WorldWideScience

Sample records for monolayer surface pressures

  1. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  2. Cation-induced monolayer collapse at lower surface pressure follows specific headgroup percolation

    Science.gov (United States)

    Das, Kaushik; Sah, Bijay Kumar; Kundu, Sarathi

    2017-02-01

    A Langmuir monolayer can be considered as a two-dimensional (2D) sheet at higher surface pressure which structurally deform with mechanical compression depending upon the elastic nature of the monolayer. The deformed structures formed after a certain elastic limit are called collapsed structures. To explore monolayer collapses at lower surface pressure and to see the effect of ions on such monolayer collapses, out-of-plane structures and in-plane morphologies of stearic acid Langmuir monolayers have been studied both at lower (≈6.8) and higher (≈9.5) subphase p H in the presence of M g2 +,C a2 +,Z n2 +,C d2 + , and B a2 + ions. At lower subphase p H and in the presence of all cations, the stearic acid monolayer remains as a monolayer before collapse, which generally takes place at higher surface pressure (πc>50 mN /m ). However, at higher subphase p H , structural changes of stearic acid monolayers occur at relatively lower surface pressure depending upon the specific dissolved ions. Among the same group elements of M g2 +,C a2 + , and B a2 + , only for B a2 + ions does monolayer to multilayer transition take place from a much lower surface pressure of the monolayer, remaining, however, as a monolayer for M g2 + and C a2 + ions. For another same group elements of Z n2 + and C d2 + ions, a less covered bilayer structure forms on top of the monolayer structure at lower surface pressure, which is evidenced from both x-ray reflectometry and atomic force microscopy. Fourier transform infrared spectroscopy confirms the presence of two coexisting conformations formed by the two different metal-headgroup coordinations and the monolayer to trilayer or multilayer transformation takes place when the coverage ratio of the two molecular conformations changes from the critical value (pc) of ≈0.66 . Such ion-specific monolayer collapses are correlated with the 2D lattice percolation model.

  3. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of ~90% of lipid with 10% integrated proteins. Among its lipid compounds, di- palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). No other lipid but DPPC was so far reported to be compressible to very high surface pressure (~70mN/m) before its monolayer collapsed. Its liquid......-expanded/liquid-condensed (LE/LC) phase transition at ~10mN/m is well known. Here we present results from Langmuir isotherm measurements that evidence a so far not documented second phase transition at elevated surface pressure Π (~50mN/m). The varying lateral structures of the monolayer at 8mN/m, 20mN/m, 30mN/m, 40mN/m, 50m...

  4. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Science.gov (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  5. Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure.

    Science.gov (United States)

    Disalvo, E Anibal; Hollmann, Axel; Martini, M Florencia

    2015-01-01

    In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.

  6. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are qual

  7. Physiological hydrostatic pressure protects endothelial monolayer integrity.

    Science.gov (United States)

    Müller-Marschhausen, K; Waschke, J; Drenckhahn, D

    2008-01-01

    Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.

  8. The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers.

    Science.gov (United States)

    Cheng, Ken; Ropers, Marie-Hélène; Lopez, Christelle

    2017-06-01

    The miscibility of milk sphingomyelin (milk-SM) and cholesterol was investigated in this study. The effect of different physical states of milk-SM on its interactions with cholesterol was determined by the recording of isotherms of compression of Langmuir films for temperatures above and below the gel to Lα phase transition of milk-SM (Tm∼34°C). For T=15°CTm, the milk-SM molecules were in a LE phase regardless of the surface pressure applied. A phase diagram pressure - milk-SM/cholesterol composition was established. This study demonstrated that both temperature and surface pressure affected the miscibility between the milk-SM and cholesterol. The strongest attractive forces (i.e. condensing effect) were identified for 30mol% cholesterol when the milk-SM was in the LE phase state.

  9. High-Quality Alkyl Monolayers on Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Linke, R.; Zuilhof, H.; Sudh"lter, E.J.R.

    2000-01-01

    Covalent attachment of functionalized monolayers onto silicon surfaces (see Figure for examples) is presented here as a strategy for surface modification. The preparation and structure of both unfunctionalized and functionalized alkyl-based monolayers are described, as are potential applications,

  10. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  11. Surface viscoelastic properties of spread ferroelectric liquid crystal monolayer on air-water interface

    Science.gov (United States)

    Kaur, Ramneek; Bhullar, Gurpreet Kaur; Raina, K. K.

    2013-06-01

    Ferroelectric Liquid crystal having Smectic C* phase at room temperature was capable of forming Langmuir monolayer due to presence of both hydrophilic and hydrophobic groups in it. Surface viscoelasticity properties of FLC monolayer spread on water surface had been determined by dynamic oscillation method and discussed as a function of surface pressure. Dynamic viscoelastic properties such as G (Elastic modulus), G' (storage (elastic) modulus), G' (Loss (viscous) modulus) and phase change with sinusoidal oscillation had been measured at phase changing surface pressure values. As monolayer was becoming condensed, increasing trend was observed in G' values while G' was decreasing. At higher frequencies, viscous modulus G' had negative values. This relaxation phenomenon was probably caused by conformational rearrangements that acted to fluidize monolayer. Phase change tan θ was positive, response in surface pressure was ahead of the de-formation in area and the monolayer had positive dilatational viscosity. Phase change tan θ was negative, response in surface pressure was hysteretic to the deformation in area, and negative dilatational viscosity had been observed. Studies of monolayer in barrier oscillating mode provided us the surface pressure which was most suitable for Langmuir Blodgett monolayer deposition.

  12. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  13. Modelling Organic Surfaces with Self-Assembled Monolayers

    Science.gov (United States)

    1989-05-01

    reactive organic liquids. Fluorinated thiols form monolayers that are more water and oil-repellent than Teflon. The hydrophobicity and oleophobicity of...and are both hydrophobic and oleophobic . The surface of a monolayer containing an approximately equal mixture of the two components 13 resembles a

  14. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    Science.gov (United States)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  15. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

  16. Molecular simulation of alkyl monolayers on the Si(111)surface

    Institute of Scientific and Technical Information of China (English)

    YUAN; Shiling; (苑世领); CAI; Zhengting; (蔡政亭); XIAO; Li; (肖莉); XU; Guiying; (徐桂英); LIU; Yongjun; (刘永军)

    2003-01-01

    The structure of twelve-carbon monolayers on the H-terminated Si(111) surface is investigated by molecular simulation method. The best substitution percent on Si(111) surface obtained via molecular mechanics calculation is equal to 50%, and the (8×8) simulated cell can be used to depict the structure of alkyl monolayer on Si surface. After two-dimensional cell containing alkyl chains and four-layer Si(111) crystal at the substitution 50% is constructed, the densely packed and well-ordered monolayer on Si(111) surface can be shown through energy minimization in the suitable-size simulation cell. These simulation results are in good agreement with the experiments. These conclusions show that molecular simulation can provide otherwise inaccessible mesoscopic information at the molecular level, and can be considered as an adjunct to experiments.

  17. Preparation and biocompatibility of BSA monolayer on silicon surface.

    Science.gov (United States)

    Tao, Caihong; Zhang, Junyan; Yang, Shengrong

    2011-06-01

    This paper describes a general strategy for grafting protein molecules on silicon surface by using dopamine as adhesive layer. With this method, silicon surface had been successfully modified by BSA monolayer. Fourier transform infrared spectra, X-ray photoelectron spectroscopy, contact angle analysis and atomic force microscopy confirmed the sequential grafting of initiator and protein molecules. Cell adhesion experiments with PC-12 cells showed that the obtained monolayer exhibits good biocompatibility. The corrosion resistance behavior of the polydopamine and BSA modified silicon wafers was investigated by potentiodynamic test, which indicated that the modified surfaces exhibited a better anti-corrosion capability than silicon surface. All these results must be valuable for the application of protein monolayer in biological and biomedical technology.

  18. Vibrations on Cu surfaces covered with Ni monolayer

    Science.gov (United States)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1999-08-01

    Vibrational modes on the Cu(100) and Cu(111) surfaces covered with a Ni monolayer have been calculated using the embedded-atom method. A detailed discussion of the dispersion relations and polarizations of adsorbate modes and surface phonons is presented. The dispersion of the Rayleigh phonon is in good agreement with the experimental EELS data. The changes in interatomic force constants are discussed.

  19. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  20. Simultaneously Propagating Voltage and Pressure Pulses in Lipid Monolayers of pork brain and synthetic lipids

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions, individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, whose controllable thermodynamic state enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing timeresolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0,1 to 3mV...

  1. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  2. Ellipsometry of clean surfaces, submonolayer and monolayer films

    NARCIS (Netherlands)

    Habraken, F.H.P.M.; Gijzeman, O.L.J.; Bootsma, G.A.

    1980-01-01

    The geometric and electronic structure of the surface region of a crystal is often different from the bulk structure and therefore the optical properties differ in principle also. Theories for the optical properties of (sub)monolayer films are compared, with special attention to anisotropic layers.

  3. Reactive monolayers for surface gradients and biomolecular patterned interfaces

    NARCIS (Netherlands)

    Nicosia, C.

    2013-01-01

    Self-assembled monolayers (SAMs) are an excellent platform to implement and develop interfacial reactions for the preparation of versatile materials of pivotal importance for the fabrication of, among others, biochips, sensors, catalysts, smart surfaces and electronic devices. The development of met

  4. Oxygen adsorption on palladium monolayer as a surface catalyst

    Science.gov (United States)

    Shah, Janki; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2017-09-01

    In the recent work, we study on the structural and electronic properties of the graphene like Pd monolayer with the adsorption of oxygen adatoms by using first-principles calculations. The electronic band structure and projected density of states investigate that Pd-surface with oxygen molecule adsorption gives metallic behaviour. We found that the behaviour changed at M-point in the electronic band structure as adding oxygen atoms. The oxygen adsorption was dissociative until the Pd surface immersed with oxygen atoms. The electron charge density increases as the number of oxygen atoms on Pd-surface increases. The noticeable observation is that by adding 7th oxygen atom, they started to ripple from fixed Pd-surface without making a bond due to oxygen coverage increases. The results show that Pd monolayer has different applications as a oxygen catalyst and it can be utilized as the pellet, surface, and film materials to safeguard sustenance from oxidation.

  5. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1994-01-01

    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  6. Hexadecadienyl Monolayers on Hydrogen-Terminated Si(III): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety

    NARCIS (Netherlands)

    Rijksen, B.M.G.; Pujari, S.P.; Scheres, L.M.W.; Rijn, van C.J.M.; Baio, J.E.; Weidner, T.; Zuilhof, H.

    2012-01-01

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H–Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H–C=C–HC-CH–R) would be even better reagents for dense monolayer formation. To investigate whether the increased

  7. Mechanic studies of monolayer formation on H-Si(111) surfaces

    NARCIS (Netherlands)

    Rijksen, B.M.G.

    2012-01-01

    Covalently attached organic monolayers on silicon surfaces form thermally and chemically stable platforms for (bio)functionalization of the surface. Recent advances in monolayer formation – yielding increases in monolayer quality and the complete exclusion of oxygen at modified surfaces &ndash

  8. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  9. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces.

    Science.gov (United States)

    Liberelle, Benoît; Banquy, Xavier; Giasson, Suzanne

    2008-04-01

    We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.

  10. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  11. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter

    2007-01-01

    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  12. Pressure-induced K-Λ crossing in monolayer WSe2

    Science.gov (United States)

    Ye, Yanxia; Dou, Xiuming; Ding, Kun; Jiang, Desheng; Yang, Fuhua; Sun, Baoquan

    2016-05-01

    The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 +/- 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.25 GPa. The PL peak of exciton related to the direct K-K interband transition in monolayer and bilayer WSe2 shows a pressure-induced blue-shift at the rates of 31.5 +/- 0.6 and 27 +/- 1 meV GPa-1, respectively. The indirect Λ-K interband transition for monolayer and bilayer WSe2 exhibits a distinctly different pressure response. The pressure coefficient is as small as -3 +/- 6 meV GPa-1 for monolayer, but a much larger value of -22 +/- 1 meV GPa-1 for bilayer WSe2, indicating that the interlayer coupling has a strong effect on the electronic states at the Λ valley.The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 +/- 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.25 GPa. The PL peak of exciton related to the direct K-K interband transition in monolayer and bilayer WSe2 shows a pressure-induced blue-shift at the rates of 31.5 +/- 0.6 and 27 +/- 1 meV GPa-1, respectively. The indirect Λ-K interband transition for monolayer and bilayer WSe2 exhibits a distinctly different pressure response. The pressure coefficient is as small as -3 +/- 6 meV GPa-1 for monolayer, but a much larger value of -22 +/- 1 meV GPa-1 for bilayer WSe2, indicating that the interlayer coupling has a strong effect on the electronic states at the Λ valley

  13. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    Science.gov (United States)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  14. Hexadecadienyl monolayers on hydrogen-terminated Si(111): faster monolayer formation and improved surface coverage using the enyne moiety.

    Science.gov (United States)

    Rijksen, Bart; Pujari, Sidharam P; Scheres, Luc; van Rijn, Cees J M; Baio, J E; Weidner, Tobias; Zuilhof, Han

    2012-04-24

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H-Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H-C≡C-HC═CH-R) would be even better reagents for dense monolayer formation. To investigate whether the increased delocalization of β-carbon radicals by the enyne functionality indeed lowers the activation barrier, the kinetics of monolayer formation by hexadec-3-en-1-yne and 1-hexadecyne on H-Si(111) were followed by studying partially incomplete monolayers. Ellipsometry and static contact angle measurements indeed showed a faster increase of layer thickness and hydrophobicity for the hexadec-3-en-1-yne-derived monolayers. This more rapid monolayer formation was supported by IRRAS and XPS measurements that for the enyne show a faster increase of the CH2 stretching bands and the amount of carbon at the surface (C/Si ratio), respectively. Monolayer formation at room temperature yielded plateau values for hexadec-3-en-1-yne and 1-hexadecyne after 8 and 16 h, respectively. Additional experiments were performed for 16 h at 80° to ensure full completion of the layers, which allows comparison of the quality of both layers. Ellipsometry thicknesses (2.0 nm) and contact angles (111-112°) indicated a high quality of both layers. XPS, in combination with DFT calculations, revealed terminal attachment of hexadec-3-en-1-yne to the H-Si surface, leading to dienyl monolayers. Moreover, analysis of the Si2p region showed no surface oxidation. Quantitative XPS measurements, obtained via rotating Si samples, showed a higher surface coverage for C16 dienyl layers than for C16 alkenyl layers (63% vs 59%). The dense packing of the layers was confirmed by IRRAS and NEXAFS results. Molecular mechanics simulations were undertaken to understand the differences in reactivity and surface coverage. Alkenyl layers show more favorable packing energies for surface coverages up to 50-55%. At higher

  15. Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure

    Science.gov (United States)

    Bodik, Michal; Zahoranova, Anna; Micusik, Matej; Bugarova, Nikola; Spitalsky, Zdenko; Omastova, Maria; Majkova, Eva; Jergel, Matej; Siffalovic, Peter

    2017-04-01

    We report on an ultrafast plasma-based graphene oxide reduction method superior to conventional vacuum thermal annealing and/or chemical reduction. The method is based on the effect of non-equilibrium atmospheric-pressure plasma generated by the diffuse coplanar surface barrier discharge in proximity of the graphene oxide layer. As the reduction time is in the order of seconds, the presented method is applicable to the large-scale production of reduced graphene oxide layers. The short reduction times are achieved by the high-volume power density of plasma, which is of the order of 100 W cm‑3. Monolayers of graphene oxide on silicon substrate were prepared by a modified Langmuir–Schaefer method and the efficient and rapid reduction by methane and/or hydrogen plasma was demonstrated. The best results were obtained for the graphene oxide reduction in hydrogen plasma, as verified by x-ray photoelectron spectroscopy and Raman spectroscopy.

  16. Molecular Simulation study of Alkyl Monolayers on Si(III) Surface

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of eight-carbon monolayers on the H-terminated Si(III) surface was investigated by molecular simulation method. The best substitution percent 50% for octene or octyne-derived monolayer can be obtained using molecular mechanics calculation. And the densely packed, well-ordered monolayer on Si(III) surface can be shown through energy minimization in the suitable-size simulation cell.

  17. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.; Kobayashi, N.; Hayashi, N. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  18. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.

    2015-01-14

    Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

  19. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, J.; Reinhoudt, D.N.; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of dodecyltrichlorosil

  20. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...... grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...... that the correlation between the effective surface energy components of the heterogeneous Surfaces coated with fluorocarbon self-assembled monolayers is in agreement with the Cassie model....

  1. Tuning Oleophobicity of Silicon Oxide Surfaces with Mixed Monolayers of Aliphatic and Fluorinated Alcohols.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2016-12-13

    We demonstrate the formation of mixed monolayers derived from a microwave-assisted reaction of alcohols with silicon oxide surfaces in order to tune their surface oleophobicity. This simple, rapid method provides an opportunity to precisely tune the constituents of the monolayers. As a demonstration, we sought fluorinated alcohols and aliphatic alcohols as reagents to form monolayers from two distinct constituents for tuning the surface oleophobicity. The first aspect of this study sought to identify a fluorinated alcohol that formed monolayers with a relatively high surface coverage. It was determined that 1H,1H,2H,2H-perfluoro-1-octanol yielded high quality monolayers with a water contact angle (WCA) value of ∼110° and contact angle values of ∼80° with toluene and hexadecane exhibiting both an excellent hydrophobicity and oleophobicity. Tuning of the oleophobicity of the modified silicon oxide surfaces was achieved by controlling the molar ratio of 1H,1H,2H,2H-perfluoro-1-octanol within the reaction mixtures. Surface oleophobicity progressively decreased with a decrease in the fluorinated alcohol content while the monolayers maintained their hydrophobicity with WCA values of ∼110°. The simple and reliable approach to preparing monolayers of a tuned composition that is described in this article can be utilized to control the fluorocarbon content of the hydrophobic monolayers on silicon oxide surfaces.

  2. Evidence for the propagation of 2D pressure pulses in lipid monolayers near the phase transition

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    The existence and propagation of acoustic pressure pulses on lipid monolayers at the air/water-interfaces are directly observed by simple mechanical detection. The pulses are excited by small amounts of solvents added to the monolayer from the air phase. Employing a deliberate control of the lipid interface compressibility k, we can show that the pulses propagate at velocities, which are precisely reflecting the nonlinear behavior of the interface. This is manifested by a pronounced minimum of the sound velocity in the monolayer phase transition regime, while ranging up to 1.5 m/s at high lateral pressures. Motivated by the ubiquitous presence of lipid interfaces in biology, we propose the demonstrated sound propagation as an efficient and fast way of communication and protein modulation along nerves, between cells and biological units being controlled by the physical state of the interfaces.

  3. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  4. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  5. Ultralow effective work function surfaces using diamondoid monolayers.

    Science.gov (United States)

    Narasimha, Karthik Thimmavajjula; Ge, Chenhao; Fabbri, Jason D; Clay, William; Tkachenko, Boryslav A; Fokin, Andrey A; Schreiner, Peter R; Dahl, Jeremy E; Carlson, Robert M K; Shen, Z X; Melosh, Nicholas A

    2016-03-01

    Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from ∼ 5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound. This effect was not observed for sp(3)-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ± 0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.

  6. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules**

    OpenAIRE

    Saha, Krishnendu; Bajaj, Avinash; Duncan, Bradley; Rotello, Vincent M.

    2011-01-01

    Surface recognition of biosystems is a critical component in the development of novel biosensors, delivery vehicles and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with biomacromolecules and cells. Through engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-biomacrom...

  7. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure

    Science.gov (United States)

    Xu, Junqi; Fu, Can; Sun, Haibin; Meng, Lanxiang; Xia, Yanjie; Zhang, Chongwu; Yi, Xiaolei; Yang, Wenchao; Guo, Pengfei; Wang, Chunlei; Liu, Jiangfeng

    2017-04-01

    Graphene films have been attracting great interest owing to their unique physical properties. In this paper, we develop an efficient method to prepare large-area monolayer graphene (97.5% coverage) by atmospheric pressure chemical vapor deposition on Cu foils using polystyrene in a short time (3 min). Raman spectroscopy, transmission electron microscopy and scanning electron microscopy are employed to confirm the thickness and uniformity of the graphene films. Graphene films on glass substrates show high optical transmittance and electrical conductivity. Magnetic transport studies demonstrate that the as-grown monolayer graphene exhibits a high carrier mobility of 3395 cm2 V‑1 s‑1 at 25 K. On the basis of the analysis, it is concluded that our method is a simple, safe and versatile approach for the synthesis of monolayer graphene.

  8. Studies of Self-assembled Monolayers Formed by Imidazoline on Iron Surface by SEM and SECM

    Institute of Scientific and Technical Information of China (English)

    Xiu Yu LIU; Shen Hao CHEN; Shuai MIAO; Su Xiang WU; Li Xia SHEN; Yuan Xing CAI; Hong Yan ZHAI

    2006-01-01

    The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy(SECM). The results showed that SAMs were an effective inhibition film for iron.

  9. Binary functionalization of H:Si(111) surfaces by alkyl monolayers with different linker atoms enhances monolayer stability and packing.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2016-05-14

    Alkyl monolayer modified Si forms a class of inorganic-organic hybrid materials with applications across many technologies such as thin-films, fuel/solar-cells and biosensors. Previous studies have shown that the linker atom, through which the monolayer binds to the Si substrate, and any tail group in the alkyl chain, can tune the monolayer stability and electronic properties. In this paper we study the H:Si(111) surface functionalized with binary SAMs: these are composed of alkyl chains that are linked to the surface by two different linker groups. Aiming to enhance SAM stability and increase coverage over singly functionalized Si, we examine with density functional theory simulations that incorporate vdW interactions, a range of linker groups which we denote as -X-(alkyl) with X = CH2, O(H), S(H) or NH(2) (alkyl = C6 and C12 chains). We show how the stability of the SAM can be enhanced by adsorbing alkyl chains with two different linkers, e.g. Si-[C, NH]-alkyl, through which the adsorption energy is increased compared to functionalization with the individual -X-alkyl chains. Our results show that it is possible to improve stability and optimum coverage of alkyl functionalized SAMs linked through a direct Si-C bond by incorporating alkyl chains linked to Si through a different linker group, while preserving the interface electronic structure that determines key electronic properties. This is important since any enhancement in stability and coverage to give more densely packed monolayers will result in fewer defects. We also show that the work function can be tuned within the interval of 3.65-4.94 eV (4.55 eV for bare H:Si(111)).

  10. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  11. Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature

    Science.gov (United States)

    Mazza, Marco G.; Stokely, Kevin; Stanley, H. Eugene; Franzese, Giancarlo

    2012-11-01

    We study a coarse-grained model for a water monolayer that cannot crystallize due to the presence of confining interfaces, such as protein powders or inorganic surfaces. Using both Monte Carlo simulations and mean field calculations, we calculate three response functions: the isobaric specific heat CP, the isothermal compressibility KT, and the isobaric thermal expansivity αP. At low temperature T, we find two distinct maxima in CP, KT, and |αP|, all converging toward a liquid-liquid critical point (LLCP) with increasing pressure P. We show that the maximum in CP at higher T is due to the fluctuations of hydrogen (H) bond formation and that the second maximum at lower T is due to the cooperativity among the H bonds. We discuss a similar effect in KT and |αP|. If this cooperativity were not taken into account, both the lower-T maximum and the LLCP would disappear. However, comparison with recent experiments on water hydrating protein powders provides evidence for the existence of the lower-T maximum, supporting the hypothesized LLCP at positive P and finite T. The model also predicts that when P moves closer to the critical P the CP maxima move closer in T until they merge at the LLCP. Considering that other scenarios for water are thermodynamically possible, we discuss how an experimental measurement of the changing separation in T between the two maxima of CP as P increases could determine the best scenario for describing water.

  12. Nanopatterning of mobile lipid monolayers on electron-beam-sculpted Teflon AF surfaces.

    Science.gov (United States)

    Shaali, Mehrnaz; Lara-Avila, Samuel; Dommersnes, Paul; Ainla, Alar; Kubatkin, Sergey; Jesorka, Aldo

    2015-02-24

    Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence.

  13. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...... increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp3carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics...... with a conductivity of 267.2-537.5S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp2networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective...

  14. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  15. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  16. A Trimeric Surfactant: Surface Micelles, Hydration-Lubrication, and Formation of a Stable, Charged Hydrophobic Monolayer.

    Science.gov (United States)

    Kampf, Nir; Wu, Chunxian; Wang, Yilin; Klein, Jacob

    2016-11-15

    The surface structure of the trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD) on mica and the interactions between two such DTAD-coated surfaces were determined using atomic force microscopy and a surface force balance. In an aqueous solution of 3 mM, 5 times the critical aggregation concentration (CAC), the surfaces are coated with wormlike micelles or hemimicelles and larger (∼80 nm) bilayer vesicles. Repulsive normal interactions between the surfaces indicate a net surface charge and a solution concentration of ions close to that expected from the CAC. Moreover, this surface coating is strongly lubricating up to some tens of atmospheres, attributed to the hydration-lubrication mechanism acting at the exposed, highly hydrated surfactant headgroups. Upon replacement of the DTAD solution with surfactant-free water, the surface structures have changed on the DTAD monolayers, which then jump into adhesive contact on approach, both in water and following addition of 0.1 M NaNO3. This trimeric surfactant monolayer, which is highly hydrophobic, is found to be positively charged, which is evident from the attraction between the DTAD monolayer and negatively charged bare mica across water. These monolayers are stable over days even under a salt solution. The stability is attributed to the several stabilization pathways available to DTAD on the mica surface.

  17. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chien-Ching [Iowa State Univ., Ames, IA (United States)

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  18. Covalently bound organic monolayers on silicon surfaces : visible light attachment, charaterization, and electrical properties

    NARCIS (Netherlands)

    Smet, de L.C.P.M.

    2006-01-01

    The full control over surface properties is a 'Holy Grail' in material science. A significant step forward in this area includes the modification of silicon surfaces, by the covalent attachment of organic monolayers. In this way receptors than can specifically bind with ions or molecules be attached

  19. Self-assembled Monolayers of n-Hexadecanoic Acid and α-Hydroxyl n-Hexadecanoic Acid on Titanium Surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Gang(陈海刚); WU,Xue-Dong(乌学东); YU,Qin-Qin(虞勤琴); YANG,Sheng-Rong(杨生荣); WANG,Da-Pu(王大璞); SHEN,Wen-Zhong(沈文忠)

    2002-01-01

    n-Hexadecanoic acid (HA) and a.hydroxyl n-hexadecanoic acid ( HHA ) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizatiions are performed to examine the physical and chenical states of attached monolayers. The results show that the two amphiphiles tend to form disordered monolayers on titanium surfaces. The HHA headgroups are believed to form polydentate coordination with Ti, which is more chemically stable than the bidentate coordination of HA. All the facts of characterization indicate that HHA monolayer has more surface coverage than HA monolayer.

  20. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    Science.gov (United States)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H.

    2007-03-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  1. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Mitsunori, E-mail: honda.mitsunori@jaea.go.jp; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-04-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds.

  2. Controlled Oxidation, Biofunctionalization, and Patterning of Alkyl Monolayers on Silicon and Silicon Nitride Surfaces using Plasma Treatment

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Schroën, C.G.P.H.; Zuilhof, H.

    2010-01-01

    A new method is presented for the fast and reproducible functionalization of silicon and silicon nitride surfaces coated with covalently attached alkyl monolayers. After formation of a methyl-terminated 1-hexadecyl monolayer on H-terminated Si(100) and Si(111) surfaces, short plasma treatments (1-3

  3. Surface Modification through Chemically Adsorbed Monolayer of Thiophene Molecules

    Science.gov (United States)

    Yamamoto, Shin-ichi; Ogawa, Kazufumi

    2008-07-01

    Using a time-averaged dielectrophoretic force from an applied electric field, we have observed the assembly of a chemically adsorbed monomolecular layer (CAM) on microwires and connections and the formation of an electric path between a lithographically patterned array of two platinum (Pt) electrodes. A Pt electrode/monolayer/Pt electrode junction was fabricated by the self-assembly of a rigid monomolecular layer, namely 3-{6-[11-(trichlorosilyl)undecanoyl]hexyl} thiophene (TEN) with thiophene groups in the lateral direction between the Pt electrodes. Conductive probe AFM (CP-AFM) was used to investigate the forward bias conduction properties of a TEN film grown by a wet deposition process on a glass substrate. The self-assembly depends on the ideal rigidity of the CAM and the strong affinity of the thiophene end groups of the CAM for the Pt electrode. The current-voltage (I-V) characteristics of the conjugated thiophene junction exhibited stepwise features at room temperature. The I-V characteristics can be explained by electron transport through the junction. From the results of experiments carried out under ambient conditions, the conductivity of the laterally conjugated polythiophene groups was calculated to be 5.0 ×104 S/cm. Understanding and using these effects will allow the controlled fabrication and positioning of microwires or connections at densities much greater than those now achievable.

  4. "Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers

    NARCIS (Netherlands)

    de Boer, B.; Simon, H.K.; Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    2000-01-01

    A method for chemically modifying a surface with grafted monolayers of initiator groups, which can be used for a "living" free radical photopolymerization, is described. By using "living" free radical polymerizations, we were able to control the length of the grafted polymer chains and therefore the

  5. First-Principle Calculation for Scanning-Tunneling-Microscopic Images of a Monolayer Graphite Surface

    Institute of Scientific and Technical Information of China (English)

    陈向荣; 押山淳; 岡田晋; 芶清泉

    2003-01-01

    We have applied first-principle total-energy electronic structure calculations in the local density approximation to calculate the scanning tunnelling microscopy images of a monolayer graphite surface near the Fermi level. The results obtained agree well with the observation, which has not been interpreted before.

  6. Si-C Linked Organic Monolayers on Crystalline Silicon Surfaces as Alternative Gate Insulators

    NARCIS (Netherlands)

    Faber, Erik J.; Smet, de Louis C.P.M.; Olthuis, Wouter; Zuilhof, Han; Sudhölter, Ernst J.R.; Bergveld, Piet; Berg, van den Albert

    2005-01-01

    Herein, the influence of silicon surface modification via Si-CnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type (100) and n-type (100) silicon is studied by forming MIS (metal–insulator–semiconductor) diodes using a mercury probe. From current density–voltage (J–V) and capacitance–voltage (C–

  7. Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al(111) on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Kim, Yong-Hyun; Zhang, S. B.; Ebert, Philipp; Yang, Shenyuan; Tang, Zhe; Wu, Kehui; Wang, E. G.

    2007-10-29

    We report combined scanning tunneling microscopy, x-ray photoelectron emission spectroscopy, electron energy loss spectroscopy, and theoretical study of the growth of ultrathin Al film on the Si(111) substrate. We show that by (i) a modification of the substrate reconstruction with a √3×√3 surface and (ii) a choice of materials with commensurate lattices, atomically flat film can be obtained even at the ultimate one monolayer limit, while maintaining a bulklike atomic structure. Detailed analysis shows that this monolayer Al(111)-1×1Al(111)-1×1 film is electronically decoupled from the Si substrate, and it shows metallic characteristics.

  8. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    Science.gov (United States)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  9. Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    2013-09-08

    from squalane and PFPE surfaces,[8,13] indicating a localized collision with a region of the surface with a finite effective mass. Nesbitt and co...distributions. Average final energies may also be obtained from the translational energy distributions. It was suggested by Nesbitt and co...In their work on CO2 molecules scattering from PFPE surfaces, Nesbitt and co-workers presented a two temperature (or “two-Boltzmann”) model for

  10. ELASTICITY OF MONOLAYER OF LINOLEIC ACID AND ITS POLYMER

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The dynamic elasticity of linoleic acid monolayer on a subphase of 10-4mol/L TbCla at various surface pressure has been measured by means of dynamic oscillation method in measuring the change of surface pressure caused by periodic compressionexpansion cycles of the barrier. The elasticity of monolayer increases with increasing of surface pressure linegrly. The linoleic acid polymer monolayer has been obtained under UV-irradiation in situ when keeping a constant surface pressure. But the elasticity of the resulting polymerized monolayer is even smaller than that of its corresponding monomer monolayer. The elasticity of the polymerized linoleic acid monolayer decreases with increasing polymerization time. The explanation based on entropy has been presented.

  11. X-ray diffraction studies of organic monolayers on the surface of water

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P.; Peng, J.B.; Lin, B.; Ketterson, J.B.; Prakash, M.; Georgopoulos, P.; Ehrlich, S.

    1987-05-25

    We have used synchrotron radiation to study organic monolayers on water (''Langmuir films''). At high monolayer pressures, lead stearate (Pb(C/sub 17/H/sub 35/COO)/sub 2/) shows a powder peak at 1.60 A/sup -1/, implying an area per unit cell of 17.8 A/sup 2/ if the lattice is triangular. The correlation length is about 250 A. Lignoceric acid (C/sub 23/H/sub 47/COOH) shows a similar peak even though no heavy ions are attached. When the pressure is reduced, the peak in lead stearate does not observably move or broaden; below the ''knee'' in the isotherm, however, the peak height decreases slowly with increasing area, implying a first-order melting transition.

  12. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    Science.gov (United States)

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  13. Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface.

    Science.gov (United States)

    Pluchery, O; Zhang, Y; Benbalagh, R; Caillard, L; Gallet, J J; Bournel, F; Lamic-Humblot, A-F; Salmeron, M; Chabal, Y J; Rochet, F

    2016-02-07

    Organic layers chemically grafted on silicon offer excellent interfaces that may open up the way for new organic-inorganic hybrid nanoelectronic devices. However, technological achievements rely on the precise electronic characterization of such organic layers. We have prepared ordered grafted organic monolayers (GOMs) on Si(111), sometimes termed self-assembled monolayers (SAMs), by a hydrosilylation reaction with either a 7-carbon or an 11-carbon alkyl chain, with further modification to obtain amine-terminated surfaces. X-ray photoelectron spectroscopy (XPS) is used to determine the band bending (∼ 0.3 eV), and ultraviolet photoelectron spectroscopy (UPS) to measure the work function (∼ 3.4 eV) and the HOMO edge. Scanning tunneling microscopy (STM) confirms that the GOM surface is clean and smooth. Finally, conductive AFM is used to measure electron transport through the monolayer and to identify transition between the tunneling and the field emission regimes. These organic monolayers offer a promising alternative to silicon dioxide thin films for fabricating metal-insulator-semiconductor (MIS) junctions. We show that gold nanoparticles can be covalently attached to mimic metallic nano-electrodes and that the electrical quality of the GOMs is completely preserved in the process.

  14. An Improved Method for the Preparation of Organic Monolayers of 1-Alkenes on Hydrogen-Terminated Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Vleeming, V.; Zuilhof, H.; Sudhölter, E.J.R.

    1999-01-01

    The possibility to use dilute alkene solutions for the formation of alkene monolayers with 1-hexadecene on a hydrogen-terminated silicon(100) surface has been investigated for a variety of solvents. The resulting monolayers were analyzed by water contact angles. Anisole, n-butylbenzene, and n-decane

  15. Simple method for coating Si (1 0 0) surfaces with ferritin monolayers-Iron oxide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Georgios, E-mail: geopap@bio.uth.gr [University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aeolou, 41221 Larisa (Greece); Anetakis, Constantine, E-mail: kanetaki@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Gravalidis, Christoforos, E-mail: cgrava@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Kassavetis, Spiros, E-mail: skasa@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Vouroutzis, Nikolaos, E-mail: nikosv@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Frangis, Nikolaos, E-mail: frangis@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Logothetidis, Stergios, E-mail: logot@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece)

    2011-04-15

    With the goal to develop iron oxide quantum dots we developed a simple method to spread horse spleen ferritin monolayers on a Si (1 0 0) surface. Application of atomic force microscopy and spectroscopic ellipsometry showed the existence of regions with dense ferritin monolayers. Application of transmission electron microscopy identified the core of the spread ferritin as FeO nanocrystals.

  16. Effects of smooth random surface on fluid monolayer thermodynamics

    Science.gov (United States)

    Khlyupin, A. N.

    2016-11-01

    We consider the lattice gas approach to statistical mechanics of fluid adsorbed on random surfaces with fluid-fluid and fluid-surface potentials. It was shown that effective Hamiltonian contains quenched random interactions and random site fields. Their statistical features combine the properties of random geometry and fluid-fluid pair interaction potential. The high-temperature expansion leads to infinite-ranged random field model and Sherrington-Kirkpatrick spin-glass model. Thermodynamic properties are evaluated using replica theory procedure widely used to analyze quenched disorder systems. On the other hand we consider the random field model in random graph with finite connectivity instead of previous “infinite-ranged” approximations. This model has been investigated using finite connectivity technique. The replica symmetry ansatz for the order function is expressed in terms of an effective-field distribution. Analysis of random geometry effects on thermodynamic properties in such approach was done for the first time.

  17. The role of surface Pt on the coadsorption of hydrogen and CO on Pt monolayer film modified Ru(0001) surfaces

    Science.gov (United States)

    Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J.

    2016-10-01

    We have investigated the impact and role of the Pt surface modification on the coadsorption of hydrogen and CO on structurally well defined bimetallic Pt monolayer island/film modified Ru(0001) surfaces with Pt contents up to a complete Pt layer, employing temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS). Kinetic limitations in the surface diffusion are shown to play an important role for adsorption at 90 K, and lead to profound effects of the dosing sequence on the adsorption and desorption characteristics. Furthermore, they are responsible for spill-over effects during the TPD measurements, where COad becomes mobile and can spill-over from weakly bonding Pt monolayer areas to strongly bonding Pt-free Ru(0001) areas, which displaces Dad from these surface areas. The present findings are discussed in comparison with previous results on related metallic and bimetallic adsorption and coadsorption systems.

  18. Oligo(ethylene glycol)-terminated monolayers on silicon surfaces and their nanopatterning with a conductive atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Functionalization of silicon substrate surfaces with a stable monolayer for resisting non-specific adsorption of proteins has attracted great interest,since it is directly relevant to the development of miniature,silicon-based biosensors and implantable microdevices,such as silicon-neuron interfaces.This brief review summarizes our contribution to the development of robust monolayers grown by surface hydrosilylation on atomically flat,hydrogen-terminated silicon surfaces.The review also outlines our strategy and progress on the fabrication of single molecule patterns on such monolayer platforms.

  19. Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(1 1 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Zuilhof, Han, E-mail: Han.Zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-12-15

    This study reports on fluorine-containing alkyne-derived monolayers onto Si(1 1 1) substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear properties were measured using atomic force microscopy (AFM). The presence of the fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, with a decrease of the depth of wear scratches of up to 120 times as compared to the unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-alkyl based monolayer for scratching normal forces as high as 38 μN.

  20. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  1. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    Science.gov (United States)

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  2. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    Science.gov (United States)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  3. Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators

    NARCIS (Netherlands)

    Faber, E.J.; Smet, de L.C.P.M.; Olthuis, W.; Zuilhof, H.; Sudhölter, E.J.R.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Herein, the influence of silicon surface modification via SiCnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V) me

  4. Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators

    NARCIS (Netherlands)

    Faber, E.J.; Smet, de L.C.P.M.; Olthuis, W.; Zuilhof, H.; Sudhölter, E.J.R.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Herein, the influence of silicon surface modification via SiCnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V)

  5. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    Science.gov (United States)

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  6. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface.

    Science.gov (United States)

    Simon, A; Cohen-Bouhacina, T; Porté, M C; Aimé, J P; Baquey, C

    2002-07-15

    In order to establish a 3-aminopropyltriethoxysilane (APTES) grafting procedure with limited number of APTESs noncovalently linked to the silica surface, two different methods of grafting (in acid-aqueous solution and in anhydrous solution) were compared. The grafted surface state was investigated by atomic force microscopy (AFM). The stability of the grafting was checked at different temperatures by AFM. Continuous and plane APTES grafted surfaces were successfully prepared using both grafting preparations. The grafting in an anhydrous solution behaves homogeneously and stably compared to the grafting in an acid-aqueous solution. Moreover, with anhydrous solution, results showed that a unique monolayer of APTES was grafted.

  7. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  8. Underpotential deposition of a copper monolayer on a gold film sensed by integrated optical surface plasmon resonance

    OpenAIRE

    Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.

    2000-01-01

    An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.

  9. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    Science.gov (United States)

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  10. Determination of Surface pKa of Pure Mercaptoacetic Acid and 2- Mercaptobenzothiazole Mixed Monolayers by Impedance Titration

    Institute of Scientific and Technical Information of China (English)

    Guang Han LU; Chuan Yin LIU; Hong Yan ZHAO; Wei LIU; Li Ping JIANG; Ling Yan JIANG

    2004-01-01

    Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.

  11. Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate

    Institute of Scientific and Technical Information of China (English)

    LI Di; SUN Chunyan; HUANG Yunjie; LI Jinghong; CHEN Shaowei

    2005-01-01

    Electron transfer through the self-assembled monolayers (SAMs) on gold nanoparticles is investigated by using the monolayer protected gold nanoclusters (MPCs) as electron-transfer mediators. 3-Mercaptopropionic acid (MPA) and 11-meraptoundecanoic acid (MUA) MPCs were employed to catalyze the redox reaction between potassium ferricyanide and sodium thiosulfate. The catalytic mechanism was proposed that the MPCs act as diffusing electron-mediators and electron transfers to and from the MPCs surface. Therefore the electron transfer rate through the capping layers would be proportional to the MPCs catalyzed reaction rate, which was monitored by the UV absorbance of ferricyanide. The calculated apparent rate constant was orders of magnitude smaller than that of the maximum of tunneling current, which was attributed to the splited energy level of the nanoscale particles.

  12. Electrochemically driven organic monolayer formation on silicon surfaces using alkylammonium and alkylphosphonium reagents

    Science.gov (United States)

    Wang, Dong; Buriak, Jillian M.

    2005-10-01

    The functionalization of silicon surfaces with organic monolayers, bound through Si-C bonds, is an area of wide interest due to the technological promise of organosilicon hybrid devices, but also to investigate fundamental surface reactivity. In this paper, the use of alkylammonium and alkylphosphonium cations as sources of organic moieties to bind to hydrogen-terminated flat and porous silicon is demonstrated. Tetraalkylammonium, tetraalkyl/arylphosphonium reagents, and alkyl pyridinium salts can be utilized, but trialkylammonium salts cannot as they yield substantial surface oxidation. Under electrochemical conditions, either potentiostatic or galvanostatic modes, alkyl groups derived from the ammonium or phosphonium salts are grafted to the silicon surface and are bound through Si-C bonds. Covalent attachment of the organic monolayers to the surface was demonstrated by XPS, AFM scribing, and FTIR. The mechanism may proceed via reduction of the ammonium salt yielding alkyl radicals, R rad , which may be reduced to R - and attack surface Si-Si bonds, leading to Si-C bonds, or the formation of silyl anions (≡Si -) under the cathodic conditions followed by nucleophilic attack on the trialkylammonium cation.

  13. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    Science.gov (United States)

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  14. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  15. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe 2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xinpeng [State; Li, Fangfei [State; Lin, Jung-Fu [Department; Gong, Yuanbo [State; Huang, Xiaoli [State; Huang, Yanping [State; Han, Bo [State; Zhou, Qiang [State; Cui, Tian [State

    2017-07-19

    Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe2 via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X0) and charged (X–) exciton emission of monolayer MoSe2 can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM). During this process, X– emission undergoes a continuous blue shift until reaching saturation, while X0 emission turns up splitting. The pressure-dependent charging effect observed in alcohol mixture PTM results in the increase of the X– exciton component and facilitates the pressure-tuned emission of X– excitons. This substantial tunability of X– and X0 excitons in MoSe2 can be extended to other 2D TMDs, which holds potential for developing strained and optical sensing devices.

  16. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    Science.gov (United States)

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  17. Variation of Surface Adhesion Force During the Formation of OTS Self-assembled Monolayer Investigated by AFM

    Institute of Scientific and Technical Information of China (English)

    徐国华; HigashitaniKo

    1999-01-01

    Variation of the surface adhesion force during the formation of octadecyl trichlororilane (OTS) .self-assembled monolayer on a glass substrate surface was investigated hy atomic force microscope (AFM). The research shows that the hydrophobicity and the adbeslon force of the sample surface increases gradualy while the substrate surface is covered by OTS molecules as the reaction proceeds. After 15 min reaction, a cloee-pac.ked and smooth OTS self-assembled monolayer could from on the glass subetrate surface with an advancing contact angle of 105° and an interfaeial energy of 55.79 mJ.m-2.

  18. Chemically sensitive surface plasmon devices employing a self-assembled monolayer composite film

    Science.gov (United States)

    DePriest, J. C.; Meriaudeau, Fabrice; Oden, Patrick I.; Downey, Todd R.; Passian, A.; Wig, A. G.; Ferrell, Trinidad L.

    1998-12-01

    In this paper the results of detecting volatile organic compounds (VOC) employing surface plasmon-based sensors are presented. The initial step in preparing the sensing elements herein requires depositing Au degree(s) on a quartz slide. The sensing elements are based on either (1) freshly deposited Au degree(s) or (2) growth of a self assembled monolayer composite film (SAM) on to a freshly deposited Au degree(s) surface. The desired SAM is either (1) acid terminated using (omega) -mercaptoundecanoic acid (MUA-COOH) or (2) Cu2+ metal ion terminated yielding (omega) - mercaptoundecanoic acid-Cu2+ (MUA-Cu2+). The experimental apparatus shown here measures the reflectivity of the Au degree(s) surface as a function of time at a given angle. The response of this surface plasmon device to various VOC's is correlated to the composition of the SAM film.

  19. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    Science.gov (United States)

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  20. Electronic Structure of Single-Crystal Monolayer Graphene on Hydrogen-Terminated Germanium Surface

    Science.gov (United States)

    Ahn, Sung Joon; Lee, Jae-Hyun; Ahn, Joung Real; Whang, Dongmok

    2015-03-01

    Graphene, atomically flat 2-Dimensional layered nano material, has a lot of interesting characteristics from its unusual electronic structure. Almost properties of graphene are influenced by its crystallinity, therefore the uniform growth of single crystal graphene and layer control over the wafer scale areas remains a challenge in the fields of electronic, photonic and other devices based on graphene. Here, we report the method to make wafer scale single crystal monolayer graphene on hydrogen terminated germanium(110) surface and properties and electronic band structure of the graphene by using the tool of scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, electron transport measurement, electron diffraction and angle-resolved photoemission spectroscopy.

  1. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    Science.gov (United States)

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  2. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in

  3. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  4. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements.

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M; Grainger, David W; Castner, David G; Gamble, Lara J

    2006-05-15

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  5. Interaction of hydrocarbon monolayer surfaces across n-alkanes: A steric repulsion

    Science.gov (United States)

    Herder, Christina E.; Ninham, Barry W.; Christenson, Hugo K.

    1989-05-01

    We present results of force measurements between hydrocarbon monolayer surfaces across n-alkanes (hexane, decane, and tetradecane). The interaction is qualitatively different from that of any previously studied system and, in particular, bears no resemblance to an oscillatory solvation force. Instead, the force is repulsive from about 2.5 nm, with the exception of a shallow minimum just outside a force maximum at 0.8-0.9 nm. At smaller separations the force becomes attractive and there is a weak adhesion at contact. We suggest that the force law is due to a steric effect—a repulsive interaction originating in restrictions on chain conformations of the alkanes at small surface separations. This interaction is accessible via simple mean-field theories. The similarity of the liquid-liquid and liquid-surface interactions allows this to dominate over solvation effects. The results are of significance for interaggregate interactions in lamellar liquid crystals, microemulsions, and surfactant-stabilized dispersions.

  6. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  7. Preparation and characterization of 3-(triethoxysilyl) propyl isocyanate self-assembled monolayer on surface of chip

    Institute of Scientific and Technical Information of China (English)

    XIE Yao; GENG LiNa; QU Feng; LUO AiQin; QU Feng; DENG YuLin

    2009-01-01

    Monolayer of 3-(triethoxysilyl) propyl isocyanate was prepared on the slide by self-assembled tech-nique. X-ray photoelectron spectroscopy (XPS) was employed to analyze the elementary composition of the film. Contact angle of distilled water was measured to characterize the surface state. It was shown that 3-(triethoxysilyl) propyl isocyanate had been successfully assembled on the slide. The in-crease of contact angle to 80 demonstrated that the hydrophobicity of the surface of chip was in-creased significantly. Moreover, further self-assembly of bovine serum albumin (BSA) on 3-(trietho-xysilyl) propyl isocyanate was also carried out with the advantages such as simple and convenient preparation. Therefore, the potential of broader applications in the modification of micro-channel in the μ-TAS system, the immobilization of protein or peptide and the surface modification of materials are all expectative.

  8. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  9. Preparation of surface-tethered polymer layer on inorganic substrates by photoreactive self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Ho; Ohtsuka, Hanae [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tria, Maria Celeste R. [University of Houston, Department of Chemistry, 136 Fleming Building, Houston, TX 77204-5008 (United States); Tanaka, Kuniaki [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Advincula, Rigoberto C. [Case Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Cleveland, OH 44106 (United States); Usui, Hiroaki, E-mail: h_usui@cc.tuat.ac.jp [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-03-03

    A self-assembled monolayer (SAM) that has benzophenone (BP) terminal group was prepared on Si and indium–tin oxide (ITO) substrates, on which poly(9-vinyl carbazol) (PVK) was spin-coated and then irradiated with ultraviolet (UV) light. Upon UV irradiation, the BP unit reacted with the PVK backbone, yielding a crosslinked PVK layer that was covalently tethered to the substrate surface. Using this procedure, a patterned thin film of PVK was obtained by irradiating UV light through a photomask and then rinsing in chloroform. When polystylene (PSt) was spin-coated on the BP-SAM, only a thin interfacial layer was tethered by UV irradiation because PSt does not crosslink upon UV irradiation. The BP-SAM improved the adhesion strength between the PVK layer and ITO substrate without reducing the carrier injection from ITO to PVK. The photoreactive BP-SAM appeared to be an effective method to improve the interface between an inorganic electrode and a polymer layer deposited on its surface. - Highlights: • Polyvinylcarbazole (PVK) was tethered to substrate by self-assembled monolayer (SAM). • The photoreactive SAM was effective in improving adhesion strength of the films. • This process was applied for photopatterning of PVK layer. • The photoreactive SAM did not impede carrier injection from electrode to PVK.

  10. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Malgorzata Adamkiewicz

    2014-12-01

    Full Text Available C11-Vinyl-terminated self-assembled monolayers (SAMs on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo cyclopropane motifs with about 30% surface coverage.

  11. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs).

    Science.gov (United States)

    Adamkiewicz, Malgorzata; O'Hagan, David; Hähner, Georg

    2014-01-01

    C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C-C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage.

  12. Synthesis of Crown Ether-tethered β-Cyclodextrin and Fabrication of Its Self-assembled Monolayer on Gold Surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel β-cyclodextrin derivative 6 bearing a crown ether moiety has been synthesized by a convenient method in 9.4% yield. Its self-assembled monolayer (SAM) was fabricated on the gold surface, which was characterized by using surface-enhanced Raman spectra.

  13. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs)

    Science.gov (United States)

    Adamkiewicz, Malgorzata

    2014-01-01

    Summary C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage. PMID:25550756

  14. Highly Polymer-Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom

    NARCIS (Netherlands)

    Wang, Zhanhua; Pujari, S.P.; Lagen, van B.; Smulders, M.M.J.; Zuilhof, H.

    2016-01-01

    Organic monolayers or polymer brushes, often in combination with surface structuring, are widely used to prevent nonspecific adsorption of polymeric or biological material on sensor and microfluidic surfaces. Here it is demonstrated for the first time how robust, covalently attached alkyne-derived m

  15. Support surfaces for pressure ulcer prevention.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky

    2015-09-03

    Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence

  16. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Science.gov (United States)

    Chen, Jinjie; Edelmann, Kevin; Wulfhekel, Wulf

    2015-01-01

    Summary We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy. PMID:26733215

  17. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Directory of Open Access Journals (Sweden)

    Hironari Isshiki

    2015-12-01

    Full Text Available We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionatoterbium(III, onto metal surfaces of Cu(111, Ag(111 and Au(111 in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy.

  18. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Kyung [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Sangjin [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jon, Sangyong [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, Insung S [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of)

    2007-10-03

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer'' (registered) bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of {approx}163 deg., which is indicative of superhydrophobic surfaces.

  19. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Science.gov (United States)

    Cho, Woo Kyung; Park, Sangjin; Jon, Sangyong; Choi, Insung S.

    2007-10-01

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer® bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of ~163°, which is indicative of superhydrophobic surfaces.

  20. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  1. Modification of degenerative photoluminescence in aged monolayer WSsub>2sub> by PCsub>61sub>BM surface processing.

    Science.gov (United States)

    Liu, Yu; Zheng, Xin; Li, Han; Xu, Zhongjie; Jiang, Tian

    2017-02-01

    Owing to their unique physical properties, monolayer transition metal dichalcogenides (TMDCs) have been widely used in applications of light-emitting diodes (LEDs). However, monolayers of TMDCs undergo dramatic aging effects, including intense degradation in optical behavior, extensive cracking, and severe quenching of the direct gap photoluminescence (PL), seriously limiting the device performance. In this work, we show that monolayer WSsub>2sub> stored for three months even in the glovebox exhibits obvious degenerative PL with changed peak position that can be attributed to the presence of a large number of trions induced by the aging effect. PCsub>61sub>BM surface processing was used to modify the surface of the aged monolayer WSsub>2sub>. As expected, higher uniformity in the PL spectrum was obtained. Besides, the PL peak wavelength was modified to be the same as that of the nonaged one and did not change even at higher excitation power. This strategy is shown to successfully suppress the formation of the trion by transferring the excess electrons from WSsub>2sub> to PCsub>61sub>BM. The results demonstrate the feasibility of applying PCsub>61sub>BM surface modification to improve the performance of the LED based on monolayer WSsub>2sub>.

  2. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  3. The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures

    CERN Document Server

    Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

    2014-01-01

    The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

  4. Chemisorption and catalytic reactivity of cobalt and sulfur monolayers on ordered molybdenum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knight, C.C.

    1992-03-01

    Complex Co/Mo sulfide catalysts are modelled by the chemisorption of layers on Mo single crystal surfaces. Growth and structure of overlayers on flat, stepped and kinked surfaces were investigated. Growth of Co overlayers on clean and S covered Mo surfaces was studied using AES and CO chemisorption; results reveal that Co grows as a flat monolayer on clean Mo surfaces. Co multilayers then form 3-D islands. When Co is deposited on S covered surfaces, the S overlayer migrates to the top; this topmost overlayer reduces CO adsorption capacity. While growth mode of Co overlayers are similar on flat and stepped surfaces, the number and type of ordered Co and S structures on flat and stepped surfaces are different. In the case of Co, an ordered (3 {times} 1) structure is formed on Mo(910) and (28,4,1) surfaces; this structure does not develop on clean (100) surface. Only one of two possible (3 {times} 1) Co domains are formed on Mo(910) and Mo(28,4,1) surfaces. These domains have one side of (3 {times} 1) unit cell parallel to the step edges, suggesting that Co adsorbs at the step edges. The (3 {times} 1) structure does not form on Mo(911) surface, indicating that step orientation can restrict formation of ordered overlayers. For chemisorbed S, only a subset of ordered overlayers on flat (100) surface nucleate on (910) and (911) and (28,4,1) surfaces. Ordered S overlayers also form domains that maximize the number of sulfur-step atom bonds. The adsorption and ordering of S overlayers on stepped and kinked Mo surfaces lead to doubling of step height and terrace width. Thiophene hydrodesulfurization (HDS) reactions were performed over Mo crystal surfaces modified by chemisorption of S, Co, C, and S + Co. The stepped and kinked Mo surfaces have reactivities greater than low Miller index (100) surface. Chemisorption of adsorbates decreased the thiophene HDS reactivity. Deposition of Co on Mo single crystal surfaces did not lead to increased HDS activity.

  5. Giant perpendicular magnetic anisotropy of an Ir monolayer on a NiAl(001) surface

    Science.gov (United States)

    Kim, Dongyoo; Yang, Jeonghwa; Hong, Jisang

    2009-08-01

    Using the state-of-the-art full potential linearized augmented plane-wave method, we have investigated the magnetic properties of Os and Ir monolayer (ML) film on NiAl(001) surface. It has been found that the one ML of Os and Ir film can have ferromagnetic ground state with magnetic moment of 0.35 and 0.64μB on Ni terminated surface, whereas both films display no sign of magnetic state on Al terminated surface. In addition, the surface Ni atom has an induced magnetic moment of 0.26μB in Ir/NiAl(001), while only 0.09μB is observed in Os/NiAl(001). We attribute the existence of magnetism to the interaction between 5d of adlayer and 3d of surface Ni. Moreover, we have obtained that the Os/NiAl(001) and Ir/NiAl(001) films show a perpendicular magnetic anisotropy (PMA). Surprisingly, it appears that the Ir/NiAl(001) has a giant PMA energy of 7.18 meV.

  6. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  7. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture.

    Science.gov (United States)

    Diaz-Romero, Jose; Gaillard, Jean Philippe; Grogan, Shawn Patrick; Nesic, Dobrila; Trub, Thomas; Mainil-Varlet, Pierre

    2005-03-01

    Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications. 2004 Wiley-Liss, Inc.

  8. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  9. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Roshan Entezar, Samad

    2014-11-01

    We investigated theoretically the existence of surface polaritons (SPs) at the interface of a one-dimensional photonic crystal containing graphene monolayers. It is shown that the structure has a new type of the photonic band gap in the THz region which is strictly omnidirectional for the TM-polarization and can support the SPs for both TM-polarization and TE-polarization. The results show that the characteristics of the SPs depends on the optical properties of the graphene sheets which can be controlled by a gate voltage. We plotted the electromagnetic field profiles of the SPs at the frequency range of the graphene induced band gap and a conventional Bragg gap of the structure. It is found that the SPs at the graphene induced band gap are more localized than the SPs at the Bragg gaps.

  10. Band structure and Fermi surface of electron-doped C60 monolayers.

    Science.gov (United States)

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  11. Influence of surface properties of mix-monolayers on lipolytic hydrolysis

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Dahmen, U.; Brezesinski, G.

    2000-01-01

    Fluorescence microscopy, surface potential, and activity measurements were used to investigate the influence of fatty acids and fatty alcohols on the lipolytic activity of several lipases. We have determined the lateral lipid distribution and interfacial properties of Langmuir mixed monolayers...... correlates with the isoelectric point (pI) of the enzymes. A simpler mechanism is observed by the addition of fatty alcohol. Within the concentration range studied, 1-octadecanol is immiscible in the diacylglyceride matrix, forming liquid-condensed domains. The inhibitory effect is related to the reduction...... composed of 1,2-didecanoylglycerol/eicosanoic acid or 1,2-didecanoylglycerol/1-octadecanol molecules and have measured lipase activities toward these films. Enzymatic activities are remarkably influenced by the addition of fatty acid. Activity decreases continuously up to a mole fraction of ≈ 0.1 fatty...

  12. Preparation and Characterization of Covalently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface

    Directory of Open Access Journals (Sweden)

    Lv Zhengjian

    2009-01-01

    Full Text Available Abstract The 16-mercaptohexadecanoic acid (MHA film and rat anti-human IgG protein monolayer were fabricated on gold substrates using self-assembled monolayer (SAM method. The surface properties of the bare gold substrate, the MHA film and the protein monolayer were characterized by contact angle measurements, atomic force microscopy (AFM, grazing incidence X-ray diffraction (GIXRD method and X-ray photoelectron spectroscopy, respectively. The contact angles of the MHA film and the protein monolayer were 18° and 12°, respectively, all being hydrophilic. AFM images show dissimilar topographic nanostructures between different surfaces, and the thickness of the MHA film and the protein monolayer was estimated to be 1.51 and 5.53 nm, respectively. The GIXRD 2θ degrees of the MHA film and the protein monolayer ranged from 0° to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p or N1s, respectively. Taken together, these results indicate that MHA film and protein monolayer were successfully formed with homogeneous surfaces, and thus demonstrate that the SAM method is a reliable technique for fabricating protein monolayer.

  13. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Science.gov (United States)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica

    2017-01-01

    We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  14. Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.

    Science.gov (United States)

    Tatay, Sergio; Galbiati, Marta; Delprat, Sophie; Barraud, Clément; Bouzehouane, Karim; Collin, Sophie; Deranlot, Cyrile; Jacquet, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2016-03-09

    Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such as magnetic tunnel junctions fabricated using a nano-indentation based lithography technique. The observed exponential increase of tunnel resistance as a function of alkyl chain length is a direct proof of the successful connection of molecules to ferromagnetic electrodes. For all alkyl chains studied we obtain stable and robust tunnel magnetoresistance, with effects ranging from a few tens to 10 000%. These results show that functionalized electrodes can be integrated in spintronics devices and open the door to a molecular engineering of spintronics.

  15. Covalently attached organic monolayers on SiC and SixN4 surfaces: Formation using UV light at room temperature

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Arafat, A.; Schroën, C.G.P.H.; Zuilhof, H.

    2009-01-01

    We describe the formation of alkyl monolayers on silicon carbide (SiC) and silicon-rich silicon nitride (SixN4) surfaces, using UV irradiation in the presence of alkenes. Both the surface preparation and the monolayer attachment were carried out under ambient conditions. The stable coatings obtained

  16. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    Energy Technology Data Exchange (ETDEWEB)

    Schougaard, Steen B. [Departement de Chimie, Universite du Quebec a Montreal, Case postale 8888, Succ. Centre-ville, Montreal, Quebec, H3C 3P8 (Canada); Texas Materials Institute, Center for Nano and Molecular Science and Engineering, Department Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78722 (United States)], E-mail: schougaard.steen@uqam.ca; Reitzel, Niels; Bjornholm, Thomas [Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Kjaer, Kristian [Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg, D-14476 Potsdam (Germany); Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Jensen, Torben R. [Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, DK-8000 Aarhus C (Denmark); Shmakova, Olga E.; Colorado, Ramon; Lee, T. Randall [Department of Chemistry, University of Houston, Houston, TX 77204-5003 (United States); Choi, J.-H.; Markert, John T.; Derro, David; Lozanne, Alex de [Department of Physics, University of Texas at Austin, Austin, TX 78712-1081 (United States); McDevitt, John T. [Texas Materials Institute, Center for Nano and Molecular Science and Engineering, Department Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78722 (United States)

    2007-09-14

    A self-assembled monolayer of CF{sub 3}(CF{sub 2}){sub 3}(CH{sub 2}){sub 11}NH{sub 2} atop the (001) surface of the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 A square {radical}2 x {radical}2R45{sup o} unit cell previously predicted for alkyl amines by molecular modeling [J.E. Ritchie, C.A. Wells, J.-P. Zhou, J. Zhao, J.T. McDevitt, C.R. Ankrum, L. Jean, D.R. Kanis, J. Am. Chem. Soc. 120 (1998) 2733]. Additionally, the 3D structure of an analogous Langmuir monolayer of CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 11}NH{sub 2} on water was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed.

  17. The Electrochemical Characteristics of Multilayer Assembly of Hemoglobin and Polystyrene Sulfonate at Self-assembled Monolayer Surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A multilayer film of hemoglobin (Hb) molecules and polyelectrolyte sulfonate were fabricated on a thiol self-assembled monolayers (SAMs) by electrostatic force.The Hb maintains electroactive property in the multilayer film, methylene blue (MB) incorporated into the multilayer can enhance the electron transfer rate between the Hb and the electrode surface.

  18. Molecular dynamics studies of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Newton, J. C.; Taub, H.

    1993-01-01

    The effect of molecular steric properties on the melting of quasi-two-dimensional solids is investigated by comparing results of molecular dynamics simulations of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite. These molecules differ only in their leng...

  19. Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2016-06-09

    The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known to stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.

  20. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  1. Adsorption and dissociation of H2S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Science.gov (United States)

    Li, Yi; Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai; Su, Wenyue; Zhang, Yongfan

    2016-11-01

    Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H2S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H2S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H2S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first Hsbnd S bond is the rate-determining step for the H2S dissociation. Our results reveal that in most cases, the decomposition of H2S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H2S molecule.

  2. Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM.

    Science.gov (United States)

    Guo, Quanmin; Li, Fangsen

    2014-09-28

    The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.

  3. Adsorption of biopolymers human serum albumin and human gamma globulin to well-defined surfaces of self-assembled monolayers

    Science.gov (United States)

    Cregger, Tricia Ann

    The tenacity with which the blood proteins Human Serum Albumin (HSA) and Human Gamma Globulin (HGG) adsorb to a surface modified with a monomolecular coating varies with the packing of the alkyl chains in the coating. The adsorption of proteins onto well-defined surfaces of self-assembled monolayers (SAMs) was studied with X-ray reflectometry (XR), neutron reflectometry (NR), optical reflectometry, and total internal reflection fluorescence (TIRF). NR and XR was used to study adsorption in the absence of flow, while optical reflectometry and TIRF were used to probe the adsorption under flow conditions. In particular, competitive adsorption measurements of binary solutions of HSA, HGG and Fibrinogen (FIB) were performed with TIRE The properties of the surface were varied by altering the alkyl chains' packing density and the chain end functionality of the SAMs. The depth profiles of protein concentration near the adsorbing surface measured by NR were dependent upon the chain packing density in the case of HSA. The concentration depth profile of HGG was unaltered by varying chain packing density. Measurements performed under flow using optical reflectometry showed a different behavior: the surface excess of adsorbed HSA was relatively independent of the surface packing, while the surface excess of HGG depended on the packing density of the SAM. The tenacity with which the proteins adsorbed to different functionalized surfaces was determined by attempting to remove the protein using a strong surfactant, sodium dodecyl sulfate (SDS). Ex situ XR measurements suggested that both HSA and HGG adsorb more tenaciously to a less densely-packed monolayer, almost independent of surface functionality. Two exceptions were a less densely-packed vinyl-terminated monolayer and a less densely-packed bromine-terminated monolayer, from which HSA could not be removed at all.

  4. Surface Shear Viscosity and Phase Transitions of Monolayers at the Air-Water Interface

    Science.gov (United States)

    Relini, A.; Ciuchi, F.; Rolandi, R.

    1995-08-01

    The canal method has been employed to measure the in-plane steady shear viscosity of monolayers of bolaform lipids extracted from the membrane of the thermophilic microorganism Sulfolobus solfataricus. Monolayers were formed with the polar lipid extract (PLE), which is a mixture of several bolaform lipids, each one endowed with two nonequivalent polar headgroups. Viscosities were obtained from the measured flows by using the equation introduced by Joly; this equation contains a semiempirical parameter A, which takes into account the monolayer-subphase mechanical coupling. Measuring the flows for two different substances (PLE and oleic acid) and channel widths, the monolayer viscosities and the parameter A were determined at the same time. The analysis of the viscosity data according to the free area model shows evidences of the molecular conformational changes matching monolayer phase transitions.

  5. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.

    Science.gov (United States)

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Wu, Yi-Hao

    2012-11-07

    As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10(-14) M and an enhancement factor of 5.0 × 10(8). Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2'-bipyridine (BPy).

  6. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs

  7. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    Laskin, Julia; Hu, Qichi

    2017-03-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  8. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    Laskin, Julia; Hu, Qichi

    2017-07-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  9. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengWu; YI XiZhang

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO-3/CH3(CH2)nN+(CH3)3 as an example, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solution has been studied. εcan be obtained with two methods. One is from the relationship between εand the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  10. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  11. Specific binding of avidin to biotin containing lipid lamella surfaces studied with monolayers and liposomes.

    Science.gov (United States)

    Liu, Z; Qin, H; Xiao, C; Wen, C; Wang, S; Sui, S F

    1995-01-01

    The interaction of avidin (from egg white) with phospholipid (monolayer and bilayer) model membranes containing biotin-conjugated phospholipids has been studied. In the first part, using surface sensitive techniques (ellipsometry and surface plasmon resonance) we demonstrated that the nonspecific adsorption of avidin to phospholipid lamella could be abolished by adding an amount of Ca2+, Mg2+ or Ba2+ that led to an electrostatic interaction. The specific binding of avidin to lipid mixtures containing biotin-conjugated phospholipids was obviously composition dependent. The ratio 1:12 of a B-DPPE/DPPE mixture was found to be the optimum molar ratio. When we compared the results from the surface sensitive techniques with those from the electron micrographs of a two dimensional crystal of avidin (obtained in our laboratory), the optimum ratio was found to be determined by the effect of lateral steric hindrance. In the second part, we observed the pattern of the layers of fluorescently labeled phospholipid and adsorbed proteins with a home-made micro fluorescence film balance. The fluorescence images showed that avidin was preferentially bound to the receptors that were in the fluid domains. Further, with a sensitive fluorescence assay method, the effect of the phase behavior of liposomes on the specific binding of avidin was measured. This showed that avidin interacted with biotinlipid more weakly in the gel state liposome than in the liquid state liposome. The major conclusion was that the binding of avidin to a membrane bound model receptor was significantly restricted by two factors: one was the lateral steric hindrance and the other was the fluidity of the model membrane.

  12. Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization.

    Science.gov (United States)

    Chen, Sung-Te; Chen, Giin-Shan

    2011-10-04

    In this work, an attempt to fabricate nanostructured metallization patterns on SiO(2) dielectric layers is made by using plasma-patterned self-assembled monolayers (SAMs), in conjunction with a novel aqueous seeding and electroless process. Taking octadecyltrichlorosilane (OTS) as a test material, the authors demonstrate that optimizing the N(2)-H(2) plasma conditions leads to the successive conversion of the topmost aliphatic chains of alkyl SAMs to carboxyl (COOH) and hydroxyl (C-OH) functional groups, which was previously found in alkyl SAMs only by exposure to "oxygen-based" plasma. Further modifying the plasma-exposed (either COOH or C-OH terminated) regions with an aqueous solution (SC-1) creates surface functionalities that are viable for site-controlled metallic seeding (e.g., Co or Ni) with an adsorption selectivity of greater than 1000:1. Neither the combination of costly PdCl(2) and complex additives nor the demerits of the associated aqueous chemistry (e.g., seed agglomeration and seed sparseness) are involved. Therefore, the seed particles are only 3 nm in size. Simultaneously, there are sufficient particle densities previously unattainable for electroless deposition to trigger highly resolved Cu metallization patterns with a film thickness of less than 10 nm. The formation of the seed-adsorbing sites is discussed, based on a plasma-dissociated, water-mediated chemical oxidation route.

  13. Applications of Self-Assembled Monolayers in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Charles K. Klutse

    2012-01-01

    Full Text Available The increasing applications of surface-enhanced Raman scattering (SERS has led to the development of various SERS-active platforms (SERS substrates for SERS measurement. This work reviews the current optimization techniques available for improving the performance of some of these SERS substrates. The work particularly identifies self-assembled-monolayer- (SAM- based substrate modification for optimum SERS activity and wider applications. An overview of SERS, SAM, and studies involving SAM-modified substrates is highlighted. The focus of the paper then shifts to the use of SAMs to improve analytical applications of SERS substrates by addressing issues including long-term stability, selectivity, reproducibility, and functionalization, and so forth. The paper elaborates on the use of SAMs to achieve optimum SERS enhancement. Specific examples are based on novel multilayered SERS substrates developed in the author’s laboratory where SAMs have been demonstrated as excellent dielectric spacers for improving SERS enhancement more than 20-fold relative to conventional single layer SERS substrates. Such substrate optimization can significantly improve the sensitivity of the SERS method for analyte detection.

  14. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy

    Science.gov (United States)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2017-09-01

    The internal structure of self-assembled monolayers (SAMs) such as 3-aminopropyltriethoxysilane (APTES) fabricated on a glass substrate is difficult to characterize and analyze at nanometer level. In this study, we employed surface-enhanced Raman spectroscopy (SERS) to study the internal molecular structure of APTES SAMs. The sample APTES SAMs were deposited with Ag nanoparticles to enhance the Raman signal and to obtain subtler structure information, which were supported by density functional theory calculations. In addition, in order to carry out high-resolution analysis, especially for vertical direction, a fine piezo electric positioner was used to control the depth scanning with a step of 0.1 nm. We measured and distinguished the vertical Raman intensity variations of specific groups in APTES, such as Ag/NH2, CH2, and Sisbnd O, with high resolution. The interfacial bond at the two interfaces of Ag-APTES and APTES-SiO2 was identified. Moreover, APTES molecule orientation was demonstrated to be inhomogeneous from frequency shift.

  15. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

    Directory of Open Access Journals (Sweden)

    Yaron Paz

    2011-12-01

    Full Text Available The ability to control the properties of self-assembled monolayers (SAMs attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO2 or, in a complementary manner, as TiO2 grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO2 is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed.

  16. Phosphatidylcholine Monolayer Formation at a Liquid:Liquid Interface as Monitored by the Dynamic Surface Tension

    Science.gov (United States)

    2007-11-02

    concentration, while liquid crystalline vesicles form tightly packed monolayers at bulk PC concentrations above 2 ^Molar. Resolving this paradigm ...regardless of lipid bilayer phase. Initially, vesicle rupture probably represents an entropically driven process. The system will become increasingly

  17. Fabrication of molecular nanopatterns at aluminium oxide surfaces by nanoshaving of self-assembled monolayers of alkylphosphonates.

    Science.gov (United States)

    El Zubir, Osama; Barlow, Iain; Leggett, Graham J; Williams, Nicholas H

    2013-11-21

    Nanoshaving, by tracing an atomic force microscope probe across a surface at elevated load, has been used to fabricate nanostructures in self-assembled monolayers of alkylphosphonates adsorbed at aluminium oxide surfaces. The simple process is implemented under ambient conditions. Because of the strong bond between the alkylphosphonates and the oxide surface, loads in excess of 400 nN are required to pattern the monolayer. Following patterning of octadecylphosphonate SAMs, adsorption of aminobutyl phosphonate yielded features as small as 39 nm. Shaving of monolayers of aryl azide-terminated alkylphosphonates, followed by attachment of polyethylene glycol to unmodified regions in a photochemical coupling reaction, yielded 102 nm trenches into which NeutrAvidin coated, dye-labelled, polymer nanospheres could be deposited, yielding bright fluorescence with little evidence of non-specific adsorption to other regions of the surface. Structures formed in alkylphosphonate films by nanoshaving were used to etch structures into the underlying metal. Because of the isotropic nature of the etch process, and the large grain size, some broadening was observed, but features 25-35 nm deep and 180 nm wide were fabricated.

  18. Copper Contamination of Self-Assembled Organic Monolayer Modified Silicon Surfaces Following a "Click" Reaction Characterized with LAPS and SPIM.

    Science.gov (United States)

    Wu, Fan; Zhang, De-Wen; Wang, Jian; Watkinson, Michael; Krause, Steffi

    2017-04-04

    A copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction combined with microcontact printing was used successfully to pattern alkyne-terminated self-assembled organic monolayer-modified silicon surfaces. Despite the absence of a copper peak in X-ray photoelectron spectra, copper contamination was found and visualized using light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) after the "click"-modified silicon surfaces were rinsed with hydrochloric acid (HCl) solution, which was frequently used to remove copper residues in the past. Even cleaning with an ethylenediaminetetraacetic acid (EDTA) solution did not remove the copper residue completely. Different strategies for avoiding copper contamination, including the use of bulky chelators for the copper(I) catalyst and rinsing with different reagents, were tested. Only cleaning of the silicon surfaces with an EDTA solution containing trifluoroacetic acid (TFA) after the click modification proved to be an effective method as confirmed by LAPS and SPIM results, which showed the expected potential shift due to the surface charge introduced by functional groups in the monolayer and allowed, for the first time, imaging the impedance of an organic monolayer.

  19. Photocatalytic oxidation of the organic monolayers on TiO{sub 2} surface investigated by in-situ sum frequency generation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yujin; Peng, Qiling; Ma, Tongsen; Nishida, Takuma; Ye, Shen, E-mail: ye@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 060-0811 (Japan)

    2015-10-01

    In-situ vibrational sum frequency generation (SFG) spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA) monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS) monolayer prepared by the self-assembling method, on a TiO{sub 2} surface under ultraviolet (UV) irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO{sub 2} surface.

  20. Photocatalytic oxidation of the organic monolayers on TiO2 surface investigated by in-situ sum frequency generation spectroscopy

    Directory of Open Access Journals (Sweden)

    Yujin Tong

    2015-10-01

    Full Text Available In-situ vibrational sum frequency generation (SFG spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS monolayer prepared by the self-assembling method, on a TiO2 surface under ultraviolet (UV irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO2 surface.

  1. Structure and dynamics of monolayer films of squalane molecules adsorbed on a solid surface

    Science.gov (United States)

    D. T Enevoldsen, A.; Hansen, F. Y.; Diama, A.; Taub, H.

    2003-03-01

    Squalane is a branched alkane (C_30H_62). It consists of a straight chain with 24 carbon atoms, as in tetracosane (C_24H_50), and has six methyl side groups. Branched polymers such as squalane are thought to be better lubricants than n-alkanes. At low temperature, our molecular dynamics (MD) simulations show that the molecules form an ordered monolayer which melts at approximately 325 K compared to the tetracosane monolayer melting point of ˜ 340 K. Our MD simulations indicate the same melting mechanism in the squalane monolayer that was found previously for tetracosane (F. Y. Hansen and H. Taub, Phys. Rev. Lett. 69, 652 (1992).) They also show that the adsorbed molecules are distorted from an all-trans carbon backbone in contrast to what was found for tetracosane. This may explain why the Bragg diffraction peaks were observed to be broader for the squalane monolayer than for tetracosane (D. Fuhrmann, A. P. Graham, L. Criswell, H. Mo, B. Matthies, K. W. Herwig, and H. Taub, Surf. Sci. 482-485, 77 (2001).). The diffusive motion in a squalane monolayer has been investigated by both quasielastic neutron scattering and MD simulations and compared to the dynamics in tetracosane monolayers. Focus will be on differences in the dynamics.

  2. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    Science.gov (United States)

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  3. Surface diffusion of CO on Ni(111) studied by diffraction of optical second-harmonic generation off a monolayer grating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.D.; Rasing, T.; Shen, Y.R.

    1988-12-19

    Diffraction of optical second-harmonic generation from a monolayer grating created by laser desorption of adsorbates can be used to study surface diffusion of molecules on substrates. Application of this novel technique to CO on Ni(111) yields a diffusion activation energy of 6.9 kcal/mol and a preexponential factor of approx. =1.2 x 10/sup -5/ cm/sup 2/s/sup -1/.

  4. Use of enzyme label for quantitative evaluation of liposome adhesion on cell surface: studies with J774 macrophage monolayers.

    Science.gov (United States)

    Trubetskoy, V S; Dormeneva, E V; Tsibulsky, V P; Repin, V S; Torchilin, V P

    1988-07-01

    A method for quantitation of cell surface-bound liposomes utilizing J774 macrophage monolayers is developed. Surface-bound biotinyl-containing and 125I-labeled liposomes were quantified with avidin-peroxidase in an ELISA-like assay. Peroxidase substrate absorbance values were recalculated into the absolute amount of liposomal lipid using a special calibration plot. Total liposome uptake by macrophages was determined following the binding of 125I radioactivity. The approach suggested allows quantitative evaluation of the changes in the content of surface-adhered liposomes during their interaction with cells in vitro.

  5. Self-Spreading of Lipid Bilayer on a Hydrophobic Surface Made by Self-Assembled Monolayer with Short Alkyl Chain.

    Science.gov (United States)

    Omori, Yuya; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi

    2016-04-01

    Behaviors of self-spreading of lipid bilayer membrane on a glass surface modified with self-assembled monolayer (SAM) with short alkyl chain were observed with fluorescence microscopy. Hydrophobic surface made by SAM was found to hamper the self-spreading phenomenon but the lipid bilayer spread on a hydrophilic one where SAM was decomposed by oxidation. On a binary surface having a hydrophobic region and a hydrophilic one, the lipid bilayer spread on the hydrophilic region but it stopped at the boundary of the hydrophobic region.

  6. Penetration of lipid monolayers by psychoactive drugs

    NARCIS (Netherlands)

    Demel, R.A.; Deenen, L.L.M. van

    1966-01-01

    The ability of a number of psychoactive drugs to penetrate lipid monolayers of varying composition was examined, and the following observation were made: (1) The increase in surface pressure of a monomolecular film appeared to depend on the chemical nature of the lipid as well as on the initial film

  7. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces.

    Science.gov (United States)

    Bould, Jonathan; Macháček, Jan; Londesborough, Michael G S; Macías, Ramón; Kennedy, John D; Bastl, Zdeněk; Rupper, Patrick; Baše, Tomáš

    2012-02-01

    Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be

  8. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gokcen, Dincer; Bae, Sang-Eun [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Brankovic, Stanko R., E-mail: Stanko.Brankovic@mail.uh.edu [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemical and Biomolecular Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemistry Department, University of Houston, Houston, TX 772004-4005 (United States)

    2011-06-30

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  9. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    Science.gov (United States)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.; Dimeo, R. M.; Neumann, D. A.; Copley, J. R. D.

    2007-03-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon backbone, and squalane has an additional six methyl side groups symmetrically placed along its length. The authors' principal objective has been to determine the influence of the side groups on the dynamics of the squalane monolayer and thereby assess its potential as a nanoscale lubricant. To investigate the dynamics of these monolayers they used both the disk chopper spectrometer (DCS) and the high flux backscattering spectrometer (HFBS) at the National Institute of Standards and Technology. These instruments made it possible to study dynamical processes such as molecular diffusive motions and vibrations on very different time scales: 1-40ps (DCS) and 0.1-4ns (HFBS). The MD simulations were done on corresponding time scales and were used to interpret the neutron spectra. The authors found that the dynamics of the two monolayers are qualitatively similar on the respective time scales and that there are only small quantitative differences that can be understood in terms of the different masses and moments of inertia of the two molecules. In the course of this study, the authors developed a procedure to separate out the low-frequency vibrational modes in the spectra, thereby facilitating an analysis of the quasielastic scattering. They conclude that there are no major differences in the monolayer dynamics caused by intramolecular branching. It remains to be seen whether this similarity in monolayer dynamics also holds for the lubricating properties of these molecules in confined geometries.

  10. Self-assembling Process of Alkanethiol Monolayers on Gold Surface via Underpotential Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

  11. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their...

  12. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.;

    2007-01-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon...

  13. Immobilization of rhodium complexes at thiolate monolayers on gold surfaces : Catalytic and structural studies

    NARCIS (Netherlands)

    Belser, T; Stöhr, Meike; Pfaltz, A

    2005-01-01

    Chiral rhodium-diphosphine complexes have been incorporated into self-assembled thiolate monolayers (SAMS) on gold colloids. Catalysts of this type are of interest because they combine properties of homogeneous and heterogeneous systems. In addition, it should be possible to influence the catalytic

  14. pH sensitivity of Si-C linked organic monolayers on crystalline silicon surfaces

    NARCIS (Netherlands)

    Faber, Erik Jouwert; Sparreboom, Wouter; Groeneveld, Wilrike; de Smet, Louis C.P.M.; Bomer, Johan G.; Olthuis, Wouter; Zuilhof, Han; Sudholter, Ernst; Sudhölter, Ernst J.R.; Bergveld, Piet; van den Berg, Albert

    2007-01-01

    The electrochemical behaviour of Si-C linked organic monolayers is studied in electrolyte-insulator-Si devices, under conditions normally encountered in potentiomeric biosensors, to gain fundamental knowledge on the behaviour of such Si electrodes under practical conditions. This is done via

  15. Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties

    Science.gov (United States)

    Malyar, Ivan V.; Titov, Evgenii; Lomadze, Nino; Saalfrank, Peter; Santer, Svetlana

    2017-03-01

    We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). It was found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of the work function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions.

  16. Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elton J.G.; Sullion, Declan; Chu, Ximo S.; Li, Duo O.; Guisinger, Nathan P.; Wang, Qing Hua

    2017-09-21

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C60 molecules self-assembled on the surface of WSe2 in well-ordered arrays with large grain sizes (∼5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure in the C60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. This rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.

  17. Laser desorption ionization-time-of-flight mass analysis of perfluoropolyether monolayer directly from hard disk medium surface.

    Science.gov (United States)

    Kudo, Toshiji; Macht, Marcus; Kuroda, Masami

    2011-07-15

    Modern life is dependent on computer technology, and because the volume of digital data in the world is increasing rapidly, the importance of data storage devices is also increasing rapidly. Among them, demands for magnetic disk drive well-known as hard disk drives is quite huge and information recording density on the disk media is continuing to grow dramatically. For the research and development of the magnetic disk media, it is critical to investigate and characterize the lubricant layer formed on the disk media surface. However, it is difficult because the layer is only a monolayer which has only approximately 1 nm thickness in many cases. Although matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) measurements of monolayers have already been reported (Su, J.; Mrksich, M. Langmuir, 2003, 19, 4867-4870), lubricants used here are (co)polymers which have molecular weight distributions and are mixtures of various degrees of polymerization. This can reduce the sensitivity of MS measurement because the number (or density) of distinct single molecular species is lower than for homogeneous samples. In this report, direct measurement and characterization of lubricant monolayers using the LDI-TOF-MS instrument is performed to gain insight into detailed information like average molecular weight, polymer distribution, and two-dimensional mapping directly from magnetic disk monolayers. To our knowledge, this is the first time such information was acquired directly from hard disk media. The technique reported here might open up new possibilities also for investigations of various electronic devices other than magnetic hard disks.

  18. Adsorption and dissociation of H{sub 2}S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: liy99@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005 (China); Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Su, Wenyue [State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China); Zhang, Yongfan, E-mail: zhangyf@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China)

    2016-11-30

    Highlights: • For the molecular adsorption, the introducing Ni monolayer on Pd(111) can reduce the binding strength between H{sub 2}S and the surface. • The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. • Monolayer Ni-Pd(111) surface may exhibit a good sulfur resistance performance because there is a competition between the desorption and decomposition of H{sub 2}S molecule. - Abstract: Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H{sub 2}S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H{sub 2}S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first H−S bond is the rate-determining step for the H{sub 2}S dissociation. Our results reveal that in most cases, the decomposition of H{sub 2}S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H{sub 2}S molecule.

  19. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    Science.gov (United States)

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components.

  20. From monomer to monolayer: a global optimisation study of (ZnO)n nanoclusters on the Ag surface.

    Science.gov (United States)

    Demiroglu, Ilker; Woodley, Scott M; Sokol, Alexey A; Bromley, Stefan T

    2014-12-21

    We employ global optimisation to investigate how oxide nanoclusters of increasing size can best adapt their structure to lower the system energy when interacting with a realistic extended metal support. Specifically, we focus on the (ZnO)@Ag(111) system where experiment has shown that the infinite Ag(111)-supported ZnO monolayer limit corresponds to an epitaxially 7 : 8 matched graphene-like (Zn(3)O(3))-based hexagonal sheet. Using a two-stage search method based on classical interatomic potentials and then on more accurate density functional theory, we report global minina candidate structures for Ag-supported (ZnO)n cluster with sizes ranging from n = 1-24. Comparison with the respective global minina structure of free space (ZnO)n clusters reveals that the surface interaction plays a decisive role in determining the lowest energy Ag-supported (ZnO)n cluster structures. Whereas free space (ZnO)n clusters tend to adopt cage-like bubble structures as they grow larger, Ag-supported (ZnO)n clusters of increasing size become progressively more like planar cuts from the infinite graphene-like ZnO single monolayer. This energetic favourability for planar hexagonal Ag-supported clusters over their 3D counterparts can be partly rationalised by the ZnO-Ag(111) epitaxial matching and the increased number of close interactions with the Ag surface. Detailed analysis shows that this tendency can also be attributed to the capacity of 2D clusters to distort to improve their interaction with the Ag surface relative to more rigid 3D bubble cluster isomers. For the larger sized clusters we find that the adsorption energies and most stable structural types appear to be rather converged confirming that our study makes a bridge between the Ag-supported ZnO monomer and the infinite Ag-supported ZnO monolayer.

  1. Surface passivation of (100 GaSb using self-assembled monolayers of long-chain octadecanethiol

    Directory of Open Access Journals (Sweden)

    E. Papis-Polakowska

    2016-05-01

    Full Text Available The passivation of (100 GaSb surface was investigated by means of the long-chain octadecanethiol (ODT self-assembled monolayer (SAM. The properties of ODT SAM on (100 GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10mM ODT-C2H5OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.

  2. Adsorption of Ions at Uncharged Insoluble Monolayers

    Science.gov (United States)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  3. Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces

    Science.gov (United States)

    2017-01-01

    Inspired by the homogeneous catalyst tris(pentafluorophenyl) borane [B(C6F5)3], which acts as a promotor of Si–H bond activation, we developed and studied a method of modifying silicon oxide surfaces using hydrosilanes with B(C6F5)3 as the catalyst. This dedihydrosiloxanation reaction yields complete surface coverage within 10 min at room temperature. Organic monolayers derived from hydrosilanes with varying carbon chain lengths (C8–C18) were prepared on oxidized Si(111) surfaces, and the thermal and hydrolytic stabilities of the obtained monolayers were investigated in acidic (pH 3) medium, basic (pH 11) medium, phosphate-buffered saline (PBS), and deionized water (neutral conditions) for up to 30 days. DFT calculations were carried out to gain insight into the mechanism, and the computational results support a mechanism involving silane activation with B(C6F5)3. This catalyzed reaction path proceeds through a low-barrier-height transition state compared to the noncatalyzed reaction path. PMID:28230381

  4. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.

    Science.gov (United States)

    Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger

    2016-11-01

    All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and

  5. Characteristics of localized surface plasmons excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles.

    Science.gov (United States)

    Tanaka, Daisuke; Imazu, Keisuke; Sung, Jinwoo; Park, Cheolmin; Okamoto, Koichi; Tamada, Kaoru

    2015-10-07

    The fundamental characteristics of localized surface plasmon resonance (LSPR) excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles (AgNPs and AuNPs, respectively) were investigated. Mixed monolayered films were fabricated at the air-water interface at different mixing ratios. The films retained their phase-segregated morphologies in which AuNPs formed several 10 to 100 nm island domains in a homogeneous AgNP matrix phase. The LSPR bands originating from the self-assembled domains shifted to longer wavelengths as the domain size increased, as predicted by a finite-difference time-domain (FDTD) simulation. The FDTD simulation also revealed that even an alternating-lattice-structured two-dimensional (2D) AgNP/AuNP film retained two isolated LSPR bands, revealing that the plasmon resonances excited on each particle did not couple even in a continuous 2D sheet, unlike in the homologous NP system. The fluorescence quenching test of Cy3 and Cy5 dyes confirmed that the independent functions of AuNPs and AgNPs remained in the mixed films, whereas the AuNPs exhibited significantly higher quenching efficiency for the Cy3 dye compared with AgNPs due to the overlap of the excitation/emission bands of the dyes with the AuNP LSPR band. Various applications can be considered using this nanoheterostructured plasmonic assembly to excite spatially designed, high-density LSPR on macroscopic surfaces.

  6. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface.

    Science.gov (United States)

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-04-13

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties.

  7. Templating gold surfaces with function: a self-assembled dendritic monolayer methodology based on monodisperse polyester scaffolds.

    Science.gov (United States)

    Öberg, Kim; Ropponen, Jarmo; Kelly, Jonathan; Löwenhielm, Peter; Berglin, Mattias; Malkoch, Michael

    2013-01-01

    The antibiotic resistance developed among several pathogenic bacterial strains has spurred interest in understanding bacterial adhesion down to a molecular level. Consequently, analytical methods that rely on bioactive and multivalent sensor surfaces are sought to detect and suppress infections. To deliver functional sensor surfaces with an optimized degree of molecular packaging, we explore a library of compact and monodisperse dendritic scaffolds based on the nontoxic 2,2-bis(methylol)propionic acid (bis-MPA). A self-assembled dendritic monolayer (SADM) methodology to gold surfaces capitalizes on the design of aqueous soluble dendritic structures that bear sulfur-containing core functionalities. The nature of sulfur (either disulfide or thiol), the size of the dendritic framework (generation 1-3), the distance between the sulfur and the dendritic wedge (4 or 14 Å), and the type of functional end group (hydroxyl or mannose) were key structural elements that were identified to affect the packaging densities assembled on the surfaces. Both surface plasmon resonance (SPR) and resonance-enhanced surface impedance (RESI) experiments revealed rapid formation of homogenously covered SADMs on gold surfaces. The array of dendritic structures enabled the fabrication of functional gold surfaces displaying molecular covering densities of 0.33-2.2 molecules·nm(-2) and functional availability of 0.95-5.5 groups·nm(-2). The cell scavenging ability of these sensor surfaces for Escherichia coli MS7fim+ bacteria revealed 2.5 times enhanced recognition for G3-mannosylated surfaces when compared to G3-hydroxylated SADM surfaces. This promising methodology delivers functional gold sensor surfaces and represents a facile route for probing surface interactions between multivalently presented motifs and cells in a controlled surface setting.

  8. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    Directory of Open Access Journals (Sweden)

    Frederik Böke

    2014-06-01

    Full Text Available High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side.

  9. Detection of C-reactive protein on a functional poly(thiophene) self-assembled monolayer using surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Chul; Lee, Soo-Keun; Jeon, Won Bae; Lyu, Hong-Kun [Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230 (Korea, Republic of); Lee, Seung Woo [School of Display and Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jeong, Sang Won [Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230 (Korea, Republic of)], E-mail: sjeong@dgist.ac.kr

    2008-09-15

    The preparation of a new poly(thiophene) with pendant N-hydroxysuccinimide ester groups and its application to immobilization of biomolecules are reported. A thiophene derivative of N-hydroxysuccinimide ester was polymerized with FeCl{sub 3} in chloroform and the resulting poly(thiophene) was characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). This polymer reacts with amine-bearing molecules to yield new poly(thiophene) derivatives and the specific interactions at the side groups could be detected. Thus, a self-assembled monolayer (SAM) using the polymer was formed on a gold-coated quartz cell and anti-C-reactive protein (anti-CRP) was immobilized. The binding behavior of CRP on the surface was monitored by use of a surface plasmon resonance (SPR) sensor system.

  10. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Chattopadhyay, Samir; Dey, Abhishek

    2015-10-14

    The protonation state of thiols in self-assembled monolayers (SAMs) on Ag and Au surfaces and nanoparticles (NPs) has been an issue of contestation. It has been recently demonstrated that deuterating the thiol proton produces ostentatious changes in the Raman spectra of thiols and can be used to detect the presence of the thiol functional group. Surface enhanced Raman spectroscopy (SERS) of H/D substituted aliphatic thiols on Ag surfaces clearly shows the presence of S-H vibration between 2150-2200 cm(-1) which shifts by 400 cm(-1) upon deuteration and a simultaneous >20 cm(-1) shift in the C-S vibration of thiol deuteration. Large shifts (>15 cm(-1)) in the C-S vibration are also observed for alkyl thiol SAMs on Au surfaces. Alternatively, neither the S-H vibration nor the H/D isotope effect on the C-S vibration is observed for alkyl thiol SAMs on Ag/Au NPs. XPS data on Ag/Au surfaces bearing aliphatic thiol SAMs show the presence of both protonated and deprotonated thiols while on Ag/Au NPs only deprotonated thiols are detected. These data suggest that aliphatic thiol SAMs on Au/Ag surfaces are partially protonated whereas they are totally deprotonated on Au/Ag NPs. Aromatic PhSH SAMs on Ag/Au surfaces and Ag/Au NPs do not show these vibrations or H/D shifts as well indicating that the thiols are deprotonated at these interfaces.

  11. The Modeling of Pulmonary Particulate Matter Transport Using Langmuir Monolayers

    Science.gov (United States)

    Eaton, Jeremy M.

    The effects of a barrier in proximity to the air-water interface on the dynamics of a Langmuir monolayer system are observed. A monolayer of Survanta, bovine lung surfactant, is deposited onto the interface of an aqueous buffer solution. Polystyrene particles one micron in diameter and tagged with fluorescent carboxylate groups are distributed evenly throughout the monolayer surface. The bead-monolayer system is compressed and expanded to induce folding. A polydimethylsiloxane (PDMS) substrate is placed below the monolayer in the buffer solution to study interactions between the folding monolayer and a barrier. The presence of the substrate is shown to shift surface pressure-area isotherms toward regions of lower area by an average of 8.9 mN/m. The surface of the PDMS substrate can be imaged using fluorescence microscopy to detect the presence of particles or surfactant that may have been transported there from the air-water interface during folding. Images show the transferral of particles and monolayer together suggesting the pinch-off of a fold or the direct interaction of a fold with the barrier.

  12. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.

    Science.gov (United States)

    Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping

    2017-05-10

    Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.

  13. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    Science.gov (United States)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  14. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  15. Crystalline structures of alkylamide monolayers adsorbed on the surface of graphite.

    Science.gov (United States)

    Bhinde, Tej; Clarke, Stuart M; Phillips, Tamsin K; Arnold, Thomas; Parker, Julia E

    2010-06-01

    Synchrotron X-ray and neutron diffraction have been used to determine the two-dimensional crystalline structures of alkylamides adsorbed on graphite at submonolayer coverage. The calculated structures show that the plane of the carbon backbone of the amide molecules is parallel to the graphite substrate. The molecules form hydrogen-bonded dimers, and adjacent dimers form additional hydrogen bonds yielding extended chains. By presenting data from a number of members of the homologous series, we have identified that these chains pack in different arrangements depending on the number of carbons in the amide molecule. The amide monolayers are found to be very stable relative to other closely related alkyl species, a feature which is attributed to the extensive hydrogen bonding present in these systems. The characteristics of the hydrogen bonds have been determined and are found to be in close agreement with those present in the bulk materials.

  16. Functionalizing Arrays of Transferred Monolayer Graphene on Insulating Surfaces by Bipolar Electrochemistry

    DEFF Research Database (Denmark)

    Koefoed, Line; Pedersen, Emil Bjerglund; Thyssen, Lena

    2016-01-01

    graphene sheets supported on SiO2. Using this technique, transferred graphene can be electrochemically functionalized without the need of a metal support or the deposition of physical contacts. X-ray photoelectron spectroscopy and Raman spectroscopy are used to map the chemical changes and modifications....... Furthermore, it is shown that it is possible to simultaneously modify an array of many small graphene electrodes (1 × 1 mm2) on SiO2.......Development of versatile methods for graphene functionalization is necessary before use in applications such as composites or as catalyst support. In this study, bipolar electrochemistry is used as a wireless functionalization method to graft 4-bromobenzenediazonium on large (10 × 10 mm2) monolayer...

  17. Molecular Dynamics Simulation of the Self-assembled Monolayers of 1-Adamantanethiolate and Its Derivatives on Au(111)Surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Jun-Hong; ZHU, Rui-Xin; SHI, Liang-Wei; ZHANG, Tao; CHEN, Min-Bo

    2007-01-01

    The self-assembled monolayers (SAMs) of 1-adamantanethiolate and its derivatives on Au(111) surface were investigated. Density functional theory (DFT) calculation indicates that the most stable configuration for absorption is at the face centered cubic (fcc)-bridge site. Canonical ensemble molecular dynamics (MD) simulations were carried out to study the structures and energies of the SAMs. The ordered structures of the SAMs were analyzed by means of radial distribution function and the relative stability of the SAMs was compared. It was concluded by the comparison of various contributions to the SAM formation energy that the formation of the SAMs was determined by the intermolecular nonbonding interaction and the chemical bonding interaction of sulfur and gold.

  18. Hotspot-engineered quasi-3D metallic network for surface-enhanced Raman scattering based on colloid monolayer templating

    Science.gov (United States)

    Du, Wei; Liu, Long; Gu, Ping; Hu, Jingguo; Zhan, Peng; Liu, Fanxin; Wang, Zhenlin

    2016-09-01

    A hotspot-engineered quasi-3D metallic network with controllable nanogaps is purposed as a high-quality surface-enhanced Raman scattering (SERS) substrate, which is prepared by a combination of non-close-packed colloid monolayer templating and metal physical deposition. The significant SERS effect arises from a strongly enhanced local electric field originating from the ultra-small-gaps between neighboring metal-caps and tiny interstices and between the metal-caps and the metal-bumps on the base, which is recognized by the numerical simulation. A remarkable average SERS enhancement factor of up to 1.5 × 108 and a SERS intensity relative standard deviation (RSD) of 10.5% are achieved by optimizing the nanogap size to sub-10 nm scale, leading to an excellent capability for Raman detection, which is represented by the clearly identified SERS signal of the Rhodamine 6G solution with a fairly low concentration of 1 nM.

  19. Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Techane, Sirnegeda D.; Baer, Donald R.; Castner, David G.

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) and x-ray photoelectron spectroscopy (XPS). XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron take-off angles (5o to 85o in 5o increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing angle results, it was found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05 and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs were determined to be 0.9Å/CH2 group and 1.06 RSA with a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  20. The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001 surface

    Directory of Open Access Journals (Sweden)

    Moitra A.

    2011-01-01

    Full Text Available We report a first-principles calculations to study the effect of a vanadium-carbon (VC monolayer on the adsorption process of tungsten (W and carbon (C atoms onto tungsten-carbide (WC (0001 surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001 surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001 surface is compared with that of a W and C adatom on a WC (0001 surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.

  1. Study of PEGylated lipid layers as a model for PEGylated liposome surfaces: molecular dynamics simulation and Langmuir monolayer studies.

    Science.gov (United States)

    Stepniewski, Michał; Pasenkiewicz-Gierula, Marta; Róg, Tomasz; Danne, Reinis; Orlowski, Adam; Karttunen, Mikko; Urtti, Arto; Yliperttula, Marjo; Vuorimaa, Elina; Bunker, Alex

    2011-06-21

    We have combined Langmuir monolayer film experiments and all-atom molecular dynamics (MD) simulation of a bilayer to study the surface structure of a PEGylated liposome and its interaction with the ionic environment present under physiological conditions. Lipids that form both gel and liquid-crystalline membranes have been used in our study. By varying the salt concentration in the Langmuir film experiment and including salt at the physiological level in the simulation, we have studied the effect of salt ions present in the blood plasma on the structure of the poly(ethylene glycol) (PEG) layer. We have also studied the interaction between the PEG layer and the lipid bilayer in both the liquid-crystalline and gel states. The MD simulation shows two clear results: (a) The Na(+) ions form close interactions with the PEG oxygens, with the PEG chains forming loops around them and (b) PEG penetrates the lipid core of the membrane for the case of a liquid-crystalline membrane but is excluded from the tighter structure of the gel membrane. The Langmuir monolayer results indicate that the salt concentration affects the PEGylated lipid system, and these results can be interpreted in a fashion that is in agreement with the results of our MD simulation. We conclude that the currently accepted picture of the PEG surface layer acting as a generic neutral hydrophilic polymer entirely outside the membrane, with its effect explained through steric interactions, is not sufficient. The phenomena we have observed may affect both the interaction between the liposome and bloodstream proteins and the liquid-crystalline-gel transition and is thus relevant to nanotechnological drug delivery device design.

  2. Change of the surface electronic structure of Au(111) by a monolayer MgO(001) film

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yi; Nilius, Niklas; Freund, Hans-Joachim [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Benedetti, Stefania [CNR, Istituto Nanoscienze, Centro S3, Via G. Campi 213/a, 41100 Modena (Italy)

    2011-07-01

    Monolayer films of MgO(001) have been prepared on an Au(111) surface and explored with scanning tunneling microscopy and spectroscopy. The symmetry mismatch between the hexagonal substrate and the squared over-layer results in the formation of a (6 x 1) super-lattice, as revealed from the distinct stripe pattern observed in the STM. The presence of the oxide film modifies the potential situation at the interface, which induces a substantial up-shift of the Shockley-type surface band on Au(111). The resulting MgO/Au interface band is also characterized by a pseudo-gap at around 0.5 eV that opens at the position of the new Brillouin zone of the enlarged (6 x 1) cell. In addition, the oxide layer gives rise to a drastic decrease of the Au(111) work function, as deduced from the energy position of field-emission resonance on the bare and MgO-covered surface. The work function drop is explained by an interfacial charge transfer from the oxide film into the electro-negative gold surface.

  3. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    Science.gov (United States)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  4. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.

    Science.gov (United States)

    Mogilevsky, Alina; Jelinek, Raz

    2011-02-15

    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  5. Towards the hybrid organic semiconductor fet (hosfet) : electrical and electrochemical characterization of functionalized and unfunctionalized, covalently bound organic monolayers on silicon surfaces

    NARCIS (Netherlands)

    Faber, Erik Jouwert

    2006-01-01

    Since their introduction in 1993 the class of covalently bound organic monolayers on oxide free silicon surfaces have found their way to multiple application fields such as passivation layers in solar cells, masking layers in lithographic processing, insulating films in hybrid moleculesilicon electr

  6. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal du

  7. Ionic channels and nerve membrane constituents. Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers.

    Science.gov (United States)

    Villegas, R; Barnola, F V

    1972-01-01

    Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

  8. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  9. Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers.

    Science.gov (United States)

    Kuo, Che-Hung; Liu, Chi-Ping; Lee, Szu-Hsian; Chang, Hsun-Yun; Lin, Wei-Chun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2011-09-07

    It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.

  10. Dynamics of Energy Transfer and Soft-Landing in Collisions of Protonated Dialanine with Perfluorinated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha; Kohale, Swapnil C.; Bhakta, Dhruv G.; Laskin, Julia; Hase, William L.

    2014-11-21

    Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H+, with a perfluorinateted octanethiolate self-assembled monolayer (F-SAM ) surface. The simulations are performed at collisions energy Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0o 0 (normal) and grazing 45o. Excellent agreement with experiment (J. Am. Chem. Soc. 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H+ internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H+ vibration, but for Ei = 5.0 eV ~20% of the energy transfer is to ala2-H+ rotation. Energy transfer to ala2-H+ rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H+ (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on//in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H+ is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B 2014, 118, 5577-5588) shows that thermally accommodated ala2-H+ ions have an binding energy with the F-SAM surface of at least ~15 kcal/mol.

  11. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  12. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  13. Pressure-dependent surface viscosity and its surprising consequences in interfacial flows

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd

    2016-11-01

    The surface shear viscosity of a surfactant monolayer almost always depends strongly on surface pressure, and this oft-ignored rheological feature significantly alters fluid flow and dynamics of particles on the interface. In order to illustrate the qualitatively new phenomena that arise out of pressure-dependent rheology, we focus here on a series of analytically tractable yet paradigmatic examples of lubrication geometries. Thin-gap flows naturally amplify pressure changes, and thus exemplify the effects of pressure-dependent viscosity. We show that much of the mathematical machinery from Newtonian lubrication analyses can be modified in a relatively straightforward manner in such systems. Our analysis reveals novel features such as a self-limiting flux when a surfactant is pumped through a narrow channel, a maximum approach velocity in squeeze flows due to divergent inter-particle forces, and forces perpendicular to the direction of motion that breaks symmetries associated with Newtonian analogs. We discuss the broader implications of these phenomena, especially with regard to interfacial suspension mechanics for which these lubrication geometries provide a convenient limit.

  14. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers.

    Science.gov (United States)

    Kulkarni, Sneha A; Ogale, Satishchandra B; Vijayamohanan, Kunjukrishanan P

    2008-02-15

    Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.

  15. Surface symmetry of monolayer titanium oxide on Mo(1 1 2) studied via fast atom diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, J., E-mail: jan.seifert@physik.hu-berlin.de; Winter, H.

    2013-11-15

    In studies on titanium oxide thin films we demonstrate the potential of Fast Atom Diffraction (FAD) and triangulation methods to derive the surface unit cell with enhanced surface sensitivity. Helium atoms with energies of 1–2 keV are scattered from the surface along low indexed surface directions under grazing angles of incidence. From the observed diffraction patterns, the lateral periodicity of the surface structures is derived. For low TiO{sub x} coverages a well-ordered c(2 × 4) superstructure and for higher coverage a p(8 × 2) film is observed. Based on FAD and triangulation methods for azimuthal rotation of the target the arrangement of topmost atoms in smaller sub-unit cells is revealed.

  16. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...

  17. Dynamic pattern formation of liquid crystals using binary self-assembled monolayers on an ITO surface under DC voltage.

    Science.gov (United States)

    Ishida, Takao; Oyama, Makiko; Terada, Kei-ichi; Haga, Masa-aki

    2014-12-07

    There have been numerous studies of liquid crystal (LC) convection using sandwich-type LC cells under AC voltage. In contrast to previous LC convection studies under AC voltage, we propose the use of a binary self-assembled monolayer (SAM) with a redox-active Ru complex and insulating octadecyl phosphonic acid (C18) molecules on an indium tin oxide (ITO) surface as the electrode of sandwich-type LC cells under DC bias voltage. This is because the functionalized molecules immobilized on the ITO surface are expected to control the LC orientation and electrical conduction of LC cells, under an exact DC bias voltage. We successfully achieved LC pattern formation using ITO electrodes with binary SAMs in LC cells. Moreover, we confirmed that the LC pattern size was increased by increasing the coverage of the Ru complex in binary SAMs. We consider that a combination of three factors, electrical conduction change, controlling of LC orientation in the initial stage and redox-activity of the Ru-complex, is the reason for LC convection although we cannot fully explain the distribution of these three factors. We believe that our LC pattern formation is promising for new type devices e.g., artificial compound eyes using the LC device technology.

  18. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers.

    Science.gov (United States)

    Cifuentes, Anna; Borrós, Salvador

    2013-06-04

    The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.

  19. In situ Observation of the Photochromism in the Langmuir Monolayer of a Non—typical Amphiphilic Spiropyran Derivative at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    贡浩飞; 唐季安; 王聪敏; 樊美公; 刘鸣华

    2003-01-01

    In situ photochromic process in the monolayer of aphotochromic spiropyran derivative without long alkyl chain,was investigated.The photochromism at the air/water interface under differnet surface pressures was studied by surface pressure-area isotherms,surface pressure-time curves,area-time curves and Brewster angle microscopy.Both forms of the compound were found to form monolayers at the air/water interface althouhg it does not have long alkyl chain.A large area expansion in the monolayer corresponding to a zreoth order reaction was found at the initial stage of the UV light irradiation.A series of dynamic investigations revealed that at high pressure after phase transition in the monolayer,the surface pressure changes greatly umder alternative irradiation of UV and visible light.An obvious morphological change accompanying with the photochromism was observed in situ.

  20. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface%空气/水界面上的纯组分磷酯单分子膜的表面状态方程

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation,r-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC),1,2-dipalmitoylphosphatidylglycerol (DPPG),and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  1. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    Institute of Scientific and Technical Information of China (English)

    Chang-chun Hao; Run-guang Sun; Jing Zhang

    2012-01-01

    Lipid rafts are a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) with 1,2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area △Aex at certain surface pressure,surface pressure and excess surface pressure △πex at certain mean molecular area.The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy △Gex,excess Helmholtz energy △Hex and elasticity.Thermodynamic analysis indicates △Aex and △πex in the binary systems with positive deviations from the ideal behavior,suggesting repulsive interaction.The maximum of △Gex and △Hex was at the molar fraction of ESM of 0.6,demonstrating the mixed monolayer was more unstable.The repulsive interaction induced phase separation in the monolayer.

  2. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    Science.gov (United States)

    Hao, Chang-chun; Sun, Run-guang; Zhang, Jing

    2012-12-01

    Lipid rafts are a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) 1 with 2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area ΔAex at certain surface pressure, surface pressure and excess surface pressure Δπex at certain mean molecular area. The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy ΔGex, excess Helmholtz energy ΔHex and elasticity. Thermodynamic analysis indicates ΔAex and Δπex in the binary systems with positive deviations from the ideal behavior, suggesting repulsive interaction. The maximum of ΔGex and ΔHex was at the molar fraction of ESM of 0.6, demonstrating the mixed monolayer was more unstable. The repulsive interaction induced phase separation in the monolayer.

  3. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose Maria; Bielen, Abraham A.M. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Olthuis, Wouter [BIOS Lab on a Chip Group, MESA+ and MIRA Institutes, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kengen, Servé W.M. [Laboratory of Microbiology, Wageningen University, 6703HB Wageningen (Netherlands); Zuilhof, Han, E-mail: han.zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Franssen, Maurice C.R., E-mail: maurice.franssen@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands)

    2016-10-15

    Highlights: • Three different oxidases are covalently attached to alkene based SAMs on PtOx. • Attached enzymes remain active and their activity is assessed by chronoamperometry. • Functionalized PtOx allows electron mediator free chronoamperometry measurements. • The thus formed enzyme electrodes are useful as biosensors for glucose and lactate. • Immobilization of human HAOX foresees in vivo lactate monitoring in humans. - Abstract: Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH{sub 2}-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  4. Langmuir-Blodgett monolayers of InP quantum dots with short chain ligands.

    Science.gov (United States)

    Lambert, K; Wittebrood, L; Moreels, I; Deresmes, D; Grandidier, B; Hens, Z

    2006-08-15

    We demonstrate the organization of nearly monodisperse colloidal InP quantum dots at the air/water interface in Langmuir monolayers. The organization of the particles is monitored in situ by surface pressure-surface area measurements and ex situ by AFM measurements on films transferred to mica by Langmuir-Blodgett deposition. The influence of different ligands on the quality of the monolayer formed has been studied. We show that densely packed monolayers with little holes can be formed using short chain ligands like pyridine and pentamethylene sulfide. The advantage of using short chain ligands for electron tunneling to or from the quantum dots is demonstrated using scanning tunneling spectroscopy.

  5. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  6. Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at sub-monolayer and multilayer coverages

    CERN Document Server

    Noble, J A; Dulieu, F; Fraser, H J

    2011-01-01

    The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments exploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.

  7. Work function shifts of a zinc oxide surface upon deposition of self-assembled monolayers: a theoretical insight.

    Science.gov (United States)

    Cornil, D; Van Regemorter, T; Beljonne, D; Cornil, J

    2014-10-14

    We have investigated at the theoretical Density Functional Theory level the way the work function of zinc oxide layers is affected upon deposition of self-assembled monolayers (SAMs). 4-tert-Butylpyridine (4TBP) and various benzoic acids (BA) were adsorbed on the apolar (101[combining macron]0) ZnO and used as probe systems to assess the influence of several molecular parameters. For the benzoid acids, we have investigated the impact of changing the nature of the terminal group (H, CN, OCH3) and the binding mode of the carboxylic acid (monodentate versus bidentate) on the apolar (101[combining macron]0) surface. For each system, we have quantified the contribution from the molecular core and the anchoring group as well as of the degree of surface reconstruction on the work function shift. For the benzoic acids, the structural reorganization of the surface induces a negative shift of the work function by about 0.3 ± 0.15 eV depending on the nature of the binding mode, irrespective of the nature of the terminal function. The bond-dipole potential strongly contributes to the modification of the work function, with values in the range +1.2 to +2.0 eV. In the case of 4TBP, we further characterized the influence of the degree of coverage and of co-adsorbed species (H, OH, and water molecules) on the ZnO/SAM electronic properties as well as the influence of the ZnO surface polarity by considering several models of the polar (0001) ZnO surface. The introduction of water molecules in the (un)dissociated form at full coverage on the non-polar surface only reduces the work function by 0.3-0.4 eV compared to a reference system without co-adsorbed species. Regarding the polar surface, the work function is also significantly reduced upon deposition of a single 4BTP molecule (from -1.44 eV to -1.73 eV for our model structures), with a shift similar in direction and magnitude compared to the non-polar surfaces.

  8. Sub-monolayer growth of Ag on flat and nanorippled SiO2 surfaces

    Science.gov (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Smith, Roger; Mukherjee, Subroto

    2016-05-01

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on the flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.

  9. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    Science.gov (United States)

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1

  10. Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    Science.gov (United States)

    Maftouni, Negin; Amininasab, Mehriar; Ejtehadi, Mohammad Reza; Kowsari, Farshad; Dastvan, Reza

    2013-02-01

    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.

  11. Functional monolayers on oxide-free silicon surfaces via thiol-ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, M.A.; Paulusse, J.M.J.; Zuilhof, H.

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  12. Surface pK(sub a) of Self-Assembled Monolayers

    Science.gov (United States)

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.

    2005-01-01

    The difference between solution and surface properties such as pK(sub a) is illustrated enabling students to understand the differences between nanoscale and macroscopic systems. Details regarding the usage of electrochemical instrumentation, such as a potentiostat, and of the technique such as cyclic voltammetry are given.

  13. Syntheses of alkenylated carbohydrate derivatives toward the preparation of monolayers on silicon surfaces

    NARCIS (Netherlands)

    Smet, de L.C.P.M.; Pukin, A.V.; Stork, G.A.; Vos, de C.H.; Visser, G.M.; Zuilhof, H.; Sudhölter, E.J.R.

    2004-01-01

    This note describes the synthesis of different alkenylated carbohydrate derivatives suitable for direct attachment to hydrogen-terminated silicon surfaces. The derivatives were alkenylated at the C-1 position, while the remaining hydroxyl groups were protected. The development of such new carbohydra

  14. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos Marie Johannes; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  15. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos M.J.; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  16. Molecular modeling of alkyl monolayers on the Si(100)-2 x 1 surface.

    Science.gov (United States)

    Lee, Michael V; Guo, Dawei; Linford, Matthew R; Zuilhof, Han

    2004-10-12

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit.

  17. Symmetry Control of Polymer Colloidal Monolayers and Crystals by Electrophoretic Deposition on Patterned Surfaces

    NARCIS (Netherlands)

    Dziomkina, Nina V.; Hempenius, Mark A.; Vancso, G. Julius

    2005-01-01

    Colloidal crystals with body-centered cubic packing (see Figure) can be fabricated by electrophoretic deposition of charged latex particles onto patterned surfaces. Laser-interference lithography produces SiO2 layers patterned with controlled symmetry that can then be used to control the orientation

  18. Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces.

    Science.gov (United States)

    Killian, Manuela S; Seiler, Steffen; Wagener, Victoria; Hahn, Robert; Ebensperger, Christina; Meyer, Bernd; Schmuki, Patrik

    2015-05-06

    The modification of magnesium implants with functional organic molecules is important for increasing the biological acceptance and for reducing the corrosion rate of the implant. In this work, we evaluated by a combined experimental and theoretical approach the adsorption strength and geometry of a functional self-assembled monolayer (SAM) of hydrolyzed (3-aminopropyl)triethoxysilane (APTES) molecules on a model magnesium implant surface. In time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS), only a minor amount of reverse attachment was observed. Substrate-O-Si signals could be detected, as well as other characteristic APTES fragments. The stability of the SAM upon heating in UHV was investigated additionally. Density-functional theory (DFT) calculations were used to explore the preferred binding mode and the most favorable binding configuration of the hydrolyzed APTES molecules on the hydroxylated magnesium substrate. Attachment of the molecules via hydrogen bonding or covalent bond formation via single or multiple condensation reactions were considered. The impact of the experimental conditions and the water concentration in the solvent on the thermodynamic stability of possible APTES binding modes is analyzed as a function of the water chemical potential of the environment. Finally, the influence of van der Waals contributions to the adsorption energy will be discussed.

  19. Adsorption geometry and electronic properties of flat-lying monolayers of tetracene on the Ag(111) surface

    Science.gov (United States)

    Zaitsev, N. L.; Nechaev, I. A.; Höfer, U.; Chulkov, E. V.

    2016-10-01

    The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of a localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate γ -Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied molecular orbital remains being unoccupied in the case of γ -Tc/Ag(111) as well as in the α phase with increased coverage. The unit cell of the α phase with point-on-line registry was adapted for calculations based on the available experimental data and computed structures of the γ phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.

  20. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul D.

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with ({radical}7x{radical}7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  1. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  2. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals.

    Science.gov (United States)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  3. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  4. Initiation of blood coagulation - Evaluating the relevance of specific surface functionalities using self assembled monolayers

    OpenAIRE

    Fischer, Marion

    2010-01-01

    The surface of biomaterials can induce contacting blood to coagulate, similar to the response initiated by injured blood vessels to control blood loss. This poses a challenge to the use of biomaterials as the resulting coagulation can impair the performance of hemocompatible devices such as catheters, vascular stents and various extracorporeal tubings [1], what can moreover cause severe host reactions like embolism and infarction. Biomaterial induced coagulation processes limit the therape...

  5. Stiffness of lipid monolayers with phase coexistence.

    Science.gov (United States)

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  6. Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers

    Science.gov (United States)

    Rouhi, Saeed; Atfi, Amin

    2017-03-01

    Molecular dynamics simulations are used here to study the interactions between BmNn graphyne-like monolayers and four different polymer chains. BN, B1N9, and B2N8 graphyne-like monolayers are selected from the family of BmNn graphyne-like monolayers. It is observed that increasing the number of B atoms in the structure of BmNn graphyne-like monolayers results in larger interaction energies of nanosheet/polymer systems. It is also shown that the polymer chains with the linear adsorbed configurations on the nanosheets have larger interaction energies with the nanosheets. Investigating the effect of number of polymer repeat units on the polymer/nanosheet interaction energy, it is observed that increasing the number of repeat units of polymers leads to enhancing the polymer/nanosheet interaction energy.

  7. Sequence-specific DNA interactions with calixarene-based langmuir monolayers.

    Science.gov (United States)

    Rullaud, Vanessa; Moridi, Negar; Shahgaldian, Patrick

    2014-07-29

    The interactions of an amphiphilic calixarene, namely p-guanidino-dodecyloxy-calix[4]arene, 1, self-assembled as Langmuir monolayers, with short double stranded DNA, were investigated by surface pressure-area (π-A) isotherms, surface ellipsometry and Brewster angle microscopy (BAM). Three DNA 30mers were used as models, poly(AT), poly(GC) and a random DNA sequence with 50% of G:C base pairs. The interactions of these model DNA duplexes with 1-based Langmuir monolayers were studied by measuring compression isotherms using increasing DNA concentrations (10(-6), 10(-5), 10(-4), and 5 × 10(-4) g L(-1)) in the aqueous subphase. The isotherms of 1 showed an expansion of the monolayer with, interestingly, significant differences depending on the duplex DNA sequence studied. Indeed, the interactions of 1-based monolayers with poly(AT) led to an expansion of the monolayer that was significantly more pronounced that for monolayers on subphases of poly(GC) and the random DNA sequence. The structure and thickness of 1-based Langmuir monolayers were investigated by BAM and surface ellipsometry that showed differences in thickness and structure between a monolayer formed on pure water or on a DNA subphase, with here again relevant dissimilarities depending on the DNA composition.

  8. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, N; Belisle, RA; Hatton, B; Wong, TS; Aizenberg, J

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.

  9. Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami

    Science.gov (United States)

    Cai, Kun; Luo, Jing; Ling, Yiru; Wan, Jing; Qin, Qing-Hua

    2016-10-01

    Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson’s ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs. Using molecular dynamics experiments, the size effects on the auxetic behaviour of GK are investigated. In some cases, the auxetic difference between the hydrogenated GK and continuum kirigami (CK) is negligible, in which the results from macro CK can be used to predict auxetic behaviour of nano kirigami. Surface effect of GK is demonstrated from two aspects. One is to identify the difference of mechanical responses between the pure carbon GK and the hydrogenated GK at same geometry and loading condition. Another is from the difference of mechanical responses between the GK model and the CK model under same loading condition and geometric configuration. Generally, surface energy makes the GK possess higher variation of auxetic behaviour. It also results in higher modulus for the GK as comparing with that of the CK.

  10. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

    Directory of Open Access Journals (Sweden)

    Yongfeng Tong

    2016-02-01

    Full Text Available This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

  11. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    -S reductive desorption at -0.8 V (SCE) in 0.1 M NaOH, while the charge is only about 8 x 10(-6) C cm(-2) (pH 7.7) for the 0 to -0.1 V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher....... This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO- and -NH3+ groups...... approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric peak. This scenario is incorporated in a simple phenomenological model....

  12. Study on surface acid-base property of carboxylic acid-terminated self-assembled monolayers by cyclic voltammetry and electro-chemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    罗立强; 程志亮; 杨秀荣; 汪尔康

    2000-01-01

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic acid), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63 as a probe. The surface pK. of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6±0.1 and 5.8±0.1, respectively. The method is compared with other methods of monolayer pK.measurement.

  13. Inelastic neutron scattering (INS) observations of rotational tunneling within partially deuterated methane monolayers adsorbed on MgO(1 0 0) surfaces

    Science.gov (United States)

    Hicks, Andy S.; Larese, J. Z.

    2013-12-01

    High resolution inelastic neutron scattering (INS) measurements of the low temperature (T ∼ 2.0 K) rotational dynamics of isotopically substituted methane monolayers adsorbed on MgO(1 0 0) are presented. These spectra, obtained using BASIS at SNS, represent the most detailed measurements available for surface-adsorbed monolayer films of methane. Distinct excitations are readily observed at 15, 31, 45 and 127 μeV for the CH2D2 on MgO monolayer and at 40, 51, 95 and 138 μeV for CH3D/MgO. These features are attributed to tunneling transitions between sublevels within the ground librational state and are interpreted using the pocket state (PS) formalism first proposed by Hüller. This theoretical analysis employs the findings of earlier studies of CH4 on MgO(1 0 0) which suggest that molecules adsorb with their C2v axes normal to the surface plane. The comparison between theory and experiment provides direct insight into the impact of molecular versus surface symmetry on the observed tunneling spectra.

  14. Method and Apparatus for Measuring Surface Air Pressure

    Science.gov (United States)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  15. Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint

    Science.gov (United States)

    Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi

    2017-01-01

    To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.

  16. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  17. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  18. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  19. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    Science.gov (United States)

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-08

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  20. Passive Downhole Pressure Sensor Based on Surface Acoustic Wave Technology.

    Science.gov (United States)

    Quintero, Sully M M; Figueiredo, Sávio W O; Takahashi, Victor L; Llerena, Roberth A W; Braga, Arthur M B

    2017-07-15

    A passive surface acoustic wave (SAW) pressure sensor was developed for real-time pressure monitoring in downhole application. The passive pressure sensor consists of a SAW resonator, which is attached to a circular metal diaphragm used as a pressure transducer. While the membrane deflects as a function of pressure applied, the frequency response changes due to the variation of the SAW propagation parameters. The sensitivity and linearity of the SAW pressure sensor were measured to be 8.3 kHz/bar and 0.999, respectively. The experimental results were validated with a hybrid analytical-numerical analysis. The good results combined with the robust design and packaging for harsh environment demonstrated it to be a promising sensor for industrial applications.

  1. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge and a gliding...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  2. Coordination chemistry for antibacterial materials: a monolayer of a Cu(2+) 2,2'-bipyridine complex grafted on a glass surface.

    Science.gov (United States)

    Pallavicini, Piersandro; Dacarro, Giacomo; Grisoli, Pietro; Mangano, Carlo; Patrini, Maddalena; Rigoni, Federica; Sangaletti, Luigi; Taglietti, Angelo

    2013-04-01

    A propyltrimethoxysilane-modified 2,2'-bipyridine ligand is synthesized and its acetonitrile solutions are used to prepare monolayers of the molecule on glass surfaces. Absorption and X-ray photoelectron spectroscopy demonstrate that the modified glass surfaces bind Cu(2+) with a 1:1 ratio with respect to the 2,2'-bipyridine moieties under the chosen preparative conditions, producing materials bearing 0.016 μg cm(-2) of copper. Although in trace amounts, the bound Cu(2+) cations exert a significant microbicidal effect against Escherichia coli and Staphylococcus aureus.

  3. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Trevor M. [Univ. of California, Davis, CA (United States)

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the

  4. Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers

    NARCIS (Netherlands)

    Ginsburg, H.; Demel, R.A.

    1984-01-01

    Hemin, antimalarial drugs and complexes formed between them, have demonstrable effects on biological membranes. Using the phospholipid monolayer model, we show that hemin intercalates into the membrane and increases its surface pressure, depending on the lipid composition and the initial surface pre

  5. Dynamic surface pressure measurements on a square cylinder with pressure sensitive paint

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, C.M.; Khalil, G.; Callis, J.B. [University of Washington, Department of Chemistry, Seattle, WA (United States); Bell, J.H. [Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA (United States)

    2006-02-01

    The dynamic and static surface pressure on a square cylinder during vortex shedding was measured with pressure sensitive paints (PSPs) at three angles of incidence and a Reynolds number of 8.9 x 10{sup 4}. Oscillations in the phosphorescence intensity of the PSP that occurred at the vortex shedding frequency were observed. From these phosphorescent oscillations, the time-dependent changes in pressure distribution were calculated. This work extends PSP's useful range to dynamic systems where oscillating pressure changes are on the order of 230 Pa and occur at frequencies in the range of 95-125 Hz. (orig.)

  6. Self-assembled monolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.-Q., E-mail: liaoqq1971@yahoo.com.cn [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.-W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.-H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.-H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.-H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.-J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-07-29

    Ammonium pyrrolidine dithiocarbamate (APDTC) monolayer was self-assembled on fresh copper surface obtained after oxidation-reduction cycle treatment in 0.1 mol L{sup -1} potassium chloride solution at ambient temperature. The APDTC self-assembled monolayer (SAM) on copper surface was investigated by surface enhanced Raman scattering spectroscopy and the results show that APDTC SAM is chemisorbed on copper surface by its sulfur atoms with perpendicular orientation. The optimum immersing period for SAM formation is 4 h at 0.01 mol L{sup -1} concentration of APDTC. The impedance results indicate that APDTC SAM has good corrosion inhibition effects for copper in 0.5 mol L{sup -1} hydrochloric acid solution and its maximum inhibition efficiency could reach 95%. Quantum chemical calculations show that APDTC has relatively small {Delta}E between the highest occupied molecular orbital and the lowest unoccupied molecular orbital and large negative charge in its two sulfur atoms, which facilitate formation of an insulating Cu/APDTC film on copper surface.

  7. Etching of Crystalline ZnO Surfaces upon Phosphonic Acid Adsorption: Guidelines for the Realization of Well-Engineered Functional Self-Assembled Monolayers.

    Science.gov (United States)

    Ostapenko, Alexandra; Klöffel, Tobias; Eußner, Jens; Harms, Klaus; Dehnen, Stefanie; Meyer, Bernd; Witte, Gregor

    2016-06-01

    Functionalization of metal oxides by means of covalently bound self-assembled monolayers (SAMs) offers a tailoring of surface electronic properties such as their work function and, in combination with its large charge carrier mobility, renders ZnO a promising conductive oxide for use as transparent electrode material in optoelectronic devices. In this study, we show that the formation of phosphonic acid-anchored SAMs on ZnO competes with an unwanted chemical side reaction, leading to the formation of surface precipitates and severe surface damage at prolonged immersion times of several days. Combining atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal desorption spectroscopy (TDS), the stability and structure of the aggregates formed upon immersion of ZnO single crystal surfaces of different orientations [(0001̅), (0001), and (101̅0)] in phenylphosphonic acid (PPA) solution were studied. By intentionally increasing the immersion time to more than 1 week, large crystalline precipitates are formed, which are identified as zinc phosphonate. Moreover, the energetics and the reaction pathway of this transformation have been evaluated using density functional theory (DFT), showing that zinc phosphonate is thermodynamically more favorable than phosphonic acid SAMs on ZnO. Precipitation is also found for phosphonic acids with fluorinated aromatic backbones, while less precipitation occurs upon formation of SAMs with phenylphosphinic anchoring units. By contrast, no precipitates are formed when PPA monolayer films are prepared by sublimation under vacuum conditions, yielding smooth surfaces without noticeable etching.

  8. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C/sub 3/ to C/sub 8/), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10/sup -4/ A sec cm/sup -2/ at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references.

  9. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  10. Surface cleaning of metal wire by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp [Electronic-Mechanical Engineering Department, Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-Oshima, Yamaguchi (Japan); Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan); Buttapeng, C. [School of Electrical and Energy Engineering, University of the Thai Chamber of Commerce, 126/1, Vibhavadee-Rungsit, Dindaeng, Bangkok 10400 (Thailand); Furuya, S. [Faculty of Education, Gunma University, 4-2 Aramaki, Maebashi (Japan); Harada, N. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan)

    2009-11-30

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  11. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging

    DEFF Research Database (Denmark)

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan;

    2011-01-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring...... the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action...

  12. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    Science.gov (United States)

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  13. Adsorption of anionic polyelectrolytes to dioctadecyldimethylammonium bromide monolayers

    Science.gov (United States)

    Engelking, J.; Menzel, H.

    Monolayers of dioctadecyldimethylammonium bromide (DODA) at the air/water interface were used as model for charged surfaces to study the adsorption of anionic polyelectrolytes. After spreading on a pure water surface the monolayers were compressed and subsequently transferred onto a polyelectrolyte solution employing the Fromherz technique. The polyelectrolyte adsorption was monitored by recording the changes in surface pressure at constant area. For poly(styrene sulfonate) and carboxymethylcellulose the plot of the surface pressure as function of time gave curves which indicate a direct correlation between the adsorbed amount and surface pressure as well as a solely diffusion controlled process. In the case of rigid rod-like poly(p-phenylene sulfonate)s the situation is more complicated. Plotting the surface pressure as function of time results in a curve with sigmoidal shape, characterized by an induction period. The induction period can be explained by a domain formation, which can be treated like a crystallization process. Employing the Avrami expression developed for polymer crystallization, the change in the surface pressure upon adsorption of rigid rod-like poly(p-phenylene sulfonate)s can be described.

  14. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  15. Origin of the Instability of Octadecylamine Langmuir Monolayer at Low pH.

    Science.gov (United States)

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Phan, Minh Dinh; Shin, Kwanwoo; Vaknin, David; Kim, Doseok

    2015-12-29

    It has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284-285, 166-174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure-area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl(-) counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.

  16. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)

    2014-05-01

    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  17. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C...

  18. Langmuir monolayers of a hydrogenated/fluorinated catanionic surfactant: from the macroscopic to the nanoscopic size scale.

    Science.gov (United States)

    Blanco, Elena; Piñeiro, Angel; Miller, Reinhard; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2009-07-21

    Langmuir monolayers of the hydrogenated/fluorinated catanionic surfactant cetyltrimethylammonium perfluorooctanoate at the air/water interface are studied at room temperature. Excess Gibbs energies of mixing, DeltaG(E), as well as transition areas and pressures, were obtained from the surface pressure-area isotherm. The DeltaG(E) curve indicates that tail-tail interactions are more important than head-head interactions at low pressures and vice versa. Atomic force microscopy and molecular dynamics simulations allowed a fine characterization of the monolayer structure as a function of the area per molecule at mesoscopic and nanoscopic size scales, respectively. A combined analysis of the techniques allow us to conclude that electrostatic interactions between the ionic head groups are dominant in the monolayer while hydrophobic parts are of secondary importance. Overall, results obtained from the different techniques complement to each other, giving a comprehensive characterization of the monolayer.

  19. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  20. Modeling Stimuli-Responsive Nanoparticle Monolayer

    Science.gov (United States)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  1. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, H...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  2. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge

    Energy Technology Data Exchange (ETDEWEB)

    SIra, M; Trunec, D; St' ahel, P; BursIkova, V; Navratil, Z [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2008-01-07

    A homogeneous atmospheric pressure dielectric barrier discharge was used for the surface modification of polycarbonate (PC). The discharge was generated between two planar metal electrodes, the top electrode was covered by glass and the bottom electrode was covered by a polymer sample. The discharge burned in pure nitrogen or in a mixture of nitrogen and hydrogen. The surface properties of both treated and untreated polymers were characterized by atomic force microscopy, surface free energy (SFE) measurements and x-ray photoelectron spectroscopy. The influence of the treatment time and power input to the discharge on the surface properties of polymers was studied. The ageing of treated samples was also investigated. The treatment of polymers in the homogeneous atmospheric pressure discharge was homogeneous and the polymer surfaces showed a smaller degree of roughness in comparison with the polymer surfaces treated in a filamentary discharge. The SFE of the treated PC obtained at optimum conditions was 53 mJ m{sup -2} and the corresponding contact angle of water was 38{sup 0}. The maximum decrease in the SFE during ageing was about 13%. The analysis of the chemical composition showed an increase in the nitrogen concentration in the surface layer, but almost a zero increase in the oxygen concentration. This result was discussed concerning the measured values of the SFE measurement.

  3. Comparison of unsteady pressure fields on turrets with different surface features using pressure-sensitive paint

    Science.gov (United States)

    Gordeyev, Stanislav; De Lucca, Nicholas; Jumper, Eric J.; Hird, Kyle; Juliano, Thomas J.; Gregory, James W.; Thordahl, James; Wittich, Donald J.

    2014-01-01

    Spatially temporally resolved unsteady pressure fields on a surface of a hemisphere-on-cylinder turret with either a flat or a conformal window with realistic features such as gaps and "smile" cutouts were characterized using fast-response pressure-sensitive paint at M = 0.33 for several window viewing angles. Various statistical properties of pressure fields were computed, and geometry effects on the unsteady pressure fields were analyzed and discussed. Proper orthogonal decomposition was also used to extract dominant pressure modes and corresponding temporal coefficients and to analyze and compare instantaneous pressure structures for different turret geometric features and the window viewing angles. An unsteady separation off the turret and a recirculation region downstream of the turret were identified as dominant sources of the unsteady pressure. It was found that while all geometric features affected the unsteady pressure field, the "smiles," positioned spanwise-symmetrically on both sides of the turret, were the leading cause of these changes, followed by the looking forward flat window. The gaps, the side- and the back-looking flat window introduced only small local changes.

  4. Nanostructure analysis of polymer assembly on water surface by X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, H.; Matsuoka, H.; Kago, K.; Yoshitome, R.; Mouri, E. [Kyoto Univ., Department of Polymer Chemistry, Kyoto (Japan)

    2000-03-01

    X-ray reflectivity (XR) is an extremely powerful technique to study the fine structure of surface and interface in the order of angstrom. In this study, we have performed systematic XR measurements for monolayers on water surface. The nanostructures of various monolayers were precisely determined, and their changes by surface pressure and photoisomerization were clearly detected. The structure of lipid monolayer and DNA complex at air-water interface was also evaluated. (author)

  5. Effects of Calcium Ions on Thermodynamic Properties of Mixed Bilirubin/Cholesterol Monolayers

    Science.gov (United States)

    Wu, Qiong; Tang, Yu-feng; Li, Ye-min; Xie, An-jian; Shen, Yu-hua; Zhu, Jin-miao; Li, Chuan-hao

    2008-04-01

    The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (π-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of π-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.

  6. Effects of Calcium Ions on Thermodynamic Properties of Mixed Bilirubin/Cholesterol Monolayers

    Institute of Scientific and Technical Information of China (English)

    Qiong Wu; Yu-feng Tang; Ye-min Li; An-jian Xie; Yu-hua Shen; Jin-miao Zhu; Chuan-hao Li

    2008-01-01

    The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (π-A) isotherms on aqueous solutions containing various concentrations of calcium ions.Based on the data of π-A isotherms,the mean area per molecule,collapse pressure,surface compressibility modulus,excess molecular areas,free energy of mixing,and excess free energy of mixing of the monolayers on different subphases were calculated.The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas.The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase.The facts indicate the presence of coordination between Ca2+ and the two components.The mixed monolayer,in which the molar ratio of bilirubin to cholesterol is 3:2,is more stable from a thermodynamic point of view on pure water.But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase.Otherwise,the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.

  7. Measuring Surface Pressure on Rotating Compressor Blades Using Pressure Sensitive Paint

    Directory of Open Access Journals (Sweden)

    Markus Pastuhoff

    2016-03-01

    Full Text Available Pressure sensitive paint (PSP was used to measure pressure on the blades of a radial compressor with a 51 mm inlet diameter rotating at speeds up to 50 krpm using the so called lifetime method. A diode laser with a scanning-mirror system was used to illuminate the paint and the luminescent lifetime was registered using a photo multiplier. With the described technique the surface-pressure fields were acquired for eight points in the compressor map, useful for general understanding of the flow field and for CFD validation. The PSP was of so called fast type, which makes it possible to observe pressure variations with frequencies up to several kHz. Through frequency spectrum analysis we were able to detect the pulsating flow frequency when the compressor was driven to surge.

  8. Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization.

    Science.gov (United States)

    Eeman, M; Berquand, A; Dufrêne, Y F; Paquot, M; Dufour, S; Deleu, M

    2006-12-19

    Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.

  9. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  10. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  11. Bed surfaces and pressure sore prevention: an abridged report.

    Science.gov (United States)

    Brown, S J

    2001-01-01

    This article summarizes the results of a systematic review of randomized controlled trials testing the effectiveness of special beds, mattresses, and cushions in preventing and treating pressure sores. The review's citation is Cullum, N., Deeks, J., Sheldon, T.A., Song, F., & Fletcher, A.W. (2000). Beds, mattresses and cushions for pressure sore prevention and treatment (Cochrane Review). The Cochrane Library, 4. An integrative research review. 37 studies were included in the analysis. A broad search of databases and unpublished studies was conducted. Data were extracted from those that met the inclusion criteria. Studies were grouped in various ways but mainly by type of product evaluated. Many special products designed to prevent or treat pressure sores are more effective than standard hospital foam mattresses in preventing and treating pressure sores. Special pressure-relieving surfaces should be used for patients at risk for skin breakdown. Individual practitioners and agencies should have a systematic protocol for assessing patients' risk of skin breakdown and for taking action when patients are determined to be at risk. The findings of this review provide some guidance for choosing particular products, albeit not definitive evidence for matching risk levels to products.

  12. Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.;

    1995-01-01

    We have investigated the role of the substrate on the interfacial activation of Upases by an interdisciplinary study of the structure and dynamics of 1,2-sn dipalmitoylglycerol monolayers at distinct surface pressures. The diglyceride Langmuir film undergoes two phase transitions occurring at 38....

  13. Microcomputer interface for computer-controlled enzyme kinetic studies with the monolayer technique

    NARCIS (Netherlands)

    Haas, G. de; Donné-Op den Kelder, G.M.; Wildt, H. van der

    1984-01-01

    Abstract A microcomputer interface for computer-assisted monolayer experiments was developed, tested, and used for analysis of the enzymatic hydrolysis by pancreatic phospholipases A2 (EC 3.1.1.4) of 1,2-didodecanoyl-sn-glycero-3-sulfate monitored under constant surface pressure. The interface descr

  14. A trough for improved SFG spectroscopy of lipid monolayers

    Science.gov (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  15. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication)

    OpenAIRE

    A.A. Pashilkar

    2002-01-01

    The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  16. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Directory of Open Access Journals (Sweden)

    Tatjana Ladnorg

    2013-10-01

    Full Text Available Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE. The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.

  17. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    Science.gov (United States)

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%).

  18. Tuning the self-assembled monolayer formation on nanoparticle surfaces with different curvatures: investigations on spherical silica particles and plane-crystal-shaped zirconia particles.

    Science.gov (United States)

    Feichtenschlager, Bernhard; Lomoschitz, Christoph J; Kickelbick, Guido

    2011-08-01

    The ordering of dodecyl-chain self-assembled monolayers (SAM) on different nanoscopic surfaces was investigated by FT-IR studies. As model systems plane-crystal-shaped ZrO(2) nanoparticles and spherical SiO(2) nanoparticles were examined. The type of capping agent was chosen dependent on the substrate, therefore dodecylphosphonic acid and octadecylphosphonic acid were used for ZrO(2) and dodecyltrimethoxysilane for SiO(2) samples. The plane ZrO(2) nanocrystals yielded more ordered alkyl-chain structures whereas spherical SiO(2) nanoparticles showed significantly lower alkyl-chain ordering. Submicron-sized silica spheres revealed a significantly higher alkyl chain ordering, comparable to an analogously prepared SAM on a non-curved plane oxidized Si-wafer. In the case of ZrO(2) nanocrystals an intense alkyl-chain alignment could be disturbed by decreasing the grafting density from the maximum of 2.1 molecules/nm(2) through the variation of coupling agent concentration to lower values. Furthermore, the co-adsorption of a different coupling agent, such as phenylphosphonic acid for ZrO(2) and phenyltrimethoxysilane for SiO(2), resulted in a significantly lower alkyl-chain ordering for ZrO(2) plane crystals and for large SiO(2) spherical particles at high grafting density. An increasing amount of order-disturbing molecules leads to a gradual decrease in alkyl-chain alignment on the surface of the inorganic nanoparticles. In the case of the ZrO(2) nanoparticle system it is shown via dynamic light scattering (DLS) that the mixed monolayer formation on the particle surface impacts the dispersion quality in organic solvents such as n-hexane.

  19. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  20. Surface Modification of TiO2 Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wooh, Sanghyuk; Kim, Tea-Yon; Song, Donghoon; Lee, Yong-Gun; Lee, Tae Kyung; Bergmann, Victor W; Weber, Stefan A L; Bisquert, Juan; Kang, Yong Soo; Char, Kookheon

    2015-11-25

    Dye aggregation and electron recombination in TiO2 photoanodes are the two major phenomena lowering the energy conversion efficiency of dye-sensitized solar cells (DSCs). Herein, we introduce a novel surface modification strategy of TiO2 photoanodes by the fluorinated self-assembled monolayer (F-SAM) formation with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFTS), blocking the vacant sites of the TiO2 surface after dye adsorption. The F-SAM helps to efficiently lower the surface tension, resulting in efficient repelling ions, e.g., I3(-), in the electrolyte to decrease the electron recombination rate, and the role of F-SAM is characterized in detail by impedance spectroscopy using a diffusion-recombination model. In addition, the dye aggregates on the TiO2 surface are relaxed by the F-SAM with large conformational perturbation (i.e., helix structure) seemingly because of steric hindrance developed during the SAM formation. Such multifunctional effects suppress the electron recombination as well as the intermolecular interactions of dye aggregates without the loss of adsorbed dyes, enhancing both the photocurrent density (11.9 → 13.5 mA cm(-2)) and open-circuit voltage (0.67 → 0.72 V). Moreover, the combined surface modification with the F-SAM and the classical coadsorbent further improves the photovoltaic performance in DSCs.

  1. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    Science.gov (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  2. Scanning tunneling microscopic and spectroscopic studies on a crystalline silica monolayer epitaxially formed on hexagonal SiC(0001¯) surfaces

    Science.gov (United States)

    Tochihara, Hiroshi; Shirasawa, Tetsuroh; Suzuki, Takayuki; Miyamachi, Toshio; Kajiwara, Takashi; Yagyu, Kazuma; Yoshizawa, Shunsuke; Takahashi, Toshio; Tanaka, Satoru; Komori, Fumio

    2014-02-01

    An epitaxial silicon-oxide monolayer of chemical composition of Si2O3 (the Si2O3 layer) formed on hexagonal SiC(0001¯) surfaces has been observed by scanning tunneling microscopy (STM). Filled- and empty-state STM images with atomic resolution support the previously reported model. Typical structural defects in the Si2O3 layer are found to be missing SiOn (n = 1, 2, 3) molecules. The band gap of the Si2O3 layer obtained by point tunneling spectroscopy is 5.5±0.5 eV, exhibiting considerable narrowing from that of bulk SiO2, 8.9 eV. It is proposed that the Si2O3 layer is suitable as a relevant interface material for formation of SiC-based metal-oxide-semiconductor devices.

  3. Interfacial properties in Langmuir monolayers and LB films of DPPC with partially fluorinated alcohol (F8H7OH).

    Science.gov (United States)

    Nakahara, Hiromichi; Hirano, Chikayo; Fujita, Ichiro; Shibata, Osamu

    2013-01-01

    Two-component interactions between (perfluorooctyl) heptanol (F8H7OH) and dipalmitoylphosphatidylcholine (DPPC), which is a major component of pulmonary surfactants in mammals, were systematically elucidated using Langmuir monolayers and Langmuir-Blodgett (LB) films of the compounds. The interactions such as the miscibility of the compounds and their phase behavior were examined from thermodynamic and morphological perspectives. The surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of the binary monolayers containing F8H7OH in different mole fractions (XF8H7OH) were measured simultaneously. The excess Gibbs free energy of mixing of the two components was calculated from the π-A isotherms. The resulting isotherm data were employed to construct a two-dimensional (2D) phase diagram of the system. The phase diagram revealed that the transition pressure as well as the monolayer collapse pressure change with changes in XF8H7OH. These thermodynamic analyses suggested that the miscibility of the two components and the solidification of DPPC monolayers can be induced by the addition of F8H7OH. The phase behavior upon monolayer compression was observed morphologically in situ using Brewster angle microscopy (BAM) and fluorescence microscopy (FM), as well as ex situ using atomic force microscopy (AFM). Interestingly, the AFM-based analysis revealed the formation of monodispersed 2D micelles consisting of F8H7OH at low surface pressures.

  4. On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers.

    Science.gov (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Brezesinski, Gerald; Geue, Thomas; Fontaine, Philippe

    2016-09-06

    In this article, we describe the effect of a highly hemolytic saponin, digitonin, on model lipids cholesterol and dipalmitoylphosphatidylcholine (DPPC) using a combination of tensiometric (surface pressure and dilatational surface elasticity), spectroscopic (infrared reflection absorption spectroscopy, IRRAS), microscopic (fluorescence microscopy), and scattering techniques (neutron reflectivity, NR, and grazing incidence X-ray diffraction, GIXD). The monolayers of individual lipids and their 10:9 (mol/mol) mixture were exposed to an aqueous solution of digitonin (10(-4) M) by subphase exchange using a setup developed recently in our laboratory. The results confirm that digitonin can adsorb onto both bare and lipid-covered water-air interfaces. In the case of DPPC, a relatively weak interaction can be observed, but the presence of cholesterol drastically enhances the effect of digitonin. The latter is shown to dissociate the weak cholesterol-DPPC complexes and to bind cholesterol in an additional layer attached to the original lipid monolayer.

  5. Mixed Langmuir monolayers of gramicidin A and fluorinated alcohols.

    Science.gov (United States)

    Broniatowski, Marcin; Obidowicz, Katarzyna; Vila Romeu, Nuria; Broniatowska, Elzbieta; Dynarowicz-Łatka, Patrycja

    2007-09-15

    Mixed monolayers of gramicidin A (GA) and three alcohols, differing in the degree of fluorination, namely C18OH, F18OH, and F8H10OH have been investigated by means of: surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM) aiming at finding appropriate molecules for incorporating gramicidin A for a biosensor design. Our results proved that only the semifluorinated alcohol is appropriate material for this purpose since it forms miscible and homogeneous monolayers with GA within the whole concentration range. The experimental results have been supported by the calculations of van der Waals energy profiles using the Insight II program. Both the hydrogenated and perfluorinated alcohols were found to aggregate at higher surface pressures, which exclude their application for gramicidin-based biosensor construction.

  6. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  7. Langmuir monolayers composed of single and double tail sulfobetaine lipids.

    Science.gov (United States)

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E

    2016-07-15

    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to

  8. Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption

    Science.gov (United States)

    Jogikalmath, Gangadhar

    Protein adsorption resistant surfaces find use in many biomedical applications, such as catheters, dialysis devices and biosensors that involve blood contacting surfaces. To ensure long-term functioning of a device in an environment containing protein, there is a need to produce homogeneous surfaces that are resistant to protein adsorption. A polymer brush covered surface, produced by either physical adsorption or chemical grafting of hydrophilic polymers to surfaces, is one of the approaches used in creating such surfaces. High grafting densities needed to make an effective barrier are usually not realized in chemical grafting/adsorption from solution, due to self-exclusion of surface grafted molecules. In this dissertation polymer brush surfaces formed by chemically grafted PEO molecules and transferred monolayers of PS-b-PEO diblock copolymers are investigated using atomic force microscopy (AFM), surface plasmon resonance (SPR) and surface pressure measurement techniques. An AFM adhesion mapping technique was used to evaluate the surface heterogeneity of chemically modified PEO and transferred diblock copolymer monolayer surfaces. The behavior of PS-b-PEO molecules at the air-water interface was studied using Langmuir trough. The stability of transferred diblock copolymer monolayers was investigated using AFM. Using SPR, protein adsorption to the diblock copolymer layers was investigated as a function of protein size (using HSA and ferritin) as a function of grafting density of PEO in the monolayer. It was seen that a lower density of the PS-b-PEO monolayer was sufficient to prevent ferritin adsorption (larger protein) while a higher density brush layer was required to achieve complete prevention of HSA adsorption to the surface. The effect of mobility of the polymer brush layer on protein adsorption prevention was analyzed using SPR and surface pressure measurements. It was seen that the copolymer monolayer (at the air-buffer interface) rearranged itself to

  9. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface.

    Science.gov (United States)

    Maloney, K M; Grainger, D W

    1993-04-01

    A series of ternary mixed monolayers containing varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and equimolar additions of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LYSO-PC) and palmitic acid (PA) were studied at the air-water interface. These mixed monolayers were used to model phospholipid biomembrane interfaces resulting from phospholipase A2 (PLA2) hydrolysis. Recent work [D.W. Grainger A. Reichert, H. Ringsdorf and C. Salesse (1989) Biochim. Biophys. Acta. 1023, 365-379] has shown that PLA2 hydrolysis of pure phospholipid monolayers results in formation of large PLA2 domains at the air-water interface. These domains are proposed to result from PLA2 adsorption to phase separated regions in the hydrolyzed monolayer. To elucidate the phase behaviour in these monolayer systems, surface pressure-area isotherms were measured for the ternary mixtures on pure water and buffered subphases. Fluorescence microscopy at the air-water interface was used to image fluorescent probe-doped monolayer mixtures during isothermal compressions. A water-soluble cationic carbocyanine dye was used to probe the interfacial properties of the mixed monolayers. Isotherm data do not provide unambiguous evidence for either phase separation or ideal mixing of monolayer components. Fluorescence microscopy is more revealing, showing that lateral phase separation of microstructures containing palmitic acid occurred only when monolayer subphases contained Ca2+ ions at alkaline pH. At either low pH or on Ca(2+)-free subphases, phase separation was not observed.

  10. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  11. Chemical reactions in dense monolayers: in situ thermal cleavage of grafted esters for preparation of solid surfaces functionalized with carboxylic acids.

    Science.gov (United States)

    Dugas, Vincent; Chevalier, Yves

    2011-12-06

    The thermodynamics of a chemical reaction confined at a solid surface was investigated through kinetic measurements of a model unimolecular reaction. The thermal cleavage of ester groups grafted at the surface of solid silica was investigated together with complementary physicochemical characterization of the grafted species. The ester molecules were chemically grafted to the silica surface and subsequently cleaved into the carboxylic acids. A grafting process of a reproducible monolayer was designed using the reaction of monofunctional organosilane from its gas phase. The thermal deprotection step of the ester end-group was investigated. The thermal deprotection reaction behaves in quite a specific manner when it is conducted at a surface in a grafted layer. Different organosilane molecules terminated by methyl, isopropyl and tert-butyl ester groups were grafted to silica surface; such functionalized materials were characterized by elemental analysis, IR and NMR spectroscopy, and thermogravimetric analysis, and the thermodynamic parameters of the thermal elimination reaction at the surface were measured. The limiting factor of such thermal ester cleavage reaction is the thermal stability of grafted ester group according to the temperature order: tert-butyl groups were not selectively cleaved by temperature. The thermal deprotection of i-propyl ester groups took place at a temperature close to the thermal degradation of the organofunctional tail of the silane. The low thermolysis temperature of the grafted tert-butyl esters allowed their selective cleavage. There is a definite influence of the surface on the reaction. The enthalpy of activation is lower than in the gas phase because of the polarity of the reaction site. The major contribution is entropic; the negative entropy of activation comes from lateral interactions with the neighbor grafted molecules because of the high grafting density. Such reaction is an original strategy to functionalize the silica

  12. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  13. Miscibility of dl-α-tocopherol β-glucoside in DPPC monolayer at air/water and air/solid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Neunert, G. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Makowiecki, J.; Piosik, E.; Hertmanowski, R. [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland); Polewski, K. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Martynski, T., E-mail: tomasz.martynski@put.poznan.pl [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-10-01

    The role of newly synthesized tocopherol glycosidic derivative in modifying molecular organization and phase transitions of phospholipid monolayer at the air/water interface has been investigated. Two-component Langmuir films of dl-α-tocopheryl β-D-glucopyranoside (BG) mixed with dipalmitoyl phosphatidylcholine (DPPC) in the whole range of mole fractions were formed at the water surface. An analysis of surface pressure versus mean molecular area (π-A) isotherms and Brewster angle microscope images showed that the presence of BG molecules changes the structure and packing of the DPPC monolayer in a BG concentration dependent manner. BG molecules incorporated into DPPC monolayer inhibit its liquid expanded to liquid condensed phase transition proportionally to the BG concentration. The monolayers were also transferred onto solid substrates and visualized using an atomic force microscope. The results obtained indicate almost complete miscibility of BG and DPPC in the monolayers at surface pressures present in the biological cell membrane (30-35·10{sup -3} N·m{sup -1}) for a BG mole fraction as high as 0.3. This makes the monolayer less packed and more disordered, leading to an increased permeability. The results support our previous molecular dynamics simulation data. - Highlights: • Langmuir films of α-tocopherol derivative with DPPC was studied thermodynamically. • Mixed DPPC/BG films were transferred onto mica substrates for topography imaging by using AFM. • Miscibility of BG/DPPC films at surface pressures present in membranes was observed up to MF = 0.3.

  14. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  15. Mechanical properties and stabilities of α-boron monolayers.

    Science.gov (United States)

    Peng, Qing; Han, Liang; Wen, Xiaodong; Liu, Sheng; Chen, Zhongfang; Lian, Jie; De, Suvranu

    2015-01-21

    We investigate the mechanical properties and stabilities of planar α-boron monolayers under various large strains using density functional theory (DFT). α-Boron has a high in-plane stiffness, about 2/3 of that of graphene, which suggests that α-boron is four times as strong as iron. Potential profiles and stress-strain curves indicate that a free standing α-boron monolayer can sustain large tensile strains, up to 0.12, 0.16, and 0.18 for armchair, zigzag, and biaxial deformations, respectively. Third, fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger than 0.02, 0.06, and 0.08 respectively. Second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure, while the trend of Poisson's ratio is reversed. The surface sound speeds of both the compressional and shear waves increase with pressure. The ratio of these two sound speeds increases with the increase of pressure and converges to a value of 2.5. Our results imply that α-boron monolayers are mechanically stable under various large strains and have advanced mechanical properties - high strength and high flexibility.

  16. First-Principles Surface Stress Calculations and Multiscale Deformation Analysis of a Self-Assembled Monolayer Adsorbed on a Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Yu-Ching Shih

    2014-04-01

    Full Text Available Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT calculations and finite element method (FEM analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM on the Au(111 surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.

  17. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    Science.gov (United States)

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems.

  18. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  19. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    Science.gov (United States)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  20. Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer.

    Science.gov (United States)

    Harrison, Katharine L; Biedermann, Laura B; Zavadil, Kevin R

    2015-09-15

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  1. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  2. Monolayers of a De Novo Designed 4-Alpha-Helix Bundle Carboprotein and Partial Structures on Au(111)-Surfaces

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud Jørgen

    2002-01-01

    Mapping of structure and function of proteins adsorbed on solid surfaces is important in many contexts. Electrochemical techniques based on single-crystal metal surfaces and in situ scanning probe microscopies (SPM) have recently opened new perspectives for mapping at the single-molecule level. D...

  3. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    Science.gov (United States)

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10(7) M(-1) in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10(15) M(-2) and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and

  4. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  5. Evaluating road surface conditions using dynamic tire pressure sensor

    Science.gov (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.

    2014-03-01

    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  6. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  7. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication

    Directory of Open Access Journals (Sweden)

    A. A. Pashilkar

    2002-10-01

    Full Text Available The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  8. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments.

    Science.gov (United States)

    Tsanova, A; Jordanova, A; Dzimbova, T; Pajpanova, T; Golovinsky, E; Lalchev, Z

    2014-05-01

    Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.

  9. Preparation of Carbazole Polymer Thin Films Chemically Bound to Substrate Surface by Physical Vapor Deposition Combined with Self-Assembled Monolayer

    Science.gov (United States)

    Katsuki, Kiyoi; Bekku, Hiroshi; Kawakami, Akira; Locklin, Jason; Patton, Derek; Tanaka, Kuniaki; Advincula, Rigoberto; Usui, Hiroaki

    2005-01-01

    Vinyl polymer thin films having carbazole units were prepared by a new method combining physical vapor deposition and self-assembled monolayer (SAM) techniques. 3-(N-carbazolyl)propyl acrylate monomer was evaporated onto a gold substrate that had a VAZO 56 (DuPont) initiator attached as a SAM. The VAZO initiator was activated by irradiating ultraviolet light after depositing the monomer. Although the polymerization reaction can proceed even without the surface initiator, the SAM was effective in improving the surface smoothness, thermal stability, and film-substrate adhesion as a consequence of the formation of covalent chemical bonds between the film and the substrate. Thermal activation of the initiator was examined for the deposition polymerization of 9-H-carbazole-9-ethylmethacryrate. Substrate heating during the evaporation was not effective for accumulating thin films. On the other hand, performing postdeposition annealing on the film after deposition at room temperature resulted in the formation of a polymer thin film chemically bound to the substrate.

  10. Fracture Characteristics of Monolayer CVD-Graphene

    OpenAIRE

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. ...

  11. FAST TRACK COMMUNICATION: Small surface wave discharge at atmospheric pressure

    Science.gov (United States)

    Kiss'ovski, Zh; Kolev, M.; Ivanov, A.; Lishev, St.; Koleva, I.

    2009-09-01

    A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of Te ~ 1.9 eV and a density of ne ~ 3.9 × 1014 cm-3 are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed.

  12. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    Science.gov (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  13. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  14. Electrochemical fabrication of surface chemical gradients in thiol self-assembled monolayers with tailored work-functions.

    Science.gov (United States)

    Fioravanti, Giulia; Lugli, Francesca; Gentili, Denis; Mucciante, Vittoria; Leonardi, Francesca; Pasquali, Luca; Liscio, Andrea; Murgia, Mauro; Zerbetto, Francesco; Cavallini, Massimiliano

    2014-10-01

    The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.

  15. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  16. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}

  17. Intermolecular forces in lipid monolayers. Two-dimensional virial coefficients for pentadecanoic acid from micromanometry on spread monolayers at the air/water interface.

    Science.gov (United States)

    Pallas, Norman R; Pethica, Brian A

    2009-07-07

    The lateral intermolecular forces between surfactant or lipid molecules in monolayers at interfaces are fundamental to understanding the phenomena of surface activity and the interactions of lipids in two-dimensional structures such as smectic phases and biomembranes. The classical approach to these forces is via the two-dimensional virial coefficients, which requires precise micromanometry on monolayer isotherms in the dilute gaseous region. Low pressure isotherms out to high surface areas in the two-dimensional gas range have been measured at 15, 25 and 30 degrees C for insoluble monolayers of n-pentadecanoic acid spread at the interface between water-vapour saturated air and a dilute aqueous solution of HCl. The data allow estimates of virial coefficients up to the third term. The second virial coefficients are compared with those predicted from a statistical mechanical model for monolayers of n-alkylcarboxylic acids treated as side-by-side parallel chains extended at the surface with the carboxyl head groups shielded in the water phase. The two sets coincide at approximately 26 degrees C, but the experimental estimates show a much larger dependence on temperature than the model predicts. Chain conformation effects, head group interactions and surface field polarization are discussed as possible temperature-dependent contributions to the lateral potentials of mean force.

  18. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  19. Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers

    NARCIS (Netherlands)

    Ellinas, K.; Pujari, S.P.; Dragatogiannis, D.A.; Charitidis, C.A.; Tserepi, A.; Zuilhof, H.; Gogolides, E.

    2014-01-01

    Superhydrophobic and superamphiphobic toward superoleophobic polymeric surfaces of polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step process: (1) plasma texturing (i.e., ion-enhanced plasma etching with simultaneous roughenin

  20. Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production

    Science.gov (United States)

    Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.

    2016-01-01

    Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…

  1. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W; Delamere, Nicholas A; Mathias, Richard T

    2015-11-03

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity.

  2. Scanning tunneling microscopic and spectroscopic studies on a crystalline silica monolayer epitaxially formed on hexagonal SiC(0001{sup ¯}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tochihara, Hiroshi, E-mail: tochihara@fukuoka-u.ac.jp, E-mail: tochihara.hiroshi.146@m.kyushu-u.ac.jp; Suzuki, Takayuki; Yagyu, Kazuma [Department of Electronics Engineering and Computer Science, Fukuoka University, Fukuoka 814-0180 (Japan); Shirasawa, Tetsuroh; Takahashi, Toshio [Laser and Synchrotron Research Center, Institute for Solid State Physics, University of Tokyo, Chiba 277-8581 (Japan); Miyamachi, Toshio; Yoshizawa, Shunsuke; Komori, Fumio [Nanoscale Science Division, Institute for Solid State Physics, University of Tokyo, Chiba 277-8581 (Japan); Kajiwara, Takashi; Tanaka, Satoru [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2014-02-03

    An epitaxial silicon-oxide monolayer of chemical composition of Si{sub 2}O{sub 3} (the Si{sub 2}O{sub 3} layer) formed on hexagonal SiC(0001{sup ¯}) surfaces has been observed by scanning tunneling microscopy (STM). Filled- and empty-state STM images with atomic resolution support the previously reported model. Typical structural defects in the Si{sub 2}O{sub 3} layer are found to be missing SiO{sub n} (n = 1, 2, 3) molecules. The band gap of the Si{sub 2}O{sub 3} layer obtained by point tunneling spectroscopy is 5.5±0.5 eV, exhibiting considerable narrowing from that of bulk SiO{sub 2}, 8.9 eV. It is proposed that the Si{sub 2}O{sub 3} layer is suitable as a relevant interface material for formation of SiC-based metal-oxide-semiconductor devices.

  3. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium.

    Science.gov (United States)

    Park, Sangjin; Chi, Young Shik; Choi, Insung S; Seong, Jiehyun; Jon, Sangyong

    2006-11-01

    Self-assembled polymeric monolayers (PMs) on Si/SiO2 wafers were prepared in water from a series of random copolymers of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(trimethoxysilyl)propyl methacrylate (TMSMA), denoted as poly(TMSMA-r-PEGMA). Four polymers of poly(TMSMA-r-PEGMA) were synthesized by free radical polymerization with a systematic variation of co-monomer feed ratios. Regardless of PEG grafting density in the copolymers, all PMs formed approximately 1 nm-thick film as measured by ellipsometry. However, the PMs with a higher grafting density of PEG resulted in more hydrophilic surfaces in terms of water contact angle. The protein resistance of the PMs was evaluated using bovine serum albumin (BSA) as a model protein. Analyses by ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) showed that the PMs of the copolymers markedly reduced the nonspecific adsorption of proteins compared to the unmodified Si/SiO2 wafers. The study also revealed that the PMs prepared from the copolymers with a higher PEG grafting density were more effective in resisting the nonspecific protein adsorption.

  4. Applied electrochemical biosensor based on covalently self assembled monolayer at gold surface for determination of epinephrine in the presence of Ascorbic acid

    Directory of Open Access Journals (Sweden)

    Moghadam Zohreh

    2017-02-01

    Full Text Available In this paper, a new electrochemical sensor for the determination of epinephrine (Epi in the presence of ascorbic acid (AA is described. The characterization of Au TMBH self-assembled monolayer modified electrode (TMBH SAM-ME was investigated by cyclic voltammetry (CV using the [Fe(CN6]−3/−4 redox couple. The mediated oxidation of Epi at the modified electrode was investigated by voltammetric methods and the values of transfer coefficient (α, the ionic exchanging current density (io, catalytic rate constant (kh and diffusion coefficient (D were calculated. By double potential step chronoamperometric experiments (DPCHA at the modified electrode was obtained two linear segments of 1.7–24.9 μM and 24.9–91.7 μM by a detection limit (3σ of 0.19 ± 0.01 μM for Epi. The advantages of this modified electrode were reproducibility and repeatability, stability and anti fouling effect against oxidation products of Epi at the surface of TMBH SAM-ME. Finally, the modified electrode was shown agreeable responses to recovery of Epi from real sample solutions by standard addition method.

  5. Mass spectrometric analysis of monolayer protected nanoparticles

    Science.gov (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  6. The Self-Assembly of Nano-Objects Code: Applications to supramolecular organic monolayers adsorbed on metal surfaces

    CERN Document Server

    Roussel, Thomas

    2012-01-01

    The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over the characteristic sub-micrometric scales, we confront the robustness of the approach with three different well-known systems: ZnPcCl8 on Ag(111), CuPcF16 on Au(111) and PTBC on Ag(111). We retrieve respectively their square, oblique and hexagonal supramolecular tilling. The code incorporates generalized force fields to describe the molecular interactions, which provides transferability and versatility to many organic building blocks and metal surfaces.

  7. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  8. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Science.gov (United States)

    Shayganpour, Amirreza; Salis, Barbara; Dante, Silvia

    2017-01-01

    Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS) biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores. PMID:28144566

  9. Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass.

    Science.gov (United States)

    Chen, Jianyi; Zhao, Xiaoxu; Tan, Sherman J R; Xu, Hai; Wu, Bo; Liu, Bo; Fu, Deyi; Fu, Wei; Geng, Dechao; Liu, Yanpeng; Liu, Wei; Tang, Wei; Li, Linjun; Zhou, Wu; Sum, Tze Chien; Loh, Kian Ping

    2017-01-25

    We report the fast growth of high-quality millimeter-size monolayer MoSe2 crystals on molten glass using an ambient pressure CVD system. We found that the isotropic surface of molten glass suppresses nucleation events and greatly improves the growth of large crystalline domains. Triangular monolayer MoSe2 crystals with sizes reaching ∼2.5 mm, and with a room-temperature carrier mobility up to ∼95 cm(2)/(V·s), can be synthesized in 5 min. The method can also be used to synthesize millimeter-size monolayer MoS2 crystals. Our results demonstrate that "liquid-state" glass is a highly promising substrate for the low-cost growth of high-quality large-size 2D transition metal dichalcogenides (TMDs).

  10. Electrochemical Deposition Of Thiolate Monolayers On Metals

    Science.gov (United States)

    Porter, Marc D.; Weissharr, Duane E.

    1995-01-01

    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  11. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-12-01

    An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5-4.2 km/s and 2-7 × 1017 m-3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from -900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  12. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition.

    Science.gov (United States)

    Goto, Thiago Eichi; Caseli, Luciano

    2014-10-01

    The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane.

  13. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  14. Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies

    Institute of Scientific and Technical Information of China (English)

    Song Zeyang; Zhu Hongqing; Xu Jiyuan; Qin Xiaofeng

    2015-01-01

    This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed. Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and tempera-tures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.

  15. Intensified surface enhanced Raman signal of a graphene monolayer on a plasmonic substrate through the use of fluidic dielectrics

    Science.gov (United States)

    Mahigir, A.; Gartia, M. R.; Chang, T.-W.; Liu, G. L.; Veronis, G.

    2017-02-01

    It has been shown that surface enhanced Raman spectroscopy (SERS) has many promising applications in ultrasensitive detection of Raman signal of substances. However, optimizing the enhancement in SERS signal for different applications typically requires several levels of fabrication of active plasmonic SERS substrates. In this paper, we report the enhancement of SERS signal of a single layer of graphene located on a plasmonic nano-Lycurgus cup array after placing water droplets on it. The experimental data shows that addition of water droplets can enhance the SERS signal of the single layer of graphene about 10 times without requiring any modifications to the nano-Lycurgus cup array. Using fullwave electromagnetic simulations, we show that addition of water droplets enhances the local electric field at the graphene layer, resulting in stronger light-graphene interaction at the excitation pump laser wavelength. We also show that the addition of water droplets on the graphene layer enables us to modify the band diagram of the structure, in order to enhance the local density of optical states at the Raman emission wavelengths of the graphene layer. Numerical calculations of both the excitation field enhancement at the location of the graphene layer, and the emission enhancement due to enhanced local density of optical states, support the experimental results. Our results demonstrate an approach to boost the SERS signal of a target material by controlling the band diagram of the active nanostructured SERS substrate through the use of fluidic dielectrics. These results could find potential applications in biomedical and environmental technologies.

  16. Assembly of organic monolayers on polydicyclopentadiene.

    Science.gov (United States)

    Perring, Mathew; Bowden, Ned B

    2008-09-16

    The first well-defined organic monolayers assembled on polydicyclopentadiene is reported. Commercial grade dicyclopentadiene was polymerized with the Grubbs' second-generation catalyst in a fume hood under ambient conditions at very low monomer to catalyst loadings of 20 000 to 1. This simple method resulted in a polymer that was a hard solid and appeared slightly yellow. Brief exposures of a few seconds of this polymer to Br 2 lead to a surface with approximately half of the olefins brominated as shown by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy. The ATR-IR spectroscopy was carried out with the polymer in contact with a Ge hemisphere housed in a GATR accessory from Harrick. This brominated polydicyclopentadiene was immersed in DMF with 4-(trifluoromethyl)benzylamine to assemble a monolayer. The amines displaced Br on the surface to form a monolayer that exposed a CF 3 group on the surface. The surface was extensively studied by XPS using the method described by Tougaard to find the distribution of F within the surface layer. The ratio for the peak area, Ap, to the background height, B, measured 30 eV below the peak maximum was 109.8 eV. This value clearly indicated that F was found only at the surface and was not found within the polymer. A surface coverage of 1.37 amines per nm (2) was estimated and indicated that the monolayer was 28% as dense as a similar monolayer assembled from thiols on gold. Finally, a simple method to pattern these monolayers using soft lithography is described. This work is critically important because it reports the first monolayers on a relatively new and emerging polymer that has many desirable physical characteristics such as high hardness, chemical stability, and ease of forming different shapes.

  17. Development and validity of a new model for assessing pressure redistribution properties of support surfaces.

    Science.gov (United States)

    Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou

    2011-05-01

    Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces.

  18. Photopatterning of stable, low-density, self-assembled monolayers on gold.

    Science.gov (United States)

    Safazadeh, Leila; Berron, Brad J

    2015-03-10

    Photoinitiated thiol-yne chemistry is utilized as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers on a gold substrate to create stable, low-density monolayers. The resulting monolayers are compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous low-density monolayers prepared through a solution phase synthetic approach. The overall structuring of the monolayer prepared by solid-phase grafting is characterized by contact angle goniometry and Fourier transform infrared spectroscopy. The results show that the product monolayer has an intermediate surface energy and a more disordered chemical structuring compared to a traditional well-packed self-assembled monolayer, showing a low-packing density of the chains at the monolayer surface. The monolayer's structure and electrochemical stability were studied by reductive desorption of the thiolates. The prepared low-density monolayers have a higher electrochemical stability than traditional well-packed monolayers, which results from the crystalline structure at the gold interface. This technique allows for simple, fast preparation of low-density monolayers of higher stability than well-packed monolayers. The use of a photomask to restrict light access to the substrate yielded these low-density monolayers in patterned regions defined by light exposure. This general thiol-yne approach is adaptable to a variety of analogous low-density monolayers with diverse chemical functionalities.

  19. The influence of an antitumor lipid - erucylphosphocholine - on artificial lipid raft system modeled as Langmuir monolayer.

    Science.gov (United States)

    Wnętrzak, Anita; Łątka, Kazimierz; Makyła-Juzak, Katarzyna; Zemla, Joanna; Dynarowicz-Łątka, Patrycja

    2015-01-01

    Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called 'lipid rafts', which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts. To get a deeper insight into this issue, interactions between representative APC: erucylphosphocholine, and artificial lipid raft system, modeled as Langmuir monolayer (composed of cholesterol and sphingomyelin mixed in 1:2 proportion) were investigated. The Langmuir monolayer experiments, based on recording surface pressure-area isotherms, were complemented with Brewster angle microscopy results, which enabled direct visualization of the monolayers structure. In addition, the investigated monolayers were transferred onto solid supports and studied with AFM. The interactions between model raft system and erucylphosphocholine were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with ΔG(exc) function). The obtained results indicate that erucylphosphocholine introduced to raft-mimicking model membrane causes fluidizing effect and weakens the interactions between cholesterol and sphingomyelin, which results in phase separation at high surface pressures. This leads to the redistribution of cholesterol molecules in model raft, which confirms the results observed in biological studies.

  20. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles.

    Science.gov (United States)

    Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin

    2017-01-19

    We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10(-13) M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.

  1. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira, E-mail: uedono.akira.gb@u.tsukuba.ac.jp [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Armini, Silvia; Zhang, Yu [IMEC, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Kakizaki, Takeaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle, 06099 Halle (Germany); Anwand, Wolfgang; Wagner, Andreas [Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2016-04-15

    Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C{sub 4}F{sub 8} plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C{sub 4}F{sub 8} plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  2. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    Science.gov (United States)

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-03

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.

  3. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol.

    Science.gov (United States)

    Hoda, Kazuki; Ikeda, Yuriko; Kawasaki, Hideya; Yamada, Koji; Higuchi, Ryuichi; Shibata, Osamu

    2006-09-01

    The surface pressure (pi)-area (A), the surface potential (DeltaV)-A, and the dipole moment (mu( perpendicular))-A isotherms were obtained for monolayers made from a ganglioside originated from echinoderms [Diadema setosum ganglioside (DSG-1)], dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylethanolamine (DMPE), cholesterol (Ch), and their combinations. Monolayers spread on several different substrates were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, fluorescence microscopy (FM) and atomic force microscopy (AFM). Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort [R.J. Demchak, T. Fort, J. Colloid Interface Sci. 46 (1974) 191-202]. The new finding was that DSG-1 was stable and showed a liquid-expanded film and that its monolayer behavior of DeltaV was sensitive for the change of the NaCl concentration in the subphase. Moreover, the miscibility of DSG-1 and three major lipids in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the DSG-1 molar fraction (X(DSG-1)), using the additivity rule. From the A-X(DSG-1) and DeltaV(m)-X(DSG-1) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. The miscibility was also investigated from the two-dimensional phase diagrams. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between them. The observations using fluorescence microscopy and AFM image also provide us the miscibility in the monolayer state.

  4. Heat transfer and pressure drop characteristics of dry tower extended surfaces. Part I. Heat transfer and pressure drop data

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    A compilation is presented of heat transfer and pressure drop data which were collected from literature reports on extended surface heat exchangers. The type of extended surfaces considered are tubular finned tubes as distinct from compact heat exchangers. These surfaces have a base tube to which additional surface was added by mechanical means. This additional surface is in the form of fins attached to the outside surface of the tube. These tubes are normally employed for heat transfer between a liquid and a gas. The liquid flows inside the tubes and the gas, normally air, flows outside the tubes. The fins are oriented so that their surface is transverse to the axis of the tubes. The gas flows across the tubes in a direction parallel to the fin surface.

  5. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  6. Ion Induced Changes in Phosphoinositide Monolayers at Phisiological Concentrations

    Science.gov (United States)

    Kazadi Badiambile, Adolphe; Forstner, Martin

    2013-03-01

    Phosphoinositides (PIPs) play a crucial role in many cellular process that occur at the plasma membrane such as calcium release, exocytosis or endocytosis. In order to specifically regulate these functions PIPs must segregate in pools at the plasma membrane. A possible mechanism that could induce and regulate such organization of phosphoinositides is their interaction with bivalent cations. Understanding the physicochemical mechanism that can regulate membrane structure is a crucial step in the development of adaptive biomimetic membrane systems. Using Langmuir monolayers, we investigated the effect of calcium and magnesium on the surface pressure-area/lipid isotherm of monolayer of phosphatidylinositol (PI), phosphatidylinositol bisphosphate (PIP2), dioleoylphosphatidylglycerol (DOPG) and palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). It is found that the decrease of area per lipid, i.e. the increase in aggregation, is mostly dependent on the lipid's head group charge but ion specific. In addition, we discuss changes in free energy and compressibility of these monolayer-ion systems. NSF

  7. Fluorescence detection and imaging of amino-functionalized organic monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: SHIRAHATA.naoto@nims.go.jp; Furumi, Seiichi [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Masuda, Yoshitake; Hozumi, Atsushi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimo-shidami, Moriyama, Nagoya 463-8560 (Japan); Sakka, Yoshio [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2008-03-03

    Amino-terminated organic monolayer formed on silicon covered with native oxide (SiO{sub 2}/Si) was directly visualized under observation with fluorescent microscopy. This successful fluorescence visualization was achieved by a combination of fluorescamine method and photopatterning of the amino-terminated surface. As a typical example, an amino-terminated self-assembled monolayer (SAM) was formed on SiO{sub 2}/Si substrate in a vapor of 12.5 vol.% solution of N-(6-aminohexyl)-3-aminopropyltrimethoxysilane [H{sub 2}N(CH{sub 2}){sub 6}NH(CH{sub 2}){sub 3}Si(OCH{sub 3}){sub 3}, AHAPS] diluted with absolute toluene. A micropattern of AHAPS-SAM was photolithographycally prepared using 172 nm vacuum ultraviolet (VUV) light under a reduced pressure of 10 Pa for 30 min through a photomask. The resultant micropattern composed of AHAPS- and SiOH-covered regions was provided to fluorescamine method. Due to a nonluminescence of fluorescamine itself under UV/visible irradiation, a fluorescent emission could not be observed on SiOH regions of the micropattern. In contrast, fluorescamine reacted with the outermost amino group of the AHAPS-SAM to give a fluorescent emission. A comprehensible fluorescence method for verifying formation of an amino-terminated organic monolayer has been developed.

  8. Oleic acid disorders stratum corneum lipids in Langmuir monolayers.

    Science.gov (United States)

    Mao, Guangru; VanWyck, Dina; Xiao, Xin; Mack Correa, M Catherine; Gunn, Euen; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2013-04-16

    Oleic acid (OA) is well-known to affect the function of the skin barrier. In this study, the molecular interactions between OA and model stratum corneum (SC) lipids consisting of ceramide, cholesterol, and palmitic acid (PA) were investigated with Langmuir monolayer and associated techniques. Mixtures with different OA/SC lipid compositions were spread at the air/water interface, and the phase behavior was tracked with surface pressure-molecular area (π-A) isotherms. With increasing OA levels in the monolayer, the films became more fluid and more compressible. The thermodynamic parameters derived from π-A isotherms indicated that there are preferential interactions between OA and SC lipids and that films of their mixtures were thermodynamically stable. The domain structure and lipid conformational order of the monolayers were studied through Brewster angle microscopy (BAM) and infrared reflection absorption spectroscopy (IRRAS), respectively. Results indicate that lower concentrations of OA preferentially mix with and disorder the ceramide-enriched domains, followed by perturbation of the PA-enriched domains and disruption of SC lipid domain separation at higher OA levels.

  9. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  10. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  11. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxyli...

  12. pH Sensitivity of Si-C Linked Organic Monolayers on Crystalline Silicon Surfaces: Titration Experiments, Mott Schottky Analysis and Site-Binding Modeling

    NARCIS (Netherlands)

    Faber, E.J.; Sparreboom, W.; Groeneveld, W.; Smet, de L.C.P.M.; Bomer, J.; Olthuis, W.; Zuilhof, H.; Sudhölter, E.J.R.; Bergveld, P.; Berg, van den A.

    2007-01-01

    The electrochemical behavior of SiC linked organic monolayers is studied in electrolyte-insulator-Si devices, under conditions normally encountered in potentiometric biosensors, to gain fundamental knowledge on the behavior of such Si electrodes under practical conditions. This is done via titration

  13. Dispersion in deep polar firn driven by synoptic-scale surface pressure variability

    OpenAIRE

    2016-01-01

    Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pre...

  14. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  15. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  16. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of buildi

  17. Topographies of Organized Monolayer of α-Amylase Observed by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a-amylase organized monolayer was assembled on the surface of the PET-CO2- substrate in different conditions. The different topography of the a-amylase/PET monolayer was obtained by AFM in tapping mode.

  18. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  19. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  20. Two-component Langmuir monolayers and LB films of DPPC with partially fluorinated alcohol (F8H9OH).

    Science.gov (United States)

    Nakahara, Hiromichi; Hirano, Chikayo; Shibata, Osamu

    2013-01-01

    The interaction of (perfluorooctyl)nonanol (F8H9OH) with dipalmitoylphosphatidylcholine (DPPC) was systematically studied in two-component monolayers at air-water interface. The thermodynamic property and phase morphology of the monolayers were investigated by isotherm measurements and several microscopic methods such as Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy (AFM). The AFM topographies for Langmuir-Blodgett films of F8H9OH exhibit the formation of monodispersed surface micelles. In the two-component system, the incorporation of F8H9OH induces condensation (or solidification) of DPPC monolayers. The excess Gibbs free energy and interaction parameter (or energy) of the two components were calculated from the isotherm data. Both the phase transition pressure for the coexistence of ordered and disordered phases and collapse pressure of monolayers vary with the mole fraction of F8H9OH, indicating binary miscibility between F8H9OH and DPPC within a monolayer state. The miscibility is also confirmed visually by in situ and ex situ microscopy at micro- and nanometer scales.

  1. Water-binding phospholipid nanodomains and phase-separated diacylglycerol nanodomains regulate enzyme reactions in lipid monolayers.

    Science.gov (United States)

    Nagashima, Teruyoshi; Uematsu, Shogo

    2015-02-03

    Phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) nanodomains covered with bound water as well as diacylglycerol 1-palmitoyl-2-oleoyl-sn-glycerol (POG) nanodomains separated from a lipid membrane were studied, using monolayer surfaces of POPC hydrolyzed by phospholipase C (PLC). The investigation was based on the analysis of compression isotherms and on atomic force microscope (AFM) observations of Langmuir-Blodgett (LB) films and Langmuir-Schaefer (LS) films. The results included reaction rate constants obtained by kinetic analysis of phosphocholine at surface pressures from 0.1 to 31 mN/m and determined by a luminol-enhanced chemiluminescence method. Monolayer elastic modulus values and fluorescence microscopic images confirmed that hydrolysis by PLC progressed in the intermediate monolayer between a liquid-expanded (L1) film and a liquid-condensed (L2) film at 2-17 mN/m. Furthermore, the intermediate film was confirmed to consist of L1 film and the POPC nanodomains in the L2 state are covered with bound water, conclusions based on the following AFM results: (1) nanodomains in POPC LS films were catalyzed by PLC, (2) POG nanodomains extended out from LB films of mixed POPC/POG 9/1 (mol/mol) monolayers, and (3) POPC LS films were covered with bound water, as indicated by cross-sectional analysis. At the optimal surface pressure of 10 mN/m, when POPC nanodomains (L2), with internal diameters of ∼75 nm, were hydrolyzed by PLC, they shrank down into pockets of the same size as those that appeared with POG. The resulting pocket sizes on LS films were in agreement with POG nanodomain sizes on LB films. This study demonstrated that PLC reacted with POPC nanodomains (L2) dispersed in L1/L2 mixed phase monolayers selectively and that POG nanodomains were phase-separated from the monolayer as hydrolysis proceeded.

  2. Experimental investigation and calibration of surface pressure modeling for trailing edge noise

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2011-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model....

  3. Nonlinear optical studies of organic monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.

  4. Fluidization of a dipalmitoyl phosphatidylcholine monolayer by fluorocarbon gases: potential use in lung surfactant therapy.

    Science.gov (United States)

    Gerber, Frédéric; Krafft, Marie Pierre; Vandamme, Thierry F; Goldmann, Michel; Fontaine, Philippe

    2006-05-01

    Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.

  5. Interfacial Interactions and Nanostructure Changes in DPPG/HD Monolayer at the Air/Water Interface

    Directory of Open Access Journals (Sweden)

    Huaze Zhu

    2015-01-01

    Full Text Available Lung surfactant (LS plays a crucial role in regulating surface tension during normal respiration cycles by decreasing the work associated with lung expansion and therefore decreases the metabolic energy consumed. Monolayer surfactant films composed of a mixture of phospholipids and spreading additives are of optional utility for applications in lung surfactant-based therapies. A simple, minimal model of such a lung surfactant system, composed of 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-(1-gylcerol] (DPPG and hexadecanol (HD, was prepared, and the surface pressure-area (π-A isotherms and nanostructure characteristics of the binary mixture were investigated at the air/water interface using a combination of Langmuir-Blodgett (LB and atomic force microscopy (AFM techniques. Based on the regular solution theory, the miscibility and stability of the two components in the monolayer were analyzed in terms of compression modulus (Cs-1 , excess Gibbs free energy (ΔGexcπ , activity coefficients (γ, and interaction parameter (ξ. The results of this paper provide valuable insight into basic thermodynamics and nanostructure of mixed DPPG/HD monolayers; it is helpful to understand the thermodynamic behavior of HD as spreading additive in LS monolayer with a view toward characterizing potential improvements to LS performance brought about by addition of HD to lung phospholipids.

  6. Monolayer and Brewster angle microscopy study of human serum albumin-dipalmitoyl phosphatidyl choline mixtures at the air-water interface.

    Science.gov (United States)

    Toimil, Paula; Prieto, Gerardo; Miñones, José; Trillo, José M; Sarmiento, Félix

    2012-04-01

    The aim of this study is to deepen the understanding of the behavior of human serum albumin (HSA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers. For this purpose, different amounts of DPPC were spread at 25°C on the water surface containing a monolayer of HSA. Surface film balance and Brewster angle microscopy techniques have been used to analyze the structural and energetic characteristics (structure, topography, thickness, miscibility and interactions) of these mixtures. HSA/DPPC mixed monolayers exhibit two phase transitions evidenced by two discontinuities in the corresponding π-A isotherms and by two minimum values in the compressional modulus (C(s)(-1))-surface pressure (π) curves. The plot of the molecular areas occupied by the mixed monolayers as function of the mass fraction of DPPC shows the absence of deviations from linearity, a typical behavior for ideal or inmiscible system. This result was confirmed from the values calculated for the free energy of excess (ΔG(exc)), which are practically zero whatever the composition of the mixtures and the surface pressures at which ΔG(exc) values were calculated. In addition, relative thickness values of HSA/DPPC mixed monolayers showed the existence of an exclusion surface pressure (π(exc)), below which the monolayer is composed of a mixture of both components, while above π(exc) the HSA molecules are squeezed out the interface, but not totally. In fact, although in this region DPPC domains predominate at the interface, the existence of protein molecules in a packing "loops" configuration can be observed in BAM images. Moreover, relative thickness measurements confirm this hypothesis.

  7. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states.

  8. Enhanced vertical carrier mobility in poly(3-alkylthiophene) thin films sandwiched between self-assembled monolayers and surface-segregated layers.

    Science.gov (United States)

    Ma, Jusha; Hashimoto, Kazuhito; Koganezawa, Tomoyuki; Tajima, Keisuke

    2014-04-07

    End-functionalized poly(3-butylthiophene) with a thiol group (P3BT-S) was synthesized and used to form a self-assembled monolayer (SAM). It can induce the end-on orientation in the thin film which has the potential to further enhance hole mobility up to 1.1 × 10(-2) cm(2) V(-1) s(-1) in the vertical direction.

  9. Durability of SRP Waste Glass - Effects of Pressure and Formation of Surface Layers

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G.

    2001-10-17

    This report discusses results of an assessment of pressure at anticipated storage temperature on the chemical durability of Savannah River Plant waste glass. Surface interactions were also examined and corrosion mechanisms discussed.

  10. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets

    National Research Council Canada - National Science Library

    Ollila, O H Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo

    2012-01-01

    .... Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface...

  11. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    Science.gov (United States)

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  12. Fullerene monolayer formation by spray coating.

    Science.gov (United States)

    Cervenka, J; Flipse, C F J

    2010-02-10

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  13. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    CERN Document Server

    Matsuoka, H; Matsumoto, K

    2003-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanost...

  14. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    mechanism for melting in monolayers of flexible rod-shaped molecules. Melting requires the formation of vacancies in the monolayer by molecular motion perpendicular to the surface. This ‘‘footprint reduction’’ mechanism implies that strictly two-dimensional theories of melting are inapplicable...

  15. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...

  16. A semi-empirical airfoil stall noise model based on surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are ana...

  17. Dispersion in deep polar firn driven by synoptic-scale surface pressure variability

    OpenAIRE

    2016-01-01

    Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced ...

  18. Lupane-type pentacyclic triterpenes in Langmuir monolayers: a synchrotron radiation scattering study.

    Science.gov (United States)

    Broniatowski, Marcin; Flasiński, Michał; Wydro, Paweł

    2012-03-20

    Lupane-type pentacyclic triterpenes (lupeol, betulin, and betulinic acid) are natural products isolated from various plant sources. The terpenes exhibit a vast spectrum of biological activity and are applied in therapies for different diseases, among which the anticancer, anti-HIV, antihypercholesteremic, and antiinflammatory are the most promising. These chemicals possess amphiphilic structure and were proved to interact strongly with biomembranes, which can be the key stage in their mechanism of action. In our studies, we applied Langmuir monolayers as versatile models of biomembranes. It turned out that the three investigated terpenes are capable of stable monolayer formation; however, these monolayers differ profoundly regarding their physicochemical characteristics. In our research, we applied the Langmuir technique (surface pressure-mean molecular area (π-A) isotherm registration) coupled with Brewster angle microscopy (BAM), but the main focus was on the synchrotron radiation scattering method, grazing incidence X-ray diffraction (GIXD), which provides information on the amphiphilic molecule ordering in the angström scale. It was proved that all the investigated terpenes form crystalline phases in their monolayers. In the case of lupeol, only the closely packed upright phase was observed, whereas for betulin and betulinic acid, the phase situation was more complex. Betulinic acid molecules can be organized in an upright phase, which is crystalline, and in a tilted phase, which is amorphous. The betulin film is a conglomerate of an upright crystalline monolayer phase, tilted amorphous monolayer phase, and a crystalline tilted bilayer. In our paper, we discuss the factors leading to the formation of the observed phases and the implications of our results to the therapeutic applications of the native lupane-type triterpenes.

  19. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice.

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Hansen, Soren; Berzina, Zane; Simonsen, Adam C; Hannibal-Bach, Hans K; Knudsen, Jens; Ejsing, Christer S; Bagatolli, Luis A

    2013-11-01

    This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo/ld phase coexistence at a similar temperature. This suggests that at quasi-equilibrium conditions, key lipid classes in this complex biological material are still able to produce the same scaffold observed in relevant but simpler model lipid mixtures. Also, robust structural and dynamical similarities between mono- and bi-layers composed of mice pulmonary surfactant were observed when the monolayers reach a surface pressure of 30mN/m. This value is in line with theoretically predicted and recently measured surface pressures, where the monolayer-bilayer equivalence occurs in samples composed of single phospholipids. Finally, squeezed out material attached to pulmonary surfactant monolayers was observed at surface pressures near the beginning of the monolayer reversible exclusion plateau (~40mN/m). Under these conditions this material adopts elongated tubular shapes and displays ordered lateral packing as indicated by spatially resolved LAURDAN GP measurements.

  20. Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study.

    Science.gov (United States)

    Nakahara, Hiromichi; Hagimori, Masayori; Mukai, Takahiro; Shibata, Osamu

    2016-07-05

    Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.

  1. Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae.

    Science.gov (United States)

    Xie, Wei-Hua; Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao

    2014-01-01

    Surface wrinkling of mucosae is crucial for the biological functions of many living tissues. In this paper, we investigate the instability of a cylindrical tube consisting of a mucosal layer and a submucosal layer. Our attention is focused on the effects of internal pressure and surface tension on the critical condition and mode number of surface wrinkling induced by tissue growth. It is found that the internal pressure plays a stabilizing role but basically has no effect on the critical mode number. Surface tension also stabilizes the system and reduces the critical mode number of surface patterns. Besides, the thinner the mucosal layer, the more significant the effect of surface tension. This work may help gain insights into the surface wrinkling and morphological evolution of such tubular organs as airways and esophagi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Observation of the pressure effect in simulations of droplets splashing on a dry surface

    CERN Document Server

    Boelens, A M P; de Pablo, J J

    2016-01-01

    At atmospheric pressure, a drop of ethanol impacting on a solid surface produces a splash. Reducing the pressure suppresses this splash. The origin of the pressure effect is unknown and, until now, has not been reproduced in simulations. In this work the pressure effect is explored numerically by resolving the Navier-Stokes equations at a 10-nm resolution. In addition to reproducing numerous experimental observations, the simulations call the dewetting assumption for liquid sheet formation into question, and allow us to identify a previously unknown high-speed "rolling" contact line regime.

  3. An optical pressure sensor based on π-shaped surface plasmon polariton resonator

    Science.gov (United States)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2016-07-01

    We propose a metal-insulator-metal (MIM) structure which consists of a π-shaped resonator and a surface plasmon polariton (SPP) waveguide. The finite element method (FEM) is employed in the simulation. The results show that this structure forms an optical pressure sensor. The transmission spectra have a redshift with increasing pressure, and the relation between the wavelength shift and the pressure is linear. The nanoscale pressure sensor shows a high sensitivity and may have potential applications in biological and biomedical engineering.

  4. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Science.gov (United States)

    Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.

  5. Optimization of Inactivation Conditions of High Hydrostatic Pressure Using Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-long; WANG Yun-xiang; JIANG Han-hu

    2004-01-01

    Response surface methodology(RSM)was employed in the present work and a second order quadratic equation for high hydrostatic pressure(HHP)inactivation was built.The adequacy of the model equation for predicting the optimum response values was verified effectively by the validation data.Effects of temperature,pressure,and pressure holding time on HHP inactivation of Escherichia coli ATCC 8739 were explored.By analyzing the response surface plots and their corresponding contour plots as well as solving the quadratic equation,the optimum process parameters for inactivation E.coli of six log cycles were obtained as:temperature 32.2℃,pressure 346.4 MPa,and pressure holding time 12.6 min.

  6. Surface atmospheric pressure excitation of the translational mode of the inner core

    CERN Document Server

    Rosat, Séverine; Rogister, Yves

    2014-01-01

    Using hourly atmospheric surface pressure field from ECMWF (European Centre for Medium-Range Weather Forecasts) and from NCEP (National Centers for Environmental Prediction) Climate Forecast System Reanalysis (CFSR) models, we show that atmospheric pressure fluctuations excite the translational oscillation of the inner core, the so-called Slichter mode, to the sub-nanogal level at the Earth surface. The computation is performed using a normal-mode formalism for a spherical, self-gravitating anelastic PREM-like Earth model. We determine the statistical response in the form of power spectral densities of the degree-one spherical harmonic components of the observed pressure field. Both hypotheses of inverted and non-inverted barometer for the ocean response to pressure forcing are considered. Based on previously computed noise levels, we show that the surface excitation amplitude is below the limit of detection of the superconducting gravimeters, making the Slichter mode detection a challenging instrumental task...

  7. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass.

    Science.gov (United States)

    Tessutti, Vitor; Ribeiro, Ana Paula; Trombini-Souza, Francis; Sacco, Isabel C N

    2012-01-01

    The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 ± 5% km · h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

  8. Differential scattering cross-sections, inelastic energy losses and ion fractions in backscattering of keV He sup + ions from monolayer metal adsorbates on solid surfaces measured by means of CAICISS

    CERN Document Server

    Kishi, N

    2002-01-01

    Energy spectra of He atoms and He sup + ions backscattered at an angle of approx 180 deg. by monolayer metal adsorbates (Ag, Sn, Sb, Pb and Bi) on the Si(1 1 1)-sq root 3x sq root 3 surfaces and monolayer Si atoms on the graphite surface have been measured by means of the coaxial impact collision ion scattering spectroscopy technique combined with low energy electron diffraction, Auger electron spectroscopy and Rutherford backscattering spectrometry techniques in the energy range from 0.5 to 3.0 keV. It is found from their data analysis that the ratios of the experimental scattering cross-section to the magic formula of the Thomas-Fermi cross-section for different adsorbates deviate from unity: for instance 1.2 for Si, 0.8 for Ag, 1.5 for Sn, 1.2 for Sb, 1.2 for Pb and 1.6 for Bi. It is also found that the average inelastic energy loss for Si increases monotonically with increasing the incident energy, while those for the other adsorbates increase stepwisely at around 1.0 keV and thereafter gradually. Moreove...

  9. The Covariance of Scalar Fields Scattered by Pressure-Release Randomly Rough Surfaces.

    Science.gov (United States)

    1987-12-01

    The Mean Scattered Pressure .- The surfaces to be dealt with will be random stationary, ’. described by "(x",y"). "(x",y") is a sample of a...developed in Chapter 3 when the surface involved is the fully developed, non-directional ocean spectrum -see Appendix. For convience we list the most

  10. Growth of bubbles on a solid surface in response to a pressure reduction

    NARCIS (Netherlands)

    Li, J.; Chen, H.; Zhou, W.; Wu, B.; Stoyanov, S.D.; Pelan, E.G.

    2014-01-01

    A diffusion-controlled method is presented to study the growth of bubbles on a solid surface. The bubbles are nucleated spontaneously on a hydrophobic smooth surface in response to a sudden pressure reduction and then grow with an expanding contact line. The evolution of the bubbles in the early sta

  11. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  12. Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for high-performance organic thin-film transistors.

    Science.gov (United States)

    Liu, Danqing; He, Zikai; Su, Yaorong; Diao, Ying; Mannsfeld, Stefan C B; Bao, Zhenan; Xu, Jianbin; Miao, Qian

    2014-11-12

    A novel self-assembled monolayer (SAM) on AlOy /TiOx is terminated with cyclohexyl groups, an unprecedented terminal group for all kinds of SAMs. The SAM-modified AlOy /TiOx functions as a general dielectric, enabling organic thin-film transistors with a field-effect mobility higher than 5 cm(2) V(-1) s(-1) for both holes and electrons, good air stability with low operating voltage, and general applicability to solution-processed and vacuum-deposited n-type and p-type organic semiconductors.

  13. Effect of high rotor pressure-surface diffusion on performance of a transonic turbine

    Science.gov (United States)

    Miser, James W; Stewart, Warner L; Monroe, Daniel E

    1955-01-01

    The subject turbine was investigated to determine the effect of high rotor pressure-surface diffusion on turbine performance. A comparison of the subject turbine with the most efficient transonic turbine in the present series of investigations showed that the efficiency of the subject turbine was almost as high, the suction-surface diffusion parameter was about the same, and the solidity was reduced by 36 percent. Because the loss per blade increased greatly with an increase in pressure-surface diffusion, the latter is also considered to be an important design consideration.

  14. Evanescent high pressure during hypersonic cluster-surface impact characterized by the virial theorem.

    Science.gov (United States)

    Gross, A; Levine, R D

    2005-11-15

    Matter under extreme conditions can be generated by a collision of a hypersonic cluster with a surface. The ultra-high-pressure interlude lasts only briefly from the impact until the cluster shatters. We discuss the theoretical characterization of the pressure using the virial theorem and develop a constrained molecular-dynamics procedure to compute it. The simulations show that for rare-gas clusters the pressures reach the megabar range. The contribution to the pressure from momentum transfer is comparable in magnitude and is of the same sign as that ("the internal pressure") due to repulsive interatomic forces. The scaling of the pressure with the reduced mechanical variables is derived and validated with reference to the simulations.

  15. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    Science.gov (United States)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  16. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  17. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  18. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    Science.gov (United States)

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-10-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays.

  19. Thermodynamic and elastic fluctuation analysis of Langmuir mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB).

    Science.gov (United States)

    Messina, Paula V; Prieto, Gerardo; Ruso, Juan Manuel; Fernández-Leyes, Marcos D; Schulz, Pablo C; Sarmiento, Félix

    2010-01-01

    The physicochemical and elastic properties of Langmuir mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB) were evaluated. The experiments were performed with a constant surface pressure penetration Langmuir balance based on Axisymmetric Drop Shape Analysis (ADSA). The behavior of such amphiphiles in monolayer was clearly non-ideal and would be seriously influenced by the amount of HDHC molecules present. The presence of bile acid type molecules caused the monolayer be more condensed (A(c) diminution) and the intermolecular attractive interactions be stronger (high epsilon(0) values). This fact would be related to H-bond formation between water and carboxilate and carbonile groups in the cholesteric ring and agreed with the existence of laterally structured microdomains at the monolayer (determined by the analysis of the first virial coefficient, b(0)35 mJ m(-2)) just with the obtained negative values of the free energy of mixing Delta G(mix), and the excess second virial coefficient (b(1))(E) obtained allows us to infer that net attractive interaction existed between HDHC and DDAB molecules at the monolayer and that mixed systems would be able to be used in the formulation of supramolecular assemblies.

  20. Scanning Tunnelling Microscopy Observation on 10,12-Tricosadiynoic Acid Monolayers Deposited by Schaefer's Method

    Institute of Scientific and Technical Information of China (English)

    张耿民

    2001-01-01

    The Langmuir-Blodgett monolayers of 10, 12-tricosadiynoic acid molecules were deposited onto the basal plane of highly oriented pyrolytic graphite (HOPG) by Schaefer's method and then observed with the scanning tunnelling microscope (STM). With a view to achieving a parallel molecular arrangement on the graphite surface, the deposition was deliberately conducted at a relatively low surface pressure. As exhibited by the STM images, by this approach the 10,12-tricosadiynoic acid molecules could constitute an ordered structure with their molecular chains lying parallel to the substrate. The model of molecular dimer is put forward for the interpretation of the observed phenomena.

  1. Study of the aggregation of human insulin Langmuir monolayer.

    Science.gov (United States)

    Liu, Wei; Johnson, Sheba; Micic, Miodrag; Orbulescu, Jhony; Whyte, Jeffrey; Garcia, Andrew R; Leblanc, Roger M

    2012-02-21

    The human insulin (HI) Langmuir monolayer at the air-water interface was systematically investigated in the presence and absence of Zn(II) ions in the subphase. HI samples were dissolved in acidic (pH 2) and basic (pH 9) aqueous solutions and then spread at the air-water interface. Spectroscopic data of aqueous solutions of HI show a difference in HI conformation at different pH values. Moreover, the dynamics of the insulin protein showed a dependence on the concentration of Zn(II) ions. In the absence of Zn(II) ions in the subphase, the acidic and basic solutions showed similar behavior at the air-water interface. In the presence of Zn(II) ions in the subphase, the surface pressure-area and surface potential-area isotherms suggest that HI may aggregate at the air-water interface. It was observed that increasing the concentration of Zn(II) ions in the acidic (pH 2) aqueous solution of HI led to an increase of the area at a specific surface pressure. It was also seen that the conformation of HI in the basic (pH 9) medium had a reverse effect (decrease in the surface area) with the increase of the concentration of Zn(II) ions in solution. From the compression-decompression cycles we can conclude that the aggregated HI film at air-water interface is not stable and tends to restore a monolayer of monomers. These results were confirmed from UV-vis and fluorescence spectroscopy analysis. Infrared reflection-absorption and circular dichroism spectroscopy techniques were used to determine the secondary structure and orientation changes of HI by zinc ions. Generally, the aggregation process leads to a conformation change from α-helix to β-strand and β-turn, and at the air-water interface, the aggregation process was likewise seen to induce specific orientations for HI in the acidic and basic media. A proposed surface orientation model is presented here as an explanation to the experimental data, shedding light for further research on the behavior of insulin as a Langmuir

  2. Hydrostatic pressure effect on micro air bubbles deposited on surfaces with a retreating tip.

    Science.gov (United States)

    Huynh, So Hung; Wang, Jingming; Yu, Yang; Ng, Tuck Wah

    2014-06-01

    The effect of hydrostatic pressure on 6 μL air bubbles formed on micropillar structured PDMS and silicone surfaces using a 2 mm diameter stainless steel tip retreated at 1 mm/s was investigated. Dimensional analysis of the tip retraction process showed the experiments to be conducted in the condition where fluid inertial forces are comparable in magnitude with surface tension forces, while viscous forces were lower. Larger bubbles could be left behind on the structured PDMS surface. For hydrostatic pressures in excess of 20 mm H2O (196 Pa), the volume of bubble deposited was found to decrease progressively with pressure increase. The differences in width of the deposited bubbles (in contact with the substrate) were significant at any particular pressure but marginal in height. The attainable height before rupture reduced with pressure increase, thereby accounting for the reducing dispensed volume characteristic. On structured PDMS, the gaseous bridge width (in contact with the substrate) was invariant with tip retraction, while on silicone it was initially reducing before becoming invariant in the lead up to rupture. With silicone, hence, reductions in the contact width and height were both responsible for reduced volumes with pressure increase. Increased hydrostatic pressure was also found to restrict the growth in contact width on silicone during the stage when air was injected in through the tip. The ability to effect bubble size in such a simple manner may already be harnessed in nature and suggests possibilities in technological applications.

  3. Influence of surface structure on single or mixed component self-assembled monolayers via in situ spectroelectrochemical fluorescence imaging of the complete stereographic triangle on a single crystal Au bead electrode.

    Science.gov (United States)

    Yu, Zhinan Landis; Casanova-Moreno, Jannu; Guryanov, Ivan; Maran, Flavio; Bizzotto, Dan

    2015-01-14

    The use of a single crystal gold bead electrode is demonstrated for characterization of self-assembled monolayers (SAM)s formed on the bead surface expressing a complete set of face centered cubic (fcc) surface structures represented by a stereographic projection. Simultaneous analysis of many crystallographic orientations was accomplished through the use of an in situ fluorescence microscopic imaging technique coupled with electrochemical measurements. SAMs were prepared from different classes of molecules, which were modified with a fluorescent tag enabling characterization of the influence of electrical potential and a direct comparison of the influence of surface structure on SAMs adsorbed onto low index, vicinal and chiral surfaces. The assembly of alkylthiol, Aib peptide and DNA SAMs are studied as a function of the electrical potential of the interface revealing how the organization of these SAMs depend on the surface crystallographic orientation, all in one measurement. This approach allows for a simultaneous determination of SAMs assembled onto an electrode surface onto which the whole fcc stereographic triangle can be mapped, revealing the influence of intermolecular interactions as well as the atomic arrangement of the substrate. Moreover, this method enables study of the influence of the Au surface atom arrangement on SAMs that were created and analyzed, both under identical conditions, something that can be challenging for the typical studies of this kind using individual gold single crystal electrodes. Also demonstrated is the analysis of a SAM containing two components prepared using thiol exchange. The two component SAM shows remarkable differences in the surface coverage, which strongly depends on the surface crystallography enabling estimates of the thiol exchange energetics. In addition, these electrode surfaces enable studies of molecular adsorption onto the symmetry related chiral surfaces since more than one stereographic triangle can be

  4. Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers

    Science.gov (United States)

    Lee, Donghwi; Kawai, Soshi; Nonomura, Taku; Anyoji, Masayuki; Aono, Hikaru; Oyama, Akira; Asai, Keisuke; Fujii, Kozo

    2015-02-01

    Mechanisms behind the pressure distribution and skin friction within a laminar separation bubble (LSB) are investigated by large-eddy simulations around a 5% thickness blunt flat plate at the chord length based Reynolds number 5.0 × 103, 6.1 × 103, 1.1 × 104, and 2.0 × 104. The characteristics inside the LSB change with the Reynolds number; a steady laminar separation bubble (LSB_S) at the Reynolds number 5.0 × 103 and 6.1 × 103, and a steady-fluctuating laminar separation bubble (LSB_SF) at the Reynolds number 1.1 × 104, and 2.0 × 104. Different characteristics of pressure and skin friction distributions are observed by increasing the Reynolds number, such that a gradual monotonous pressure recovery in the LSB_S and a plateau pressure distribution followed by a rapid pressure recovery region in the LSB_SF. The reasons behind the different characteristics of pressure distributions at different Reynolds numbers are discussed by deriving the Reynolds averaged pressure gradient equation. It is confirmed that the viscous stress distributions near the surface play an important role in determining the formation of different pressure distributions. Depending on the Reynolds numbers, the viscous stress distributions near the surface are affected by the development of a separated laminar shear layer or the Reynolds shear stress. In addition, we show that the same analyses can be applied to the flows around a NACA0012 airfoil.

  5. Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

    Science.gov (United States)

    Khorrami, Mehdi R.; Neuhart, Danny H.

    2012-01-01

    In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

  6. Quantification of surface tension and internal pressure generated by single mitotic cells.

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-08-29

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  7. Large Eddy Simulation of Surface Pressure Fluctuations on a Stalled Airfoil

    Science.gov (United States)

    Lele, Sanjiva; Kocheemoolayil, Joseph

    2016-11-01

    The surface pressure fluctuations beneath the separated flow over a turbine blade are believed to be responsible for a phenomenon known as Other Amplitude Modulation (OAM) of wind turbine noise. Developing the capability to predict stall noise from first-principles is a pacing item within the context of critically evaluating this conjecture. We summarize the progress made towards using large eddy simulations to predict stall noise. Successful prediction of pressure fluctuations on the airfoil surface beneath the suction side boundary layer is demonstrated in the near-stall and post-stall regimes. Previously unavailable two-point statistics necessary for characterizing the surface pressure fluctuations more completely are documented. The simulation results indicate that the space-time characteristics of pressure fluctuations on the airfoil surface change drastically in the near-stall and post-stall regimes. The changes are not simple enough to be accounted for by straight-forward scaling laws. The eddies responsible for surface pressure fluctuations and hence far-field noise are significantly more coherent across the span of the airfoil in the post-stall regime relative to the more canonical attached configurations.

  8. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang-Huei [Department of Medicinal Chemistry, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Wen-Ping, E-mail: mjkr.hsu@msa.hinet.net [Department of Chemical Engineering, National United University, Miao-Li, Taiwan 36063 (China); Chan, Han-Wen [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Lee, Yuh-Lang, E-mail: yllee@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China)

    2014-11-30

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules.

  9. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  10. Monolayer solid of N-2/Ag(111)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing

    1998-01-01

    An incommensurate monolayer solid of N-2/Ag(111) is modeled using extensive molecular-dynamics simulations. The conditions treated range from the low-temperature orientationally ordered solid to the melting of the solid. The properties are evaluated as a function of spreading pressure. Comparison...... is made to recent experimental data for N-2/Ag(111) and to results for N-2 adsorbed on graphite. Cu(110), and MgO(001). [S0163-1829(98)02715-5]....

  11. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A A Pashilkar

    2001-12-01

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a simple delta wing. The model is then extended to a wing/body combination where body-alone data are also available. The model is shown to be simple and consistent with experimental data. The pressure model can be used as a first approximation for the load estimation on the delta wing at high angles of attack.

  12. A novel optical pressure sensor based on surface plasmon polariton resonator

    Science.gov (United States)

    Wu, Jing; Lang, Peilin; Chen, Xi; Zhang, Ru

    2016-02-01

    We propose a Metal-Insulator-Metal structure consists of two surface plasmon polaritons (SPPs) and an H-shaped resonator. The reflectance spectrum is numerically simulated by the two-dimensional finite-difference time-domain method. The results show that this structure can act as a pressure sensor. To our knowledge, this is the first proposal to utilize the SPP resonator to form a pressure sensor. The size of the SPP resonator can be as small as a few hundred nanometers. The nano-scale pressure sensor opens a wide field for potential applications in biological and biomedical engineering.

  13. Effects of the playing surface on plantar pressures during the first serve in tennis.

    Science.gov (United States)

    Girard, O; Micallef, J-P; Millet, G P

    2010-09-01

    This study aimed at examining the influence of different playing surfaces on in-shoe loading patterns in each foot (back and front) separately during the first serve in tennis. Ten competitive tennis players completed randomly five first (ie, flat) serves on two different playing surfaces: clay vs GreenSet. Maximum and mean force, peak and mean pressure, mean area, contact area and relative load were recorded by Pedar insoles divided into 9 areas for analysis. Mean pressure was significantly lower (123 ± 30 vs 98 ± 26 kPa; -18.5%; P pressures under the medial forefoot, lateral forefoot and hallux of the back foot (+9.9%, +3.5% and +15.9%, respectively; both P pressures recorded under the central and lateral forefoot (+21.8% and +25.1%; P relative load was found. It is suggested that in-shoe loading parameters characterizing the first serve in tennis are adjusted according to the ground type surface. A lesser asymmetry in peak (P pressures between the two feet was found on clay, suggesting a greater need for stability on this surface.

  14. A semi-empirical airfoil stall noise model based on surface pressure measurements

    Science.gov (United States)

    Bertagnolio, Franck; Madsen, Helge Aa.; Fischer, Andreas; Bak, Christian

    2017-01-01

    This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are analyzed. This study shows that the main quantities of interest, namely convection velocity, spatial correlation and surface pressure spectra, can be scaled highlighting the universal nature of stall independently of airfoil shapes and flow conditions, although within a certain range of experimental conditions. Two main regimes for the scaling of the correlation lengths and the surface pressure spectra, depending on the Reynolds number of the flow, can be distinguished. These results are used to develop a model for the surface pressure spectra within the detached flow region valid for Reynolds numbers ranging from 1 ×106 to 6 ×106. Subsequently, this model is used to derive a model for stall noise. Modelled noise spectra are compared with experimental data measured in anechoic wind tunnels with reasonably satisfactory agreement.

  15. XPS and electrochemical evaluation of two-dimensional organic films obtained by chemical modification of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on copper surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sinapi, Fabrice; Delhalle, Joseph; Mekhalif, Zineb

    2002-12-01

    In this study, a protective film consisting of an ultrathin two-dimensional polymer was prepared by hydrolysis of a (3-mercaptopropyl)trimethoxysilane (ethanol, 10{sup -3} M) self-assembled monolayer grafted onto copper and a subsequent modification with 3(heptofluoroisopropoxy)propyltrichlorosilane (toluene, 10{sup -3} M). Each stage of the preparation was characterized by X-ray photoelectron spectroscopy (XPS) while copper's corrosion-inhibitive properties were assessed by cyclic voltammetry measurements carried on in a 0.1 M NaOH medium. A remarkable enhancement of the copper's corrosion protection was obtained by the formation of lateral siloxane linkages between MPTS molecules absorbed followed by the grafting of the second molecular layer.

  16. Anomalous spreading behaviour of polyethyleneglycoldistearate monolayers at air/water interface

    Indian Academy of Sciences (India)

    S John Collins; Aruna Dhathathreyan; T Ramasami

    2001-04-01

    Spreading behaviour of the dimeric surfactant polyethyleneglycoldistearate (PEGDS) monolayer at air/water interface has been studied using surface pressure-area ( -) isotherms as a function of temperature. The isotherms show a plateau suggesting a transition between a liquid expanded (LE) and a condensed state. The condensed state possibly arises due to nucleation and growth of multilayers from the monolayer. Isobaric measurements of both - and - at constant area show transitions at = 295 K. These plots suggest a melting followed by formation of condensed microcrystallites. Structure optimization carried out using various angles of orientation of the alkyl tails with respect to the backbone in PEGDS reveals tilt transitions of the tails in different states which can be related to the packing behaviour seen in the isotherms. Optical microscopy has been used to confirm the structures in these states.

  17. Titanium Alloy Surface Modification by a Spatio-Temporal Atmospheric Pressure DBD Afterglow

    Institute of Scientific and Technical Information of China (English)

    E.PANOUSIS; F.CLEMENT; J.F.LOISEAU; N.SPYROU; B.HELD1; J.LARRIEU; F.GUERTON

    2007-01-01

    The experimental work reported here is devoted to the study of the modifications inflicted on the surface of titanium alloy specimens by an atmospheric pressure dielectric barrier discharge(DBD) reactor in both spatial and temporal afterglow conditions.A commercially available (AcXys Technologies) modified reactor system was used for the surface treatment of the TiA6V4 titanium alloy that is widely used in the aeronautical industry.Wettability surface characterisation and XPS analyses are performed to give a macroscopic and microscopic insight to the surface modifications.Best operating conditions,at constant input energy,were obtained for a duty cycle equal to 10%.

  18. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  19. Enhancement in Surface Atmospheric Pressure Variability Associated with a Major Geomagnetic Storm

    CERN Document Server

    Selvam, A M; Athale, S U; Tinmaker, M I R

    1998-01-01

    Observational studies indicate that there is a close association between geomagnetic storm and meteorological parameters. Geomagnetic field lines follow closely the isobars of surface pressure . A Physical mechanism linking upper atmospheric geomagnetic storm disturbances with tropospheric weather has been proposed by the author and her group where it is postulated that vertical mixing by turbulent eddy fluctuations results in the net transport upward of positive charges originating from lower levels accompanied simultaneously by downward flow of negative charges from higher levels. The present study reports enhancement of high frequency (<15 days period) fluctuations in daily surface pressure during March 1989 in association with major geomagnetic storm (Ap index = 246) on 13 march 1989.

  20. Adhesive and conformational behaviour of mycolic acid monolayers.

    Science.gov (United States)

    Zhang, Zhenyu; Pen, Yu; Edyvean, Robert G; Banwart, Steven A; Dalgliesh, Robert M; Geoghegan, Mark

    2010-09-01

    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contribution of electrostatic and van der Waals forces, revealed that electrostatic forces are the dominant contribution to the repulsive force between the approaching colloidal probe and MA monolayers. The good agreement between data and the DLVO model suggest that beyond a few nm away from the surface, hydrophobic, hydration, and specific chemical bonding are unlikely to contribute to any significant extent to the interaction energy between the probe and the surface. The pH-dependent conformation of MA molecules in the monolayer at the solid-liquid interface was studied by ellipsometry, neutron reflectometry, and with a quartz crystal microbalance. Monolayers prepared by the Langmuir-Blodgett method demonstrated a distinct pH-responsive behaviour, while monolayers prepared by the Langmuir-Schaefer method were less sensitive to pH variation. It was found that the attachment of water molecules plays a vital role in determining the conformation of the MA monolayers.

  1. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Science.gov (United States)

    Flores, Fabiana M.; Dagnese, Frederico; Mota, Carlos B.; Copetti, Fernando

    2015-01-01

    Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention. PMID:26083600

  2. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  3. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...... the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff...

  4. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1–2) × 105 N m‑2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  5. Water surface elevations recorded by submerged pressure transducers along the upper Willamette River, Oregon, Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy E.; Mangano, Joseph F.

    2017-01-01

    Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this effort.

  6. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    Science.gov (United States)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  7. Synthesis and Monolayer Behaviors of Succinic Acid-Type Gemini Surfactants Containing Semifluoroalkyl Groups.

    Science.gov (United States)

    Kawase, Tokuzo; Nagase, Youhei; Oida, Tatsuo

    2016-01-01

    In this work, novel succinic acid-type gemini surfactants containing semifluoroalkyl groups, dl- and meso-2,3-bis[Rf-(CH2)n]-succinic acids (Rf = C4F9, C6F13, C8F17; n = 2, 9), were successfully synthesized, and the effects of Rf, methylene chain length (n), and stereochemistry on their monolayer behaviors were studied. Critical micelle concentrations (CMC) of dl- and meso-2,3-bis[C4F9(CH2)9]-succinic acids were one order of magnitude smaller than that of the corresponding 1+1 type surfactant, C4F9(CH2)9COOH. From surface pressure-area (π-A) measurements, the lift-off areas of the geminis were found to decrease in the order C4F9 ≥ C6F13 > C8F17, regardless of methylene chain length and stereochemistry. The zero-pressure molecular areas of the geminis were twice those of the corresponding 1+1 type surfactants. Based on Gibbs compression modulus analysis, it was clarified that 2,3-bis[C8F17(CH2)n]-succinic gemini with short methylene chains (n = 2) would form more rigid monolayers than those having long methylene chains (n = 9). Unlike for 2,3-bis(alkyl)-succinic acids, the effects of stereochemistry on the monolayer behavior of semifluoroalkylated geminis were small.

  8. The economics of pressure relieving surfaces: an illustrative case study of the impact of high-specification surfaces on hospital finances.

    Science.gov (United States)

    Trueman, Paul; Whitehead, Sarah J

    2010-02-01

    Pressure ulcers are associated with a significant economic burden that, in many cases, is recognised as being avoidable. The effectiveness of pressure relieving surfaces is well documented and acknowledged in clinical guidelines on the prevention and management of pressure ulcers. Whilst pressure relieving surfaces are more expensive than traditional hospital mattresses, judicious use, targeted to patients most at risk, can help to reduce the incidence and costs of pressure ulcers in hospital settings. This review paper includes a summary of pivotal clinical evidence on pressure relieving surfaces as well as a suggested approach for modelling their financial impact on hospital budgets. Simple financial modelling suggests that pressure relieving surfaces could lead to financial savings for a hospital when used appropriately.

  9. Surface Tension and Negative Pressure Interior of a Non-Singular `Black Hole'

    CERN Document Server

    Mazur, Pawel O

    2015-01-01

    The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius $R\\le\\frac{9}{8}R_s=\\frac{9}{4}GM$. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius $R_0=3R\\sqrt{1-\\frac{8}{9}\\frac{R}{R_s}}$. For $r < R_0$ the interior Schwarzschild solution exhibits negative pressure. When $R=R_s$, the surface is localized at the Schwarzschild radius itself, $R_0=R_s$, and the solution has constant negative pressure $p =-\\bar\\rho$ everywhere in the interior $rsurface tension of the condensate star surface is given by $\\tau_s=\\Delta\\kappa/8\\pi G$, where $\\Delta\\kappa=\\kappa_+-\\kappa_-=2\\kappa_+=1/R_s$ is the difference of equal and opposite surface grav...

  10. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  11. Development of superhydrophobic surface on glass substrate by multi-step atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Duksun [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of); Moon, Se Youn, E-mail: symoon@jbnu.ac.kr [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of); Department of Quantum system Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of)

    2015-07-31

    Superhydrophobic surface was prepared on a glass by helium based CH{sub 4} and C{sub 4}F{sub 8} atmospheric pressure plasmas, and its water wettability was investigated by a water droplet contact angle method. The water droplet spread over on the untreated glasses that showed the initial hydrophilic property of the glass surface. Then, the static contact angles became about 85° and 98° after a single step CH{sub 4} plasma treatment and a single step C{sub 4}F{sub 8} plasma treatment, respectively. The contact angle was remarkably increased to 152°, indicating a superhydrophobic property, after a sequential multi-step CH{sub 4} and C{sub 4}F{sub 8} plasma treatment. From the X-ray photoelectron spectroscopy and the field emission scanning electron microscope measurements, it was found that the physical morphologies and the chemical compositions were depending on the substrate materials, which were important factors for the superhydrophobicity. - Highlights: • Development of rapid and simple method for superhydrophobic surface • Effects of atmospheric pressure plasma for superhydrophobic surface preparation • Observation of chemical and physical surface modification by atmospheric pressure plasma • Effects of substrate properties for plasma–surface interaction.

  12. Experimental investigation and numerical simulation on the effect of fissure water pressure in vertical sliding surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; LI; Shihai; LIAN; Zhenzhong; WANG; Yuannian

    2005-01-01

    This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists.Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

  13. Langmuir monolayers of cerebroside originated from Linckia laevigata: binary systems of cerebrosides and phospholipid.

    Science.gov (United States)

    Maruta, Tomoki; Hoda, Kazuki; Inagaki, Masanori; Higuchi, Ryuichi; Shibata, Osamu

    2005-08-01

    The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for six cerebrosides of LLC-2, LLC-2-1, LLC-2-8, LLC-2-10, LLC-2-12, and LLC-2-15, which were isolated from Linckia laevigata, and two-component monolayers of two different cerebrosides (LLC-2 and LLC-2-8) with phospholipid of dipalmitoylphosphatidylcholine (DPPC) on a subphase of 0.15 M sodium chloride solution as a function of cerebroside compositions in the two-component systems by employing the Wilhelmy method, the ionizing electrode method, and the fluorescence microscopy. The new finding was that LLC-2 showed a stable and liquid expanded type film. Four of them (LLC-2-8, -10, -12, and -15) had the phase transition from the liquid-expanded (LE) to the liquid-condensed (LC) states at 298.2 K. The apparent molar quantity changes (Deltas(gamma), Deltah(gamma), and Deltau(gamma)) on their phase transition on 0.15M at 298.2 K were calculated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the cerebroside molar fraction (X(cerebroside)), using the additivity rule. From the A-X(cerebroside) and DeltaV(m)-X(phospholipid) plots, a partial molecular surface area (PMA) and an apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible systems. Judging from the two-dimensional phase diagrams, these were found to be one type, a positive azeotropic type; all the cerebrosides were miscible with DPPC. Furthermore, assuming a regular surface mixture, the Joos equation for the analysis of the collapse pressure of two-component monolayers allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between the cerebrosides and DPPC. The

  14. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide.

    Science.gov (United States)

    Ciumac, Daniela; Campbell, Richard A; Xu, Hai; Clifton, Luke A; Hughes, Arwel V; Webster, John R P; Lu, Jian R

    2017-02-01

    Many antimicrobial peptides (AMPs) target bacterial membranes and they kill bacteria by causing structural disruptions. One of the fundamental issues however lies in the selective responses of AMPs to different cell membranes as a lack of selectivity can elicit toxic side effects to mammalian host cells. A key difference between the outer surfaces of bacterial and mammalian cells is the charge characteristics. We report a careful study of the binding of one of the representative AMPs, with the general sequence G(IIKK)4I-NH2 (G4), to the spread lipid monolayers of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)) mimicking the charge difference between them, using the combined measurements from Langmuir trough, Brewster angle microscopy (BAM) and neutron reflection (NR). The difference in pressure rise upon peptide addition into the subphase clearly demonstrated the different interactions arising from different lipid charge features. Morphological changes from the BAM imaging confirmed the association of the peptide into the lipid monolayers, but there was little difference between them. However, NR studies revealed that the peptide bound 4 times more onto the DPPG monolayer than onto the DPPC monolayer. Importantly, whilst the peptide could only be associated with the head groups of DPPC it was well penetrated into the entire DPPG monolayer, showing that the electrostatic interaction strengthened the hydrophobic interaction and that the combined molecular interactive processes increased the power of G4 in disrupting the charged membranes. The results are discussed in the context of general antibacterial actions as observed from other AMPs and membrane lytic actions.

  15. Surface modification of tube inner wall by transferred atmospheric pressure plasma

    Science.gov (United States)

    Chen, Faze; Liu, Shuo; Liu, Jiyu; Huang, Shuai; Xia, Guangqing; Song, Jinlong; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-12-01

    Tubes are indispensable in our daily life, mechanical engineering and biomedical fields. However, the practical applications of tubes are sometimes limited by their poor wettability. Reported herein is hydrophilization of the tube inner wall by transferred atmospheric pressure plasma (TAPP). An Ar atmospheric pressure plasma jet (APPJ) is used to induce He TAPP inside polytetrafluoroethylene (PTFE) tube to perform inner wall surface modification. Optical emission spectrum (OES) is used to investigate the distribution of active species, which are known as enablers for surface modification, along the TAPP. Tubes' surface properties demonstrate that after TAPP treatment, the wettability of the tube inner wall is well improved due to the decrease of surface roughness, the removal of surface fluorine and introduction of oxygen. Notably, a deep surface modification can significantly retard the aging of the obtained hydrophilicity. The results presented here clearly demonstrate the great potential of TAPP for surface modification of the inner wall of tube or other hollow bodies, and thus a uniform, effective and long-lasting surface modification of tube with any length can be easily realized by moving the tube along its axis.

  16. Graphene Oxide Demonstrates Experimental Confirmation of Abraham Pressure on Solid Surface

    Science.gov (United States)

    Kundu, Anirban; Rani, Renu; Hazra, Kiran S.

    2017-02-01

    The century-old controversy over two contradicting theories on radiation pressure of light proposed by Abraham and Minkowski can come to an end if there is a direct method to measure the surface deformation of the target material due to momentum transfer of photons. Here we have investigated the effect of radiation pressure on the surface morphology of Graphene Oxide (GO) film, experienced due to low power focused laser irradiation. In-depth investigation has been carried out to probe the bending of the GO surface due to radiation pressure by Atomic Force Microscopy (AFM) and subsequently the uniaxial strain induced on the GO film has been probed by Raman Spectroscopy. Our results show GO film experience an inward pressure due to laser radiation resulting in inward bending of the surface, which is consistent with the Abraham theory. The bending diameter and depth of the irradiated spot show linear dependence with the laser power while an abrupt change in depth and diameter of the irradiated spot is observed at the breaking point. Such abrupt change in depth is attributed to the thinning of the GO film by laser irradiation.

  17. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  18. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.

    Science.gov (United States)

    Wong, Tak-Sing; Kang, Sung Hoon; Tang, Sindy K Y; Smythe, Elizabeth J; Hatton, Benjamin D; Grinthal, Alison; Aizenberg, Joanna

    2011-09-21

    Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and

  19. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Arai, Yuuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji [Rigaku Corporation, Takatsuki, Osaka 569-1146 (Japan); Ohtsu, Naofumi [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Okamoto, Yukio [Research Institute of Industrial Technology, Toyo University, Kawagoe 350-8585 (Japan); Wagatsuma, Kazuaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-07-15

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH{sub 3} and H{sub 2} into the treatment chamber. While the nitriding reaction did not proceed in a simple N{sub 2} atmosphere due to surface oxidation, the surface reduction induced by the NH{sub 3} or H{sub 2} gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  20. Surface modification of polyester film by glow discharge tunnel at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-yu; WANG Shou-guo; YE Tian-chun; JING Guang-yin; YU Da-peng

    2004-01-01

    A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.

  1. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    Science.gov (United States)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  2. Interaction of a patterned amphiphilic polyphenylene dendrimer with a lipid monolayer: electrostatic interactions dominate.

    Science.gov (United States)

    Okuno, Masanari; Mezger, Markus; Stangenberg, René; Baumgarten, Martin; Müllen, Klaus; Bonn, Mischa; Backus, Ellen H G

    2015-02-17

    Dendrimeric macromolecules with defined shape and size are promising candidates for delivering drug or DNA molecules into cells. In this work we study the influence of an amphiphilic polyphenylene dendrimer on a model cell membrane consisting of a condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. A small surface pressure decrease is observed when the dendrimer solution is injected into the aqueous phase below the monolayer. X-ray reflectivity measurements show that the surface monolayer remains intact. The molecular-scale picture is obtained with sum-frequency generation spectroscopy. With this technique, we observe that the tails of the surfactant molecules become less ordered upon interaction with the amphiphilic polyphenylene dendrimer. In contrast, the water molecules below the DPPC layer become more ordered. Our observations suggest that electrostatic interactions between the negative charge of the dendrimer and the positively charged part of the DPPC headgroup keep the dendrimer located below the headgroup. No evidence of dendrimer insertion into the membrane has been observed. Apparently before entering the cell membrane the dendrimer can stick at the hydrophilic part of the lipids.

  3. Dielectric properties tangential to the interface in model insoluble monolayers: theoretical assessment.

    Science.gov (United States)

    Shushkov, Philip G; Tzvetanov, Stanislav A; Ivanova, Anela N; Tadjer, Alia V

    2008-05-06

    Studies of insoluble monolayers built of phospholipids and various long-chained fatty acids or their glycerin esters are the major source for what is currently known about the relationship between monolayer composition and physicochemical properties. The surface pressure, dipole moment, dielectric permittivity, polarizability, refractivity, and other electrical and optical features are governed by the surfactant structural specificity and solvent organization at the microscopic level. To provide insight into the atomistic details of the interfacial structure, model monolayers at the air/water interface of two distinctly different in composition and isotherm profile surfactants are investigated by means of molecular dynamics all-atom simulations. Analysis of the computational results allows the estimation of empirically unattainable quantities such as tangential (di)electric properties, their decomposition to surfactant and water contributions, and their relationship with the changes in interfacial molecular organization at different surface concentrations. The employed theoretical approach provides a comprehensive description of interfacial phenomena at the molecular level where the traditional phenomenological investigations are ineffective.

  4. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    Science.gov (United States)

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  5. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  6. Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films

    Science.gov (United States)

    Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

    2006-10-01

    Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

  7. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... not been reached. Contact angle measurements of droplets on solid surfaces offer useful quantitative measurements of the physiochemical properties of the solid-liquid interface. For hydrophobic systems the properties the solid- liquid interface are now known to be strongly influenced by the presence of air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...

  8. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surfaces

    Institute of Scientific and Technical Information of China (English)

    Jufan ZHANG; Bo WANG; Shen DONG

    2008-01-01

    The modern optics industry demands rigorous surface quality with minimum defects, which presents challenges to optics machining technologies. There are always certain defects on the final surfaces of the compo-nents formed in conventional contacting machining proc-esses, such as micro-cracks, lattice disturbances, etc. It is especially serious for hard-brittle functional materials, such as crystals, glass and ceramics because of their special characteristics. To solve these problems, the atmospheric pressure plasma polishing (APPP) method is developed. It utilizes chemical reactions between reactive plasma and surface atoms to perform atom-scale material removal. Since the machining process is chemical in nature, APPP avoids the surface/subsurface defects mentioned above. As the key component, a capacitance coupled radio-fre-quency plasma torch is first introduced. In initial opera-tions, silicon wafers were machined as samples. Before applying operations, both the temperature distribution on the work-piece surface and the spatial gas diffusion in the machining process were studied qualitatively by finite element analysis. Then the following temperature measurement experiments demonstrate the formation of the temperature gradient on the wafer surface predicted by the theoretical analysis and indicated a peak temper-ature about 90℃ in the center. By using commercialized form talysurf, the machined surface was detected and the result shows regular removal profile that corresponds well to the flow field model. Moreover, the removal profile also indicates a 32 mm3/min removal rate. By using atomic force microscopy (AFM), the surface roughness was also measured and the result demonstrates an Ra 0.6 nm surface roughness. Then the element composition of the machined surface was detected and analyzed by X-ray photoelectron spectroscopy (XPS) technology. The results also demonstrate the occurrence of the anticipated main reactions. All the experiments have proved that

  9. Friction of mixed and single-component aromatic monolayers in contacts of different adhesive strength.

    Science.gov (United States)

    Ruths, M

    2006-02-09

    Friction force microscopy has been used to study single-component and mixed self-assembled monolayers of aminothiophenol and thiophenol on gold. The friction forces and transition pressures of mixed monolayers were intermediate to the ones of single-component monolayers, and varied systematically with composition. The strength of the adhesion was altered by working in dry N2 gas or in ethanol. In all systems studied, low adhesion (in ethanol) resulted in a linear dependence of the friction on load already at low loads, whereas high adhesion (in dry N2) gave an apparent area-dependence. However, for a given monolayer composition, similar transition pressures were observed in dry N2 and in ethanol, suggesting that the overall monolayer structure was not strongly altered by the presence of ethanol. Similar observations were made for very close-packed monolayers of octadecanethiol.

  10. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kan, C.W., E-mail: tccwk@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Kwong, C.H. [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Ng, S.P. [Hong Kong Community College, The Hong Kong Polytechnic University (Hong Kong)

    2015-08-15

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  11. Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms.

    Science.gov (United States)

    Ge, Jingjie; He, Dongsheng; Bai, Lei; You, Rui; Lu, Haiyuan; Lin, Yue; Tan, Chaoliang; Kang, Yan-Biao; Xiao, Bin; Wu, Yuen; Deng, Zhaoxiang; Huang, Weixin; Zhang, Hua; Hong, Xun; Li, Yadong

    2015-11-25

    Monolayer Ru atoms covered highly ordered porous Pd octahedra have been synthesized via the underpotential deposition and thermodynamic control. Shape evolution from concave nanocube to octahedron with six hollow cavities was observed. Using aberration-corrected high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, we provide quantitative evidence to prove that only a monolayer of Ru atoms was deposited on the surface of porous Pd octahedra. The as-prepared monolayer Ru atoms covered Pd nanostructures exhibited excellent catalytic property in terms of semihydrogenation of alkynes.

  12. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  13. Vortex dynamics and surface pressure fluctuations on a normal flat plate

    Science.gov (United States)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping

    2016-11-01

    The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).

  14. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Science.gov (United States)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  15. Fracture Characteristics of Monolayer CVD-Graphene

    Science.gov (United States)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  16. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  17. Asymmetric Rock Pressure on Shallow Tunnel in Strata with Inclined Ground Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-jun; YANG Chang-yu

    2007-01-01

    By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.

  18. Numerical Prediction of Induced Pressure and Lift of the Planing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Hassan GHASSEMI; Ahmad Reza KOHANSAL; Mahmoud GHIASSI

    2009-01-01

    This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.

  19. Use of Pressure-Redistributing Support Surfaces among Elderly Hip Fracture Patients across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    Science.gov (United States)

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2010-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…

  20. Use of Pressure-Redistributing Support Surfaces among Elderly Hip Fracture Patients across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    Science.gov (United States)

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2010-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…

  1. DC and AC voltammetry of a free-base porphyrin adsorbed onto basal-plane graphite under acidic conditions: An example of a close to ideal reversible two-electron surface-confined redox process at sub-monolayer coverages

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Barry D. [School of Chemistry, Monash University, Wellington Rd, Clayton, Victoria 3800 (Australia)], E-mail: barry.fleming@sci.monash.edu.au; Bond, Alan M. [School of Chemistry, Monash University, Wellington Rd, Clayton, Victoria 3800 (Australia)], E-mail: alan.bond@sci.monash.edu.au

    2009-04-01

    The free-base porphyrin, 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (H{sub 2}TMPyP), adsorbs onto a basal-plane graphite electrode. Under DC cyclic voltammetric conditions, the fully protonated dication, [H{sub 4}TMPyP(0)]{sup 2+}, undergoes an apparently close to ideal surface-confined two-electron reduction to the neutral [H{sub 4}TMPyP(-II)] species when the supporting electrolyte consists of aqueous 1 M HCl and 1 M NaCl and coverages are sub-monolayer. The reversible potential calculated from the average of the oxidation and reduction peak potentials is 0.138 {+-} 0.002 V (vs Ag/AgCl, 3 M NaCl) whilst their separation {delta}E{sub p}, approaches 0 mV at slow scan rates, as expected theoretically for an ideal surface-confined electron transfer process. Comparisons of simulated and experimental data imply that the increase in {delta}E{sub p} observed at scan rates above 10 V s{sup -1} is consistent with uncompensated Ohmic IR{sub u} drop effects, and not limitations imposed by electron transfer kinetics. Analysis of fundamental and higher harmonic components derived from large-amplitude sine-wave AC voltammetry is consistent with a very fast electron transfer rate constant, k{sup 0}, in excess of 10{sup 6} s{sup -1} for the overall two-electron process. However, careful comparison with AC theory highlights minor levels of non-ideality not attributable to purely capacitative background or uncompensated resistance effects. These are particularly evident when greater than monolayer surface coverages are employed. It is likely that subtle contributions from heterogeneity in the adsorbed layer and complexities in the reaction mechanism are present in this close to ideal surface-confined process, but they are more readily detected under conditions of large-amplitude Fourier transformed AC cyclic voltammetry than with the conventionally used DC cyclic format.

  2. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  3. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  4. Adhesive and conformational behaviour of mycolic acid monolayers

    OpenAIRE

    2010-01-01

    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contri...

  5. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  6. Tsunami-induced force and surface pressure on multiple rectangular buildings in an unsteady free-surface channel flow

    Science.gov (United States)

    Bahmanpour, Alireza; Eames, Ian

    2016-11-01

    We study the flow around multiple rectangular obstacles in an unsteady free-surface channel flow using a combination of mathematical models, computations and experiments. The unsteady flow is triggered by a dam-break. The total drag force and surface pressure distribution on the obstacles are examined. The height and length of the building are fixed; the influence of initial water height and blocking ratio b / w is studied. The force scalings are confirmed from the computational analysis and found to be consistent with the experimental results. The effects of the additional buildings on the total drag force are noted and compared against the case of a single building. Increasing the number of buildings as well as the blocking ratio results in the water to inundate further onshore. The pressure distribution on the individual surfaces are analyzed and shown to vary linearly with height from the building base and dominated by the hydrostatic component. We summarize the results in terms of a new Fr - b / w regime diagram and explain how the force on buildings subject to an unsteady flow can be estimated from the upstream velocity and water height. We would like to thank HR Wallingford for their continued support in funding the project.

  7. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  8. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    Science.gov (United States)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  9. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C-C bond nearest the silicon surface.

    Science.gov (United States)

    Puniredd, Sreenivasa Reddy; Assad, Ossama; Haick, Hossam

    2008-10-15

    Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using various organic molecules having similar backbones but differing in their C-C bond closest to the silicon surface (i.e., C-C vs C=C vs C[triple bond]C bonds). X-ray photoelectron spectroscopic (XPS) data show that functionalization of silicon surfaces with propenyl magnesium bromide (CH3-CH=CH-MgBr) organic molecules gives nearly full coverage of the silicon atop sites, as on methyl- and propynyl-terminated silicon surfaces. Propenyl-terminated silicon surface shows less surface oxidation and is more robust against solvent attacks when compared to methyl- and propynyl-terminated silicon surfaces. We also show a secondary functionalization process of propenyl-terminated silicon surface with 4'-[3-Trifluoromethyl-3H-diazirin-3-yl]-benzoic acid N-hydroxysuccinimide ester [TDBA-OSu] cross-linker. The Si-CH=CH-CH3 surfaces thus offer a means of attaching a variety of chemical moieties to a silicon surface through a short linking group, enabling applications in molecular electronics, energy conversion, catalysis, and sensing.

  10. Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure

    Science.gov (United States)

    Xie, Qing; Liu, Xiong; Zhang, Cheng; Wang, Ruixue; Rao, Zhangquan; Shao, Tao

    2016-03-01

    Research on aging characteristics of epoxy resin (EP) under repetitive microsecond pulses is important for the design of insulating materials in high power apparatus. It is because that very fast transient overvoltage always occurs in a power system, which causes flashover and is one of the main factors causing aging effects of EP materials. Therefore, it is essential to obtain a better understanding of the aging effect on an EP surface resulting from flashover. In this work, aging effects on an EP surface were investigated by surface flashover discharge under repetitive microsecond pulses in atmospheric pressure. The investigations of parameters such as the surface micro-morphology and chemical composition of the insulation material under different degrees of aging were conducted with the aid of measurement methods such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with the accumulation of aging energy on the material surface, the particles formed on the material surface increased both in number and size, leading to the growth of surface roughness and a reduction in the water contact angle; the surface also became more absorbent. Furthermore, in the aging process, the molecular chains of EP on the surface were broken, resulting in oxidation and carbonisation. supported by the Natural Science Foundation of Hebei Province (No. E2015502081), National Natural Science Foundation of China (Nos. 51222701, 51307060), and the National Basic Research Program of China (No. 2014CB239505-3)

  11. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  12. Methods for estimating pressure and thermal loads induced by elevon deflections on hypersonic-vehicle surfaces with turbulent boundary layers

    Science.gov (United States)

    Kaufman, L. G., II; Johnson, C. B.

    1981-01-01

    Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.

  13. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    Science.gov (United States)

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure.

  14. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  15. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Etienne; Rogers, John A.; Kim, Seok; Carlson, Andrew

    2016-08-09

    In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.

  16. NUMERICAL MODELLING OF FREE-SURFACE FLOWS WITH BOTTOM AND SURFACE-LAYER PRESSURE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LIU Gang

    2009-01-01

    A new non-hydrostatic numerical model with the three-dimensional Navier-Stokes equations on structured grids was constructed and discussed. The algorithm is based upon a staggered finite difference Crank-Nicholson scheme on a Cartesian grid. The eddy viscosity coefficient was calculated by the efficient k-ε turbulence model. A new surface-layer non-hydrostatic treatment and a local cell bottom treatment were introduced so that the three-dimensional model is fully non-hydrostatic and is free of any hydrostatic assumption. The developed model is second-order accuracy in both time and space when semi-implicit coefficient is set to 0.5. The validity of the present solution algorithm was demonstrated from its application to the three-dimension channel flow and the wave propagation over a submerged bar problems.

  17. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    Science.gov (United States)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  18. Surface Modification of Polyethylene (PE) Films Using Dielectric Barrier Discharge Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; LI Jian; REN Chunsheng; WANG Dezhen; WANG Younian

    2008-01-01

    Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized" species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.

  19. Topological transitions of the Fermi surface of osmium under pressure: an LDA+DMFT study

    Science.gov (United States)

    Feng, Qingguo; Ekholm, Marcus; Tasnádi, Ferenc; Jönsson, H. Johan M.; Abrikosov, Igor A.

    2017-03-01

    The influence of pressure on the electronic structure of Os has attracted substantial attention recently due to reports on isostructural electronic transitions in this metal. Here, we theoretically investigate the Fermi surface of Os from ambient to high pressure, using density functional theory combined with dynamical mean field theory. We provide a detailed discussion of the calculated Fermi surface and its dependence on the level of theory used for the treatment of the electron–electron interactions. Although we confirm that Os can be classified as weakly correlated metal, the inclusion of local quantum fluctuations between 5{{d}} electrons beyond the local density approximation explains the most recent experimental reports regarding the occurrence of electronic topological transitions in Os.

  20. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.