloidal PbS quantum dots on GaAs substrates

    International Nuclear Information System (INIS)

    Lue, Wei; Yamada, Fumihiko; Kamiya, Itaru

    2010-01-01

    We report the fabrication and analysis of self-assembled monolayer and bilayer films of colloidal PbS quantum dots (QDs) on GaAs (001) substrates. 1,6-hexanedithiol is used as link molecule between QDs and GaAs substrates. Atomic force microscopy (AFM) and photoluminescence (PL) measurements confirm the formation of PbS QD film on GaAs. For the monolayer PbS QD film, the temperature-dependent PL shows a feature typical of close-packed film. For the bilayer PbS QD film fabricated from two different mean-sized PbS QDs, we find that the stacking sequence of QDs with different size affects the quantum yield and emission wavelength of the film.

  8. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hajar [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Moradshahi, Ali, E-mail: moradshahi@susc.ac.ir [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein [Nanotechnology Research Institute, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb{sup 2+} in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb{sup 2+} to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about

  9. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    International Nuclear Information System (INIS)

    Zamani, Hajar; Moradshahi, Ali; Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein

    2014-01-01

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb 2+ in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb 2+ to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm

  10. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    Science.gov (United States)

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  11. Nanoparticle layer deposition for highly controlled multilayer formation based on high-coverage monolayers of nanoparticles

    International Nuclear Information System (INIS)

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2016-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers — nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. - Highlights: • We investigate the formation of high-coverage monolayers of nanoparticles. • We use “click chemistry” to form these monolayers. • We form multiple layers based on the same strategy. • We confirm the formation of covalent bonds

  12. Controlled self-assembly of PbS nanoparticles into macrostar-like hierarchical structures

    International Nuclear Information System (INIS)

    Li, Guowei; Li, Changsheng; Tang, Hua; Cao, Kesheng; Chen, Juan

    2011-01-01

    Graphical abstract: The aggregation and rotation of nanoparticles to adopt parallel orientations in three dimensions was indirectly illustrated by TEM and HRTEM images. Highlights: → Macrostar-like PbS hierarchical structures was successfully synthesized by a simple hydrothermal method and mesostars were assembled from the PbS nanocube building blocks with edge lengths of about 100 nm. → Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. → Optical properties indicating few defects on the surface of the PbS structure and exhibit large blue-shifts compared to bulk PbS. -- Abstract: The synthesis of macrostar-like PbS hierarchical structures by a simple hydrothermal method at 180 o C for 24 h is proven successful with the assistance of a new surfactant called tetrabutylammonium bromide (TBAB). The as-obtained product is characterized by means of X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive spectrometry, high resolution transmission electron microscopy, and selected area electron diffraction. The presence of TBAB and NaF plays an important role in the formation of PbS macrostructures. Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. As such, a possible self-assembly mechanism is proposed to explain the formation of the said structures. The present study aims to introduce new insights into understanding the formation process of such unique hierarchical superstructures.

  13. Fabrication and surface transformation of FePt nanoparticle monolayer

    International Nuclear Information System (INIS)

    Wang Ying; Ding Baojun; Li Hua; Zhang Xiaoyan; Cai Bingchu; Zhang Yafei

    2007-01-01

    The monolayer of FePt nanoparticles with the mean size of ∼4 nm was fabricated on a glass substrate by the Langmuir--Blodgett (LB) technology. The monolayer of FePt nanoparticles has a smooth surface and a high density structure as shown by the AFM image. The array structure of FePt nanoparticles on the surface of the film is clearly with a cubic symmetry in appropriate condition. Small-angle X-ray diffraction (SXRD) measurement of multilayer structure for the FePt nanoparticles has indicated that the superlattices consist of well-defined smooth layers. The transfer of nanoparticle layers onto a solid substrate surface was quite efficient for the first few layers, exhibiting a proportional increase of optical absorption in the UV-vis range. This results potentially opens up a new approach to the long-range ordered array of FePt nanoparticles capped by organic molecules on substrate and provide a promising thin film, which may exhibit the excellent ultra-high density magnetic recording properties

  14. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  15. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  16. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  17. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    Science.gov (United States)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  18. Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hsiung; Chen, Chao-Hong [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chen, Dong-Hwang, E-mail: chendh@mail.ncku.edu.tw [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2013-03-25

    Highlights: ► AZO nanorod array thin film is used as a photoanode for solar water splitting. ► Hydrogen treatment and sensitization by PbS nanoparticles enhance photocurrent. ► A novel ITO/FTO-free composite photoelectrode is developed. ► The pre-fabrication and use of an extra TCO thin film substrate is unnecessary. -- Abstract: Al-doped ZnO (AZO) nanorod arrays thin film with hydrogen treatment is directly used as a photoelectrode for solar water splitting without an extra transparent conducting oxide (TCO) thin film because it possesses the functions of TCO thin film and photoactive 1-dimensional nanostructured semiconductor simultaneously. To enhance the absorption in the visible region, PbS nanoparticles decorated the AZO nanorods via successive ionic layer adsorption and reaction route. The PbS nanoparticles have a face-centered cubic structure and their decoration does not destroy the 1-dimensional morphology of AZO nanorod arrays. With increasing the cycle number of PbS nanoparticles decoration, the grain size and loading of PbS nanoparticles become larger gradually which leads to lower energy bandgap and stronger absorption. A maximum photocurrent density of 1.65 mW cm{sup −2} is obtained when the cycle number is 20, which is much higher than those without PbS nanoparticles sensitization or hydrogen treatment. This demonstrates that the AZO nanorod array thin film with hydrogen treatment can be directly used as a photoelectrode without an extra TCO thin film. Because the use of expensive metals can be avoided and the pre-fabrication of TCO thin film substrate is necessary no more, the fabrication of such a composite photoelectrode becomes simple and low-cost. So, it has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption.

  19. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    Science.gov (United States)

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  1. Monolayer assembly and striped architecture of Co nanoparticles on organic functionalized Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.-S.; Lim, D.K.; Park, J.-I.; Kim, S. [Korea Advanced Institute of Science and Technology, Department of Chemistry and School of Molecular Science (BK 21), Daejeon (Korea); Cheon, J. [Yonsei University, Department of Chemistry, College of Sciences, Seoul (Korea); Jeon, I.C. [Chonbuk National University, Department of Chemistry, College of Natural Sciences, Chonbuk (Korea)

    2005-03-01

    We present a new strategy to fabricate a monolayer assembly of Br-terminated Co nanoparticles on functionalized Si surfaces by using chemical covalent bonding and microcontact printing method. Self-assembled monolayers (SAMs) of the Co nanoparticles formed on the hydroxyl-terminated Si surface exhibit two-dimensional island networks with locally ordered arrays via covalent linkage between nanoparticles and surface. On the other hand, SAMs of the nanoparticles on the aminopropyl-terminated Si surface show an individual and random distribution over an entire surface. Furthermore, we have fabricated striped architectures of Co nanoparticles using a combination of microcontact printing and covalent linkage. Microcontact printing of octadecyltrichlorosilane and selective covalent linkage between nanoparticles and functionalized Si surfaces lead to a hybrid nanostructure with selectively assembled nanoparticles stripes on the patterned functionalized Si surfaces. (orig.)

  2. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  3. Dendritic functionalization of monolayer-protected gold nanoparticles

    International Nuclear Information System (INIS)

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok

    2007-01-01

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. 1 H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles

  4. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles.

    Science.gov (United States)

    Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio

    2012-05-02

    Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society

  5. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  6. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.

    2011-01-01

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  7. Building high-coverage monolayers of covalently bound magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mackenzie G.; Teplyakov, Andrew V., E-mail: andrewt@udel.edu

    2016-12-01

    Graphical abstract: - Highlights: • A method for forming a layer of covalently bound nanoparticles is offered. • A nearly perfect monolayer of covalently bound magnetic nanoparticles was formed on gold. • Spectroscopic techniques confirmed covalent binding by the “click” reaction. • The influence of the functionalization scheme on surface coverage was investigated. - Abstract: This work presents an approach for producing a high-coverage single monolayer of magnetic nanoparticles using “click chemistry” between complementarily functionalized nanoparticles and a flat substrate. This method highlights essential aspects of the functionalization scheme for substrate surface and nanoparticles to produce exceptionally high surface coverage without sacrificing selectivity or control over the layer produced. The deposition of one single layer of magnetic particles without agglomeration, over a large area, with a nearly 100% coverage is confirmed by electron microscopy. Spectroscopic techniques, supplemented by computational predictions, are used to interrogate the chemistry of the attachment and to confirm covalent binding, rather than attachment through self-assembly or weak van der Waals bonding. Density functional theory calculations for the surface intermediate of this copper-catalyzed process provide mechanistic insight into the effects of the functionalization scheme on surface coverage. Based on this analysis, it appears that steric limitations of the intermediate structure affect nanoparticle coverage on a flat solid substrate; however, this can be overcome by designing a functionalization scheme in such a way that the copper-based intermediate is formed on the spherical nanoparticles instead. This observation can be carried over to other approaches for creating highly controlled single- or multilayered nanostructures of a wide range of materials to result in high coverage and possibly, conformal filling.

  8. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    Science.gov (United States)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  9. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Science.gov (United States)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  10. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  11. Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements

    International Nuclear Information System (INIS)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2013-01-01

    A silver particle suspension obtained by a chemical reduction was used in this work. Monolayers of these particles (average size 28 nm) on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverages, quantitatively determined by atomic force microscopy (AFM) and SEM, was regulated by adjusting the nanoparticle deposition time and the suspension concentration. The zeta potential of the monolayers was determined by streaming potential measurements carried out under in situ (wet) conditions. These measurements performed for various ionic strengths and pH were interpreted in terms of the three-dimensional (3D) electrokinetic model. The stability of silver monolayers was also investigated using streaming potential and the AFM methods. The decrease in the surface coverage of particles as a function of time and ionic strength varied between 10 −1 and 10 −4  M was investigated. This allowed one to determine the equilibrium adsorption constant K a and the binding energy of silver particles (energy minima depth). Energy minima depth were calculated that varied between −18 kT for I = 10 −1  M and −19 kT for I = 10 −4 for pH 5.5 and T = 298 K. Our investigations suggest that the interactions between surface and nanoparticles are controlled by the electrostatic interactions among ion pairs. It was also shown that the in situ electrokinetic measurements are in accordance with those obtained by more tedious ex situ AFM measurements. This confirmed the utility of the streaming potential method for direct kinetic studies of nanoparticle deposition/release processes.Graphical Abstract

  12. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  13. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  14. Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles

    Science.gov (United States)

    Zhao, Nana; Li, Lianshan; Huang, Teng; Qi, Limin

    2010-11-01

    Uniform PbS-Au nanostar-nanoparticle heterodimers consisting of one Au nanoparticle grown on one horn of a well-defined six-horn PbS nanostar were prepared using the PbS nanostars as growth substrates for the selective deposition of Au nanoparticles. The size of the Au nanoparticles on the horns of the PbS nanostars could be readily adjusted by changing the PbS concentration for the deposition of Au nanoparticles. An optimum cetyltrimethylammonium bromide concentration and temperature were essential for the selective deposition of uniform Au nanoparticles on single horns of the PbS nanostars. Unusual PbS-Au nanoframe-nanoparticle heterodimers were obtained by etching the PbS-Au nanostar-nanoparticle heterodimers with oxalic acid while novel cap-like Au nanoparticles were obtained by etching with hydrochloric acid. The obtained heterodimeric nanostructures and cap-like nanoparticles are promising candidates for anisotropic nanoscale building blocks for the controllable assembly of useful, complex architectures.

  15. pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica

    Energy Technology Data Exchange (ETDEWEB)

    Oćwieja, Magdalena, E-mail: ncocwiej@cyf-kr.edu.pl; Adamczyk, Zbigniew, E-mail: ncadamcz@cyf-kr.edu.pl; Morga, Maria, E-mail: ncmorga@cyf-kr.edu.pl [Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry (Poland)

    2015-05-15

    Although the release of silver nanoparticles from various surfaces and coatings plays an important role in many practical applications, the mechanisms of these processes are not fully understood. Therefore, in this work, the charge-stabilized silver particles of well-defined surface properties, with average sizes of 15, 28, and 54 nm, were used to quantitatively study this problem. The silver nanoparticles were obtained by the chemical reduction method using trisodium citrate as the stabilizing agent. Their size distributions and stabilities were determined using dynamic light scattering and transmission electron microscopy. The electrophoretic mobility and zeta potential of nanoparticles were determined for controlled ionic strength as a function of pH. The monolayers were produced on poly(allylamine hydrochloride)-modified mica under diffusion-controlled conditions. The coverage was determined by a direct enumeration of deposited nanoparticles using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Using these well-defined monolayers, the kinetics of the release of nanoparticles was studied under controlled ionic strength and various pH values. The direct AFM and SEM measurements of the monolayer coverage, as a function of desorption time, allowed one to determine the kinetics of the release process. The equilibrium adsorption constant and the binding energy of particles were also determined using the random sequential adsorption model. The experimental results indicated that the release rate of particles is the fastest at lower pH values and for smaller particle sizes. This is confirmed by the binding energy values that at pH 3.5 varied between −15.9 and −18.1 kT for particles of the sizes 15 and 54 nm, respectively. These results were quantitatively interpreted in terms of the ion-pair concept where it was assumed that the binding energy between nanoparticles and the substrate was controlled by electrostatic interactions. Based on the

  16. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    Science.gov (United States)

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  17. On the Hopping Efficiency of Nanoparticles in the Electron Transfer across Self‐Assembled Monolayers

    DEFF Research Database (Denmark)

    Liu, Feng; Khan, Kamran; Liang, Jing‐Hong

    2013-01-01

    Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hy...

  18. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics

    International Nuclear Information System (INIS)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-01-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 −2 M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3–10, assuming −50 e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  19. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  20. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics.

    Science.gov (United States)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-03-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 -2  M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3-10, assuming -50  e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  1. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    Science.gov (United States)

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  2. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  3. Modeling the PbS quantum dots complex dielectric function by adjusting the E-k diagram critical points of bulk PbS

    Science.gov (United States)

    Hechster, Elad; Sarusi, Gabby

    2017-07-01

    The complex dielectric function ɛ(E )=ɛR(E )+i ɛI(E ) of a semiconductor is a key parameter that dictates the material's optical and electrical properties. Surprisingly, the ɛ(E ) of Lead Sulfide (PbS) quantum dots (QDs) has not been widely studied. In the present work, we develop a new model that aims to simulate the ɛ(E ) of QDs. Our model is based on the fact that the quantum confinement in the nano regime affects all the electronic transitions throughout the entire Brillouin zone. Hence, as a first approximation, we attribute an equal contribution of energy, equivalent to the bandgap broadening, to each critical point (CP) in the E-k diagram. This is mathematically realized by adding these energy contributions to the central energy parameters of the Lorentz oscillator model. In order to validate our model, we used the CP parameters of bulk PbS to simulate the ɛ(E ) of PbS QDs. Next, we use Maxwell Relations to calculate the refractive index and the extinction coefficient of PbS QDs from ɛ(" separators="|E ). Our results were compared with those published in the previous literature and showed good agreement. Our findings open a new avenue that may enable the calculation of the ɛ(" separators="|E ) for nanoparticle systems.

  4. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Facile preparation of PbS nanostructures and PbS/f-CNT nanocomposites using xanthate as sulfur source: Thermal and optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Parisa; Akbarzadeh, Raziyeh; Dehghani, Hossein, E-mail: dehghani@kashanu.ac.ir

    2015-10-25

    PbS nanostructures with different morphologies were fabricated using a new sulfur source through a facile and low cost hydro(solvo)thermal method. The influence of different reaction factors such as sulfur source, temperature, reactant, solvent and surfactant on the size and morphology of the obtained PbS particles were investigated. Beside, a simple hydrothermal process at low temperature (60 °C) for little time (4 h), has been used for preparation of PbS nanoparticles (NPs)/functionalized multi wall carbon nanotubes (f-MWCNTs) nanocomposite. The as-prepared nanocomposite possesses excellent thermal and optical properties. Thermal stability increases by depositing PbS nanoparticles on the surface of CNT. The structure, morphology, thermal and optical properties of the as-prepared nanocompounds were studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy, Thermogravimetric analysis (TGA), Pl spectra and UV–Vis absorption spectra. Photoluminescence spectra of PbS NPs and nanocomposite are consist of two emission peaks which centered at around 402 and 423 nm, when excited at 350 nm. It was noteworthy that the blue luminescence intensity over PbS/f-CNT nanocomposite is very lower than that of pure PbS NPs. Remarkable blue-shift from bulk material was observed on the PbS nanoparticles using UV–Vis spectrum. Furthermore, possible growth mechanism of PbS nanostructures is presented. - Graphical abstract: PbS nanostructures with different morphologies were fabricated using xanthate as sulfide source. Also, PbS/f-CNT nanocomposites were synthesized by simple hydrothermal process at low temperature (60 °C) for little time (4 h). - Highlights: • Sodium tert-butyl xanthate was used as sulfur source for synthesis of PbS. • Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O salt was used for synthesis of PbS. • PbS/CNT nanocomposite was synthesized in deionized water for 4 h at 60

  6. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    Science.gov (United States)

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  7. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    Science.gov (United States)

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  8. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2017-11-01

    Full Text Available A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF state to low resistance (ON state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  9. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Science.gov (United States)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  10. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    Science.gov (United States)

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis and characterization of rod-like ZnO decorated with γ-Fe{sub 2}O{sub 3} nanoparticles monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Balti, Imen, E-mail: imenbalti12@yahoo.fr [Unité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Laboratoire des Sciences des Procédés et Matériaux, LSPM, CNRS, UPR 3407, Université Paris XIII, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Smiri, Laila Samia [Unité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Rabu, Pierre [Département de Chimie des Matériaux Inorganiques, IPCMS, UMR 7504, CNRS–UDS, 23, rue du Loess, BP 43, Strasbourg Cedex 2 (France); Gautron, Eric [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Viana, Bruno [LCMCP, Chimie-Paristech, UPMC, Collège de France, UMR CNRS 7574, 11 rue Pierre et Marie Curie, 75005 Paris (France); Jouini, Noureddine [Laboratoire des Sciences des Procédés et Matériaux, LSPM, CNRS, UPR 3407, Université Paris XIII, 99 Avenue J.B. Clément, 93430 Villetaneuse (France)

    2014-02-15

    Highlights: ► Rod-like ZnO decorated with γ-Fe{sub 2}O{sub 3} nanoparticles have been prepared using forced hydrolysis in polyol medium. ► The system presents excellent UV photoluminescence properties along with superparamagnetic behavior. -- Abstract: Decorated rod-like ZnO particles with γ-Fe{sub 2}O{sub 3} nanoparticles monolayer (ZnO@γ-Fe{sub 2}O{sub 3}) were prepared via a simple route using forced hydrolysis of metal acetates in a polyol medium. The phases and purity of the as-prepared particles were established by powder X-ray diffraction (PXRD) and X-ray photo-electron spectroscopy (XPS) analyses. Transmission electron microscopy (TEM) showed that the ZnO particles present a typical rod-like morphology with ∼80 nm diameter and ∼200–400 nm length. These nanorods are decorated with well-organized γ-Fe{sub 2}O{sub 3} spherical nanoparticles showing a narrow size distribution around 5 nm. The photoluminescence (PL) spectra of the bare ZnO particles show predominant UV-excitonic and weak visible emission. The latter vanishes after covering the surface with the γ-Fe{sub 2}O{sub 3} nanoparticles suggesting an effect on the oxygen stoichiometry at the surface of the ZnO nanorods. The decorated nanoparticles exhibit magnetic response to an external magnetic field at room temperature and a superparamagnetic character with very low blocking temperature likely related to the organisation of γ-Fe{sub 2}O{sub 3} nanoparticles as monolayer.

  12. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection.

    Science.gov (United States)

    Pillay, Jeseelan; Ozoemena, Kenneth I; Tshikhudo, Robert T; Moutloali, Richard M

    2010-06-01

    Surface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.5 s(-1)). In aqueous medium, the trend is reversed. The surface pK(a) was estimated as approximately 8.2 for the MPCAuNP-COOH(1%), while both MPCAuNP-COOH(50%) and MPCAuNP-COOH(99%) showed two pK(a) values of about 5.0 and approximately 8.0. These results have been interpreted in terms of the quasi-solidity and quasi-liquidity of the terminal -OH and -COOH head groups, respectively. MPCAuNP-COOH(99%) excellently suppressed the voltammetric response of the ascorbic acid but enhanced the electrocatalytic detection of epinephrine compared to the other MPCAuNPs studied. This study reveals important factors that should be considered when designing electrode devices that employ monolayer-protected gold nanoparticles and possibly for some other redox-active metal nanoparticles.

  13. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    International Nuclear Information System (INIS)

    Chen, Liang-Huei; Hsu, Wen-Ping; Chan, Han-Wen; Lee, Yuh-Lang

    2014-01-01

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules

  14. Unknown Aspects of Self-Assembly of PbS Microscale Superstructures

    Science.gov (United States)

    Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.

    2012-01-01

    A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512

  15. A high-coverage nanoparticle monolayer for the fabrication of a subwavelength structure on InP substrates.

    Science.gov (United States)

    Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung

    2011-08-01

    Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.

  16. Size-dependent filtration of nanoparticles on porous films composed by polystyrene microsphere monolayers and applications in site-selective deposition of nanoparticles

    International Nuclear Information System (INIS)

    Ruan, Weidong; Zhou, Tieli; Sun, Chengbin; Tao, Yanchun; Lu, Fei; Wang, Xu; Zhao, Bing; Cui, Yinqiu

    2015-01-01

    Composite films composed of polystyrene (PS) microsphere monolayers and gold (Au) and/or silver (Ag) nanoparticles (NPs) decorations were prepared by a novel size-dependent filtration effect on close-packed PS microsphere arrays. The uniform pores inlaid in the PS monolayer films acted as the transport tunnels for NPs. The steric restriction induced by the size of the pores was used as a main strategy to fabricate hybrid micro/nano films, which were composed of PS microspheres with inhomogeneous anisotropic decorations. The Au and Ag NPs were used as the building blocks to decorate the PS microspheres through a layer-by-layer self-assembly technique with the aid of polyelectrolyte coupling agents. Only the small particles which could pass through the micropores could reach to and deposit on the inner surfaces of the PS microsphere monolayer films. Large particles remained on the outside and could only deposit on the outer surfaces. Thus, the inhomogeneous anisotropic decoration was obtained. This study provides a novel strategy for fabricating anisotropic micro/nanostructures by the size-dependent filtration effect of NPs on porous films and has the potential in applications of anisotropic self-assembly, sensor, and surface modifications at nanoscale.

  17. Size-dependent filtration of nanoparticles on porous films composed by polystyrene microsphere monolayers and applications in site-selective deposition of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Weidong [Jilin University, State Key Laboratory of Supramolecular Structure and Materials (China); Zhou, Tieli [Changchun University, College of Food Engineering and Landscape Architecture (China); Sun, Chengbin; Tao, Yanchun; Lu, Fei; Wang, Xu; Zhao, Bing, E-mail: zhaob@mail.jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials (China); Cui, Yinqiu, E-mail: cuiyq@jlu.edu.cn [Jilin University, School of Life Sciences (China)

    2015-10-15

    Composite films composed of polystyrene (PS) microsphere monolayers and gold (Au) and/or silver (Ag) nanoparticles (NPs) decorations were prepared by a novel size-dependent filtration effect on close-packed PS microsphere arrays. The uniform pores inlaid in the PS monolayer films acted as the transport tunnels for NPs. The steric restriction induced by the size of the pores was used as a main strategy to fabricate hybrid micro/nano films, which were composed of PS microspheres with inhomogeneous anisotropic decorations. The Au and Ag NPs were used as the building blocks to decorate the PS microspheres through a layer-by-layer self-assembly technique with the aid of polyelectrolyte coupling agents. Only the small particles which could pass through the micropores could reach to and deposit on the inner surfaces of the PS microsphere monolayer films. Large particles remained on the outside and could only deposit on the outer surfaces. Thus, the inhomogeneous anisotropic decoration was obtained. This study provides a novel strategy for fabricating anisotropic micro/nanostructures by the size-dependent filtration effect of NPs on porous films and has the potential in applications of anisotropic self-assembly, sensor, and surface modifications at nanoscale.

  18. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Im, Sang Hyuk; Kim, Hi-jung; Seok, Sang Il

    2011-01-01

    A PbS-sensitized photovoltaic photodetector responsive to near-infrared (NIR) light was fabricated by depositing monolayered PbS nanoparticles on a mesoporous TiO 2 (mp-TiO 2 ) film via the spin-assisted successive ionic layer adsorption and reaction (SILAR) method. By adjusting the size and morphology of the PbS nanoparticles through repeated spin-assisted SILAR cycles, the PbS-sensitized photovoltaic photodetector achieved an external quantum efficiency of 9.3% at 1140 nm wavelength and could process signals up to 1 kHz.

  19. The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors

    Directory of Open Access Journals (Sweden)

    Rui-Xuan Huang

    2014-02-01

    Full Text Available Four types of monolayer-protected gold nanoclusters (MPCs were synthesized and characterized as active layers of vapor sensors. An interdigitated microelectrode (IDE and quartz crystal microbalance (QCM were used to measure the electrical resistance and mass loading changes of MPC films during vapor sorption. The vapor sensing selectivity was influenced by the ligand structure of the monolayer on the surface of gold nanoparticles. The responses of MPC-coated QCM were mainly determined according to the affinity between the vapors and surface ligands of MPCs. The responses to the resistance changes of the MPC films were due to the effectiveness of the swelling when vapor was absorbed. It was observed that resistive sensitivity to polar organics could be greatly enhanced when the MPC contained ligands that contain interior polar functional groups with exterior nonpolar groups. This finding reveals that reducing interparticle attraction by using non-polar exterior groups could increase effective swelling and therefore enhance the sensitivity of MPC-coated chemiresistors.

  20. Platinum monolayer electrocatalysts for oxygen reduction: effect of substrates, and long-term stability

    Directory of Open Access Journals (Sweden)

    J. ZHANG

    2005-03-01

    Full Text Available We describe a novel concept for a Ptmonolayer electrocatalyst and present the results of our electrochemical, X-ray absorption spectroscopy, and scanning tunneling microscopy studies. The electrocatalysts were prepared by a new method for depositing Pt monolayers involving the galvanic displacement by Pt of an underpotentially deposited Cu monolayer on substrates of Au (111, Ir(111, Pd(111, Rh(111 and Ru(0001 single crylstals, and Pd nanoparticles. The kinetics of O2 reduction showed significant enhancement with Pt monolayers on Pd(111 and Pd nanoparticle surfaces in comparisonwith the reaction on Pt(111 and Pt nanoparticles, respectively. This increase in catalytic activity is attributed partly to the decreased formation of PtOH, as shown by in situ X-ray absorption spectroscopy. The results illustrate that placing a Pt monolayer on a suitable substrate of metal nanoparticles is an attractive way of designing better O2 reduction electrocatalysts with very low Pt contents.

  1. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hyuk; Kim, Hi-jung; Seok, Sang Il, E-mail: seoksi@krict.re.kr [KRICT-EPFL Global Research Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology, 19 Sinseongno, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2011-09-30

    A PbS-sensitized photovoltaic photodetector responsive to near-infrared (NIR) light was fabricated by depositing monolayered PbS nanoparticles on a mesoporous TiO{sub 2} (mp-TiO{sub 2}) film via the spin-assisted successive ionic layer adsorption and reaction (SILAR) method. By adjusting the size and morphology of the PbS nanoparticles through repeated spin-assisted SILAR cycles, the PbS-sensitized photovoltaic photodetector achieved an external quantum efficiency of 9.3% at 1140 nm wavelength and could process signals up to 1 kHz.

  2. Investigation of TiO2 nanoparticles translocation through a Caco-2 monolayer

    International Nuclear Information System (INIS)

    Brun, E; Jugan, M-L; Carriere, M; Herlin-Boime, N; Jaillard, D; Fayard, B; Flank, A-M; Mabondzo, A

    2011-01-01

    Nanoparticles (NPs) are introduced in a growing number of commercial products, including food and beverage but their effects on gastrointestinal tract are poorly investigated. Here we focused on the translocation of TiO 2 NPs through Caco-2 monolayers exposed to anatase and rutile NPs up to 24 h. Internalization was followed by transmission electronic microscopy and μ-XRF elemental mapping, coupled to XAS analysis of Ti atoms environment. This innovative technique is among the best techniques to get insights on NP fate after internalization. The originality of this project relies on the panel of microscopy techniques implemented to investigate digestive barrier translocation, bringing together biologists, chemists and physicists in a pluridisciplinary research program.

  3. Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating

    Science.gov (United States)

    Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang

    2017-12-01

    A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.

  4. Optical and surface morphological properties of triethylamine passivated lead sulphide nanoparticles

    International Nuclear Information System (INIS)

    Navaneethan, M.; Nisha, K.D.; Ponnusamy, S.; Muthamizhchelvan, C.

    2009-01-01

    The triethylamine capped lead sulphide (PbS) nanoparticles were successfully synthesized by simple wet chemical method. The synthesized product has been characterized by powder X-ray diffraction (XRD), UV-vis spectrophotometry, FTIR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence studies. The size of the PbS nanoparticles was determined from AFM, TEM, XRD and from these studies it is found that the size of the particles of the order of 10-15 nm. Significant 'blue shift' from bulk material was observed on the PbS nanoparticles using UV-vis and photoluminescence spectrum.

  5. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  6. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  7. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  8. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  9. ‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging

    Science.gov (United States)

    Wang, D.; Qian, J.; Cai, F.; He, S.; Han, S.; Mu, Y.

    2012-06-01

    In this paper, PbS semiconductor quantum dots (QDs) with near-infrared (NIR) photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using an easily handled and ‘green’ approach. Surface functionalization of the QDs was accomplished with a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellent chemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future.

  10. ‘Green’-synthesized near-infrared PbS quantum dots with silica–PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging

    International Nuclear Information System (INIS)

    Wang, D; Qian, J; Cai, F; He, S; Han, S; Mu, Y

    2012-01-01

    In this paper, PbS semiconductor quantum dots (QDs) with near-infrared (NIR) photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using an easily handled and ‘green’ approach. Surface functionalization of the QDs was accomplished with a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellent chemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future. (paper)

  11. Investigation of TiO{sub 2} nanoparticles translocation through a Caco-2 monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Jugan, M-L; Carriere, M [Laboratoire de Structure et Dynamique par Resonance Magnetique, UMR3299 CEA-CNRS, Saclay (France); Herlin-Boime, N [Laboratoire Francis Perrin, URA2453 CEA-CNRS, Saclay (France); Jaillard, D [Centre Commun de Microscopie Electronique d' Orsay, UMR8195 CNRS-univ. Paris Sud, Orsay (France); Fayard, B [ID21 beamline, ESRF, Grenoble, France and Laboratoire de Physique du Solide, UMR8502 CNRS-univ. Paris Sud, Orsay (France); Flank, A-M [LUCIA beamline, SOLEIL synchrotron, Saint-Aubin (France); Mabondzo, A, E-mail: marie.carriere@cea.fr [Laboratoire d' Etude du Metabolisme du Medicament, CEA, Saclay (France)

    2011-07-06

    Nanoparticles (NPs) are introduced in a growing number of commercial products, including food and beverage but their effects on gastrointestinal tract are poorly investigated. Here we focused on the translocation of TiO{sub 2} NPs through Caco-2 monolayers exposed to anatase and rutile NPs up to 24 h. Internalization was followed by transmission electronic microscopy and {mu}-XRF elemental mapping, coupled to XAS analysis of Ti atoms environment. This innovative technique is among the best techniques to get insights on NP fate after internalization. The originality of this project relies on the panel of microscopy techniques implemented to investigate digestive barrier translocation, bringing together biologists, chemists and physicists in a pluridisciplinary research program.

  12. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenning, E-mail: shenwenning@qq.com [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Li, Pin [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Feng, Hui [Shaanxi Institute of Zoology, Xi' an 710032 (China); Ge, Yanfeng; Liu, Zheng; Feng, Lajun [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China)

    2017-06-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag{sub 3}PO{sub 4} from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag{sub 3}PO{sub 4}. • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K{sup +}, proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  13. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    International Nuclear Information System (INIS)

    Shen, Wenning; Li, Pin; Feng, Hui; Ge, Yanfeng; Liu, Zheng; Feng, Lajun

    2017-01-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag 3 PO 4 from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag 3 PO 4 . • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K + , proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  14. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  15. Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires

    Science.gov (United States)

    Giraud, Paul; Hou, Bo; Pak, Sangyeon; Inn Sohn, Jung; Morris, Stephen; Cha, SeungNam; Kim, Jong Min

    2018-02-01

    We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs.

  16. Multiple-trapping in pentacene field-effect transistors with a nanoparticles self-assembled monolayer

    Directory of Open Access Journals (Sweden)

    Keanchuan Lee

    2012-06-01

    Full Text Available A silver nanoparticles self-assembled monolayer (SAM was incorporated in pentacene field-effect transistor and its effects on the carrier injection and transport were investigated using the current-voltage (I − V and impedance spectroscopy (IS measurements. The I − V results showed that there was a significant negative shift of the threshold voltage, indicating the hole trapping inside the devices with about two orders higher in the contact resistance and an order lower in the effective mobility when a SAM was introduced. The IS measurements with the simulation using a Maxwell-Wagner equivalent circuit model revealed the existence of multiple trapping states for the devices with NPs, while the devices without NPs exhibited only a single trap state.

  17. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    Science.gov (United States)

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  19. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules

    International Nuclear Information System (INIS)

    Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre

    2007-01-01

    We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures

  20. Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    T. P. Gumede

    2018-06-01

    Full Text Available Biodegradable polymers received considerable attention due to their contribution in the reduction of environmental concerns and the realization that global petroleum resources are finite. The development of double crystalline biobased blends such as poly(ε-caprolactone (PCL and poly(butylene succinate (PBS are particularly interesting because each component has an influence on the crystallization behaviour of the other component, and thus influences the strength and mechanical properties of a polymer blend. The lack of miscibility between PCL and PBS constitutes a bottleneck, and efforts have been made to improve the miscibility through the inclusion of copolymers. Having realized that incorporating conductive nanofillers such as carbon nanotubes (CNTs, (especially when the CNTs are functionalized or used as a masterbatch i.e., polycarbonate/MWCNTs masterbatch, into biopolymer matrices, can enhance the thermal and mechanical properties, as well as electrical and thermal conductivity, a lot of research was aimed at the production of bionanocomposites. This review paper discusses the properties of PCL, PBS, their blends, and their CNTs containing nanocomposites.

  1. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    Science.gov (United States)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  2. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Du Shangfeng, E-mail: s.du@bham.ac.uk; Kendall, Kevin; Toloueinia, Panteha; Mehrabadi, Yasamin; Gupta, Gaurav; Newton, Jill [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2012-03-15

    In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

  3. Co-sensitization of quantum dot sensitized solar cells composed of TiO2 nanocrystalline photoanode with CdS and PbS nanoparticles and effect of PbS on the performance of solar cell

    Directory of Open Access Journals (Sweden)

    Maziar Marandi

    2017-09-01

    Full Text Available In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized through a hydrothermal process and deposited on FTO glass substrates as the photoanode scaffold. Then PbS quantum dots were grown on the surface of this nanocrystalline layer by a successive ionic layer adsorption and reaction (SILAR method. The CdS quantum dots were over-grown in the next step through a similar deposition method. Finally this sensitized layer was applied as the photoelectrode of the corresponding quantum dot sensitized solar cells. The results demonstrated that the maximum efficiency was achieved for the cell with a photoanode made of co-sensitization through 2 and 6 cycles of PbS and CdS deposition, respectively. The photovoltaic parameters of this cell were measured as Jsc of 10.81 mA/cm2, Voc of 590 mv and energy conversion efficiency of 2.7+0.2%.

  4. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    Science.gov (United States)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  5. Nanoparticle-based receptors mimic protein-ligand recognition

    OpenAIRE

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; Biasi, Federico De; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-01-01

    Summary The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the...

  6. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  7. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    Science.gov (United States)

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  8. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer

    Science.gov (United States)

    Ghimire, Ganesh; Dhakal, Krishna P.; Neupane, Guru P.; Jo, Seong Gi; Kim, Hyun; Seo, Changwon; Lee, Young Hee; Joo, Jinsoo; Kim, Jeongyong

    2017-05-01

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  9. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-01

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits ‘U-shaped’ bistable FWM signals. We also map out bistability phase diagrams within the system’s parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  10. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  11. Novel comparison of microscopy and diffraction techniques on the structure of iron oxide nanoparticle monolayers transferred by Langmuir-Schaefer method

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Dai, Yeling; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-06-15

    Iron oxide nanoparticles undergo self-assembly into well-ordered monolayer films of macroscopic size at the air-water interface. This self-assembly process is the result of the van der Waals forces between the constituent particles. For roughly spherical particles, this monolayer is a 2D hexagonal close packed lattice. With Grazing Incidence X-Ray Diffraction (GID), one can obtain global statistical information about the film’s spacing and correlation length. Herein, we demonstrate that comparable structural information can be obtained by a novel Fourier transform analysis method applied to Scanning Electron Microscopy (SEM) images taken of the film after it has been transferred to a silicon substrate. This consists of using numerical methods to isolate the lattice structure of the monolayer in the SEM image to which a 2D discrete Fourier Transform is applied and the result integrated. This results in Bragg peak information akin to that obtained from GID, whose structure shows the same hexagonal close packed lattice with similar spacing and of greater peak contrast. This analysis technique may prove to be a suitable alternative or compliment to GID for many applications.

  12. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  13. Monitoring system for OpenPBS environment

    Energy Technology Data Exchange (ETDEWEB)

    Kolosov, V. [ITEP, Moscow (Russian Federation)]. E-mail: victor.kolosov@itep.ru; Lublev, Y. [ITEP, Moscow (Russian Federation); Makarychev, S. [ITEP, Moscow (Russian Federation)

    2004-11-21

    The OpenPBS batch system is widely used in the HEP community. The Open PBS package has a set of tools to check the current status of the system. This information is useful, but it is not sufficient enough for resource accounting and planning. As a solution for this problem, we developed a monitoring system which parses the logfiles from OpenPBS and stores the information into a SQL database (PostgreSQL). This allows us to analyze the data in many different ways using SQL queries. The system was used in ITEP during the last two years for batch farm monitoring.

  14. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  15. Structural, optical and electrical characterization of Mn2+ and Cd2+ doped/co-doped PbS nanocrystals

    International Nuclear Information System (INIS)

    Sakthi Sudar Saravanan, R.; Meena, M.; Pukazhselvan, D.; Mahadevan, C.K.

    2015-01-01

    Highlights: • Mn and Cd doped/codoped nano PbS was synthesized by SMI method. • The observed stress is ∼90% lower, and the strain is only in the order of 10 −6 . • Band gap value can be enhanced from 0.5 eV to 2.025–2.235 eV (±0.012 eV). • Role of two conduction activation barriers was observed. - Abstract: The strain and stress minimized nanoparticles of PbS, Pb 0.95 Mn 0.05 S, Pb 0.95 Cd 0.05 S and Pb 0.90 Mn 0.05 Cd 0.05 S were successfully synthesized using solvothermal microwave irradiation (SMI) method. The quality/performance of the materials was found to be in the series Pb 0.90 Mn 0.05 Cd 0.05 S > Pb 0.95 Cd 0.05 S > Pb 0.95 Mn 0.05 S > PbS. The average crystallite size in the best material Pb 0.90 Mn 0.05 Cd 0.05 S was found to be ∼18 nm where the particles are distributed within the range 20–60 nm. Optical studies reveals the existence of direct band gap in the range of 2.025–2.235 eV (±0.012 eV). This is one of the widest E g values reported for this system. Electrical measurements were performed on compacts of nanoparticles in the temperature range 313–433 K and frequency range 100 Hz–1 MHz. The conductivity profile exhibits two components; in which the activation energy (ΔE) values obtained for the temperature range 373–433 K is almost twice as compared to the ΔE value obtained for 313–373 K. Nonetheless, the conductivity at the higher temperatures was always higher than at the low temperatures and interestingly, the nanoparticles exhibits higher conductivity than their bulk counterpart. The feasible mechanism of conduction is discussed

  16. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  17. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  18. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  19. PBS in the service of ecology

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the activities of PBS Banska Bystrica, Ltd., in the service ecology are presented. PBS is fundamentally oriented toward repairs to and maintenance of original products of Prvni brnenska strojirna, including spare parts, as well as modernization and ecologization of heat-energy operations using low-emission combustion equipment, cogeneration units for steam-gas processes and high efficient technological process control systems. In connection with company's profile the prospectus expressed with a sum of 80 million Slovak crowns in orders accepted for 1998 was exceed by 15 million Slovak crowns and despite a bad situation on the Slovak financial market the company is functioning in the first year of its activity without credits. In the perspective by 2000 PBS plans to obtain 200 million Slovak crowns worth orders

  20. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  1. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  2. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    Science.gov (United States)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  3. Adsorption behavior of magnetite nanoparticles into the DPPC model membranes

    International Nuclear Information System (INIS)

    Hao, Changchun; Li, Junhua; Mu, Wenning; Zhu, Lingqing; Yang, Jiaxiang; Liu, Hongwei; Li, Bin; Chen, Shi; Sun, Runguang

    2016-01-01

    Graphical abstract: A represents the state when DPPC was spread on air/water interface at 5 mN/m surface pressures. DPPC is in the liquid expanded state at the interface. B represents 15 mN/m surface pressures and DPPC monolayer is in the liquid condensed state at the interface. - Highlights: • The adsorption of Fe 3 O 4 nanoparticles on DPPC monolayer has been investigated. • The lifting area/molecule of DPPC monolayers increased with Fe 3 O 4 increasing. • The π–t curves were well fitted by single exponential association equation. • AFM images depended on surface pressure and concentration in subphase. - Abstract: In this report, we have studied the adsorption behavior of Fe 3 O 4 nanoparticles into dipalmitoylphosphatidylcholine (DPPC) monolayer. Adsorption kinetics (π–t) process as well as the surface pressure (π–A) isotherms were monitored by Langmuir Wilhelmy plate. The measurement data indicated the Fe 3 O 4 nanoparticles incorporated into the monolayer at the air–water interface. The lifting area/molecule isotherms of DPPC monolayers increased with the increasing concentration of Fe 3 O 4 in the subphase, however, the values of elasticity reduced. The curves of π–t were well fitted by single exponential association equation. Observation by atomic force microscopy (AFM) on monolayers extracted at 5 mN/m and 15 mN/m suggested that the different interaction of Fe 3 O 4 with DPPC monolayer depended on surface pressure of monolayers and concentration in the subphase. The results of observations were in agreement with the fitted results.

  4. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  5. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongfang Wu

    2017-07-01

    Full Text Available PbS colloidal quantum dots (CQDs solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells.

  6. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  7. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  8. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    International Nuclear Information System (INIS)

    Liu, Fang; Xie, Dong Yue; Majdi, Tahereh; Zhu, Guo-zhen

    2016-01-01

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl_2O_4 interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  9. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Xie, Dong Yue [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China); Majdi, Tahereh [Department of Engineering Physics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L7 (Canada); Zhu, Guo-zhen, E-mail: zhugz@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China)

    2016-03-15

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl{sub 2}O{sub 4} interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  10. A simple route for making surfactant free lead sulfide (PbS) quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Firoz; Kumar, Neetesh; Dutta, Viresh, E-mail: vdutta@ces.iitd.ac.in

    2015-05-15

    Highlights: • Surfactant free PbS NCs were successfully synthesised using CoSP technique. • The technique eliminates the requirements of washing to remove the ligands. • Grinding using mortar and pestle creates well separated PbS QDs. • Surfactant free PbS NCs are stable and do not show any degradation with time. - Abstract: An efficient, cost effective and less time consuming method suitable for mass production of surfactant free quantum dots (QDs) of lead sulfide (PbS) is reported. PbS nanocrystals (NCs) are first synthesised by continuous spray pyrolysis (CoSP) technique and de-agglomeration into PbS quantum dots (QDs) is achieved by vigorous mechanical grinding using mortar and pestle. Lead acetate and thiourea were used as the precursor materials for preparation of surfactant free PbS NCs. The broadening in XRD peaks of ground NCs as compared to as synthesized PbS NCs clearly indicated the reduction in particle size to be QDs of PbS. The TEM images also showed that ground PbS NCs were nearly spherical in shape having an average diameter in the range of 4–6 nm. The shift in optical gap from 0.41 eV to 1.47 eV supported the QD formation.

  11. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  12. Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhlisuzh@163.com [School of Chemistry and Life Science, Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, SuZhou 234000 (China)

    2013-04-01

    A self-assembled protocol is introduced to provide effective platforms for the fabrication of ordered Ag nanosized monolayer film. The assembled Ag nanosized monolayer film was characterized using scanning electronic microscopy and surface-enhanced Raman scattering (SERS). The results show that the assembled SERS substrate own excellent Raman enhancement and reproducibility. The synthesized SERS-active substrate was further used to detect methyl-parathion, and the limitation of detection can reach 10{sup −7} M.

  13. Synthesis of Vertically Aligned Carbon Nanotubes on Silicalite-1 Monolayer-Supported Substrate

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2014-01-01

    Full Text Available Monodisperse magnetic Fe3O4 nanoparticles (NPs with the size of ca. 3.5 nm were prepared and used as the catalysts for the synthesis of vertically aligned carbon nanotube (VACNT arrays. A silicalite-1 microcrystal monolayer was used as the support layer between catalyst NPs and the silicon substrate. Compared to our previous report which used radio-frequency- (rf- sputtered Fe2O3 film as the catalyst, Fe3O4 NPs that were synthesized by wet chemical method showed an improved catalytic ability with less agglomeration. The silicalite-1 crystal monolayer acted as an effective “buffer” layer to prevent the catalyst NPs from agglomerating during the reaction process. It is believed that this is the first report that realizes the vertical alignment of CNTs over the zeolite monolayer, namely, silicalite-1 microcrystal monolayer, instead of using the intermediate anodic aluminum oxide (AAO scaffold to regulate the growth direction of CNT products.

  14. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    Science.gov (United States)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  15. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  16. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.

    Science.gov (United States)

    Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye

    2011-06-01

    A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.

  17. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Beard, Matthew C.; Johnson, Justin C. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States)

    2016-06-01

    Highlights: • Photoluminescence and transient absorption are used to probe PbS QD films. • Cation-exchanged PbS QDs show room-temperature PL emission. • Bimolecular recombination is shown for the first time in coupled, PbS QD films. - Abstract: Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  18. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    Science.gov (United States)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  19. Improved polymer thin-film wetting behavior through nanoparticle segregation to interfaces

    International Nuclear Information System (INIS)

    Krishnan, R S; Mackay, M E; Duxbury, P M; Hawker, C J; Asokan, Suba; Wong, Michael S; Goyette, Rick; Thiyagarajan, P

    2007-01-01

    We report a systematic study of improved wetting behavior for thin polymer films containing nanoparticles, as a function of nanoparticle size and concentration, the energy of the substrate and the dielectric properties of the nanoparticles. An enthalpy matched system consisting of polystyrene nanoparticles in linear polystyrene is used to show that nanoparticles are uniformly distributed in the film after spin coating and drying. However, on annealing the film above its bulk glass transition temperature these nanoparticles segregate strongly to the solid substrate. We find that for a wide range of film thicknesses and nanoparticle sizes, a substrate coverage of nanoparticles of approximately a monolayer is required for dewetting inhibition. Cadmium selenide quantum dots also inhibit dewetting of polystyrene thin films, again when a monolayer is present. Moreover, TEM microscopy images indicate that CdSe quantum dots segregate primarily to the air interface. Theoretical interpretation of these phenomena suggests that gain of linear chain configurational entropy promotes segregation of nanoparticles to the solid substrate, as occurs for polystyrene nanoparticles; however, for CdSe nanoparticles this is offset by surface energy or enthalpic terms which promote segregation of the nanoparticles to the air interface

  20. Performance-based standards (PBS) vehicles for transport in the agricultural sector

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-07-01

    Full Text Available manufacturers start designing vehicles on an ad hoc basis. It should be borne in mind that PBS vehicle designs include certain safety features, and must be loaded in the correct manner. The RTMS approach offers the most suitable way of ensuring.... The objectives of the Performance-Based Standards (PBS) philosophy are to utilise technology to reduce road damage, improve safety, increase payloads and reduce costs. To overcome the limitations of prescriptive legislation, is has been proposed that PBS...

  1. Nanoparticle-Mediated Rescue of p53 Through Targeted Degradation of MDM2

    National Research Council Canada - National Science Library

    Fischer, Nicholas; Rotello, Vincent M

    2004-01-01

    .... By incorporating traditional peptide inhibitors of mdm2 with mixed monolayer protected gold cluster nanoparticles, we hope to effect mdm2 denaturation on the nanoparticle surface, increase peptide...

  2. Study of the back recombination processes of PbS quantum dots sensitized solar cells

    Science.gov (United States)

    Badawi, Ali; Al-Hosiny, N.; Merazga, Amar; Albaradi, Ateyyah M.; Abdallah, S.; Talaat, H.

    2016-12-01

    In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage Voc, short circuit current density Jsc, fill factor FF and efficiency η) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm2 (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (τ) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination.

  3. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  4. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  5. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min

    2016-01-01

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  6. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn, E-mail: junginn.sohn@eng.ox.ac.uk, E-mail: seungnam.cha@eng.ox.ac.uk; Cha, SeungNam, E-mail: junginn.sohn@eng.ox.ac.uk, E-mail: seungnam.cha@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Kim, Jong Min [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2016-08-08

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  7. Development of Yam Dioscorin-Loaded Nanoparticles for Paracellular Transport Across Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Hsieh, Hung-Ling; Lee, Chia-Hung; Lin, Kuo-Chih

    2018-02-07

    Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.7% and 61 ± 1.4%, respectively. The NPs demonstrated a substantial release profile in the pH environment of the jejunum. The rDioscorin released from the NPs stimulated proliferation and phagocytosis of the macrophage RAW264.7 and activated the gene expression of IL-1β and IL-6. Incubation of the NPs in the Caco-2 cell monolayer led to a 5.2-fold increase of P app compared with rDioscorin alone, suggesting that rDioscorin, with the assistance of TMC, can be promptly transported across the intestinal epithelia. These results demonstrate that the TMC-rDio-TPP NPs can be utilized for elucidating the immunopharmacological effects of dioscorins through oral delivery.

  8. Designing heavy vehicles to be safer and more productive using PBS

    CSIR Research Space (South Africa)

    Kienhöfer, FW

    2013-07-01

    Full Text Available condition that the proposed vehicle’s safety is demonstrated either through physical testing or simulations. Such a PBS approach is currently being evaluated in South Africa. This paper summarises the productivity and safety increases of three PBS...

  9. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chengwen; Sun, Menghan; Yin, Yanyan; Xiao, Jingkun; Dong, Wei; Li, Chen; Zhang, Li, E-mail: chengwensong@dlmu.edu.cn [College of Environmental Science and Engineering, Dalian Maritime University, Dalian(China)

    2016-11-15

    Star-shaped PbS nanomaterials are synthesized by a hydrothermal method. Morphology and structure of the PbS nanomaterials are analyzed by SEM, HRTEM and XRD. Gas-sensing properties of the as-prepared PbS sensor are also systematically investigated. The results show star-shaped PbS nanostructure consists of four symmetric arms in the same plane and demonstrate good crystallinity. With the increase of ethanol concentration, the sensitivity of the PbS sensor significantly increases and demonstrates an almost linear relationship at the optimal operating temperature of 400 deg C. Moreover, the fast response-recovery towards ethanol is also observed, which indicates its great potential on ethanol detection. (author)

  10. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties

    International Nuclear Information System (INIS)

    Song, Chengwen; Sun, Menghan; Yin, Yanyan; Xiao, Jingkun; Dong, Wei; Li, Chen; Zhang, Li

    2016-01-01

    Star-shaped PbS nanomaterials are synthesized by a hydrothermal method. Morphology and structure of the PbS nanomaterials are analyzed by SEM, HRTEM and XRD. Gas-sensing properties of the as-prepared PbS sensor are also systematically investigated. The results show star-shaped PbS nanostructure consists of four symmetric arms in the same plane and demonstrate good crystallinity. With the increase of ethanol concentration, the sensitivity of the PbS sensor significantly increases and demonstrates an almost linear relationship at the optimal operating temperature of 400 deg C. Moreover, the fast response-recovery towards ethanol is also observed, which indicates its great potential on ethanol detection. (author)

  11. Optical properties of PbS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, O. R., E-mail: orucahmedov@mail.ru; Guseinaliyev, M. G. [National Academy of Azerbaijan, Nakhichevan Branch (Azerbaijan); Abdullaev, N. A.; Abdullaev, N. M.; Babaev, S. S.; Kasumov, N. A. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

    2016-01-15

    The complex dielectric function of PbS thin films is studied by spectroscopic ellipsometry in the spectral range from 0.74 to 6.45 eV at a temperature of 293 K. The critical energies are determined to be E{sub 1} = 3.53 eV and E{sub 2} = 4.57 eV. For both energy regions, the best fit is attained at the critical point 2D (m = 0). In addition, the Raman spectra and the optical-absorption spectra of PbS thin films are studied. From the dependence of the quantity (αhν){sup 2} on the photon energy hν, the band gap is established at E{sub g} = 0.37 eV.

  12. Staying True to Our PBS Roots in a Changing World

    Science.gov (United States)

    Kincaid, Don

    2018-01-01

    The field of Positive Behavior Support (PBS) has grown and changed significantly in the past 25 years and should be expected to continue that trend for the next 25 years. These changes cannot always be predicted, but they can be managed by considering some current changes to the definition of PBS (Kincaid et al., 2016). This paper discussed how…

  13. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.

    Science.gov (United States)

    Coutinho, João Paulo; Carvalho, Ana; Martín, Antonio; Lima-Brito, José

    2018-04-01

    Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.

  14. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  15. γ-ray radiation effect on properties of straw powder/PBS composite

    International Nuclear Information System (INIS)

    Yang Mingcheng; Luo Yongquan; Liu Wentao; Zhu Jun; Guo Dongquan; Li Zhaopeng; Gen Feng; Qu Lingbo

    2013-01-01

    Background: In recent years, with decreasing global fossil resources and increasing 'white pollution', renewable and biodegradable materials attract more and more attentions. Poly (butylene succinate) (PBS) has good mechanical property, biodegradability and processing performance, which is the focus of hot topics in the study of biodegradable plastic materials, however, being soft and of high cost, it is still limited in application range. Purpose: In order to improve the mechanical and thermal properties, a series of wheat straw powder/PBS composites were prepared by melt extrusion, and then the 60 Co-y ray was directly utilized to irradiate the straw powder/PBS composite. Methods: The influence of TAIC (triallyl isocyanurate) radiation absorbed dose and radiation sensitizer on the mechanical property and thermal performance of straw powder/PBS composite was investigated, and the impact fracture surface morphology of the composite was observed by SEM (scanning electron microscope). Results: The tensile strength and flexural strength were enhanced with increasing radiation dosage, and then tend to be stable, the heat distortion temperature also increased but not significantly with increasing radiation dosage. The results show that when TAIC content is 2%, with straw powder/PBS composite irradiated by 30-kGy dose, the tensile strength and flexural strength are increased by 26% and 39.8%, respectively. Conclusion: The radiation modification of composite material has no effect on thermal stability, but do improve the tensile strength and flexural strength when up to 2% of TAIC is integrated and irradiated by certain dose. The interface cohesiveness between straw powder and PBS is strengthened after radiation. (authors)

  16. Combination of short-length TiO{sub 2} nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengguo [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shi, Chengwu, E-mail: shicw506@foxmail.com [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Junjun; Xiao, Guannan; Li, Long [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2017-07-15

    Graphical abstract: The TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm{sup −2} was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO{sub 2} nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO{sub 2} nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO{sub 2} nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm{sup −2} is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO{sub 2} nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion

  17. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters

    International Nuclear Information System (INIS)

    Bi Xuanxuan; Wang Rongyue; Ding Yi

    2011-01-01

    Highlights: → Au decoration on Pt nanoparticles simultaneously increases the activity and stability. → Sub-monolayer Au decoration changes the reaction path and results in the activity improvement. → Increasing the Au coverage will increase the specific activity. → Proper Au coverage results in a maximum mass specific activity. - Abstract: CO poisoning is the main obstacle to the application of Pt nanoparticles as anode catalysts in direct formic acid fuel cells (DFAFCs). Significant types of Pt alloys have been investigated, which often demonstrate evidently improved catalytic performance governed by difference mechanisms. By using a well-known electrochemical technique of under potential deposition and in situ redox replacement, sub-monolayer Au clusters are deposited onto Pt nanoparticle surfaces in a highly controlled manner, generating a unique surface alloy structure. Under optimum conditions, the modified Pt nanoparticles can exhibit greatly enhanced specific activity (up to 23-fold increase) at potential of -0.2 V vs. MSE toward formic acid electro-oxidation (FAEO). Interestingly, the mass specific activity can also be improved by a factor of 2.3 at potential of -0.35 V vs. MSE although significant amount of surface Pt atoms are covered by the overlayer Au clusters. The much enhanced catalytic activity can be ascribed to a Pt surface ensemble effect, which induces change of the reaction path. Moreover, the sub-monolayer Au coating on the surface also contributes to the enhanced catalyst durability by inhibiting the Pt oxidation. These results show great potential to rationally design more active and stable nanocatalysts by modifying the Pt surface with otherwise inactive materials.

  18. Evaluation of genetic diversity in open pollinated guava by iPBS primers

    International Nuclear Information System (INIS)

    Mehmood, A.; Jaskani, M.J.; Ahmad, S.; Ahmad, R.

    2013-01-01

    DNA markers are important tools for assessing genetic diversity and relationships among species, cultivars and breeding materials. Many horticultural species are lacking genomic information. DNA markers that do not require prior knowledge of DNA sequences are therefore appealing for horticultural research. A retrotransposon-based DNA marker system, iPBS (inter primer binding sites) developed from conserved primer binding sites within retrotransposons, was used to study the genetic variation and relationships in ornamental guava. PCR from 6 iPBS primers (dominant markers) produced a total of 113 bands (52.38-100% polymorphic) ranging from 150 bp to 3000 bp, and the mean PIC value for each primer ranging from 0.1245 to 0.3698. Molecular information generated from both iPBS was separately scored in a matrix for phylogenetic dendrogram construction. The phylogenetic dendrogram based on iPBS markers reflected morphologic classifications of the accessions that were studied. The iPBS PCR-based genome fingerprinting technology in this study is low-cost and provides another effective alternative in differentiation of accessions in guava (Psidium guajava Linn.) and related species or genera. (author)

  19. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    Science.gov (United States)

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  20. All-solution-processed PbS quantum dot solar modules

    Science.gov (United States)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade

  1. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Science.gov (United States)

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  3. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

    International Nuclear Information System (INIS)

    Moghadam, Masoud Rohani; Akbarzadeh, Sanaz; Nasirizadeh, Navid

    2016-01-01

    This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. (author)

  4. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  5. Graphene and PbS quantum dot hybrid vertical phototransistor

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  6. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  7. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    International Nuclear Information System (INIS)

    Firdaus, Yuliar; Van der Auweraer, Mark; Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David; Justo, Yolanda; Hens, Zeger

    2014-01-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system

  8. Development and hazard assessment of nanoparticles

    NARCIS (Netherlands)

    Bhattacharjee, S.

    2012-01-01

    A series of highly monodisperse silicon nanoparticles (Si NP) with either
    positively (amine), neutral (azide) or negatively (carboxylic acid) charged
    covalently attached organic monolayers were synthesized and investigated for
    their cytotoxicity. Infrared data confirmed the

  9. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS2 Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP.

    Science.gov (United States)

    Li, Meng-Jie; Zheng, Ying-Ning; Liang, Wen-Bin; Yuan, Ruo; Chai, Ya-Qin

    2017-12-06

    Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C 60 )-decorated Au nanoparticle@MoS 2 (C 60 -Au NP@MoS 2 ) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C 60 with narrow band gap MoS 2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C 60 -Au NP@MoS 2 was effectively quenched because p-type PbS QDs could compete with C 60 -Au NP@MoS 2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S 1 ) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10 -2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.

  10. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  11. Poly (D,L-lactide-co-glycolide nanoparticles: Uptake by epithelial cells and cytotoxicity

    Directory of Open Access Journals (Sweden)

    J. H. Hamman

    2014-03-01

    Full Text Available Nanoparticles as drug delivery systems offer benefits such as protection of the encapsulated drug against degradation, site-specific targeting and prolonged blood circulation times. The aim of this study was to investigate nanoparticle uptake into Caco-2 cell monolayers, their co-localization within the lysosomal compartment and their cytotoxicity in different cell lines. Rhodamine-6G labelled poly(D,L-lactide-co-glycolide (PLGA nanoparticles were prepared by a double emulsion solvent evaporation freeze-drying method. Uptake and co-localisation of PLGA nanoparticles in lysosomes were visualized by confocal laser scanning microscopy. The cytotoxicity of the nanoparticles was evaluated on different mammalian cells lines by means of Trypan blue exclusion and the MTS assay. The PLGA nanoparticles accumulated in the intercellular spaces of Caco-2 cell monolayers, but were also taken up transcellularly into the Caco-2 cells and partially co-localized within the lysosomal compartment indicating involvement of endocytosis during uptake. PLGA nanoparticles did not show cytotoxic effects in all three cell lines. Intact PLGA nanoparticles are therefore capable of moving across epithelial cell membranes partly by means of endocytosis without causing cytotoxic effects.

  12. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  13. SU-E-T-266: Proton PBS Plan Design and Robustness Evaluation for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Liang, X; Tang, S; Zhai, H; Kirk, M; Kalbasi, A; Lin, A; Ahn, P; Tochner, Z; McDonough, J; Both, S

    2014-01-01

    Purpose: To describe a newly designed proton pencil beam scanning (PBS) planning technique for radiotherapy of patients with bilateral oropharyngeal cancer, and to assess plan robustness. Methods: We treated 10 patients with proton PBS plans using 2 posterior oblique field (2F PBS) comprised of 80% single-field uniform dose (SFUD) and 20% intensity-modulated proton therapy (IMPT). All patients underwent weekly CT scans for verification. Using dosimetric indicators for both targets and organs at risk (OARs), we quantitatively compared initial plans and verification plans using student t-tests. We created a second proton PBS plan for each patient using 2 posterior oblique plus 1 anterior field comprised of 100% SFUD (3F PBS). We assessed plan robustness for both proton plan groups, as well as a photon volumetric modulated arc therapy (VMAT) plan group by comparing initial and verification plans. Results: The 2F PBS plans were not robust in target coverage. D98% for clinical target volume (CTV) degraded from 100% to 96% on average, with maximum change Δ D98% of −24%. Two patients were moved to photon VMAT treatment due to insufficient CTV coverage on verification plans. Plan robustness was especially weak in the low-anterior neck. The 3F PBS plans, however, demonstrated robust target coverage, which was comparable to the VMAT photon plan group. Doses to oral cavity were lower in the Proton PBS plans compared to photon VMAT plans due to no lower exit dose to the oral cavity. Conclusion: Proton PBS plans using 2 posterior oblique fields were not robust for CTV coverage, due to variable positioning of redundant soft tissue in the posterior neck. We designed 3-field proton PBS plans using an anterior field to avoid long heterogeneous paths in the low neck. These 3-field proton PBS plans had significantly improved plan robustness, and the robustness is comparable to VMAT photon plans

  14. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  15. Study of structural and optical properties of PbS thin films

    Science.gov (United States)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  16. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    Science.gov (United States)

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  17. On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator

    International Nuclear Information System (INIS)

    Hemed, Nofar Mintz; Inberg, Alexandra; Shacham-Diamand, Yosi

    2013-01-01

    We herein report on the stability of Electrolyte/Insulator/Semiconductor (EIS) devices with Self-Assembled Monolayer (SAM) gate insulator layers, i.e. Electrolyte/SAM/Semiconductor (ESS) devices. ESS devices can be functionalized creating highly specific sensors that can be integrated on standard silicon platform. However, biosensors by their nature are in contact with biological solutions that contain ions and molecules that may affect the device characteristics and cause electrical instability. In this paper we present a list of potential hazards to ESS devices and a study of the device stability under common testing conditions analyzing possible causes for the instabilities. ESS capacitors under open circuit conditions (i.e. open circuit bias of ∼0.6 V vs. Ag/AgCl reference electrode) were periodically characterized. We measured the complex impedance of the capacitors versus bias and extracted the effective capacitance vs. voltage (C–V) curves using two methods. We observed a parallel shift of the C–V curves toward negative bias; showing an effective accumulation of positive charge. The quantitative analysis of the drift vs. time was found to depend on the effective capacitance evaluation method. This effect is discussed and a best-known method is proposed. The devices surface composition was tested before and after the stress experiment by X-ray Photoelectron Spectroscopy (XPS) and sodium accumulation was observed. To further explore the flat-band voltage drift effect and to challenge the assumption that alkali ions are involved in the drift we conceived a novel alkali-free phosphate buffer saline (AF-PBS) where the sodium and potassium ions are replaced by ammonium ion and tested the capacitor under similar conditions to standard PBS. We found that the drift of the AF-PBS solution was much less at the first hour but was similar to that of the conventional PBS for longer stress times; hence, AF-PBS does not solve the long-term instability problem

  18. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, Ronen [Dept of Chemistry, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osherov, Anna; Golan, Yuval [Dept of Materials Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Visoly-Fisher, Iris, E-mail: irisvf@bgu.ac.il [Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus 84990 (Israel)

    2014-01-01

    Photovoltaic devices usually exploit mid-range band-gap semiconductors which absorb in the visible range of the solar spectrum. However, much energy is lost in the IR and near-IR range. We combined the advantages of small band-gap, bulk-like PbS deposited by facile, cheap and direct chemical bath deposition (CBD), with the good electronic properties of ZnO and the large surface area of nanowires, towards low cost photovoltaic devices utilizing IR and near-IR light. Surprisingly, CBD of PbS on ZnO, and particularly on ZnO nanowires, was not studied hitherto. Therefore, the mechanism of PbS growth by chemical bath deposition on ZnO nanowires was studied in details. A visible proof is shown for a growth mechanism starting from amorphous Pb(OH){sub 2} layer, that evolved into the ‘ion-by-ion’ growth mechanism. The growth mechanism and the resulting morphology at low temperatures were controlled by the thiourea concentration. The grain size affected the magnitude of the band-gap and was controlled by the deposition temperatures. Deposition above 40 °C resulted in bulk-like PbS with an optical band-gap of 0.4 eV. Methods were demonstrated for achieving complete PbS coverage of the complex ZnO NW architecture, a crucial requirement in optoelectronic devices to prevent shorts. Measurements of photocurrents under white and near-IR (784 nm) illumination showed that despite a 200 meV barrier for electron transfer at the PbS/ZnO interface, extraction of photo-electrons from PbS to the ZnO was feasible. The ability to harvest electrons from a narrow band-gap semiconductor deposited on a large surface-area electrode can advance the field towards high efficiency, low cost IR and near-IR sensors and third generation solar cells. - Highlights: • PbS was deposited on ZnO nanowires using chemical bath deposition. • At 50 °C the growth mechanism starts from an amorphous Pb(OH){sub 2} layer. • At 5 °C the growth mechanism of PbS can be controlled by thiourea concentrations

  20. Molecular Simulations of Gold Nanoparticles Coated With Self-Assembled Alkanethiolate Monolayers

    National Research Council Canada - National Science Library

    Henz, Brian J; Fischer, James W; Zachariah, Michael R

    2006-01-01

    In order to utilize the novel electrical, magnetic, optical, and physical properties of coated metal nanoparticles, one must be able to efficiently predict the nanoparticle size-dependent properties...

  1. High-contrast MacNeille-PBS-based LCOS projection systems

    Science.gov (United States)

    Chen, Jianmin; Robinson, Michael G.; Sharp, Gary D.

    2005-04-01

    Contrast limits are investigated for MacNeille PBS based LCOS projection systems that use retarder stack filters (RSF). The two contributing factors are considered separately; namely the color management system and the panel port. To enhance performance of the former, skew ray compensated RSFs are introduced. For the latter, a general methodology is presented to optimize contrast by compensating the LCOS panel. It is shown that the orientation of the LCOS panel and compensator, relative to the MacNeille PBS, is critical. The significant impact of AR coating performance on system contrast is also revealed. A high contrast architecture will be presented by way of example.

  2. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    Science.gov (United States)

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  3. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    Science.gov (United States)

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  5. Studying and controlling order within nanoparticle monolayers fabricated through electrophoretic deposition

    Science.gov (United States)

    Krejci, Alexander J.

    Langmuir Blodgett films can be used to create very thin NP films. Templated substrates in combination with spin coating have been used to order blockcopolymers; this could be adapted for NP arrays as well. Some of these techniques can be applied for forming ordered arrays of NPs in two-dimensions, creating nanoparticle monolayers (NPMs), the focus of this work. NPMs are attractive for many applications in devices such as magnetic storage, solar cells, and biosensors. One particularly attractive feature of NPMs is the high surface area to volume ratio of the films. For example, through collaboration, we are investigating PL properties of two monolayers, composed of two different types of NPs, stacked on top of one another. Although challenging, there now are a variety of techniques for the fabrication of NPMs. This dissertation introduces a new process by which one can fabricate monolayers, electrophoretic deposition (EPD). Literature exists on using EPD to fabricate NPMs, but this literature is very limited. One such study deposited films of Au NPs on carbon films and another Pt NPs on carbon films. To the best of our knowledge, only NPMs of metallic NPs on carbon have been fabricated. Of the EPD studies in which NPMs have been fabricated, the technique has not been investigated in depth or has not been generalized for deposition of many types of materials. If NPM formation via EPD could be generalized, the NPMs could be industrially attractive as EPD has many industrially advantageous properties. For instance, EPD is highly versatile in multiple ways: many types of particles can be deposited, the size of the electrodes can be varied over many orders of magnitude, and a large variety of solvents can be used to suspend NPs. For example, our group has deposited materials of different shapes including tubes, sheets, and spheres; different materials such as polymers, metals, semiconductors, and magnetic materials; and on a variety of substrates including steel, silicon

  6. Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems.

    Science.gov (United States)

    Dwivedi, Mridula V; Harishchandra, Rakesh Kumar; Koshkina, Olga; Maskos, Michael; Galla, Hans-Joachim

    2014-01-07

    The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanoparticles with diameter of ~12 nm and ~136 nm have contrasting effect on the functional and structural behavior. The small nanoparticles inserted into fluid domains at the LE-LC phase transition are not visibly disturbing the phase transition but disrupting the domain morphology of the LE phase. The large nanoparticles led to an expanded isotherm and to a significant decrease in the line tension and thus to a drastic disruption of the domain structures at a much lower number of nanoparticles with respect to the lipid. The surface activity of the model LS films again showed drastic variations due to presence of different sized NPs illustrated by the film balance isotherms and the atomic force microscopy. AFM revealed laterally profuse multilayer protrusion formation on compression but only in the presence of 136 nm sized nanoparticles. Moreover we investigated the vesicle insertion process into a preformed monolayer. A severe inhibition was observed only in the presence of ~136 nm NPs compared to minor effects in the presence of ~12 nm NPs. Our study clearly shows that the size of the nanoparticles made of the same material determines the interaction with biological membranes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon

    Directory of Open Access Journals (Sweden)

    Bernechea M.

    2013-06-01

    Full Text Available In this work, we study the efficiency of the resonance energy transfer from PbS quantum dots to bulk silicon. We present spectroscopic evidence that resonance energy transfer from PbS quantum dots to bulk silicon can be an efficient process for separation distances below 12 nm. Temperature measurements are also presented for PbS quantum dots deposited on glass and silicon with 5 nm and 20nm spacer thicknesses substrates. Our findings show that the resonance energy transfer efficiency remains constant over the 50K to 300K temperature range.

  8. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    International Nuclear Information System (INIS)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao

    2014-01-01

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH 2 O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH 2 O (9.0×10 4 )>NaCl (2.64×10 4 )/PBS (2.37×10 4 )>PBS-NaCl (0.88×10 4 ), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH 2 O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH 2 O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH 2 O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH 2 O than in buffer solutions

  9. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  10. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  11. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  12. Monitoring results of two PBS demonstration vehicles in the forestry industry in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2010-03-01

    Full Text Available and manufactured to comply with the Level 2 safety standards of the Australian PBS system. This paper presents a summary of the monitoring data compiled during the first nine months of operation of the two PBS demonstration vehicles, which were commissioned...

  13. Tracking nanoparticles in an optical microscope using caustics

    International Nuclear Information System (INIS)

    Patterson, Eann A; Whelan, Maurice P

    2008-01-01

    An elegant method is proposed and demonstrated for tracking the location and movement of nanoparticles in an optical microscope using the optical phenomenon of caustics. A simple and reversible adjustment to the microscope generates caustics several orders of magnitude larger than the particles. The method offers a simple and relatively inexpensive method for visualizing such phenomena as the formation of self-assembled monolayers and the interaction of nanoparticles with chemically functionalized surfaces

  14. Tracking nanoparticles in an optical microscope using caustics

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Eann A [Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824 (United States); Whelan, Maurice P [Nanotechnology and Molecular Imaging Unit, Institute for Health and Consumer Protection, European Commission DG Joint Research Center, 21021 Ispra (Vatican City State, Holy See,) (Italy)

    2008-03-12

    An elegant method is proposed and demonstrated for tracking the location and movement of nanoparticles in an optical microscope using the optical phenomenon of caustics. A simple and reversible adjustment to the microscope generates caustics several orders of magnitude larger than the particles. The method offers a simple and relatively inexpensive method for visualizing such phenomena as the formation of self-assembled monolayers and the interaction of nanoparticles with chemically functionalized surfaces.

  15. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pekka Hänninen

    2011-11-01

    Full Text Available Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP using CdSe-ZnS nanoparticles and green light excitation.

  16. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  17. Measurement of Electronic States of PbS Nanocrystal Quantum Dots Using Scanning Tunneling Spectroscopy: The Role of Parity Selection Rules in Optical Absorption

    Science.gov (United States)

    Diaconescu, Bogdan; Padilha, Lazaro A.; Nagpal, Prashant; Swartzentruber, Brian S.; Klimov, Victor I.

    2013-03-01

    We study the structure of electronic states in individual PbS nanocrystal quantum dots by scanning tunneling spectroscopy (STS) using one-to-two monolayer nanocrystal films treated with 1, 2-ethanedithiols (EDT). Up to six individual valence and conduction band states are resolved for a range of quantum dot sizes. The measured states’ energies are in good agreement with calculations using the k·p four-band envelope function formalism. A comparison of STS and optical absorption spectra indicates that some of the absorption features can only be explained by asymmetric transitions involving the states of different symmetries (e.g., S and P or P and D), which points towards the relaxation of the parity selection rules in these nanostructures. STS measurements also reveal a midgap feature, which is likely similar to one observed in previous charge transport studies of EDT-treated quantum dot films.

  18. Synthesis of high quality single-walled carbon nanotubes via a catalytic layer reinforced by self-assembled monolayers

    International Nuclear Information System (INIS)

    Adhikari, Prashanta Dhoj; Song, Wooseok; Cha, Myoung-Jun; Park, Chong-Yun

    2013-01-01

    This work reports the synthesis of high quality single-walled carbon nanotubes (SWCNT) using a catalytic layer reinforced by self-assembled monolayers (SAM). Amine-SAM was introduced on a SiO 2 /Si substrate and then an iron nanoparticles solution was dropped on the substrate by spin-coating. This catalytic template was used to grow carbon nanotubes by chemical vapor deposition and the synthesized SWCNT were observed to be prominent, based on the size distribution. Highly dense SWCNT with a diameter of about 1.1-1.2 nm were produced at 800-850 °C. Moreover, the diameter distribution of the SWCNT was more selective at a growth temperature of 900 °C. These findings provide important insights for a SAM support layer that can play the role as a restriction for the agglomeration of iron catalyst and is promising for the synthesis of high quality SWCNT. - Highlights: • Fe nanoparticles on self-assembled monolayers (SAM) containing template is underlined. • Its catalytic behavior to synthesis single-walled carbon nanotubes is studied. • The role of SAM on catalytic template is explored

  19. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  20. Preparation of nanostructured PbS thin films as sensing element for NO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Keffous, A.; Hakoum, S. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Trari, M. [Université des Sciences et Technologies Houari Boumediene (USTHB), Laboratoire de Stockage et de Valorisation des Eneriges Renouvelables, Faculté de Chimie, BP 32, EL Alia, 16111 Bab Ezzouar, Algiers (Algeria); Mansri, O.; Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria)

    2014-06-01

    In this work, we demonstrate that semiconducting films of A{sub IV}B{sub VI} compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO{sub 2}) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current–voltage (I–V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO{sub 2} gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO{sub 2} gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  1. Enhancement of Electron Transfer Efficiency in Solar Cells Based on PbS QD/N719 Dye Cosensitizers

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2012-01-01

    Full Text Available Cosensitized solar cells (CSSCs have recently become an active subject in the field of sensitized solar cells (SSCs due to their increasing electronic utilization. However, because of the dye molecules, layer must be single, dye-SSCs cannot be co-sensitized with two different dyes to form two different molecules layer. But it is possible to be cosensitized with quantum dots (QDs and dyes. Here we designed novel photoanode architecture, namely, PbS QDs and N719 dyes are used as co-sensitizers of the TiO2 mesoporous film. The experimental result shows that PbS QDs/N719 dyes co-sensitized structure can make PbS QDs and N719 dyes mutual improvement. Taking the advantage of PbS not only achieved higher transfer efficiency of photo-excited electron, but also achieved obviously wider range and higher intensity of absorption. The PbS QDs which have been deposited on the TiO2 film was coated by N719 dyes, which can effectively prevent PbS QDs from corroding by I-/I3-electrolyte and light. As we expected, the solar energy-conversion efficiency which is showed by CSSCs fabricated following these photoanodes is relatively higher than the PbS QDs or N719 dyes, single-sensitized solar cells under the illumination of one sun.

  2. 77 FR 40358 - Federal Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings...

    Science.gov (United States)

    2012-07-09

    ... Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings: Correction AGENCY: Public Buildings Service (PBS), General Services Administration (GSA). ACTION: Notice of a bulletin..., 2012, a bulletin announcing the designation and redesignation of three Federal buildings. Inadvertently...

  3. Spanish adaptation of the Participatory Behaviors Scale (PBS

    Directory of Open Access Journals (Sweden)

    Alejandro Magallares

    2016-04-01

    Full Text Available The aim of this study was to adapt the Participatory Behaviors Scale (PBS and validate the results for use among the Spanish population. Using snowball sampling methodology, 501 individuals from all areas of Spain were selected to participate in the study. The Participatory Behaviors Scale (PBS and questionnaires that measure a sense of community, belief in a just world and Machiavellianism were used to analyze the criterion validity of the adapted scale. A confirmatory factor analysis indicated that the items on the questionnaire fit a second-order model with four factors, which corresponded to the four dimensions proposed by the original authors, namely, disengagement, civil participation, formal political participation and activism. Additionally, it has been found that the scale is related to a sense of community, belief in a just world and Machiavellianism. In light of these results, we concluded that the questionnaire is methodologically valid and can be used by the scientific community to measure participatory behavior.

  4. Pattern transfer with stabilized nanoparticle etch masks

    International Nuclear Information System (INIS)

    Hogg, Charles R; Majetich, Sara A; Picard, Yoosuf N; Narasimhan, Amrit; Bain, James A

    2013-01-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiO x substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results. (paper)

  5. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  6. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Directory of Open Access Journals (Sweden)

    Azade Taheri

    2011-01-01

    Full Text Available Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide HCl (EDC to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC. Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.

  7. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    International Nuclear Information System (INIS)

    Taheri, A.; Atyabi, F.; Nouri, F.S.; Ahadi, F.; Derakhshan, M.A.; Dinarvand, R.; Atyabi, F.; Ghahremani, M.H.; Ostad, S.N.; Dinarvand, R.; Amini, M.; Ghahremani, M.H.; Ostad, S.N.; Mansoori, P.

    2011-01-01

    Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90 150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37 degree C) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of cross linker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the cross linker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T 47 D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the C50 value of methotrexate on T 47 D cells in comparison with free methotrexate.

  8. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria.

    Science.gov (United States)

    Toledano-Osorio, Manuel; Babu, Jegdish P; Osorio, Raquel; Medina-Castillo, Antonio L; García-Godoy, Franklin; Toledano, Manuel

    2018-06-14

    Polymeric nanoparticles were modified to exert antimicrobial activity against oral bacteria. Nanoparticles were loaded with calcium, zinc and doxycycline. Ions and doxycycline release were measured by inductively coupled plasma optical emission spectrometer and high performance liquid chromatography. Porphyromonas gingivalis , Lactobacillus lactis , Streptoccocus mutans , gordonii and sobrinus were grown and the number of bacteria was determined by optical density. Nanoparticles were suspended in phosphate-buffered saline (PBS) at 10, 1 and 0.1 mg/mL and incubated with 1.0 mL of each bacterial suspension for 3, 12, and 24 h. The bacterial viability was assessed by determining their ability to cleave the tetrazolium salt to a formazan dye. Data were analyzed by ANOVA and Scheffe’s F ( p Nanoparticles (60% to 99% reduction) followed by Ca-Nanoparticles or Zn-Nanoparticles (30% to 70% reduction) and finally the non-doped nanoparticles (7% to 35% reduction). P. gingivalis , S. mutans and L. lactis were the most susceptible bacteria, being S. gordonii and S. sobrinus the most resistant to the tested nanoparticles.

  9. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  10. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections.

    Science.gov (United States)

    Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc

    2017-08-01

    Current pulmonary treatments against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu-3 cells and CF bronchial epithelial cells (CFBE41o - ) indicated that complex-loaded PLGA NPs were non-toxic at concentrations ≫ MIC cipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex-loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  12. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.

    Science.gov (United States)

    Liu, Yutao; Pan, Jie; Feng, Si-Shen

    2010-08-16

    This work developed a system of nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of anticancer drugs with paclitaxel as a model drug, in which the emphasis was given to the effects of the surfactant type and the optimization of the emulsifier amount used in the single emulsion solvent evaporation/extraction process for the nanoparticle preparation on the particle size, characters and in vitro performance. The drug loaded nanoparticles were characterized by laser light scattering (LLS) for size and size distribution, field-emission scanning electron microscopy (FESEM) for surface morphology, X-ray photoelectron spectroscopy (XPS) for surface chemistry, zetasizer for surface charge, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency and in vitro drug release kinetics. MCF-7 breast cancer cells were employed to evaluate the cellular uptake and cytotoxicity. It was found that phospholipids of short chains such as 1,2-dilauroylphosphatidylocholine (DLPC) have great advantages over the traditional emulsifier poly(vinyl alcohol) (PVA), which is used most often in the literature, in preparation of nanoparticles of biodegradable polymers such as poly(D,L-lactide-co-glycolide) (PLGA) for desired particle size, character and in vitro cellular uptake and cytotoxicity. After incubation with MCF-7 cells at 0.250 mg/ml NP concentration, the coumarin-6 loaded PLGA NPs of DLPC shell showed more effective cellular uptake versus those of PVA shell. The analysis of IC(50), i.e. the drug concentration at which 50% of the cells are killed, demonstrated that our DLPC shell PLGA core NP formulation of paclitaxel could be 5.88-, 5.72-, 7.27-fold effective than the commercial formulation Taxol after 24, 48, 72h treatment, respectively. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. A methodology for assessment of road structures for the PBS pilot project in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2016-11-01

    Full Text Available This paper describes the methodology that is being used for the performance assessment of PBS vehicles in terms of road structures as part of the PBS pilot project in South Africa. The assessment approach has evolved from the standard “bridge...

  14. Optical anisotropy of layered metal-dielectric nanostructures based on dense 2D-arrays of silver nanoparticles

    International Nuclear Information System (INIS)

    Jeshchenko, O.A.

    2013-01-01

    The spatial and polarization anisotropy of extinction spectra of parallel dense 2D-monolayers of Ag nanoparticles separated by dielectric films is theoretically studied. The dependences are interpreted as a result of collectivization of surface plasmon modes occurring due to strong dipole-dipole coupling silver nanoparticles

  15. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  16. PbS Thin Films for Photovoltaic Applications Obtained by Non-Traditional Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    Pérez-García Claudia Elena

    2015-01-01

    Full Text Available To optimize cost-efficiency relation for thin film solar cells, we explore the recently developed versions of chemical deposition of semiconductor films, together with classic CBD (Chemical Bath Deposition: SILAR (Successive Ionic Layer Adsorption and Reaction and PCBD (Photo Chemical Bath Deposition, all of them ammonia-free and ecologically friendly. The films of CdS and PbS were made, and experimental solar cells with CdS window layer and PbS absorber elaborated. We found that band gap of PbS films can be monitored by deposition process due to porosity-induced quantum confinement which depends on the parameters of the process. We expect that the techniques employed can be successfully used for production of optoelectronic devices.

  17. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  18. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  19. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  20. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  1. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  2. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  3. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K., E-mail: ksasaki@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Wang, J.X. [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Naohara, H. [Toyota Motor Corporation, Susono 410-1193 (Japan); Marinkovic, N. [University of Delaware, Department of Chemical Engineering, Newark, DE 19716 (United States); More, K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Inada, H. [Hitachi High Technologies America, Pleasanton, CA 94588 (United States); Adzic, R.R., E-mail: adzic@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States)

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  4. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    International Nuclear Information System (INIS)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  5. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Science.gov (United States)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  6. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    Science.gov (United States)

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  7. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  8. Use of lead (II) sulfide nanoparticles as stabilizer for PMMA exposed to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Olga Pinheiro; Albuquerque, Marilia Cordeiro Carneiro de; Aquino, Katia Aparecida da Silva; Araujo, Elmo Silvano de, E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Araujo, Patricia Lopes Barros de [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil)

    2015-03-15

    Lead (II) sulfide (PbS) were synthesized by sonochemical method and crystals with cubic structure exhibit aggregated nanoparticles with size in the range of 50-100 nm. Commercial Poly(methyl methacrylate) (PMMA) containing the PbS nanoparticles (PbS-NP) exposed to gamma irradiation were investigated and both the viscosity-average molar mass (Mv ) and degradation index (DI) values were measured. Ours results showed decreases in molar mass when the systems were gamma irradiated, i. e., random scission effects that take place in the main chain. On the other hand, DI results showed that the addition of PbS-NP at 0.3 wt% into the PMMA matrix decreased 100% the number of main chain scissions. Results about the free radical scavenger action of the PbS-NP were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Analysis of infrared spectra, refraction index, mechanical, and thermal properties showed influence of the PbS-NP in the physical behavior of PMMA. (author)

  9. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    Science.gov (United States)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  10. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  11. "Precipitation on Nanoparticles": Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles.

    Science.gov (United States)

    Chu, Zonglin; Han, Yanxiao; Kral, Petr; Klajn, Rafal

    2018-04-19

    Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self-assembled monolayers obtained by co-adsorption from solution of two different molecules. Here, we study co-adsorption of two thiolated ligands-a dialkylviologen and a zwitterionic sulfobetaine-that can interact with each other electrostatically, onto gold nanoparticles. Consequently, the nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. We show that changing the solution molar ratio of two ligands by a factor of ~5,000 affects the on-nanoparticle ratio of these ligands by only 3 times. This behavior is reminiscent of the formation of insoluble inorganic salts (e.g., AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well-defined hybrid organic-inorganic nanostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes

    International Nuclear Information System (INIS)

    Liu, Zhongqing; Wang, Bin; Wu, Jianchun; Dong, Qiang; Zhang, Xiaoming; Xu, He

    2016-01-01

    ABSTRACT: The contact state at the heterojunction interfaces greatly influences the interfacial kinetics of the photoinduced charge carriers. In this study, we used a facile NaOH pretreatment to replenish the hydroxyl groups lost during the heat treatment for crystallization of TiO 2 nanotube arrays (TNAs) prepared via anodic oxidization. By reacting the carboxylic acid groups of thioglycolic acid (TGA) with the TiO 2 surface hydroxyl groups, TGA molecules were covalently linked to the TiO 2 surface and then PbS quantum dots (QDs) were anchored onto the TNAs via the successive ionic layer adsorption and reaction (SILAR) method. The sample microstructure and photoelectrochemical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM),current–voltage characteristics (J–V), electrochemical impedance spectroscopy (EIS), transient photovoltage plots and Mott-Schottky curves. The contact state and electrostatic potential distribution between TiO 2 {1 0 1} and PbS {1 1 1} planes were estimated by using first principle simulation. It was found that the NaOH pretreatment could enhance the crystallization degree of PbS QDs, decrease the crystal face mismatch, dangling bond density and the interfacial resistance between PbS QDs and TiO 2 , and accelerate the interfacial separation and transfer of photoinduced charge carriers. The first principle calculations demonstrated that the PbS QDs and TiO 2 interfacial contact was strengthened, and the built-in electric field was induced from TiO 2 {1 0 1} towards PbS {1 1 1}. These combined effects apparently improved the device photoelectrochemical performance. Compared to the sample without pretreatment, the specimen pretreated with NaOH demonstrated 19.96% and 29.93% increases in peak photoconversion efficiency after five and ten cycles of SILAR deposition, respectively.

  13. Possibilities of surface-sensitive X-ray methods for studying the molecular mechanisms of interaction of nanoparticles with model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N., E-mail: nn-novikova07@yandex.ru; Kovalchuk, M. V.; Yakunin, S. N. [National Research Centre “Kurchatov Institute,” (Russian Federation); Konovalov, O. V. [European Synchrotron Radiation Facility (France); Stepina, N. D. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Rogachev, A. V. [National Research Centre “Kurchatov Institute,” (Russian Federation); Yurieva, E. A. [Moscow Research Institute of Pediatrics and Pediatric Surgery (Russian Federation); Marchenko, I. V.; Bukreeva, T. V. [National Research Centre “Kurchatov Institute,” (Russian Federation); Ivanova, O. S.; Baranchikov, A. E.; Ivanov, V. K. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2016-09-15

    The processes of structural rearrangement in a model membrane, i.e., an arachic acid monolayer formed on a colloidal solution of cerium dioxide or magnetite, are studied in situ in real time by the methods of X-ray standing waves and 2D diffraction. It is shown that the character of the interaction of nanoparticles with the monolayer is determined by their nature and sizes and depends on the conditions of nanoparticle synthesis. In particular, the structure formation in the monolayer–particle system is greatly affected by the stabilizer (citric acid), which is introduced into the colloidal solution during synthesis.

  14. Synthesis and photoelectrical performance of nanoscale PbS and Bi2S3 co-sensitized on Ti02 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    Fanggong Cai; Min Pan; Yong Feng; Guo Yan; Yong Zhang; Yong Zhao

    2017-01-01

    TiO2 films have been widely applied in photovoltaic conversion techniques.TiO2 nanotube arrays (TiO2 NAs) can be grown directly on the surface of metal Ti by the anodic oxidation method.Bi2S3 and PbS nanoparticles (NPs) were firstly co-sensitized on TiO2 NAs (denoted as PbS/Bi2S3(n)/TiO2 NAs) by a two-step process containing hydrothermal and sonication-assisted SILAR method.When the concentration of Bi3+ is 5 mmol/L,the best photoelectrical performance was obtained under simulated solar irradiation.The short-circuit photocurrent (Jsc) and photoconversion efficiency (η) of PbS/Bi2S3(5)/TiO2 NAs electrode were 4.70 mA/cm and 1.13 %,respectively.

  15. Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Giovanna Palermo

    2017-01-01

    Full Text Available This work investigates the heat delivered by a mono-layer 1D grating of gold nanoparticles (GNPs created by photo-reduction through two-photon direct laser writing (2P-DLW in a poly-vinyl alcohol (PVA matrix doped with HAuCl4, under resonant laser radiation. We drop cast a film of a PVA + HAuCl4 mixture onto a glass substrate, in which we create gratings of 1 mm2 made by stripes of GNPs characterized by high polydispersivity. We demonstrate that, by controlling the pitch of the GNP stripes, we obtain different values of the photo-induced temperature variations. In the framework of thermo-plasmonics, the experimental investigation of the heat generation from a monolayer of gold nanoparticles represents a key element as a starting point to design thermo-smart platforms for sensing, solar energy harvesting and thermo-catalysis.

  16. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  17. Tunneling effect on double potential barriers GaAs and PbS

    Science.gov (United States)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  18. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment

    Science.gov (United States)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih

    2016-03-01

    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  19. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  20. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Directory of Open Access Journals (Sweden)

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  1. B1-B2 phase transition mechanism and pathway of PbS under pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  2. Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

    KAUST Repository

    El-Ballouli, Ala'a O.

    2015-11-17

    Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD-based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron-accepting unit with a new driving force for CT is urgently needed to harvest the light from large-sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time-resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD-based solar cells that make the best use of the diverse photons making up the Sun\\'s broad irradiance spectrum.

  3. Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

    KAUST Repository

    El-Ballouli, Ala'a O.; Alarousu, Erkki; Kirmani, Ahmad R.; Amassian, Aram; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD-based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron-accepting unit with a new driving force for CT is urgently needed to harvest the light from large-sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time-resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD-based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.

  4. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Science.gov (United States)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  5. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    Science.gov (United States)

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  6. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  7. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Busson, B.; Abid, J.-P.; Six, C.; Girault, H.H.; Tadjeddine, A.

    2005-01-01

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm -1 spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment

  8. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France) and Laboratoire de Spectroscopie Moleculaire de Surface, University of Namur, 61 Rue de Bruxelles, B-5000 Namur (Belgium)]. E-mail: christophe.humbert@fundp.ac.be; Busson, B. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Abid, J.-P. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Six, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Girault, H.H. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Tadjeddine, A. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France)

    2005-05-20

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm{sup -1} spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment.

  9. Monitoring results of PBS vehicles in South Africa in terms of productivity, safety and road wear performance

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2013-07-01

    Full Text Available As part of a Performance-Based Standards (PBS) research programme for heavy vehicles in South Africa, a need was identified to design, manufacture and operate a number of PBS or Smart Truck demonstration vehicles in order to gain practical...

  10. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  11. A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller

    Science.gov (United States)

    Wageh, S.; Farooq, W. A.; Tataroğlu, A.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.

    2017-12-01

    The structural, optical and photoelectrical properties of the fabricated Al/PbS/p-Si/Al photodiode based on PbS nanocrystallites were investigated. The PbS nanocrystallites were characterized by X-ray diffraction (XRD), UV-VIS-NIR, Infrared and Raman spectroscopy. The XRD diffraction peaks show that the prepared PbS nanostructure is in high crystalline state. Various electrical parameters of the prepared photodiode were analyzed from the electrical characteristics based on I-V and C-V-G. The photodiode has a high rectification ratio of 5.85×104 at dark and ±4 V. Moreover, The photocurrent results indicate a strong photovoltaic behavior. The frequency dependence of capacitance and conductance characteristics was attributed to depletion region behavior of the photodiode. The diode was used to control solar panel power automatic tracking controller in dual axis. The fabricated photodiode works as a photosensor to control Solar tracking systems.

  12. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  13. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  14. WE-E-BRB-02: Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patient

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. [University of Pennsylvania (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  15. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    International Nuclear Information System (INIS)

    Li, H.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  16. WE-E-BRB-02: Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patient

    International Nuclear Information System (INIS)

    Lin, L.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  17. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Science.gov (United States)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  18. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    International Nuclear Information System (INIS)

    Wen Li; Lin Zhonghua; Gu Pingying; Zhou Jianzhang; Yao Bingxing; Chen Guoliang; Fu Jinkun

    2009-01-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 o C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  19. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Lin Zhonghua [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Gu Pingying [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Zhou Jianzhang [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Yao Bingxing [Xiamen University, School of Life Sciences (China); Chen Guoliang; Fu Jinkun, E-mail: wenli_1976@163.co [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China)

    2009-02-15

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 {sup o}C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 {+-} 0.8 nm size were formed by using Bacillus megatherium D01.

  20. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection

    KAUST Repository

    Eita, Mohamed Samir

    2014-08-28

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Directory of Open Access Journals (Sweden)

    Hariyadi Soetedjo

    2018-03-01

    Full Text Available Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm−3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1 and (2 0 0 occurs during deposition. Keywords: Thin films, Lead sulfide, Sputtering, Resistivity, Semiconductor, Infrared

  2. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    International Nuclear Information System (INIS)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-01-01

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China) 6 ] 4- , [Ru(NH 3 ) 6 ] 2+ and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK a medium and at pK a >pH medium reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH 3 ) 6 ] 2+/3+ . Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH

  3. Spin-coating deposition of PbS and CdS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh; Mighri, Frej [Laval University, CREPEC, Department of Chemical Engineering, Quebec, QC (Canada); Ajji, Abdellah [Ecole Polytechnique, CREPEC, Chemical Engineering Department, Montreal, QC (Canada); Tiwari, Devendra; Chaudhuri, Tapas K. [Charotar University of Science and Technology (CHARUSAT), Dr. K.C. Patel Research and Development Centre, Anand District, Gujarat (India)

    2014-12-15

    In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 x 10{sup 18} cm{sup -3} and 2.16 x 10{sup -3} cm{sup 2}/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm{sup 2} and 0.32, respectively. (orig.)

  4. Initiative to introduce a performance-based standards (PBS) approach for heavy vehicle design and operations in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-05-01

    Full Text Available The introduction of PBS for heavy vehicles in South Africa was first identified in the National Overload Control Strategy as a potential concession of a proposed Self-regulation initiative. In August 2004 a PBS committee was established...

  5. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  6. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solution-processable septithiophene monolayer transistor

    NARCIS (Netherlands)

    Defaux, M.; Gholamrezaie, F.; Wang, J.; Kreyes, A.; Ziener, U.; Anokhin, D.V.; Ivanov, D.A.; Moser, A.; Neuhold, A.; Salzmann, I.; Resel, R.; Leeuw, de D.M.; Meskers, S.C.J.; Moeller, M.; Mourran, A.

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  8. Solution-Processable Septithiophene Monolayer Transistor

    NARCIS (Netherlands)

    Defaux, Matthieu; Gholamrezaie, Fatemeh; Wang, Jingbo; Kreyes, Andreas; Ziener, Ulrich; Anokhin, Denis V.; Ivanov, Dimitri A.; Moser, Armin; Neuhold, Alfred; Salzmann, Ingo; Resel, Roland; de Leeuw, Dago M.; Meskers, Stefan C. J.; Moeller, Martin; Mourran, Ahmed

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  9. Luminescence and transient lifetime studies for energy transfer of PbS QD films

    Science.gov (United States)

    Wang, Joanna S.; Ullrich, Bruno; Dass, Chandriker K.; Das, Anirban; Wai, Chien M.; Brown, Gail J.; Hendrickson, Joshua R.

    2017-08-01

    Quantum confined semiconductor materials in colloidal form have drawn great attention in scientific communities due to the size-tunability, which controls their optical properties. PbS quantum dots (QDs) are exciting candidates for quantum optics, particularly due to the control of the QD sizes during the synthetic process enabling the realization of precisely tunable emission properties in the near-infrared region. Differently sized pairs of PbS QDs were deposited onto glass substrates to form thin films using supercritical CO2 (sc-CO2) deposition and solvent deposition methods (SDM). The fluorescence and photoluminescence (PL) spectra obtained from these closely packed films prepared by the sc-CO2 method reveal effective Förster resonance energy transfer (FRET) between two different sized dots, while the films composed of three different QD sizes show an even more effective FRET from the smallest to the largest ones. Energy transfer can be observed more directly by temporally resolved PL decay of mixed dots. By means of transient lifetime measurements, a mixed PbS film with 3.1 and 4.7 nm QDs was studied for FRET by time correlated single photon counting. The PL peak of the 3.1 nm QDs is quenched with respect to the emission of the 4.7 nm QDs and decays faster, and the best fit for the lifetime (decay constant)-1 is a biexponential decay mode. The long wavelength decay (4.7 nm QDs) is best fit by a mono-exponential equation. More theoretical and experimental work is required for a thorough understanding of the radiative lifetimes of PbS QDs in mixed QD systems.

  10. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    Science.gov (United States)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  11. Temperature-induced processes for size-selected metallic nanoparticles on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bettermann, H., E-mail: hendrik.bettermann@uni-duesseldorf.de; Werner, M.; Getzlaff, M., E-mail: getzlaff@uni-duesseldorf.de

    2017-01-01

    Highlights: • FeNi nanoparticles on W(110) are stable at room temperature and above. • Unrolling carpet mechanism is driving the melting of nanoparticles. • Ostwald ripening is driving the formation of FeNi islands after melting. - Abstract: The melting behavior of Iron-Nickel alloy nanoparticles on W(110) was studied under UHV conditions as a function of heating temperature and heating duration. These particles were found to be stable at 423 K without evaporation or diffusion taking place. Unrolling carpet behavior occurs at higher temperatures. This creates ramified islands around the nanoparticles. Ostwald ripening at higher temperatures or longer heating times is creating compact islands. The melting of these nanoparticles opens the possibility for thin film growth of FeNi alloys. The formation of monolayer high islands is a strong contrast to Fe, Co, and FeCo alloy nanoparticles which are dominated by direct evaporation, single atom surface diffusion and anisotropic spreading.

  12. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-02-15

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China){sub 6}]{sup 4-}, [Ru(NH{sub 3}){sub 6}]{sup 2+} and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK{sub a}pH{sub medium} reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH{sub 3}){sub 6}]{sup 2+/3+}. Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH.

  13. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  14. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.

    Science.gov (United States)

    Paramelle, David; Peng, Tao; Free, Paul; Fernig, David G; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently

  15. Photoelectron emission as a tool to assess dose of electron radiation received by ZrO2:PbS films

    International Nuclear Information System (INIS)

    Krumpane, Diana; Dekhtyar, Yury; Surkova, Indra; Romanova, Marina

    2013-01-01

    PbS nano dots embedded in ZrO 2 thin film matrix (ZrO 2 :PbS films) were studied for application in nanodosimetry of electron radiation used in radiation therapy. ZrO 2 :PbS films were irradiated with 9 MeV electron radiation with doses 3, 7 and 10 Gy using medical linear accelerator. Detection of the dosimetric signal was made by measuring and comparing photoelectron emission current from ZrO 2 :PbS films before and after irradiation. It was found that electron radiation decreased intensity of photoemission current from the films. Derivatives of the photoemission spectra were calculated and maximums at photon energies 5.65 and 5.75 eV were observed. Amplitude of these maximums decreased after irradiation with electrons. Good linear correlation was found between the relative decrease of the intensity of these maximums and dose of electron radiation. Observed changes in photoemission spectra from ZrO 2 :PbS films under influence of electron radiation suggested that the films may be considered to be effective material for electron radiation dosimetry. Photoelectron emission is a tool that allows to read the signal from such dosimeter. (authors)

  16. Janus Monolayer Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  17. Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shaoli, E-mail: slzhu@ntu.edu.s [Nanyang Technological University, School of Electronic and Electrical Engineering (Singapore); Fu Yongqi [University of Electronic Science and Technology of China, School of Physical Electronics (China)

    2010-06-15

    Fabrication and characterization of nanostructured metallic arrays with different shapes in monolayer and bilayer were presented in this article. Nano-rhombic, nano-hexagon, and nano-column metallic arrays with the tunable shapes and in-plane dimensions were fabricated by means of vertical reactive ion etching and nanosphere lithography. The nanosize range of nanoparticles is from 50 to 300 nm. Optical characterization of these arrays was performed experimentally by spectroscopy. Specifically, we compared spectra width at site of full width at half maximum (FWHM) of the measured extinction spectra in the visible range to that of the traditional hexagonal-arranged triangular nanoparticles. The results show that the combination of vertical reactive ion etching and nanosphere lithography approach yields as tunable masks and provides an easy way for a flexible nanofabrication. These metallic arrays have narrower FWHM of the spectra which makes them potential applications in biosensors, data storage, and bioreactors.

  18. In vitro toxicity of zinc oxide nanoparticles: a review

    International Nuclear Information System (INIS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-01-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn 2+ ] level. The mechanism for increased intracellular [Zn 2+ ] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca 2+ ] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines

  19. In vitro toxicity of zinc oxide nanoparticles: a review

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangan, Muthuraman; Kim, Doo Hwan, E-mail: frenzram1980@gmail.com [Konkuk University, Department of Bioresources and Food Sciences (Korea, Republic of)

    2015-03-15

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn{sup 2+}] level. The mechanism for increased intracellular [Zn{sup 2+}] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca{sup 2+}] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines.

  20. Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Arijit Mitra

    2016-05-01

    Full Text Available We have observed large tunneling Magnetoresistance (TMR in amine functionalized octahedral nanoparticle assemblies. Amine monolayer on the surface of nanoparticles acts as an insulating barrier between the semimetal Fe3O4 nanoparticles and provides multiple tunnel junctions where inter-granular tunneling is plausible. The tunneling magnetoresistance recorded at room temperature is 38% which increases to 69% at 180 K. When the temperature drops below 150 K, coulomb staircase is observed in the current versus voltage characteristics as the charging energy exceeds the thermal energy. A similar study is also carried out with spherical nanoparticles. A 24% TMR is recorded at room temperature which increases to 41% at 180 K for spherical particles. Mössbauer spectra reveal better stoichiometry for octahedral particles which is attainable due to lesser surface disorder and strong amine coupling at the facets of octahedral Fe3O4 nanoparticles. Less stoichiometric defect in octahedral nanoparticles leads to a higher value of spin polarization and therefore larger TMR in octahedral nanoparticles.

  1. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  2. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation.

    Science.gov (United States)

    Kalendar, Ruslan; Antonius, Kristiina; Smýkal, Petr; Schulman, Alan H

    2010-11-01

    Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.

  3. Real time in vitro studies of doxorubicin release from PHEMA nanoparticles

    Directory of Open Access Journals (Sweden)

    Bajpai AK

    2009-10-01

    Full Text Available Abstract Background Many anticancer agents have poor water solubility and therefore the development of novel delivery systems for such molecules has received significant attention. Nanocarriers show great potential in delivering therapeutic agents into the targeted organs or cells and have recently emerged as a promising approach to cancer treatments. The aim of this study was to prepare and use poly-2-hydroxyethyl methacrylate (PHEMA nanoparticles for the controlled release of the anticancer drug doxorubicin. Results PHEMA nanoparticles have been synthesized and characterized using FTIR and scanning electron microscopy (SEM, particle size analysis and surface charge measurements. We also studied the effects of various parameters such as percent loading of drugs, chemical architecture of the nanocarriers, pH, temperature and nature of the release media on the release profiles of the drug. The chemical stability of doxorubicin in PBS was assessed at a range of pH. Conclusion Suspension polymerization of 2-hydroxyethyl methacrylate (HEMA results in the formation of swellable nanoparticles of defined composition. PHEMA nanoparticles can potentially be used for the controlled release of the anticancer drug doxorubicin.

  4. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    Science.gov (United States)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  5. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  6. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition

    International Nuclear Information System (INIS)

    Chang, Won-Suk; Park, Jin-Won; Rawat, Vijay; Sands, Timothy; Lee, Gil U

    2006-01-01

    A means for synthesizing paramagnetic nanoparticles composed of an Au-Fe alloy is described using pulsed laser deposition (PLD) of the alloy into a mesoporous alumina membrane template. Nanoparticles 46 ± 13 nm in diameter and composed of a 17% Fe alloy have been created by depositing a 35% Fe alloy into a template with 65 nm diameter pores. These paramagnetic nanoparticles had a saturation magnetization of 11.5 emu g -1 at 2000 G, and their UV-visible extinction spectrum was dominated by strong absorption similar to that of Fe 3 O 4 nanoparticles. The surfaces of these nanoparticles were readily functionalized with a dense monolayer of DNA oligonucleotides that had a 5' thiol group. The Au-Fe nanoparticles appear to be well suited for biotechnological applications and single molecule measurements as they can be synthesized in a specific size range, are strongly paramagnetic, and may be easily functionalized with biological macromolecules

  7. Patterned Array of Poly(ethylene glycol Silane Monolayer for Label-Free Detection of Dengue

    Directory of Open Access Journals (Sweden)

    Nor Zida Rosly

    2016-08-01

    Full Text Available In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG silane monolayer to 254 nm ultraviolet (UV light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.

  8. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Xu, Zhenghe; Liu, Qingxia [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Du, Zheng [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2016-12-15

    Highlights: • Water adsorption has a greater effect on the electron distribution of ZnS surface than PbS surface. • Water adsorption decreases the reactivity of ZnS surface atoms but improves that of PbS. • Thiol collectors cannot interact with the hydrated ZnS surface. • The hydration has little influence on the interaction of thiol collectors with PbS surface. - Abstracts: In froth flotation the molecular interaction between reagents and mineral surfaces take place at the solid liquid interface. In this paper, the effect of water molecule on the three typical thiol collectors (xanthate, dithiocarbomate and dithiophosphate) interactions at the galena (PbS) and sphalerite (ZnS) surfaces has been studied adopting density functional theory (DFT). The results suggests that the presence of water molecule shows a greater influence on the electron distribution of ZnS surface than PbS surface, and reduce the reactivity of ZnS surface atoms but improves the reactivity of PbS surface atoms during the reaction with xanthate. Water adsorption could also reduce the covalent binding between Zn and S atoms but have little influence on Pb-S bond. In the presence of water, xanthate, dithiocarbomate (DTC) and dithiophosphate (DTP) could not adsorb on the sphalerite surface. And for galena (PbS) surface, the interaction of DTP is the strongest, then the DTC and the interaction of xanthate is the weakest. These results agree well with the flotation practice.

  9. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.

    Science.gov (United States)

    Primavera, Rosita; Palumbo, Paola; Celia, Christian; Cinque, Benedetta; Carata, Elisabetta; Carafa, Maria; Paolino, Donatella; Cifone, Maria Grazia; Di Marzio, Luisa

    2018-06-01

    PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  11. Luminescent monolayer MoS{sub 2} quantum dots produced by multi-exfoliation based on lithium intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Wen [Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Yan, Shiming [Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); College of Science, Henan University of Technology, Zhengzhou 450001 (China); Song, Xueyin; Zhang, Xing; He, Xueming [Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2015-12-30

    Graphical abstract: - Highlights: • A new preparation, multi-exfoliation method based on lithium (Li) intercalation, has been demonstrated for preparing monolayer molybdenum disulfide (MoS{sub 2}) quantum dots (QDs). • The advantage of this approach is that it is capable of producing monolayer MoS{sub 2} QDs in a large number, regardless of whether the raw material is bulk or nanoparticles. • The PL intensity excited at 300 nm can be enhanced by five times after ultrasonicated heating treatment. - Abstract: An effective multi-exfoliation method based on lithium (Li) intercalation has been demonstrated for preparing monolayer molybdenum disulfide (MoS{sub 2}) quantum dots (QDs). The cutting mechanism of MoS{sub 2} QDs may involve the complete breakup around the defects and edges during the reaction of Li{sub x}MoS{sub 2} with water and its following ultrasonication process. The multiply exfoliation make the MoS{sub 2} fragile and easier to break up. After the third exfoliation, a large number of monolayer MoS{sub 2} QDs is formed. The as-prepared MoS{sub 2} QDs show photoluminescence (PL) inactive due to the existence of 1T phase. After heating treatment, the PL intensity excited at 300 nm is enhanced by five times. The MoS{sub 2} QDs solution has an excitation-dependent luminescence emission which shifts to longer wavelengths when the excitation wavelength changes from 280 nm to 370 nm. The optical properties are explored based on the quantum confinement and edge effect.

  12. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  13. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-01-01

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states

  14. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  15. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Smart, Simon; Franzyk, Henrik

    2015-01-01

    intracellularly in Calu-3 epithelial cells and in THP-1 cells, whereas A549 cells did not show significant uptake of nanoparticles. Overall, encapsulation of plectasin into PLGA-based nanoparticles appears to be a viable strategy to improve the efficacy of plectasin against infections in epithelial tissues....... epithelial cells might thus be a promising approach to combat such infections. In this work, plectasin, which is a cationic AMP of the defensin class, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using the double emulsion solvent evaporation method. The nanoparticles displayed...... high plectasin encapsulation efficiency (71-90%) and mediated release of the peptide over 24h. The antimicrobial efficacy of the peptide-loaded nanoparticles was investigated using bronchiolar epithelial Calu-3 cell monolayers infected with S. aureus. The plectasin-loaded nanoparticles displayed...

  16. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  17. "In the Footsteps of Alexander the Great" PBS Series. Teacher's Guide.

    Science.gov (United States)

    Corporation for Public Broadcasting, Washington, DC.

    This teacher's guide correlates with the Public Broadcasting Service (PBS) television series "In the Footsteps of Alexander the Great" hosted by historian Michael Wood. The four episodes of the series are entitled: "Son of God"; "Lord of Asia"; "Across the Hindu Kush"; and "To the Ends of the…

  18. Bioelectric and Morphological Response of Liquid-Covered Human Airway Epithelial Calu-3 Cell Monolayer to Periodic Deposition of Colloidal 3-Mercaptopropionic-Acid Coated CdSe-CdS/ZnS Core-Multishell Quantum Dots.

    Directory of Open Access Journals (Sweden)

    Aizat Turdalieva

    Full Text Available Lung epithelial cells are extensively exposed to nanoparticles present in the modern urban environment. Nanoparticles, including colloidal quantum dots (QDs, are also considered to be potentially useful carriers for the delivery of drugs into the body. It is therefore important to understand the ways of distribution and the effects of the various types of nanoparticles in the lung epithelium. We use a model system of liquid-covered human airway epithelial Calu-3 cell cultures to study the immediate and long-term effects of repeated deposition of colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs on the lung epithelial cell surface. By live confocal microscope imaging and by QD fluorescence measurements we show that the QD permeation through the mature epithelial monolayers is very limited. At the time of QD deposition, the transepithelial electrical resistance (TEER of the epithelial monolayers transiently decreased, with the decrement being proportional to the QD dose. Repeated QD deposition, once every six days for two months, lead to accumulation of only small amounts of the QDs in the cell monolayer. However, it did not induce any noticeable changes in the long-term TEER and the molecular morphology of the cells. The colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs could therefore be potentially used for the delivery of drugs intended for the surface of the lung epithelia during limited treatment periods.

  19. Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants

    International Nuclear Information System (INIS)

    Lu Yu; Lu Xianmao; Mayers, Brian T.; Herricks, Thurston; Xia Younan

    2008-01-01

    This paper compares the performance of three long-chain acids-oleic and elaidic (both olefinic) and stearic (aliphatic)-as a capping agent in the synthesis of magnetic Co nanoparticles. The particles were formed through thermal decomposition of dicobalt octacarbonyl in toluene in the presence of the long-chain acid, and characterized by TEM, high-resolution TEM, and SQUID measurements. Infrared spectra revealed that some of the added olefinic acid was transformed from cis- to trans-configuration (for oleic acid) or from trans- to cis- (for elaidic acid) to facilitate the formation of a densely packed monolayer on the surface of Co nanoparticles. As compared to aliphatic acids, olefinic acids are advantageous for dense packing on small particles with high surface curvatures due to a bent shape of the cis-isomer. The presence of an olefinic acid is able to control particle growth, stabilize the colloidal suspension, and prevent the final product from oxidation by air. Our results indicate that oleic acid, elaidic acid, and a mixture of oleic/stearic acids or elaidic/stearic acids have roughly the same performance in serving as a capping agent for the synthesis of Co nanoparticles with a spherical shape and narrow size distribution. - Graphical abstract: Magnetic Co nanoparticles were synthesized in the presence of different capping agents and the effect of their molecular structures on the morphology of Co nanoparticles was analyzed. The transformation between cis- and trans-isomers of olefinic acids was critical to the formation of a densely packed monolayer on the surface of small nanoparticles characterized by high curvatures

  20. Nanoparticle Surface Specific Adsorption of Zein and Its Self-assembled Behavior of Nanocubes Formation in Relation to On-Off SERS: Understanding Morphology Control of Protein Aggregates.

    Science.gov (United States)

    Navdeep; Banipal, Tarlok Singh; Kaur, Gurinder; Bakshi, Mandeep Singh

    2016-01-27

    Zein, an industrially important protein, is characterized in terms of its food and pharmaceutical coating applications by using surface enhanced Raman spectroscopy (SERS) on Au, Ag, and PbS nanoparticles (NPs). Its specific surface adsorption behavior on Ag NPs produced self-assembled zein nanocubes which demonstrated on and off SERS activity. Both SERS characterization as well as nanocube formation of zein helped us to understand the complex protein aggregation behavior in shape controlled morphologies, a process with significant ramifications in protein crystallization to achieve ordered morphologies. Interestingly, nanocube formation was promoted in the presence of Ag rather than Au or PbS NPs under in situ synthesis and discussed in terms of specific adsorption. Zein fingerprinting was much more clear and enhanced on Au surface in comparison to Ag while PbS did not demonstrate SERS due to its semiconducting nature.

  1. Chemically synthesized PbS Nano particulate thin films for a rapid NO2 gas sensor

    Directory of Open Access Journals (Sweden)

    Burungale Vishal V.

    2016-03-01

    Full Text Available Rapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.

  2. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    Science.gov (United States)

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  3. Nanoparticle mediated electron transfer across organic layers: from current understanding to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, J. Justin; Alam, Muhammad Tanzirul; Barfidokht, Abbas; Carter, Lachlan, E-mail: justin.gooding@unsw.edu.au [School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney (Australia)

    2014-03-15

    In the last few years electrode-organic layer-nanoparticle constructs have attracted considerable research interest for systems where in the absence of the nanoparticles the electrode is passivated. This is because it has been observed that if the organic layer is a good self-assembled monolayer that passivates the electrode, the presence of the nanoparticles 'switches on' faradaic electrochemistry and because electron transfer between the electrode and the nanoparticles is apparently independent of the thickness of the organic layer. This review 1) outlines the full extent of the experimental observations regarding this phenomenon, 2) discusses a recent theoretical description to explain the observations that have just been supported with experimental evidences and 3) provides an overview of the application of these systems in sensing and photovoltaic. (author)

  4. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou

    2017-09-21

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  5. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou; Chen, Batian; Bukhriakov, Konstantin; Rodionov, Valentin

    2017-01-01

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  6. Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO{sub 2} porous film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Yanyan; Gong, Zezhou; Tao, Jiajia [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo [School of Electronic & Information Engineering, Hefei Normal University, Hefei, 230601 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Jiang, Xishun [School of Physics & Material Science, Anhui University, Hefei 230601 (China); School of Mechanical & Electronic Engineering, Chuzhou University, Chuzhou, 239000 (China); He, Gang; Wang, Peihong; Meng, Fanming [School of Physics & Material Science, Anhui University, Hefei 230601 (China)

    2015-11-15

    A novel translucent TiO{sub 2} porous film was prepared through etched method. The CdS, PbS and CdS/PbS nanoclusters were imbedded on TiO{sub 2} porous film by successive ionic layer adsorption and reaction method. Microstructure, morphology, optical and photoelectron-chemical properties of the as-synthesized thin films were investigated systematically. XRD and morphology analysis showed that PbS or CdS nanoclusters have been attached to the TiO{sub 2} porous films. It was found that the energy band gap of TiO{sub 2} porous film decreased from 3.46 to 3.2 eV after sensitized with nanoclusters. The photocurrent density of ITO/TiO{sub 2} photoelectrode increased from 0.017 to 0.28 mA/cm{sup 2} after co-sensitized with CdS and PbS nanoclusters. Besides, the photoelectrode sensitized with two sorts of nanoclusters showed evident higher photocurrent density than which sensitized just one sort of nanoclusters. The photocurrent density of ITO/TiO{sub 2}/PbS and TO/TiO{sub 2}/CdS photoelectrode was 0.11 mA/cm{sup 2} and 0.22 mA/cm{sup 2} respectively. 0.28 mA/cm{sup 2} can be obtained by ITO/TiO{sub 2}/CdS/PbS photoelectrode. The results showed that the optical and photoelectrochemistry properties and phtotcatalysis performance of TiO{sub 2} porous film were greatly improved by co-sensitized with CdS and PbS nanoclusters. - Graphical abstract: When CdS and PbS were brought in the cascade structure, such a Fermi level alignment causes upward and downward shifts of the band edges for PbS and CdS, respectively. Therefore the resulting band edges for the ITO/TiO{sub 2}/CdS/PbS devices are inferred to have a stepwise structure. The elevated conduction band edge of PbS provides a higher driving force for the injection of photogenerated electrons from PbS to CdS as well as the injection of excited holes from CdS to PbS. Such a structure offers efficient separation and transport of the excited electrons and holes. - Highlights: • Ti films were obtained from direct current

  7. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    Science.gov (United States)

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular

  8. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection

    OpenAIRE

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-01-01

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute...

  9. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  10. Sulfide precursor concentration and lead source effect on PbS thin films properties

    Energy Technology Data Exchange (ETDEWEB)

    Beddek, L.; Messaoudi, M.; Attaf, N. [Laboratoire Couche Minces et Interfaces, Université frères Mentouri Constantine, 25000, Constantine (Algeria); Aida, M.S., E-mail: aida_salah2@yahoo.fr [Laboratoire Couche Minces et Interfaces, Université frères Mentouri Constantine, 25000, Constantine (Algeria); Bougdira, J. [Université de Lorraine, Institut Jean Lamour UMR 7198, Vandoeuvre 54506 (France)

    2016-05-05

    Lead sulfide (PbS) thin films were synthesized using chemical bath deposition (CBD). Bath solutions are formed of various concentrations of thiourea, sulfide source, ranged from 0.6 to 1.2 M and two different salts as Pb source (lead acetate and lead nitrate). From the growth mechanism, we inferred that PbS is formed through the ion by ion process when using acetate lead source, while, using nitrate source yields to films growth through the complex-decomposition process. Due to the difference in the involved growth process, lead acetate produces films with larger crystallite size (from 4 to 16 nm), smooth and dense films. However, lead nitrate produces rough films with smaller crystallite size (from 1 to 4 nm). Increasing the thiourea concentration results in crystallinity improvement when using lead acetate and, oppositely, in crystallinity degradation when using lead nitrate. Due to the quantum effect caused by the small crystallite sizes, the films optical gap is varied from 0.5 to 0.9 eV. - Highlights: • PbS thin films were synthesized by chemical bath deposition. • Ion by ion is the growth process when using the acetate lead source. • Deposition process is by complex-decomposition when using nitrate source. • Lead acetate yields to dense films with larger crystallite size. • Lead nitrate produces rough films with smaller crystallite size.

  11. Sulfide precursor concentration and lead source effect on PbS thin films properties

    International Nuclear Information System (INIS)

    Beddek, L.; Messaoudi, M.; Attaf, N.; Aida, M.S.; Bougdira, J.

    2016-01-01

    Lead sulfide (PbS) thin films were synthesized using chemical bath deposition (CBD). Bath solutions are formed of various concentrations of thiourea, sulfide source, ranged from 0.6 to 1.2 M and two different salts as Pb source (lead acetate and lead nitrate). From the growth mechanism, we inferred that PbS is formed through the ion by ion process when using acetate lead source, while, using nitrate source yields to films growth through the complex-decomposition process. Due to the difference in the involved growth process, lead acetate produces films with larger crystallite size (from 4 to 16 nm), smooth and dense films. However, lead nitrate produces rough films with smaller crystallite size (from 1 to 4 nm). Increasing the thiourea concentration results in crystallinity improvement when using lead acetate and, oppositely, in crystallinity degradation when using lead nitrate. Due to the quantum effect caused by the small crystallite sizes, the films optical gap is varied from 0.5 to 0.9 eV. - Highlights: • PbS thin films were synthesized by chemical bath deposition. • Ion by ion is the growth process when using the acetate lead source. • Deposition process is by complex-decomposition when using nitrate source. • Lead acetate yields to dense films with larger crystallite size. • Lead nitrate produces rough films with smaller crystallite size.

  12. Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization

    Science.gov (United States)

    Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.

    2008-01-01

    The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 μg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4°C over three months and in PBS at 37°C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol®. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929

  13. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles

    International Nuclear Information System (INIS)

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-01-01

    A facile sol–gel synthesis of novel ZnO/MgO/Fe 2 O 3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV–vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe 2 O 3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19–24 ° C), which may render the material to be potentially useful for biomedical applications. (paper)

  14. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    International Nuclear Information System (INIS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  15. Genetic analysis of the genus Diospyros ssp. using RAPD and i-PBS methods

    Directory of Open Access Journals (Sweden)

    Jana Raddová

    2012-01-01

    Full Text Available Molecular techniques (RAPD and i-PBS were used to study genetic diversity within persimmon collection at Horticulture Faculty of Mendel University in Lednice. The aim of the work was to distinguish 14 known and 6 of unknown origin persimmon cultivars. The basic screening of 20 OPT primers was applied to 4 cultivars differring in the place of origin. Within the group of screened primers there were chosen those, which gave polymorphic repeatable strong and middle strong bands. Selected primers were used for the RAPD reactions within the whole persimmon collection. Three OPA primers previously described in the literature were also used for the RAPD reactions within the whole persimmon collection. Additional 16 i-PBS primers previously described in the literature were also used for i-PBS analysis of the whole group of cultivars. Amplification was successful with 12 i-PBS primers. The FreeTree software package was used to gen­erate a similarity matrix and then to produce a dendrogram using UPGMA analyses. The similarity dendrograms of all persimmon cultivars were created based on both approaches and also on combination of both analyses by program Tree View. All the dendrograms clearly separated the assessed cultivars into 4 clusters. There are cluster of American persimmons – Meader’ (1, ’Garretson’ (2 and ’Early Golden’ (3. They are representatives of D. virginiana. Further part of dendrogram includes single D. lotus (5, which is also clearly separated from other cultivars of the genus Diospyros. The third cluster includes interspecific hybrids ’Rossiyanka’ (10 and ’Nikitskaiya Bordovaiya’ (13, which arised from crosses of D. virginiana and D. kaki. The last cluster is formed by cultivars of Japanese persimmon – ’Mikatani Gosho’, ’Zenjimaru’, ’Tone Wase’, ’Hiratanenashi’, ’Fuyu’, Chinese cultivar – ’Sansi’ and two Italian cultivars ’Vaniglia’ and ’Tipo’. They are clustered without significant

  16. ``The Princess and the Pea'' at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    Science.gov (United States)

    Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael S.; Einstein, Theodore L.; Cullen, William G.

    2012-10-01

    Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  17. 37 CFR 253.4 - Performance of musical compositions by PBS, NPR and other public broadcasting entities engaged in...

    Science.gov (United States)

    2010-07-01

    ... background or theme music in a PBS program: 2003-2007 $56.81 (3) For performance of such a work in a feature... music in a program of a station of PBS: 2003-2007 $4.04 (5) For the performance of such a work in a... theme music in an NPR program: 2003-2007 $5.51 (7) For the performance of such a work in a feature...

  18. 37 CFR 381.4 - Performance of musical compositions by PBS, NPR and other public broadcasting entities engaged in...

    Science.gov (United States)

    2010-07-01

    ... background or theme music in a PBS program: 2008-2012 $57.66 (3) For performance of such a work in a feature... music in a program of a station of PBS: 2008-2012 $4.10 (5) For the performance of such a work in a... theme music in an NPR program: 2008-2012 $5.59 (7) For the performance of such a work in a feature...

  19. Monolayer-Enriched Production of Au-Decorated WS2 Nanosheets via Defect Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dunklin, Jeremy R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lafargue, Paul [Ruprecht-Karls University Heidelberg; Higgins, Thomas M. [Ruprecht-Karls University Heidelberg; Forcherio, Gregory T. [U.S. Army Research Laboratory; Benamara, Mourad [University of Arkansas; McEvoy, Niall [Trinity College Dublin; Roper, D. Keith [University of Arkansas; Coleman, Jonathan N. [Trinity College Dublin; Vaynzof, Yana [Ruprecht-Karls University Heidelberg; Backes, Claudia [Ruprecht-Karls University Heidelberg

    2018-04-06

    Layered transition metal dichalcogenides (TMDs) represent a diverse, emerging source of two-dimensional (2D) nanostructures with broad application in optoelectronics and energy. Chemical functionalization has evolved into a powerful tool to tailor properties of these 2D TMDs; however, functionalization strategies have been largely limited to the metallic 1T-polytype. The work herein illustrates that 2H-semiconducting liquid-exfoliated tungsten disulfide (WS2) undergoes a spontaneous redox reaction with gold (III) chloride (AuCl3). Au nanoparticles (NPs) predominantly nucleate at nanosheet edges with tuneable NP size and density. AuCl3 is preferentially reduced on multi-layer WS2 and resulting large Au aggregates are easily separated from the colloidal dispersion by simple centrifugation. This process may be exploited to enrich the dispersions in laterally large, monolayer nanosheets. It is proposed that thiol groups at edges and defects sides reduce the AuCl3 to Au0 and are in turn oxidized to disulfides. Optical emission, i.e. photoluminescence, of the monolayers remained pristine, while the electrocatalytic activity towards the hydrogen evolution reaction is significantly improved. Taken together, these improvements in functionalization, fabrication, and catalytic activity represent an important advance in the study of these emerging 2D nanostructures.

  20. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    Science.gov (United States)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  1. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  2. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  3. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  4. Novel Random PBS-Based Copolymers Containing Aliphatic Side Chains for Sustainable Flexible Food Packaging

    Directory of Open Access Journals (Sweden)

    Giulia Guidotti

    2017-12-01

    Full Text Available In the last decade, there has been an increased interest from the food packaging industry toward the development and application of biodegradable and biobased plastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In this framework, the present paper describes the synthesis of novel PBS (poly(butylene succinate-based random copolymers with different composition containing glycol sub-units characterized by alkyl pendant groups of different length. The prepared samples were subjected to molecular, thermal, diffractometric and mechanical characterization. The barrier performances to O2, CO2 and N2 gases were also evaluated, envisioning for these new materials an application in food packaging. The presence of the side alkyl groups did not alter the thermal stability, whereas it significantly reduced the sample crystallinity degree, making these materials more flexible. The barrier properties were found to be worse than PBS; however, some of them were comparable to, or even better than, those of Low Density Polyethylene (LDPE, widely employed for flexible food packaging. The entity of variations in the final properties due to copolymerization were more modest in the case of the co-unit with short side methyl groups, which, when included in the PBS crystal lattice, causes a more modest decrement of crystallinity degree.

  5. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    Science.gov (United States)

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuangli Ye

    2014-01-01

    Full Text Available The strain effect on graphene-encapsulated Au nanoparticles is investigated. A finite-element calculation is performed to simulate the strain distribution and morphology of the monolayer and multilayer graphene-encapsulated Au nanoparticles, respectively. It can be found that the inhomogeneous strain and deformation are enhanced with the increasing shrinkage of the graphene shell. Moreover, the strain distribution and deformation are very sensitive to the layer number of the graphene shell. Especially, the inhomogeneous strain at the interface between the graphene shell and encapsulated Au nanoparticles is strongly tuned by the graphene thickness. For the mono- and bilayer graphene-encapsulated Au nanoparticles, the dramatic shape transformation can be observed. However, with increasing the graphene thickness further, there is hardly deformation for the encapsulated Au nanoparticles. These simulated results indicate that the strain and deformation can be designed by the graphene layer thickness, which provides an opportunity to engineer the structure and morphology of the graphene-encapsulated nanoparticles.

  7. Core/Shell Structured Magnetic Nanoparticles for Biological Applications

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Jung, Myung Hwan

    2013-01-01

    Magnetic nanoparticles have been widely used for biomedical applications, such as magnetic resonance imaging (MRI), hyperthermia, drug delivery and cell signaling. The surface modification of the nanomaterials is required for biomedical use to give physiogical stability, surface reactivity and targeting properties. Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodispersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. This makes the magnetic/Au core/shell combinations interesting for magnetic and optical applications. Herein, the synthesis and characterization of gold capped-magnetic core structured nanomaterials with different gold sources, such as gold acetate and chloroauric acid have been reported. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. Magnetic core/shell structured nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated magnetic core nanoparticles might be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging

  8. Ultrafast exciton decay in PbS quantum dots through simultaneous electron and hole recombination with a surface-localized ion pair

    Energy Technology Data Exchange (ETDEWEB)

    Edme, Kedy; Bettis Homan, Stephanie; Nepomnyashchii, Alexander B.; Weiss, Emily A., E-mail: e-weiss@northwestern.edu

    2016-06-01

    Highlights: • We synthesize complexes of PbS quantum dots (QDs) and tetracyanoquinodimethane (TCNQ). Each PbS QD spontaneously reduces up to 17 TCNQ molecules. • The photoluminescence of the PbS QDs is quenched in the presence of the reduced TCNQ species through ultrafast non-radiative, simultaneous decay of the electron and hole. • We assign this decay to a four-carrier, concerted charge recombination mechanism with the surface localized sulfur–TCNQ{sup x−} ion pair. - Abstract: This paper describes the ultrafast decay of the band-edge exciton in PbS quantum dots (QDs) through simultaneous recombination of the excitonic hole and electron with the surface localized ion pair formed upon adsorption of tetracyanoquinodimethane (TCNQ). Each PbS QD (R = 1.8 nm) spontaneously reduces up to 17 TCNQ molecules upon adsorption of the TCNQ molecule to a sulfur on the QD surface. The photoluminescence of the PbS QDs is quenched in the presence of the reduced TCNQ species through ultrafast (⩽15-ps) non-radiative decay of the exciton; the rate constant for the decay process increases approximately linearly with the number of adsorbed, reduced TCNQ molecules. Near-infrared and mid-infrared transient absorption show that this decay occurs through simultaneous transfer of the excitonic electron and hole, and is assigned to a four-carrier, concerted charge recombination mechanism based on the observations that (i) the PL of the QDs recovers when spontaneously reduced TCNQ{sup 1−} desorbs from the QD surface upon addition of salt, and (ii) the PL of the QDs is preserved when another spontaneous oxidant, ferrocinium, which cannot participate in charge transfer in its reduced state, is substituted for TCNQ.

  9. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    Science.gov (United States)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  10. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  11. Effect of Maleated Compatibiliser (PBS-g-MA) Addition on the Flexural Properties and Water Absorption of Poly(butylene succinate)/ kenaf Bast Fibre Composites

    International Nuclear Information System (INIS)

    Ahmad, M.Z.T.; Mohd, Z.A.M.; Mat, R.T.; Ahmad, M.Z.T.; Mohd, Z.A.I.; Mat, R.T.; Rahim, S.

    2013-01-01

    Poly(butylene succinate) (PBS) composites with 30 wt.% loading of kenaf bast fibre (KBF) were compatibilised with 5 wt. % maleated PBS (PBS-g-MA). The maleic anhydride (MA) concentration in the compatibiliser was either 3, 5, 7 or 10 phr. In general, the compatibilised composites showed better flexural properties than the un-compatibilised composite. The highest increment in the flexural strength and modulus of 12.7 and 8.9 %, respectively, were obtained with the addition of PBS-g-MA with MA concentration of 5 phr. Compatibilised and un-compatibilised PBS/ KBF composites were immersed in distilled water for 90 days. The absorption of water by all the composites was observed to follow Ficks law. The equilibrium moisture content, M m , of the composites with PBS-g-MA at 3, 5 and 7 phr of MA concentrations was lower than that of the un-compatibilised composite due to improved fiber-matrix interfacial adhesion and reduction of voids content. Both un-compatibilised and compatibilised composites showed dimensional instability after the water absorption. This was probably due to the degradation of the fibre-matrix interfacial adhesion and fibre integrity. The flexural properties of these composites decreased after the water absorption. After re-drying only some of the flexural properties were recovered from plasticizing effect of water. (author)

  12. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  13. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  14. Langmuir isoterms of 4-methylbenzenethiol encapsulated gold nanoparticles and two kinds of poly(ethyleneoxide) derivatives with incorporated Li ions

    International Nuclear Information System (INIS)

    Capan, I.

    2004-01-01

    Surface pressure - area isotherms are used to investigate the behavior of monolayers on a water surface by recording surface pressure (□) during reduction of the confinernem area (A). A number of isotherms have been recorded using gold thiol nanoparticles and polymers in different ratios and with LiClO 4 -. salt to provide ions within the monolayer. lt is seen that the area per molecule reduces in size when gold thiol is added to Poly(Ethyleneoxide) derivatives. AIso adding lithium ions modifies the area per molecule for both polymers. A mixed monolayer containing both POlY(Ethyleneoxide)derivatives and gold thiol with Li ions all mixed together shows a plateau region representing a phase transition. All these results will be discussed and isotherms will be used to find out behaviors of the monolayers on the water surface

  15. “The Princess and the Pea” at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mahito Yamamoto

    2012-12-01

    Full Text Available Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  16. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  17. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy

    NARCIS (Netherlands)

    Thuene, P.C.; Moodley - Gengan, P.; Scheijen, F.J.E.; Fredriksson, H.O.A.; Lancee, R.J.; Kropf, J.; Miller, J.T.; Niemantsverdriet, J.W.

    2012-01-01

    The effect of water on iron-based nanoparticles under hydrogen and syngas was investigated by in situ X-ray absorption spectroscopy. The iron oxide (¿-Fe2O3) nanoparticles, dispersed as a monolayer on flat silica surfaces, were readily converted into metallic iron in dry hydrogen at 350 °C and into

  18. The Effect of Substrate Temperature on the Structural Properties of Spray Pyrolysed Lead Sulphide (PbS Thin Films

    Directory of Open Access Journals (Sweden)

    Mohammad G. Faraj

    2014-09-01

    Full Text Available Lead sulphide (PbS films were prepared by the chemical spray pyrolysis technique using a solution of Lead nitrate and thiourea. PbS films were deposited (prepared on glass substrate at varied temperature (250-350 oC. Effects of substrate temperature on the structural characteristics of the films were studied. The X-ray diffraction patterns’ results reveal that the all of PbS films have a face centered cubic structure. The X-ray diffraction study showed that irrespective of substrate temperature all the films exhibits a preferred orientation along the (200 plane. The degree of preferred orientation increased with the substrate temperature. It was observed that the increase of the substrate temperature increase the diffraction peak intensity of (200 plane which resulted in increase in grain size and good crystallinity of the films.

  19. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    Science.gov (United States)

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  20. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  1. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  2. Nano-particle enhanced impedimetric biosensor for detection of foodborne pathogens

    International Nuclear Information System (INIS)

    Kim, G; Om, A S; Mun, J H

    2007-01-01

    was used for the detection experiments. The biosensor was able to detect 10 6 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 10 4 CFU/mL of Salmonella enteritidis in PBS and 10 5 CFU/mL of cells in milk

  3. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  4. A Method for Promoting Assembly of Metallic and Nonmetallic Nanoparticles into Interfacial Monolayer Films.

    Science.gov (United States)

    Xu, Yikai; Konrad, Magdalena P; Lee, Wendy W Y; Ye, Ziwei; Bell, Steven E J

    2016-08-10

    Two-dimensional metal nanoparticle arrays are normally constructed at liquid-oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.

  5. Phase transformation and conductivity in nanocrystal PbS under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Secco, R.

    2000-01-01

    The grain-size effect on the phase transition induced by pressure in PbS was studied by in situ high-pressure electrical resistance and synchrotron radiation x-ray powder diffraction measurements. The mean transition pressure of the B1-to-B16 phase transformation was found to be 6.3±1.3 GPa in 8...... in terms of a decrease of energy band gap with increasing pressure. ©2000 American Institute of Physics....

  6. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    International Nuclear Information System (INIS)

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-01-01

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature (∼27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at ∼650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  7. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  8. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  9. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  10. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    Science.gov (United States)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  11. Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jun; Jung, Sung Mok; Kim, Yo-Han; Kim, Bong-Jin; Ha, Sanghyub; Kim, Yong-Sang; Yoon, Tae-Sik; Lee, Hyun Ho

    2011-01-01

    We report on the electrical behavior of gold nanoparticles (Au NPs) intervened metal-pentacene-insulator-semiconductor structures. The structure adopts polyvinyl alcohol (PVA) and pentacene as gate insulator and semiconductor, respectively. On the PVA (250 nm) film which was spin-coated and UV cross-linked, 3-aminopropyl triethoxysilane was functionalized for self assembling of the Au NPs monolayer. The devices exhibited clockwise hysteresis in their capacitance-voltage characteristics, with a memory window depending on the range of the voltage sweep. A relatively large memory window of about 4.7 V, which was deduced from control devices, was achieved with voltage sweep of (-/+)7 V. Formation of the monolayered Au NPs was confirmed by field effect scanning electron microscopy and atomic force microscopy.

  12. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  13. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  14. Efficient 3M PBS enhancing miniature projection optics

    Science.gov (United States)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  15. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  16. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

    Directory of Open Access Journals (Sweden)

    Alexander Weddemann

    2010-11-01

    Full Text Available This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.

  17. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2017-10-09

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties by investigating the strain effects on the photoluminescence of monolayer MoS2 and WSe2. Instead of applying stress, we investigate the strain effects by imaging the direct exciton populations in monolayer WSe2–MoS2 and MoSe2–WSe2 lateral heterojunctions with inherent strain inhomogeneity. We find that unstrained monolayer WSe2 is actually an indirect gap material, as manifested in the observed photoluminescence intensity–energy correlation, from which the difference between the direct and indirect optical gaps can be extracted by analyzing the exciton thermal populations. Our findings combined with the estimated exciton binding energy further indicate that monolayer WSe2 exhibits an indirect quasiparticle gap, which has to be reconsidered in further studies for its fundamental properties and device applications.

  18. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  19. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  20. Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs

    Science.gov (United States)

    Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.; hide

    2002-01-01

    Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.

  1. Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate.

    Science.gov (United States)

    Liu, Yu; Begin-Colin, Sylvie; Pichon, Benoît P; Leuvrey, Cedric; Ihiawakrim, Dris; Rastei, Mircea; Schmerber, Guy; Vomir, Mircea; Bigot, Jean Yves

    2014-10-21

    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

  2. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  3. Opto-electronics of PbS quantum dot and narrow bandgap polymer blends

    NARCIS (Netherlands)

    Kahmann, Simon; Mura, Andrea; Protesescu, Loredana; Kovalenko, Maksym V.; Brabec, Christoph J.; Loi, Maria A.

    2015-01-01

    Here we report on the interaction between the narrow bandgap polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and lead sulphide (PbS) colloidal quantum dots (CQDs) upon photoexcitation. We show that the presence of both materials

  4. Colloidal stability, surface characterisation and intracellular accumulation of Rhodium(II) citrate coated superparamagnetic iron oxide nanoparticles in breast tumour: a promising platform for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Silva Nunes, Eloiza da [Universidade Federal de Goias, Campus Samambaia, Instituto de Quimica (Brazil); Lemos Brettas Carneiro, Marcella; Guirelli Simoes de Oliveira, Ricardo; Nair Bao, Sonia [Universidade de Brasilia (UnB), Instituto de Ciencias Biologicas (Brazil); Ribeiro de Souza, Aparecido, E-mail: ardsouza@quimica.ufg.br [Universidade Federal de Goias, Campus Samambaia, Instituto de Quimica (Brazil)

    2013-06-15

    The colloidal stability of a rhodium(II) citrate, Rh{sub 2}(H{sub 2}cit){sub 4}, coating on the surface of maghemite ({gamma}-Fe{sub 2}O{sub 3}) nanoparticles was studied and compared in different dispersion media. The adsorption of Rh{sub 2}(H{sub 2}cit){sub 4} at the water-maghemite interface was evaluated as a function of pH and complex concentration. A slight pH-dependent adsorption of the complex was observed with a maximum at pH 3. The colloidal stability of the functionalised nanoparticles with different amounts of Rh{sub 2}(H{sub 2}cit){sub 4} as a function of pH was evaluated using dynamic light scattering measurements. The particles have a mean magnetic core size of 5.6 nm and the hydrodynamic diameters are approximately 60 nm, which remained unchanged in the pH range in which the samples were a stable sol. The tolerance to different dispersion media, which were deionised water, saline, phosphate-buffered saline (PBS), foetal bovine serum (FBS) and NaCl solutions with different concentrations, was investigated. At moderate ionic strength, the colloidal stability of the dispersions was similar in saline and in PBS compared to the stability of dispersions diluted in water. Moreover, the intracellular accumulation of nanoparticles in 4T1 breast tumour was examined by ultrastructural analysis performed by transmission electron microscopy. The rhodium(II) citrate-coated nanoparticles were found mostly in the cytoplasm and nucleus. Thus, we suggest that these SPIO nanoparticles functionalized with Rh{sub 2}(H{sub 2}Cit){sub 4} can be potential tools for anticancer therapy.

  5. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  6. Size-dependent optical properties of colloidal PbS quantum dots.

    Science.gov (United States)

    Moreels, Iwan; Lambert, Karel; Smeets, Dries; De Muynck, David; Nollet, Tom; Martins, José C; Vanhaecke, Frank; Vantomme, André; Delerue, Christophe; Allan, Guy; Hens, Zeger

    2009-10-27

    We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems.

  7. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  8. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering.

    Science.gov (United States)

    Wang, Yongjie; Lu, Kunyuan; Han, Lu; Liu, Zeke; Shi, Guozheng; Fang, Honghua; Chen, Si; Wu, Tian; Yang, Fan; Gu, Mengfan; Zhou, Sijie; Ling, Xufeng; Tang, Xun; Zheng, Jiawei; Loi, Maria Antonietta; Ma, Wanli

    2018-04-01

    Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc 2  · 3H 2 O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ordering of free-standing Co nanoparticles

    International Nuclear Information System (INIS)

    Leo, G.; Chushkin, Y.; Luby, S.; Majkova, E.; Kostic, I.; Ulmeanu, M.; Luches, A.; Giersig, M.; Hilgendorff, M.

    2003-01-01

    Colloidal Co particles of 11 nm diameter were deposited on Si substrate by spin coating and/or casting in magnetic field. A perpendicular magnetic field varying along the diagonal of the substrate was also applied. The samples were analyzed by transmission electron microscopy (TEM), field emission gun scanning electron microscopy (SEM-FEG), atomic and magnetic force microscopy (AFM/MFM). TEM micrographs show local order when a Co nanoparticle monolayer is deposited on Si. Drying the colloidal solution in a magnetic field leads to the formation of quite large clusters (0.3 μm) of Co nanoparticles. A stripe structure was then observed when the particles were deposited by casting in the varying magnetic field. AFM/MFM measurements show isolated Co clusters on the stripes. Magnetic features corresponding to the single Co cluster have been observed pointing out that all magnetic moments in the cluster are oriented along the field direction

  10. Synthesis of tripodal catecholates and their immobilization on zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Franziska Klitsche

    2015-05-01

    Full Text Available A common approach to generate tailored materials and nanoparticles (NPs is the formation of molecular monolayers by chemisorption of bifunctional anchor molecules. This approach depends critically on the choice of a suitable anchor group. Recently, bifunctional catecholates, inspired by mussel-adhesive proteins (MAPs and bacterial siderophores, have received considerable interest as anchor groups for biomedically relevant metal surfaces and nanoparticles. We report here the synthesis of new tripodal catecholates as multivalent anchor molecules for immobilization on metal surfaces and nanoparticles. The tripodal catecholates have been conjugated to various effector molecules such as PEG, a sulfobetaine and an adamantyl group. The potential of these conjugates has been demonstrated with the immobilization of tripodal catecholates on ZnO NPs. The results confirmed a high loading of tripodal PEG-catecholates on the particles and the formation of stable PEG layers in aqueous solution.

  11. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    International Nuclear Information System (INIS)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao; Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K; Schultz, Lawrence; Weiss, Lee; Rozzi, Tony R; Snyder, Jay L

    2010-01-01

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  12. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao [Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K [Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Schultz, Lawrence; Weiss, Lee [Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Rozzi, Tony R; Snyder, Jay L, E-mail: zpx5@cdc.gov, E-mail: fedder@ece.cmu.edu, E-mail: rongchao@andrew.cmu.edu [National Institute for Occupational Safety and Health (NIOSH), Pittsburgh, PA 15236 (United States)

    2010-10-08

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  13. Stabilization of gold nanoparticles by 6-mercaptopurine monolayers. Effects of the solvent properties.

    Science.gov (United States)

    Viudez, Alfonso J; Madueño, Rafael; Pineda, Teresa; Blázquez, Manuel

    2006-09-14

    6-Mercaptopurine-coated gold nanoparticles (6MP-AuNPs) have been prepared by modification of the nanoparticle surface with 6MP upon displacement of the protective layer of citrate anions. The modification has been studied by UV-vis and FTIR spectroscopies. A study of the stability of these 6MP-AuNPs in aqueous solutions as a function of ionic strength and pH has shown the importance of the charges on the stabilization. The protonation of N9 of the 6MP molecules brings about a sudden flocculation phenomenon. However, the flocculation is reversible upon changing the pH to values where the molecules become newly charged. Evidence of the competence between the interaction of capping solvent molecules and the attractive forces between particles is also shown in this paper.

  14. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  15. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor.

    Science.gov (United States)

    Dai, Yifan; Molazemhosseini, Alireza; Liu, Chung Chiun

    2017-07-20

    A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction between antibody and antigen of β-amyloid 42 to the redox couple probe of K₄Fe(CN)₆ and K₃Fe(CN)₆. Differential pulse voltammetry (DPV) served as the transduction mechanism measuring the current output derived from the redox coupling reaction. The biosensor was a three-electrode electrochemical system, and the working and counter electrodes were 50 nm thin gold film deposited by a sputtering technique. The reference electrode was a thick-film printed Ag/AgCl electrode. Laser ablation technique was used to define the size and structure of the biosensor. Cost-effective roll-to-roll manufacturing process was employed in the fabrication of the biosensor, making it simple and relatively inexpensive. Self-assembled monolayers (SAM) of 3-Mercaptopropionic acid (MPA) was employed to covalently immobilize the thiol group on the gold working electrode. A carbodiimide conjugation approach using N -(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride (EDC) and N -hydroxysuccinimide (NHS) was undertaken for cross-linking antibody of β-amyloid 42 to the carboxylic groups on one end of the MPA. The antibody concentration of β-amyloid 42 used was 18.75 µg/mL. The concentration range of β-amyloid 42 in this study was from 0.0675 µg/mL to 0.5 µg/mL for both PBS and undiluted human serum. DPV measurements showed excellent response in this antigen concentration range. Interference study of this biosensor was carried out in the presence of Tau protein antigen. Excellent specificity of this β-amyloid 42 biosensor was demonstrated without interference from other species, such as T-tau protein.

  16. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity

    International Nuclear Information System (INIS)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Devishvili, A; Toperverg, B P; Zabel, H; Theis-Bröhl, K; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C

    2012-01-01

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole–dipole interaction is rather strong, dominating the collective magnetic properties at room temperature. (paper)

  17. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    Science.gov (United States)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  18. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  19. Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles

    DEFF Research Database (Denmark)

    Nørgaard, K.; Weygand, M.J.; Kjær, K.

    2004-01-01

    A series of ligand stabilized gold nanoparticles with diameters close to 3 nm were studied as Langmuir monolayers at the air/water interface by synchrotron X-ray diffraction and reflectivity. Alkylthiols with different length and/or terminal functional group (hydrophilic or hydrophobic) were intr...

  20. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  1. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  2. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  3. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  4. Subcellular topological effect of particle monolayers on cell shapes and functions.

    Science.gov (United States)

    Miura, Manabu; Fujimoto, Keiji

    2006-12-01

    We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and

  5. Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.

    Science.gov (United States)

    Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N

    2004-06-22

    Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.

  6. Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode

    International Nuclear Information System (INIS)

    Kim, Byung-Man; Son, Min-Kyu; Kim, Soo-Kyoung; Hong, Na-Yeong; Park, Songyi; Jeong, Myeong-Soo; Seo, Hyunwoong; Prabakar, Kandasamy; Kim, Hee-Je

    2014-01-01

    Highlights: • PbS QDs synthesized using the SILAR method act not only as the electrochemical catalysts but as donors providing additional electrons under illumination. • The electrochemical and optical properties of the PbS QDs were enhanced considerably after Mn 2+ doping. • The electron supply from the counter electrode was significantly activated by Mn 2+ doping, improving the performance of QDSSC. - Abstract: This study reports the enhanced catalytic ability of Mn-doped PbS QDs synthesized using a successive ionic layer adsorption and reaction (SILAR) method for quantum dot-sensitized solar cells (QDSSCs). Electrochemical and optical analysis of each material showed that the catalytic ability of the PbS electrode was improved significantly by Mn 2+ doping. Two factors can explain this behavior. The first is that intentional impurities have an impact on the structure of the host material, such as increases in surface roughness. The other is that dopants create new energy states that delay the exciton recombination time and allow charge separation to be activated. As a result, the photoelectron supply from the counter electrode is accelerated, resulting in vigorous redox reactions at the polysulfide electrolyte. The performance of the CdS/CdSe QDSSC using a Mn-doped PbS counter electrode was compared with those using the Pt and PbS counter electrodes. Finally, a power conversion efficiency of 3.61% was achieved with the Mn-doped PbS counter electrode (V OC = 0.61 V, J SC = 11.67 mA cm −2 , FF = 0.51) under one sun illumination (100 mW cm −2 ), which is ∼40% higher than that of CdS/CdSe QDSSCs with the bare PbS counter electrode

  7. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  8. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  9. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  10. Self-Assembly of Gold Nanoparticles at the Liquid/Liquid Interface

    International Nuclear Information System (INIS)

    Lee, Kang Yeol; Han, Sang Woo

    2005-01-01

    We have shown that the crown ether derivative can mediate the transfer of gold nanoparticles in water solution to water/oil interface, results in directing the self-assembly of nanoparticles in the form of a novel nanocomposite film. The interfacial film of nanoparticles could be transferred to various solid substrates. The experimental results indicate the formation of nanoparticles monolayers at water/oil interfaces. Our work is an important step towards interfacial entrapment and self-assembly of nanoparticles for efficient creation of 2D nanostructures. These types of materials may be used in developing catalysts, sensors, and nanoelectronic devices. Currently, we are attempting to synthesize other composite films by using specific interactions between suitable organic or inorganic ligands and various nanoparticles. The intense research activity in the field of nanoparticles is motivated by the search for new materials in order to further miniaturize electronic devices, as well as by the fundamental question of how molecular electronic properties evolve with increasing size in this intermediate region between molecular and solid-state physics. In this respect, molecularly bridged nanoparticle aggregates have been attracting growing interest. The properties of two-dimensional assemblies of metal nanoparticles are controlled by the composition, geometry, and spatial arrangement of the nanoparticle building blocks. Such structures have been used for a variety of important applications in catalysis, photonics, electronics, and biological sensing. The 2D/3D control over the spatial arrangement of nanoparticles is primarily based on the thiolamphilic nature of metal nanoparticles, hydrogenbonding interactions, the highly specific recognition interaction of antigens/antibodies, and specific base-pairing interactions between DNA and its complementary strand

  11. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  12. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    Science.gov (United States)

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  13. A pentacene monolayer trapped between graphene and a substrate.

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  14. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  15. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    International Nuclear Information System (INIS)

    Pasqui, Daniela; Atrei, Andrea; Barbucci, Rolando

    2009-01-01

    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

  16. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  17. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  18. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  19. Photoluminescence under high-electric field of PbS quantum dots

    Directory of Open Access Journals (Sweden)

    B. Ullrich

    2012-12-01

    Full Text Available The effect of a laterally applied electric field (≤10 kV/cm on the photoluminescence of colloidal PbS quantum dots (diameter of 2.7 nm on glass was studied. The field provoked a blueshift of the emission peak, a reduction of the luminescent intensity, and caused an increase in the full width at half maximum of the emission spectrum. Upon comparison with the photoluminescence of p-type GaAs exhibits the uniqueness of quantum dot based electric emission control with respect to bulk materials.

  20. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    Directory of Open Access Journals (Sweden)

    Babak Qasemi-Panahi

    2013-02-01

    Full Text Available Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1 on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 μL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  1. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  2. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size

    Science.gov (United States)

    Khojasteh, Malak; Haghighat, Shima; Dawlaty, Jahan M.; Kresin, Vitaly V.

    2018-05-01

    Emulating water oxidation catalyzed by the oxomanganese clusters in the photosynthetic apparatus of plants has been a long-standing scientific challenge. The use of manganese oxide films has been explored, but while they may be catalytically active on the surface, their poor conductivity hinders their overall performance. We have approached this problem by using manganese oxide nanoparticles with sizes of 4, 6 and 8 nm, produced in a sputter-gas-aggregation source and soft-landed onto conducting electrodes. The mass loading of these catalytic particles was kept constant and corresponded to 45%–80% of a monolayer coverage. Measurements of the water oxidation threshold revealed that the onset potential decreases significantly with decreasing particle size. The final stoichiometry of the catalytically active nanoparticles, after exposure to air, was identified as predominantly MnO. The ability of such a sub-monolayer film to lower the reaction threshold implies that the key role is played by intrinsic size effects, i.e., by changes in the electronic properties and surface fields of the nanoparticles with decreasing size. We anticipate that this work will serve to bridge the knowledge gap between bulk thick film electrocatalysts and natural photosynthetic molecular-cluster complexes.

  4. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.

    Science.gov (United States)

    Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang

    2014-09-03

    Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.

  5. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.

    Science.gov (United States)

    Zhao, Yi-Ying; Chu, Qiang; Shi, Xu-Er; Zheng, Xiao-Dong; Shen, Xiao-Ting; Zhang, Yan-Zhen

    To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.

  6. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  7. Spin-dependent transport properties of oleic acid molecule self-assembled La0.7Sr0.3MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Xi, L.; Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S.

    2013-01-01

    Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La 0.7 Sr 0.3 MnO 3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.

  8. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    Science.gov (United States)

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  9. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli.

    Science.gov (United States)

    Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J

    2015-10-30

    Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.

  10. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine.

    Science.gov (United States)

    das Neves, José; Araújo, Francisca; Andrade, Fernanda; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2013-07-01

    Prevention strategies such as the development of microbicides are thought to be valuable in the fight against HIV/AIDS. Despite recent achievements, there is still a long road ahead in the field, particularly at the level of drug formulation. Drug nanocarriers based on polymers may be useful in enhancing local drug delivery while limiting systemic exposure. We prepared differently surface-engineered poly(ε-caprolactone) (PCL) nanoparticles (NPs) and tested their ability to modulate the permeability and retention of dapivirine in cell monolayers and pig vaginal and rectal mucosa. NPs coated with poly(ethylene oxide) (PEO) were shown able to reduce permeability across monolayers/tissues, while modification of nanosystems with cetyl trimethylammonium bromide (CTAB) enhanced transport. In the case of coating NPs with sodium lauryl sulfate (SLS), dapivirine permeability was unchanged. All NPs increased monolayer/tissue drug retention as compared to unformulated dapivirine. This fact was associated, at least partially, to the ability of NPs to be taken up by cells or penetrate mucosal tissue. Cell and tissue toxicity was also affected differently by NPs: PEO modification decreased the in vitro (but not ex vivo) toxicity of dapivirine, while higher toxicity was generally observed for NPs coated with SLS or CTAB. Overall, presented results support that PCL nanoparticles are capable of modulating drug permeability and retention in cell monolayers and mucosal tissues relevant for vaginal and rectal delivery of microbicides. In particular, PEO-modified dapivirine-loaded PCL NPs may be advantageous in increasing drug residence at epithelial cell lines/mucosal tissues, which may potentially increase the efficacy of microbicide drugs.

  11. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  12. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  13. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  14. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  15. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  16. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  17. Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Jeong, Kwang S.

    2012-01-24

    Figure Persented: Colloidal quantum dot (CQD) photovoltaics offer a promising approach to harvest the near-IR region of the solar spectrum, where half of the sun\\'s power reaching the earth resides. High external quantum efficiencies have been obtained in the visible region in lead chalcogenide CQD photovoltaics. However, the corresponding efficiencies for band gap radiation in the near-infrared lag behind because the thickness of CQD photovoltaic layers from which charge carriers can be extracted is limited by short carrier diffusion lengths. Here, we investigate, using a combination of electrical and optical characterization techniques, ligand passivation strategies aimed at tuning the density and energetic distribution of charge trap states at PbS nanocrystal surfaces. Electrical and optical measurements reveal a more than 7-fold enhancement of the mobility-lifetime product of PbS CQD films treated with 3-mercaptopropionic acid (MPA) in comparison to traditional organic passivation strategies that have been examined in the literature. We show by direct head-to-head comparison that the greater mobility-lifetime products of MPA-treated devices enable markedly greater short-circuit current and higher power conversion efficiency under AM1.5 illumination. Our findings highlight the importance of selecting ligand treatment strategies capable of passivating a diversity of surface states to enable shallower and lower density trap distributions for better transport and more efficient CQD solar cells. © 2011 American Chemical Society.

  18. 77 FR 35393 - Federal Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings

    Science.gov (United States)

    2012-06-13

    ... Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings AGENCY: Public Buildings... bulletin announces the designation and redesignation of three Federal buildings. Expiration Date: This bulletin announcement expires October 31, 2012. The building designation and redesignations remains in...

  19. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    Science.gov (United States)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  20. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  1. Synthesis of Core/Shell MnFe2O4/Au Nanoparticles for Advanced Proton Treatment

    International Nuclear Information System (INIS)

    Park, Jeong Chan

    2014-01-01

    Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodIspersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. The core/shell structured MnFe 2 O 4 /Au nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated nanocrystals may be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging. The phase transferred core/shell nanoparticles can be decorated with targeting moiety, such as antibodies, peptides, aptamers, small molecules and ligands for biological applications. The proton treatment with the resulting Au-MnFe 2 O 4 nanoparticles is undergoing.

  2. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  3. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    Science.gov (United States)

    Lim, Jitkang

    magnetophoresis and diffusion. Under most circumstances, magnetophoretic behavior dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy was employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis. Lastly, the colloidal stability of iron oxide core, gold shell nanoparticles in high ionic strength media was investigated. Such particles are sufficiently charged to be stable against flocculation without modification in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry were used to monitor the colloidal stability of core-shell particles in pH 7.4, 150 mM ionic strength phosphate buffered saline (PBS). While uncoated particles flocculated immediately upon being introduced into PBS, core-shell particles with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than five days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6,000 to 100,000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended DLVO theory predictions of the interparticle interactions.

  4. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  5. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    International Nuclear Information System (INIS)

    Schille, Ch.; Braun, M.; Wendel, H.P.; Scheideler, L.; Hort, N.; Reichel, H.-P.; Schweizer, E.; Geis-Gerstorfer, J.

    2011-01-01

    Highlights: ► Corrosion of eight Mg–based Biomaterials was tested in saline and human blood. ► Corrosion behaviour in physiological saline and in blood was entirely different. ► Al and Zn had the highest influence on corrosion behaviour in both electrolytes. ► MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. ► Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS minus (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS minus and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight loss was observed. When alloys are ranked according to corrosion susceptibility, the results differ also between the test systems. The

  6. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  7. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  8. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome.

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-07-01

    Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO 2 ) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO 2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO 2 nanoparticles. The proinflammatory effects of TiO 2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO 2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Oral administration of TiO 2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO 2 -administered mice. In vitro, TiO 2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO 2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO 2 nanoparticles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Emergence of complex chemistry on an organic monolayer.

    Science.gov (United States)

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  10. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-12-22

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  11. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  12. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Impact of defects on electrical connectivity of monolayer of ideally aligned rods

    International Nuclear Information System (INIS)

    Tarasevich, Yu Yu; Dubinin, D O; Laptev, V V; Lebovka, N I

    2016-01-01

    The processes of formation of electrically conductive films filled by aligned elongated nanoparticles, i.e. nanotubes, nanowires or fibers attract great attention in nanotecnological applications. The alignment can be controlled by external electric fields, evaporation-driven self-assembly and assisted by different other techniques. This work studies the impact of defects on electrical connectivity of ideally aligned monolayer of rods (k-mers). By means of Monte Carlo simulation the problem of percolation for conductive rods on a discrete insulating substrate (square lattice) is analyzed. The aspect ratio of the particles changes within the interval 1-64, the insulating defects were distributed both on the lattice and on the particles. We found that even a very small amount of the insulating defects on the particles can destroy the electrical connectivity. The critical concentration of the defects decreases as the aspect ratio of the particles increases. (paper)

  14. Chain Stretching and Order-Disorder Transitions in Block Copolymer Monolayers and Multilayers

    Science.gov (United States)

    Kramer, Edward J.; Mishra, Vindhya; Stein, Gila E.; Sohn, Karen E.; Hur, Sumi; Fredrickson, Glenn H.; Cochran, Eric W.

    2009-03-01

    Both monolayers of block copolymer cylinders and spheres undergo order to disorder transitions (ODT) at temperatures well below those of the bulk. Monolayers of PS-b-P2VP cylinders undergo a ``nematic'' to ``isotropic'' transition at temperatures about 20 K below the bulk ODT while monolayers of PS-b-P2VP with P2VP spheres undergo a 2D crystal to hexatic transition at least 10 K below the bulk ODT. Bilayers of each structure disorder at temperatures well above that of the monolayers. While one is tempted to attribute all of the difference to the fact that ordered monolayers are quasi 2 dimensional while bilayers are not, an alternative explanation exists. In the cylinder monolayer the corona PS chains must stretch to fill a nearly square cross-section domain rather than a hexagonal one in the bulk, while the corona PS chains in a sphere monolayer must stretch to fill a hexagonal prism rather than an octahedron in the bulk. The more non-uniform stretching of the chains in the monolayer should increase its free energy and decrease its order-disorder temperature.

  15. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    Science.gov (United States)

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. South African performance based standards (PBS) vehicle to transport steel pipes

    CSIR Research Space (South Africa)

    Dessein, T

    2010-03-01

    Full Text Available measures the vehicle?s rollover stability. Rearward Amplification (RA) ? Measures the degree to which the lateral accelerations experienced by trailing units are amplified in comparison to that of the towing unit in a high speed evasive single lane...-speed 90? turn high-speed travel along a 1.0km long straight road with uneven road surface a pulse-steer test HVTT11: A South African PBS Vehicle to Transport Pipes 10 a constant radius turn at slowly increasing speed an evasive lane change...

  17. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  18. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  19. Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane–water interface

    International Nuclear Information System (INIS)

    Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale

    2011-01-01

    The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane–water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351–6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid–liquid interfaces.

  20. One-step synthesis of silver nanoparticles at the air-water interface using different methods

    International Nuclear Information System (INIS)

    Liu Hongguo; Xiao Fei; Wang Changwei; Lee, Yong-Ill; Xue Qingbin; Chen Xiao; Qian Dongjin; Hao Jingcheng; Jiang Jianzhuang

    2008-01-01

    Silver nanoparticles were synthesized in a one-step process at the air-AgNO 3 aqueous solution interface under Langmuir monolayers of 5,10,15,20-tetra-4-oxy(2-stearic acid) phenyl porphyrin (TSPP) at room temperature by using different methods including UV-light irradiation, ambient light irradiation, and formaldehyde gas reduction. It was found that parallel aligned one-dimensional (1D) chains composed of discrete silver nanoparticles with the size of 3-5 nm were formed under UV-light irradiation for a short time, while large areas of uniform silver spherical nanoparticles were formed under natural daylight illumination for several days or by formaldehyde gas treatment for several hours. The average size of the spherical nanoparticles ranges from 6.88 ± 0.46 to 11.10 ± 1.47 nm, depending on the experimental conditions. The 1D chains formed under UV-light irradiation result from the templating effect of parallel aligned linear supramolecular arrays formed by TSPP at the air-water interface, and rapid nucleation and growth of the nanoparticles. The formation of the uniform silver nanoparticles under daylight illumination or by formaldehyde gas treatment, however, should be ascribed to a kinetically controlled growth process of the nanoparticles

  1. Silver impregnated nanoparticles of titanium dioxide as carriers for {sup 211}At

    Energy Technology Data Exchange (ETDEWEB)

    Cedrowska, Edyta; Lyczko, Monika; Piotrowska, Agata; Bilewicz, Aleksander [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Stolarz, Anna; Trcinska, Agnieszka [Warsaw Univ. (Poland). Heavy Ion Lab.; Szkliniarz, Katarzyna [Silesia Univ. Katowice (Poland). Inst. of Physics; Was, Bogdan [Polish Academy of Science, Cracow (Poland). Inst. of Nuclear Physics

    2016-08-01

    The {sup 211}At radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately use of {sup 211}At is limited, because astatine as the heaviest halogen forms weak bond with carbon atoms in the biomolecules which makes {sup 211}At bioconjugates unstable in physiological conditions. In our work we propose a new solution for binding of {sup 211}At which consists of using nanoparticles of titanium dioxide modified with silver atoms as carriers for {sup 211}At. Ag{sup +} cations have been absorbed on the nanometer-sized TiO{sub 2} particles (15 and 32 nm) through ion exchange process and were reduced in Tollens' reaction. The obtained TiO{sub 2}-Ag nanoparticles were labeled with {sup 211}At. It was found that labeling yields were almost quantitative under reducing conditions, while under oxidizing conditions they dropped to about 80%. The labeled nanoparticles exhibited very high stability in physiological salt, PBS buffer, solutions of peptides (0.001 M cysteine, 0.001 M glutathione) and in human blood serum. To make TiO{sub 2}/Ag nanoparticles well dispersed in water and biocompatible their surface was modified with a silane coupling agent containing poly(ethyleneglycol) molecules. The developed functionalization approach will allow us to attach biomolecules to the TiO{sub 2}/Ag surface.

  2. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  3. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  4. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  5. Nanoparticle Langmuir-Blodgett Arrays for Sensing of CO and NO2 Gases

    Science.gov (United States)

    Luby, Stefan; Jergel, Matej; Majkova, Eva; Siffalovic, Peter; Chitu, Livia; Rella, Roberto; Manera, Maria Grazia; Caricato, Anna-Paola; Luches, Armando; Martino, Maurizio

    Metal oxide sensors with active Fe2O3 and CoFe2O4 nanoparticle arrays were studied. Sensing nanoparticle films from 1, 2, 4 or 7 monolayers were deposited by Langmuir-Blodgett technique. Sensors are formed on the alumina substrates equipped with heating meander. Langmuir-Blodgett layers were heated or UV irradiated to remove the insulating surfactant. Sensing properties were studied towards CO or NO2 gases in concentrations between 0.5 and 100 ppm in mixture with the dry air. Best response values Igas/Iair were obtained with CoFe2O4 device being 3 for 100 ppm of CO and with Fe2O3 device being (38)-1 for 0.5 ppm of NO2.

  6. Charge transfer between acenes and PbS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D M N M [Solid State Electronics Laboratory, University of Michigan, Ann Arbor, MI 48109-2122 (United States); Hatton, R A [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Lutz, T [Departments of Chemistry and Physics, Imperial College, London SW7 2AY (United Kingdom); Curry, R J; Silva, S R P [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: ndissa@umich.edu

    2009-05-13

    Organic-inorganic hybrid heterojunctions have potential as the basis for future photovoltaic devices. Herein, we report the results of investigations exploring the possibility of using pentacene and tetracene as photoelectron donors in conjunction with PbS nanocrystals (PbS-NCs). Photoinduced charge transfer was probed using external quantum efficiency measurements on acene:PbS-NC hybrid photovoltaic devices in conjunction with photoluminescence studies of the corresponding bilayer films. It is shown that photoelectron transfer from pentacene to the PbS-NCs is inefficient as compared to that between tetracene and PbS-NCs. The latter case can be rationalized in terms of the energy level alignment at the heterojunction assuming a common vacuum level. However, in the case of pentacene:PbS-NC junctions an interfacial energy level shift must be considered in order to explain the observations.

  7. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cá tia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Frechet, Jean; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  8. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chuacharoen, Thanida [Suan Sunandha Rajabhat University, Faculty of Science and Technology (Thailand); Sabliov, Cristina M., E-mail: CSabliov@agcenter.lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2017-02-15

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  9. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    Science.gov (United States)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-02-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  10. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    International Nuclear Information System (INIS)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-01-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ("1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  11. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  12. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  13. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  14. Entwicklung eines Summenparameters für potenziell bioakkumulierbare Stoffe (PBS) im Abwasser

    OpenAIRE

    Stenz, Georg

    2001-01-01

    Es wurde ein Summenparameter für potenziell bioakkumulierbare Stoffe (PBS) im Abwasser entwickelt. Der Summenparameter soll als Instrumentarium zur Überwachung von Einleitungen, Emissionen und Verlusten an anreicherungsfähigen Stoffen eingesetzt werden, da die Bioakkumulation besonders für marine Ökosysteme ein Gefährdungskriterium darstellt. Stoffe werden nach dem „Technical Guidance Document (TGD)“ als potenziell bioakkumulierbar bertrachtet, wenn deren log POW-Wert größer als drei ist. Der...

  15. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.; Ohsaka, Takeo

    2002-01-01

    The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H 2 SO 4 . Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O 2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of -350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H 2 O 2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles

  16. Formation and electrochemical investigation of ordered cobalt coordinated peptide monolayers on gold substrates

    International Nuclear Information System (INIS)

    Wang Xinxin; Nagata, Kenji; Higuchi, Masahiro

    2012-01-01

    The monolayers composed of cobalt coordinated peptides were prepared on gold substrates by two different approaches. One was the self-assembly method, which was used to prepare a peptide monolayer on the gold substrate via the spontaneous attachment of peptides owing to the interaction between gold and sulfur at the N-terminal of the peptide. The other one was the stepwise polymerization method that was utilized to fabricate the unidirectionally arranged peptide monolayer by the stepwise condensation of amino acids from the initiator fixed on the gold substrate. Leu 2 Ala(4-Pyri)Leu 6 Ala(4-Pyri)Leu 6 sequence was chosen as the cobalt coordinated peptide. The 4-pyridyl alanines, Ala(4-Pyri)s, were introduced as ligands for cobalt to the leucine-rich sequential peptide. The complexation between cobalt and pyridyl groups of the peptide induced the formation of a stable α-helical bundle, which oriented perpendicularly to the substrate surface. In the case of the monolayer fabricated by the stepwise polymerization method, the direction of the peptide macro-dipole moment aligned unidirectionally, and the cobalt complexes were fixed in the monolayer to form the ordered arrangement. On the other hand, the peptides prepared by the self-assembly method formed the mixture of parallel and antiparallel packing owing to the dipole-dipole interaction. The spatial location of the cobalt complexes in the monolayer prepared by the self-assembly method was distorted, compared with that in the monolayer fabricated by the stepwise polymerization method. The vectorial electron flow through the peptide monolayer was achieved by the regular alignment of the peptide macro-dipole moment and the cobalt complexes in the monolayer fabricated by the stepwise polymerization method. - Highlights: ► We fabricated ordered Co coordinated peptide monolayers on the gold substrates. ► The Co complexes in peptide monolayer formed an ordered arrangement of the peptide. ► The peptide macro

  17. Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.

    Science.gov (United States)

    Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M

    2013-06-25

    We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.

  18. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2012-08-01

    Full Text Available Abstract Background The use of near-infrared (NIR fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR. Tumor-targeting ligands such as peanut agglutinin (PNA, anti-carcinoembryonic antigen antibodies (anti-CEA and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72 were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA

  19. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.

    Science.gov (United States)

    Cohen, Sarit; Margel, Shlomo

    2012-08-14

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon

  20. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-N and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  1. A Reversible Photoacid Functioning in PBS Buffer under Visible Light.

    Science.gov (United States)

    Abeyrathna, Nawodi; Liao, Yi

    2015-09-09

    A metastable-state photoacid that can reversibly release a proton in PBS buffer (pH = 7.4) under visible light is reported. The design is based on the dual acid-base property and tautomerization of indazole. The quantum yield was as high as 0.73, and moderate light intensity (10(2) μmol·m(2)·s(-1)) is sufficient for the photoreaction. Reversible pH change of 1.7 units was demonstrated using a 0.1 mM aqueous solution. This type of photoacid is promising for control of proton-transfer processes in physiological conditions and may find applications in biomedical areas.

  2. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  3. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Schille, Ch., E-mail: Christine.Schille@med.uni-tuebingen.de [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Braun, M.; Wendel, H.P. [University Hospital Tuebingen, Div. Congenital and Paediatric Cardiac Surgery, University Children' s Hospital, Tuebingen, Germany, Calwerstr. 7/1, D-72076 Tuebingen (Germany); Scheideler, L. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Hort, N. [GKSS Research Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Reichel, H.-P. [Weissensee Company, Buergermeister-Ebert-Str. 30-32, D-36124 Eichenzell (Germany); Schweizer, E.; Geis-Gerstorfer, J. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of eight Mg-based Biomaterials was tested in saline and human blood. Black-Right-Pointing-Pointer Corrosion behaviour in physiological saline and in blood was entirely different. Black-Right-Pointing-Pointer Al and Zn had the highest influence on corrosion behaviour in both electrolytes. Black-Right-Pointing-Pointer MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. Black-Right-Pointing-Pointer Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS{sup minus} (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS{sup minus} and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight

  4. Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene.

    Science.gov (United States)

    Park, Yeonggu; Choi, Jin Sik; Choi, Taekjib; Lee, Mi Jung; Jia, Quanxi; Park, Minwoo; Lee, Hoonkyung; Park, Bae Ho

    2015-03-24

    Ripples in graphene are extensively investigated because they ensure the mechanical stability of two-dimensional graphene and affect its electronic properties. They arise from spontaneous symmetry breaking and are usually manifested in the form of domains with long-range order. It is expected that topological defects accompany a material exhibiting long-range order, whose functionality depends on characteristics of domains and topological defects. However, there remains a lack of understanding regarding ripple domains and their topological defects formed on monolayer graphene. Here we explore configuration of ripple domains and their topological defects in exfoliated monolayer graphenes on SiO2/Si substrates using transverse shear microscope. We observe three-color domains with three different ripple directions, which meet at a core. Furthermore, the closed domain is surrounded by an even number of cores connected together by domain boundaries, similar to topological vortex and anti-vortex pairs. In addition, we have found that axisymmetric three-color domains can be induced around nanoparticles underneath the graphene. This fascinating configuration of ripple domains may result from the intrinsic hexagonal symmetry of two-dimensional graphene, which is supported by theoretical simulation using molecular dynamics. Our findings are expected to play a key role in understanding of ripple physics in graphene and other two-dimensional materials.

  5. Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack

    Directory of Open Access Journals (Sweden)

    Kashefi Sepideh

    2018-01-01

    Full Text Available Zeolite beta nanoparticles were used as a new asphaltene adsorbent for reducing asphaltene deposition during fluid injection into a silica sand pack. At first, the asphaltene adsorption efficiency and capacity of zeolite beta nanoparticles were determined by UV-Vis spectrophotometer. It was found that the proper concentration of nanoparticles for asphaltene adsorption was 10 g/L and the maximum asphaltene adsorption onto zeolite beta was 1.98 mg/m2. Second, two dynamic experiments including co-injection of crude oil and n-heptane (as an asphaltene precipitant with and without use of zeolite beta nanoparticles in the sand pack was carried out. The results showed that the use of zeolite beta nanoparticles increased the permeability ratio and outlet fluid's asphaltene content about 22% and 40% compared to without use of nanoparticles, respectively. Moreover, a model based on monolayer asphaltene adsorption onto nanoparticles and asphaltene deposition mechanisms including surface deposition, entrainment and pore throat plugging was developed to determine formation damage during co-injection of crude oil and n-heptane into the sand pack. The proposed model presented good prediction of permeability and porosity ratios with AAD% of 1.07 and 0.07, respectively.

  6. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    Science.gov (United States)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  7. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin.

    Science.gov (United States)

    Mortazavian, Elaheh; Dorkoosh, Farid Abedin; Rafiee-Tehrani, Morteza

    2014-05-01

    The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.

  8. 76 FR 54772 - Federal Management Regulation; FMR Bulletin PBS-2011-B2; Redesignations of Federal Buildings

    Science.gov (United States)

    2011-09-02

    ... Management Regulation; FMR Bulletin PBS-2011-B2; Redesignations of Federal Buildings AGENCY: Public Buildings... announces the designation and redesignation of two Federal buildings. Expiration Date: This bulletin announcement expires January 31, 2012. The building designation and redesignation remains in effect until...

  9. 75 FR 69080 - Federal Management Regulation; FMR Bulletin PBS-2010-B5; Redesignations of Federal Buildings

    Science.gov (United States)

    2010-11-10

    ... Management Regulation; FMR Bulletin PBS-2010-B5; Redesignations of Federal Buildings AGENCY: Public Buildings... announces the designation and redesignation of two Federal buildings. DATES: Expiration Date: This bulletin announcement expires April 30, 2011. The building designation and redesignation remains in effect until...

  10. 76 FR 6792 - Federal Management Regulation; FMR Bulletin PBS-2011-B1; Redesignations of Federal Buildings

    Science.gov (United States)

    2011-02-08

    ... Management Regulation; FMR Bulletin PBS-2011-B1; Redesignations of Federal Buildings AGENCY: Public Buildings... announces the redesignations of three Federal buildings. DATES: Expiration Date: This bulletin announcement expires June 30, 2011. The building redesignations remain in effect until canceled or superseded by...

  11. The deposition of highly uniform and adhesive nanocrystalline PbS film from solution

    International Nuclear Information System (INIS)

    Yang Yujun; Hu Shengshui

    2008-01-01

    Mirror-like PbS films have been deposited by chemical deposition on glass substrates from alkaline chemical bath containing lead nitrate, sodium thiosulfate and 1-thioglycerol, which was used to catalyze the hydrolysis of thiosulfate. Nanostructure characterization was carried out by x-ray diffraction and scanning electron microscopy in order to determine the average crystallite size (61 nm) and study the surface morphologies of the as-deposited films

  12. Gas sensing with self-assembled monolayer field-effect transistors

    NARCIS (Netherlands)

    Andringa, Anne-Marije; Spijkman, Mark-Jan; Smits, Edsger C. P.; Mathijssen, Simon G. J.; van Hal, Paul A.; Setayesh, Sepas; Willard, Nico P.; Borshchev, Oleg V.; Ponomarenko, Sergei A.; Blom, Paul W. M.; de Leeuw, Dago M.

    A new sensitive gas sensor based on a self-assembled monolayer field-effect transistor (SAMFET) was used to detect the biomarker nitric oxide. A SAMFET based sensor is highly sensitive because the analyte and the active channel are separated by only one monolayer. SAMFETs were functionalised for

  13. One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper

    Science.gov (United States)

    Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.

    2017-10-01

    Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.

  14. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo; Fu, Yong Qing

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristin...

  15. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  16. Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation.

    Science.gov (United States)

    Summers, Andrew Z; Iacovella, Christopher R; Cummings, Peter T; McCabe, Clare

    2017-10-24

    Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.

  17. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  18. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  19. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  20. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  1. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  2. Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent

    International Nuclear Information System (INIS)

    Bu Junfu; Nie Chageng; Liang Jinxia; Sun Lan; Xie Zhaoxiong; Wu Qi; Lin Changjian

    2011-01-01

    Single-crystal PbS nanorods were successfully synthesized through a simple hydrothermal route using PEO-PPO-PEO triblock copolymer (P123) as a structure-directing agent. The XRD pattern indicates that the crystal structure of the nanorods is face-centre-cubic rocksalt. A SEM image shows that the nanorods have a diameter of 40-70 nm and a length of 200-600 nm, and both tips exhibit taper-like structures. HRTEM and SAED images reveal the single-crystalline nature of the nanorods with the growth along the (111) direction. The experimental results indicated that the P123 concentration and reaction temperature played important roles in controlling the morphology of the PbS nanostructures. The optical property of PbS nanorods was investigated by UV-Vis absorption spectroscopy and the band structure was calculated by the B3LYP hybrid density functional theory.

  3. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  4. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  5. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  6. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles.

    Science.gov (United States)

    Rahmat, Deni; Müller, Christiane; Barthelmes, Jan; Shahnaz, Gul; Martien, Ronny; Bernkop-Schnürch, Andreas

    2013-02-01

    Within this study, HEC-cysteamine nanoparticles with free thiol groups in the range of 117-1548 μmol/g were designed and characterized. Nanoparticles were generated via ionic gelation of the cationic polymer with tripolyphosphate (TPP) followed by covalent crosslinking via disulfide bond formation using H2O2 as oxidant. The mean diameter of the particles was in the range of 270-360 nm, and zeta potential was determined to be +4 to +10 mV. Nanoparticles were evaluated in terms of mucoadhesive, permeation enhancing, and biocompatible properties as well as biodegradability. The particles remained attached to porcine intestinal mucosa up to 70% after 3h of incubation. The more nanoparticles were oxidized; however, the less were their mucoadhesive properties. Nanoparticles applied in a concentration of 0.5% (m/v) with the highest content of free thiol groups improved the transport of fluorescein isothiocyanate dextran 4 (FD4) across Caco-2 cell monolayer 3.94-fold in comparison with control (buffer). In addition, the transport of FD4 was even 1.84-fold enhanced in the presence of 0.5% (m/v) nanoparticles with the lowest free thiol group content. The higher the disulfide bond content within nanoparticles was, to a lower degree nanoparticles were hydrolyzed by cellulase. None of these nanoparticles showed pronounced cytotoxicity. Accordingly, HEC-cysteamine could be a promising excipient for nanoparticulate delivery systems for poorly absorbed drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. 75 FR 44264 - Federal Management Regulation; FMR Bulletin PBS-2010-B4; Redesignation of Federal Building

    Science.gov (United States)

    2010-07-28

    ... Management Regulation; FMR Bulletin PBS-2010-B4; Redesignation of Federal Building AGENCY: Public Buildings... announces the redesignation of a Federal building. DATES: Expiration Date: This bulletin expires December 31, 2010. However, the building redesignation announced by this bulletin will remain in effect until...

  8. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  9. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers.

    Science.gov (United States)

    Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian

    2018-01-01

    "Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  11. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments

    Czech Academy of Sciences Publication Activity Database

    Olžyńska, Agnieszka; Zubek, M.; Roeselová, Martina; Korchowiec, J.; Cwiklik, Lukasz

    2016-01-01

    Roč. 1858, č. 12 (2016), s. 3120-3130 ISSN 0005-2736 R&D Projects: GA ČR GA15-14292S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : phospholipid monolayers * Lung surfactant * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  12. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  13. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high

  14. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes.

    Science.gov (United States)

    Wang, Haitao; Tian, Tian; Zhang, Yong; Pan, Zhiqiang; Wang, Yong; Xiao, Zhongdang

    2008-08-19

    In this work, we reported an approach for the site-selective growth of nanoparticle onto the tip apex of an atomic force microscopy (AFM) probe. The silicon AFM probe was first coated with a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) through a chemical vapor deposition (CVD) method. Subsequently, COOH groups were selectively generated at the tip apex of silicon AFM probes by applying an appropriate bias voltage between the tip and a flat gold electrode. The transformation of methyl to carboxylic groups at the tip apex of the AFM probe was investigated through measuring the capillary force before and after electrochemical oxidation. To prepare the nanoparticle terminated AFM probe, the oxidized AFM probe was then immersed in an aqueous solution containing positive metal ions, for example, Ag+, to bind positive metal ions to the oxidized area (COOH terminated area), followed by chemical reduction with aqueous NaBH 4 and further development (if desired) to give a metal nanoparticle-modified AFM probe. The formation of a metal nanoparticle at the tip apex of the AFM probe was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA).

  15. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  16. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  17. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  18. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).

    Science.gov (United States)

    Weijma, Jan; De Hoop, Klaas; Bosma, Wobby; Dijkman, Henk

    2002-01-01

    Lead paste, a solid mixture containing PbSO(4), PbO(2), PbO/Pb(OH)(2) precipitate, and elemental Pb, is one of the main waste fractions from spent car batteries. Biological sulfidation represents a new process for recovery of lead from this waste. In this process the lead salts in lead paste are converted to galena (PbS) by sulfate-reducing bacteria. This paper investigates a continuous process for sulfidation of anglesite (PbSO(4)), the main constituent of lead paste, and lead paste, consisting of a laboratory-scale gas-lift bioreactor to which a slurry of anglesite or lead paste was supplied. Sulfate or elemental sulfur was added as an additional sulfur source. Hydrogen gas served as an electron donor for the biological reduction of sulfate and elemental sulfur to sulfide by sulfate- and sulfur-reducing bacteria. Anglesite was almost completely converted to galena at a loading rate of 19 kg of PbSO(4) m(-)(3) day(-)(1), producing a sludge of which the crystalline lead phases consisted of >98% PbS (galena) and 1-2% elemental Pb. With lead paste, stable sulfidation rates of up to 17 kg of lead paste m(-)(3) day(-)(1) were demonstrated, producing a sludge of which the crystalline lead phases consisted of an estimated >96% PbS, 1-2% elemental Pb, and 1-2% PbO(2).

  19. The role of cationic precursors in structural, morphological and optical properties of PbS thin films

    International Nuclear Information System (INIS)

    Preetha, K C; Murali, K V; Ragina, A J; Deepa, K; Dhanya, A C; Remadevi, T L

    2013-01-01

    Thin films of Lead sulphide (PbS) were grown on soda lime glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method using lead acetate, lead chloride, lead nitrate, and lead sulphate as cationic precursors and thioacetamide as sulphur source. The experiments were carried out at room temperature under normal pressure utilizing aqueous conditions. The structural and morphological aspects of the as prepared samples were investigated by means of XRD and SEM results. The prepared samples were polycrystalline with nanometer-sized grains and identified as galena type cubic structure (FCC). The values of average crystallite size were found to be in the range 22 to 30 nm. The SEM micrographs show variations in morphology. Optical studies revealed that the absorption edges of the films indicated strong blue shifts with respect to bulk sample. In this work, we establish that the cationic precursor sources and in turn the size of the crystallites affects the structural, morphological and optical properties of PbS thin films.

  20. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  1. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    Science.gov (United States)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  2. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  3. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  4. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    Science.gov (United States)

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  5. Proton and hydrogen transport through two-dimensional monolayers

    International Nuclear Information System (INIS)

    Seel, Max; Pandey, Ravindra

    2016-01-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS 2 ) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS 2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS 2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene. (paper)

  6. Proton and hydrogen transport through two-dimensional monolayers

    Science.gov (United States)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  7. Studies of the structure and properties of organic monolayers, multilayers and superlattices

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-01-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this progress report, we describe our x-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension. 20 refs., 11 figs

  8. Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays

    Science.gov (United States)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    An efficient, inexpensive and large area scalable