WorldWideScience

Sample records for monolayer surface chemistry

  1. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  2. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

  3. Functional monolayers on oxide-free silicon surfaces via thiol-ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, M.A.; Paulusse, J.M.J.; Zuilhof, H.

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  4. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos Marie Johannes; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  5. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos M.J.; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  6. Organic Chemistry in Two Dimensions: Surface-Functionalized Polymers and Self-Assembled Monolayer Films

    Science.gov (United States)

    1988-09-01

    adhesion. inhibition of corrosion , and control of friction, and they may prove important in the production of sensors and microelectronic devices. The...Materials Science 650 Harry Road K91B801 and Engineering San Jose, CA 95120 Cornell University Ithaca, Nem York 14853-1501 Or. William B. Moniz Chemistry Division Naval Research Laboratory Washington, D.C. 20375-5000

  7. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Malgorzata Adamkiewicz

    2014-12-01

    Full Text Available C11-Vinyl-terminated self-assembled monolayers (SAMs on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo cyclopropane motifs with about 30% surface coverage.

  8. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs).

    Science.gov (United States)

    Adamkiewicz, Malgorzata; O'Hagan, David; Hähner, Georg

    2014-01-01

    C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C-C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage.

  9. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs)

    Science.gov (United States)

    Adamkiewicz, Malgorzata

    2014-01-01

    Summary C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage. PMID:25550756

  10. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  11. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  12. Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces.

    Science.gov (United States)

    Killian, Manuela S; Seiler, Steffen; Wagener, Victoria; Hahn, Robert; Ebensperger, Christina; Meyer, Bernd; Schmuki, Patrik

    2015-05-06

    The modification of magnesium implants with functional organic molecules is important for increasing the biological acceptance and for reducing the corrosion rate of the implant. In this work, we evaluated by a combined experimental and theoretical approach the adsorption strength and geometry of a functional self-assembled monolayer (SAM) of hydrolyzed (3-aminopropyl)triethoxysilane (APTES) molecules on a model magnesium implant surface. In time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS), only a minor amount of reverse attachment was observed. Substrate-O-Si signals could be detected, as well as other characteristic APTES fragments. The stability of the SAM upon heating in UHV was investigated additionally. Density-functional theory (DFT) calculations were used to explore the preferred binding mode and the most favorable binding configuration of the hydrolyzed APTES molecules on the hydroxylated magnesium substrate. Attachment of the molecules via hydrogen bonding or covalent bond formation via single or multiple condensation reactions were considered. The impact of the experimental conditions and the water concentration in the solvent on the thermodynamic stability of possible APTES binding modes is analyzed as a function of the water chemical potential of the environment. Finally, the influence of van der Waals contributions to the adsorption energy will be discussed.

  13. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Nirmalya K Chaki; M Aslam; Jadab Sharma; K Vijayamohanan

    2001-10-01

    Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH, -COOH, -NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays, supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles. The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au and Ag nanoclusters with suitable bifunctional SAMs.

  14. Photopatterning of self-assembled alkanethiolate monolayers on gold. A simple monolayer photoresist utilizing aqueous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Hemminger, J.C. (Univ. of California, Irvine, CA (United States)); Dahlgren, D.A. (Photometrics, Huntington Beach, CA (United States))

    1994-03-01

    In this paper we demonstrate that self-assembled monolayers (SAMs) of alkanethiols on gold can be used as effective photoresists. UV photolysis of an alkanethiol SAM generates the corresponding sulfonate in the monolayer film. The sulfonate is easily rinsed off of the surface with water, exposing a clean gold substrate, which can then be modified with subsequent chemistry. We describe here experiments in which an alkanethiol SAM on a gold film on silicon is irradiated through a mask, followed by immersion of the sample in an aqueous acid etching solution (HCI:HNO[sub 3]:H[sub 2]O = 3:1:4). The gold is etched away from the areas which have been exposed to UV radiation leaving a pattern which reproduces the original mask. The spatial resolution in the present experiments is limited by the mask which is a 6-[mu]m wire grid. Scanning electron microscopy images of patterned samples show sharp edges to the features suggesting that spatial patterning on the 1-[mu]m scale should be attainable with this simple chemistry. 11 refs., 4 figs.

  15. Coordination chemistry for antibacterial materials: a monolayer of a Cu(2+) 2,2'-bipyridine complex grafted on a glass surface.

    Science.gov (United States)

    Pallavicini, Piersandro; Dacarro, Giacomo; Grisoli, Pietro; Mangano, Carlo; Patrini, Maddalena; Rigoni, Federica; Sangaletti, Luigi; Taglietti, Angelo

    2013-04-01

    A propyltrimethoxysilane-modified 2,2'-bipyridine ligand is synthesized and its acetonitrile solutions are used to prepare monolayers of the molecule on glass surfaces. Absorption and X-ray photoelectron spectroscopy demonstrate that the modified glass surfaces bind Cu(2+) with a 1:1 ratio with respect to the 2,2'-bipyridine moieties under the chosen preparative conditions, producing materials bearing 0.016 μg cm(-2) of copper. Although in trace amounts, the bound Cu(2+) cations exert a significant microbicidal effect against Escherichia coli and Staphylococcus aureus.

  16. Self-assembled monolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.-Q., E-mail: liaoqq1971@yahoo.com.cn [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.-W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.-H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.-H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.-H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.-J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-07-29

    Ammonium pyrrolidine dithiocarbamate (APDTC) monolayer was self-assembled on fresh copper surface obtained after oxidation-reduction cycle treatment in 0.1 mol L{sup -1} potassium chloride solution at ambient temperature. The APDTC self-assembled monolayer (SAM) on copper surface was investigated by surface enhanced Raman scattering spectroscopy and the results show that APDTC SAM is chemisorbed on copper surface by its sulfur atoms with perpendicular orientation. The optimum immersing period for SAM formation is 4 h at 0.01 mol L{sup -1} concentration of APDTC. The impedance results indicate that APDTC SAM has good corrosion inhibition effects for copper in 0.5 mol L{sup -1} hydrochloric acid solution and its maximum inhibition efficiency could reach 95%. Quantum chemical calculations show that APDTC has relatively small {Delta}E between the highest occupied molecular orbital and the lowest unoccupied molecular orbital and large negative charge in its two sulfur atoms, which facilitate formation of an insulating Cu/APDTC film on copper surface.

  17. Physical chemistry of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A.

    1990-01-01

    This book covers surface chemistry and selected aspects f colloid chemistry. The text covers such areas as structure and thermodynamics of liquid interfaces; electrical aspects of surface chemistry; microscopy and spectroscopy of solid interfaces; nucleation; contact angle; adsorption from solution; friction and adhesion; lubrication; and chemisorption and catalysis.

  18. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  19. High-Quality Alkyl Monolayers on Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Linke, R.; Zuilhof, H.; Sudh"lter, E.J.R.

    2000-01-01

    Covalent attachment of functionalized monolayers onto silicon surfaces (see Figure for examples) is presented here as a strategy for surface modification. The preparation and structure of both unfunctionalized and functionalized alkyl-based monolayers are described, as are potential applications,

  20. Impact of surface chemistry

    OpenAIRE

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  1. Impact of surface chemistry

    Science.gov (United States)

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  2. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

  3. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)

    2005-07-01

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  4. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    Science.gov (United States)

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  5. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  6. Emergence of complex chemistry on an organic monolayer.

    Science.gov (United States)

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  7. Modelling Organic Surfaces with Self-Assembled Monolayers

    Science.gov (United States)

    1989-05-01

    reactive organic liquids. Fluorinated thiols form monolayers that are more water and oil-repellent than Teflon. The hydrophobicity and oleophobicity of...and are both hydrophobic and oleophobic . The surface of a monolayer containing an approximately equal mixture of the two components 13 resembles a

  8. Molecular simulation of alkyl monolayers on the Si(111)surface

    Institute of Scientific and Technical Information of China (English)

    YUAN; Shiling; (苑世领); CAI; Zhengting; (蔡政亭); XIAO; Li; (肖莉); XU; Guiying; (徐桂英); LIU; Yongjun; (刘永军)

    2003-01-01

    The structure of twelve-carbon monolayers on the H-terminated Si(111) surface is investigated by molecular simulation method. The best substitution percent on Si(111) surface obtained via molecular mechanics calculation is equal to 50%, and the (8×8) simulated cell can be used to depict the structure of alkyl monolayer on Si surface. After two-dimensional cell containing alkyl chains and four-layer Si(111) crystal at the substitution 50% is constructed, the densely packed and well-ordered monolayer on Si(111) surface can be shown through energy minimization in the suitable-size simulation cell. These simulation results are in good agreement with the experiments. These conclusions show that molecular simulation can provide otherwise inaccessible mesoscopic information at the molecular level, and can be considered as an adjunct to experiments.

  9. Preparation and biocompatibility of BSA monolayer on silicon surface.

    Science.gov (United States)

    Tao, Caihong; Zhang, Junyan; Yang, Shengrong

    2011-06-01

    This paper describes a general strategy for grafting protein molecules on silicon surface by using dopamine as adhesive layer. With this method, silicon surface had been successfully modified by BSA monolayer. Fourier transform infrared spectra, X-ray photoelectron spectroscopy, contact angle analysis and atomic force microscopy confirmed the sequential grafting of initiator and protein molecules. Cell adhesion experiments with PC-12 cells showed that the obtained monolayer exhibits good biocompatibility. The corrosion resistance behavior of the polydopamine and BSA modified silicon wafers was investigated by potentiodynamic test, which indicated that the modified surfaces exhibited a better anti-corrosion capability than silicon surface. All these results must be valuable for the application of protein monolayer in biological and biomedical technology.

  10. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  11. Vibrations on Cu surfaces covered with Ni monolayer

    Science.gov (United States)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1999-08-01

    Vibrational modes on the Cu(100) and Cu(111) surfaces covered with a Ni monolayer have been calculated using the embedded-atom method. A detailed discussion of the dispersion relations and polarizations of adsorbate modes and surface phonons is presented. The dispersion of the Rayleigh phonon is in good agreement with the experimental EELS data. The changes in interatomic force constants are discussed.

  12. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  13. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  14. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  15. Ellipsometry of clean surfaces, submonolayer and monolayer films

    NARCIS (Netherlands)

    Habraken, F.H.P.M.; Gijzeman, O.L.J.; Bootsma, G.A.

    1980-01-01

    The geometric and electronic structure of the surface region of a crystal is often different from the bulk structure and therefore the optical properties differ in principle also. Theories for the optical properties of (sub)monolayer films are compared, with special attention to anisotropic layers.

  16. Reactive monolayers for surface gradients and biomolecular patterned interfaces

    NARCIS (Netherlands)

    Nicosia, C.

    2013-01-01

    Self-assembled monolayers (SAMs) are an excellent platform to implement and develop interfacial reactions for the preparation of versatile materials of pivotal importance for the fabrication of, among others, biochips, sensors, catalysts, smart surfaces and electronic devices. The development of met

  17. Oxygen adsorption on palladium monolayer as a surface catalyst

    Science.gov (United States)

    Shah, Janki; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2017-09-01

    In the recent work, we study on the structural and electronic properties of the graphene like Pd monolayer with the adsorption of oxygen adatoms by using first-principles calculations. The electronic band structure and projected density of states investigate that Pd-surface with oxygen molecule adsorption gives metallic behaviour. We found that the behaviour changed at M-point in the electronic band structure as adding oxygen atoms. The oxygen adsorption was dissociative until the Pd surface immersed with oxygen atoms. The electron charge density increases as the number of oxygen atoms on Pd-surface increases. The noticeable observation is that by adding 7th oxygen atom, they started to ripple from fixed Pd-surface without making a bond due to oxygen coverage increases. The results show that Pd monolayer has different applications as a oxygen catalyst and it can be utilized as the pellet, surface, and film materials to safeguard sustenance from oxidation.

  18. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  19. Hexadecadienyl Monolayers on Hydrogen-Terminated Si(III): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety

    NARCIS (Netherlands)

    Rijksen, B.M.G.; Pujari, S.P.; Scheres, L.M.W.; Rijn, van C.J.M.; Baio, J.E.; Weidner, T.; Zuilhof, H.

    2012-01-01

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H–Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H–C=C–HC-CH–R) would be even better reagents for dense monolayer formation. To investigate whether the increased

  20. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  1. Mechanic studies of monolayer formation on H-Si(111) surfaces

    NARCIS (Netherlands)

    Rijksen, B.M.G.

    2012-01-01

    Covalently attached organic monolayers on silicon surfaces form thermally and chemically stable platforms for (bio)functionalization of the surface. Recent advances in monolayer formation – yielding increases in monolayer quality and the complete exclusion of oxygen at modified surfaces &ndash

  2. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  3. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  4. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  5. Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure.

    Science.gov (United States)

    Disalvo, E Anibal; Hollmann, Axel; Martini, M Florencia

    2015-01-01

    In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.

  6. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  7. Hexadecadienyl monolayers on hydrogen-terminated Si(111): faster monolayer formation and improved surface coverage using the enyne moiety.

    Science.gov (United States)

    Rijksen, Bart; Pujari, Sidharam P; Scheres, Luc; van Rijn, Cees J M; Baio, J E; Weidner, Tobias; Zuilhof, Han

    2012-04-24

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H-Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H-C≡C-HC═CH-R) would be even better reagents for dense monolayer formation. To investigate whether the increased delocalization of β-carbon radicals by the enyne functionality indeed lowers the activation barrier, the kinetics of monolayer formation by hexadec-3-en-1-yne and 1-hexadecyne on H-Si(111) were followed by studying partially incomplete monolayers. Ellipsometry and static contact angle measurements indeed showed a faster increase of layer thickness and hydrophobicity for the hexadec-3-en-1-yne-derived monolayers. This more rapid monolayer formation was supported by IRRAS and XPS measurements that for the enyne show a faster increase of the CH2 stretching bands and the amount of carbon at the surface (C/Si ratio), respectively. Monolayer formation at room temperature yielded plateau values for hexadec-3-en-1-yne and 1-hexadecyne after 8 and 16 h, respectively. Additional experiments were performed for 16 h at 80° to ensure full completion of the layers, which allows comparison of the quality of both layers. Ellipsometry thicknesses (2.0 nm) and contact angles (111-112°) indicated a high quality of both layers. XPS, in combination with DFT calculations, revealed terminal attachment of hexadec-3-en-1-yne to the H-Si surface, leading to dienyl monolayers. Moreover, analysis of the Si2p region showed no surface oxidation. Quantitative XPS measurements, obtained via rotating Si samples, showed a higher surface coverage for C16 dienyl layers than for C16 alkenyl layers (63% vs 59%). The dense packing of the layers was confirmed by IRRAS and NEXAFS results. Molecular mechanics simulations were undertaken to understand the differences in reactivity and surface coverage. Alkenyl layers show more favorable packing energies for surface coverages up to 50-55%. At higher

  8. Surface chemistry in photodissociation regions

    CERN Document Server

    Esplugues, G B; Meijerink, R; Spaans, M; Caselli, P

    2016-01-01

    The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in d...

  9. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  10. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    Science.gov (United States)

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  11. Molecular Simulation study of Alkyl Monolayers on Si(III) Surface

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of eight-carbon monolayers on the H-terminated Si(III) surface was investigated by molecular simulation method. The best substitution percent 50% for octene or octyne-derived monolayer can be obtained using molecular mechanics calculation. And the densely packed, well-ordered monolayer on Si(III) surface can be shown through energy minimization in the suitable-size simulation cell.

  12. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.; Kobayashi, N.; Hayashi, N. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  13. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol-yne versus Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  14. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol–yne versus Thiol–ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  15. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol–yne versus Thiol–ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, Jos Marie Johannes; van Rijn, C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as

  16. Extreme Ultraviolet (EUV) induced surface chemistry on Ru

    NARCIS (Netherlands)

    Liu, Feng; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry an

  17. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, J.; Reinhoudt, D.N.; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of dodecyltrichlorosil

  18. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...... grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...... that the correlation between the effective surface energy components of the heterogeneous Surfaces coated with fluorocarbon self-assembled monolayers is in agreement with the Cassie model....

  19. Tuning Oleophobicity of Silicon Oxide Surfaces with Mixed Monolayers of Aliphatic and Fluorinated Alcohols.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2016-12-13

    We demonstrate the formation of mixed monolayers derived from a microwave-assisted reaction of alcohols with silicon oxide surfaces in order to tune their surface oleophobicity. This simple, rapid method provides an opportunity to precisely tune the constituents of the monolayers. As a demonstration, we sought fluorinated alcohols and aliphatic alcohols as reagents to form monolayers from two distinct constituents for tuning the surface oleophobicity. The first aspect of this study sought to identify a fluorinated alcohol that formed monolayers with a relatively high surface coverage. It was determined that 1H,1H,2H,2H-perfluoro-1-octanol yielded high quality monolayers with a water contact angle (WCA) value of ∼110° and contact angle values of ∼80° with toluene and hexadecane exhibiting both an excellent hydrophobicity and oleophobicity. Tuning of the oleophobicity of the modified silicon oxide surfaces was achieved by controlling the molar ratio of 1H,1H,2H,2H-perfluoro-1-octanol within the reaction mixtures. Surface oleophobicity progressively decreased with a decrease in the fluorinated alcohol content while the monolayers maintained their hydrophobicity with WCA values of ∼110°. The simple and reliable approach to preparing monolayers of a tuned composition that is described in this article can be utilized to control the fluorocarbon content of the hydrophobic monolayers on silicon oxide surfaces.

  20. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  1. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  2. Surface viscoelastic properties of spread ferroelectric liquid crystal monolayer on air-water interface

    Science.gov (United States)

    Kaur, Ramneek; Bhullar, Gurpreet Kaur; Raina, K. K.

    2013-06-01

    Ferroelectric Liquid crystal having Smectic C* phase at room temperature was capable of forming Langmuir monolayer due to presence of both hydrophilic and hydrophobic groups in it. Surface viscoelasticity properties of FLC monolayer spread on water surface had been determined by dynamic oscillation method and discussed as a function of surface pressure. Dynamic viscoelastic properties such as G (Elastic modulus), G' (storage (elastic) modulus), G' (Loss (viscous) modulus) and phase change with sinusoidal oscillation had been measured at phase changing surface pressure values. As monolayer was becoming condensed, increasing trend was observed in G' values while G' was decreasing. At higher frequencies, viscous modulus G' had negative values. This relaxation phenomenon was probably caused by conformational rearrangements that acted to fluidize monolayer. Phase change tan θ was positive, response in surface pressure was ahead of the de-formation in area and the monolayer had positive dilatational viscosity. Phase change tan θ was negative, response in surface pressure was hysteretic to the deformation in area, and negative dilatational viscosity had been observed. Studies of monolayer in barrier oscillating mode provided us the surface pressure which was most suitable for Langmuir Blodgett monolayer deposition.

  3. Ultralow effective work function surfaces using diamondoid monolayers.

    Science.gov (United States)

    Narasimha, Karthik Thimmavajjula; Ge, Chenhao; Fabbri, Jason D; Clay, William; Tkachenko, Boryslav A; Fokin, Andrey A; Schreiner, Peter R; Dahl, Jeremy E; Carlson, Robert M K; Shen, Z X; Melosh, Nicholas A

    2016-03-01

    Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from ∼ 5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound. This effect was not observed for sp(3)-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ± 0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.

  4. Cation-induced monolayer collapse at lower surface pressure follows specific headgroup percolation

    Science.gov (United States)

    Das, Kaushik; Sah, Bijay Kumar; Kundu, Sarathi

    2017-02-01

    A Langmuir monolayer can be considered as a two-dimensional (2D) sheet at higher surface pressure which structurally deform with mechanical compression depending upon the elastic nature of the monolayer. The deformed structures formed after a certain elastic limit are called collapsed structures. To explore monolayer collapses at lower surface pressure and to see the effect of ions on such monolayer collapses, out-of-plane structures and in-plane morphologies of stearic acid Langmuir monolayers have been studied both at lower (≈6.8) and higher (≈9.5) subphase p H in the presence of M g2 +,C a2 +,Z n2 +,C d2 + , and B a2 + ions. At lower subphase p H and in the presence of all cations, the stearic acid monolayer remains as a monolayer before collapse, which generally takes place at higher surface pressure (πc>50 mN /m ). However, at higher subphase p H , structural changes of stearic acid monolayers occur at relatively lower surface pressure depending upon the specific dissolved ions. Among the same group elements of M g2 +,C a2 + , and B a2 + , only for B a2 + ions does monolayer to multilayer transition take place from a much lower surface pressure of the monolayer, remaining, however, as a monolayer for M g2 + and C a2 + ions. For another same group elements of Z n2 + and C d2 + ions, a less covered bilayer structure forms on top of the monolayer structure at lower surface pressure, which is evidenced from both x-ray reflectometry and atomic force microscopy. Fourier transform infrared spectroscopy confirms the presence of two coexisting conformations formed by the two different metal-headgroup coordinations and the monolayer to trilayer or multilayer transformation takes place when the coverage ratio of the two molecular conformations changes from the critical value (pc) of ≈0.66 . Such ion-specific monolayer collapses are correlated with the 2D lattice percolation model.

  5. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules**

    OpenAIRE

    Saha, Krishnendu; Bajaj, Avinash; Duncan, Bradley; Rotello, Vincent M.

    2011-01-01

    Surface recognition of biosystems is a critical component in the development of novel biosensors, delivery vehicles and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with biomacromolecules and cells. Through engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-biomacrom...

  6. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  7. Chemistry of the Burning Surface

    Science.gov (United States)

    1993-10-12

    control voltage of the Pt filament is highly terial. This chemistry cannot be extracted by slowly heat- sensitive to the thermochemistry of the thin...azines. the residues formed at teach iernperature ’)ascd ýucli as melon, arc known to be thcriaalLv -.) tile absorhanice value ot ouhgaseous prod

  8. Studies of Self-assembled Monolayers Formed by Imidazoline on Iron Surface by SEM and SECM

    Institute of Scientific and Technical Information of China (English)

    Xiu Yu LIU; Shen Hao CHEN; Shuai MIAO; Su Xiang WU; Li Xia SHEN; Yuan Xing CAI; Hong Yan ZHAI

    2006-01-01

    The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy(SECM). The results showed that SAMs were an effective inhibition film for iron.

  9. Binary functionalization of H:Si(111) surfaces by alkyl monolayers with different linker atoms enhances monolayer stability and packing.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2016-05-14

    Alkyl monolayer modified Si forms a class of inorganic-organic hybrid materials with applications across many technologies such as thin-films, fuel/solar-cells and biosensors. Previous studies have shown that the linker atom, through which the monolayer binds to the Si substrate, and any tail group in the alkyl chain, can tune the monolayer stability and electronic properties. In this paper we study the H:Si(111) surface functionalized with binary SAMs: these are composed of alkyl chains that are linked to the surface by two different linker groups. Aiming to enhance SAM stability and increase coverage over singly functionalized Si, we examine with density functional theory simulations that incorporate vdW interactions, a range of linker groups which we denote as -X-(alkyl) with X = CH2, O(H), S(H) or NH(2) (alkyl = C6 and C12 chains). We show how the stability of the SAM can be enhanced by adsorbing alkyl chains with two different linkers, e.g. Si-[C, NH]-alkyl, through which the adsorption energy is increased compared to functionalization with the individual -X-alkyl chains. Our results show that it is possible to improve stability and optimum coverage of alkyl functionalized SAMs linked through a direct Si-C bond by incorporating alkyl chains linked to Si through a different linker group, while preserving the interface electronic structure that determines key electronic properties. This is important since any enhancement in stability and coverage to give more densely packed monolayers will result in fewer defects. We also show that the work function can be tuned within the interval of 3.65-4.94 eV (4.55 eV for bare H:Si(111)).

  10. Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface.

    Science.gov (United States)

    Dai, Wenyang; Shao, Feng; Szczerbiński, Jacek; McCaffrey, Ryan; Zenobi, Renato; Jin, Yinghua; Schlüter, A Dieter; Zhang, Wei

    2016-01-01

    A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

  11. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    Science.gov (United States)

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  12. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    Science.gov (United States)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  13. Nanopatterning of mobile lipid monolayers on electron-beam-sculpted Teflon AF surfaces.

    Science.gov (United States)

    Shaali, Mehrnaz; Lara-Avila, Samuel; Dommersnes, Paul; Ainla, Alar; Kubatkin, Sergey; Jesorka, Aldo

    2015-02-24

    Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence.

  14. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  15. Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces

    Science.gov (United States)

    Fu, Yongchun; Chen, Songjie; Kuzume, Akiyoshi; Rudnev, Alexander; Huang, Cancan; Kaliginedi, Veerabhadrarao; Baghernejad, Masoud; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Liu, Shi-Xia

    2015-03-01

    Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon-surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces.

  16. Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces.

    Science.gov (United States)

    Fu, Yongchun; Chen, Songjie; Kuzume, Akiyoshi; Rudnev, Alexander; Huang, Cancan; Kaliginedi, Veerabhadrarao; Baghernejad, Masoud; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Liu, Shi-Xia

    2015-03-11

    Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon-surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces.

  17. Surface chemistry in three dimensions

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    2000-01-01

    Based on self-consistent density functional calculations it is shown that a new dissociation process for CO adsorbed on a Ru(0001) surface is made possible when the distance to a second Ru(0001) surface placed just above it is below some critical value. This '3D' process is more facile than the u...

  18. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  19. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  20. Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries.

    Science.gov (United States)

    Pujari, Sidharam P; Li, Yan; Regeling, Remco; Zuilhof, Han

    2013-08-20

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride surface. Their chemical stability and tribology were systematically investigated. The chemical stability of the modified CrN surfaces was tested in aqueous media at 60 °C at pH 3, 7, and 11 and monitored by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic monolayers with different end groups (fluorinated or nonfluorinated) were studied using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a dramatic reduction of adhesion and friction force as well as excellent wear resistance compared to those of nonfluorinated coatings and bare CrN substrates. The combination of remarkable chemical stability and superior tribological properties makes these fluorinated monolayers promising candidates for the development of robust high-performance devices.

  1. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  2. Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization.

    Science.gov (United States)

    Chen, Sung-Te; Chen, Giin-Shan

    2011-10-04

    In this work, an attempt to fabricate nanostructured metallization patterns on SiO(2) dielectric layers is made by using plasma-patterned self-assembled monolayers (SAMs), in conjunction with a novel aqueous seeding and electroless process. Taking octadecyltrichlorosilane (OTS) as a test material, the authors demonstrate that optimizing the N(2)-H(2) plasma conditions leads to the successive conversion of the topmost aliphatic chains of alkyl SAMs to carboxyl (COOH) and hydroxyl (C-OH) functional groups, which was previously found in alkyl SAMs only by exposure to "oxygen-based" plasma. Further modifying the plasma-exposed (either COOH or C-OH terminated) regions with an aqueous solution (SC-1) creates surface functionalities that are viable for site-controlled metallic seeding (e.g., Co or Ni) with an adsorption selectivity of greater than 1000:1. Neither the combination of costly PdCl(2) and complex additives nor the demerits of the associated aqueous chemistry (e.g., seed agglomeration and seed sparseness) are involved. Therefore, the seed particles are only 3 nm in size. Simultaneously, there are sufficient particle densities previously unattainable for electroless deposition to trigger highly resolved Cu metallization patterns with a film thickness of less than 10 nm. The formation of the seed-adsorbing sites is discussed, based on a plasma-dissociated, water-mediated chemical oxidation route.

  3. Surface chemistry driven actuation in nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  4. Engineered microtopographies and surface chemistries direct cell attachment and function

    Science.gov (United States)

    Magin, Chelsea Marie

    topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry

  5. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  6. A Trimeric Surfactant: Surface Micelles, Hydration-Lubrication, and Formation of a Stable, Charged Hydrophobic Monolayer.

    Science.gov (United States)

    Kampf, Nir; Wu, Chunxian; Wang, Yilin; Klein, Jacob

    2016-11-15

    The surface structure of the trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD) on mica and the interactions between two such DTAD-coated surfaces were determined using atomic force microscopy and a surface force balance. In an aqueous solution of 3 mM, 5 times the critical aggregation concentration (CAC), the surfaces are coated with wormlike micelles or hemimicelles and larger (∼80 nm) bilayer vesicles. Repulsive normal interactions between the surfaces indicate a net surface charge and a solution concentration of ions close to that expected from the CAC. Moreover, this surface coating is strongly lubricating up to some tens of atmospheres, attributed to the hydration-lubrication mechanism acting at the exposed, highly hydrated surfactant headgroups. Upon replacement of the DTAD solution with surfactant-free water, the surface structures have changed on the DTAD monolayers, which then jump into adhesive contact on approach, both in water and following addition of 0.1 M NaNO3. This trimeric surfactant monolayer, which is highly hydrophobic, is found to be positively charged, which is evident from the attraction between the DTAD monolayer and negatively charged bare mica across water. These monolayers are stable over days even under a salt solution. The stability is attributed to the several stabilization pathways available to DTAD on the mica surface.

  7. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chien-Ching [Iowa State Univ., Ames, IA (United States)

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  8. Covalently bound organic monolayers on silicon surfaces : visible light attachment, charaterization, and electrical properties

    NARCIS (Netherlands)

    Smet, de L.C.P.M.

    2006-01-01

    The full control over surface properties is a 'Holy Grail' in material science. A significant step forward in this area includes the modification of silicon surfaces, by the covalent attachment of organic monolayers. In this way receptors than can specifically bind with ions or molecules be attached

  9. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  10. Self-assembled Monolayers of n-Hexadecanoic Acid and α-Hydroxyl n-Hexadecanoic Acid on Titanium Surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Gang(陈海刚); WU,Xue-Dong(乌学东); YU,Qin-Qin(虞勤琴); YANG,Sheng-Rong(杨生荣); WANG,Da-Pu(王大璞); SHEN,Wen-Zhong(沈文忠)

    2002-01-01

    n-Hexadecanoic acid (HA) and a.hydroxyl n-hexadecanoic acid ( HHA ) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizatiions are performed to examine the physical and chenical states of attached monolayers. The results show that the two amphiphiles tend to form disordered monolayers on titanium surfaces. The HHA headgroups are believed to form polydentate coordination with Ti, which is more chemically stable than the bidentate coordination of HA. All the facts of characterization indicate that HHA monolayer has more surface coverage than HA monolayer.

  11. Chemistry and physics of diamond surfaces

    CERN Document Server

    Domke, A

    1999-01-01

    in the literature. The valence band of diamond is investigated by off-normal ARUPS. The features observed are consistent with possible transitions, which are determined using bulk band structure calculations and comparison with the experimental binding energies. This thesis is concerned with the chemistry and physics of C(100) surfaces of diamond. The polished and cleaned C(100) surface is examined by surface microscopy (Atomic-force Microscopy), electron diffraction (Low-energy Electron Diffraction) and photoemission (X-ray Photoelectron Spectroscopy and Ultra-violet Photoelectron Spectroscopy). Results are presented on the presence of oxygen, nitrogen and hydrogen/deuterium on the C(100) surface. Finally, the valence band structure of diamond is probed by angle-resolved photoemission. We have confirmed by AFM that the grooves from the soft polishing process are present on a polished C(100) surface and found sporadic traces of hard polish on a surface polished in the soft polishing direction. XPS studies hav...

  12. The interfacial chemistry of organic materials on commercial glass surfaces

    Science.gov (United States)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted

  13. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    DEFF Research Database (Denmark)

    Lösche, M.; Piepenstock, M.; Diederich, A.;

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  14. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    Science.gov (United States)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  15. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    Science.gov (United States)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H.

    2007-03-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  16. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Mitsunori, E-mail: honda.mitsunori@jaea.go.jp; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-04-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds.

  17. Controlled Oxidation, Biofunctionalization, and Patterning of Alkyl Monolayers on Silicon and Silicon Nitride Surfaces using Plasma Treatment

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Schroën, C.G.P.H.; Zuilhof, H.

    2010-01-01

    A new method is presented for the fast and reproducible functionalization of silicon and silicon nitride surfaces coated with covalently attached alkyl monolayers. After formation of a methyl-terminated 1-hexadecyl monolayer on H-terminated Si(100) and Si(111) surfaces, short plasma treatments (1-3

  18. Surface Modification through Chemically Adsorbed Monolayer of Thiophene Molecules

    Science.gov (United States)

    Yamamoto, Shin-ichi; Ogawa, Kazufumi

    2008-07-01

    Using a time-averaged dielectrophoretic force from an applied electric field, we have observed the assembly of a chemically adsorbed monomolecular layer (CAM) on microwires and connections and the formation of an electric path between a lithographically patterned array of two platinum (Pt) electrodes. A Pt electrode/monolayer/Pt electrode junction was fabricated by the self-assembly of a rigid monomolecular layer, namely 3-{6-[11-(trichlorosilyl)undecanoyl]hexyl} thiophene (TEN) with thiophene groups in the lateral direction between the Pt electrodes. Conductive probe AFM (CP-AFM) was used to investigate the forward bias conduction properties of a TEN film grown by a wet deposition process on a glass substrate. The self-assembly depends on the ideal rigidity of the CAM and the strong affinity of the thiophene end groups of the CAM for the Pt electrode. The current-voltage (I-V) characteristics of the conjugated thiophene junction exhibited stepwise features at room temperature. The I-V characteristics can be explained by electron transport through the junction. From the results of experiments carried out under ambient conditions, the conductivity of the laterally conjugated polythiophene groups was calculated to be 5.0 ×104 S/cm. Understanding and using these effects will allow the controlled fabrication and positioning of microwires or connections at densities much greater than those now achievable.

  19. Surface chemistry of carbon dioxide revisited

    Science.gov (United States)

    Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas

    2016-12-01

    This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.

  20. "Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers

    NARCIS (Netherlands)

    de Boer, B.; Simon, H.K.; Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    2000-01-01

    A method for chemically modifying a surface with grafted monolayers of initiator groups, which can be used for a "living" free radical photopolymerization, is described. By using "living" free radical polymerizations, we were able to control the length of the grafted polymer chains and therefore the

  1. First-Principle Calculation for Scanning-Tunneling-Microscopic Images of a Monolayer Graphite Surface

    Institute of Scientific and Technical Information of China (English)

    陈向荣; 押山淳; 岡田晋; 芶清泉

    2003-01-01

    We have applied first-principle total-energy electronic structure calculations in the local density approximation to calculate the scanning tunnelling microscopy images of a monolayer graphite surface near the Fermi level. The results obtained agree well with the observation, which has not been interpreted before.

  2. Si-C Linked Organic Monolayers on Crystalline Silicon Surfaces as Alternative Gate Insulators

    NARCIS (Netherlands)

    Faber, Erik J.; Smet, de Louis C.P.M.; Olthuis, Wouter; Zuilhof, Han; Sudhölter, Ernst J.R.; Bergveld, Piet; Berg, van den Albert

    2005-01-01

    Herein, the influence of silicon surface modification via Si-CnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type (100) and n-type (100) silicon is studied by forming MIS (metal–insulator–semiconductor) diodes using a mercury probe. From current density–voltage (J–V) and capacitance–voltage (C–

  3. Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al(111) on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Kim, Yong-Hyun; Zhang, S. B.; Ebert, Philipp; Yang, Shenyuan; Tang, Zhe; Wu, Kehui; Wang, E. G.

    2007-10-29

    We report combined scanning tunneling microscopy, x-ray photoelectron emission spectroscopy, electron energy loss spectroscopy, and theoretical study of the growth of ultrathin Al film on the Si(111) substrate. We show that by (i) a modification of the substrate reconstruction with a √3×√3 surface and (ii) a choice of materials with commensurate lattices, atomically flat film can be obtained even at the ultimate one monolayer limit, while maintaining a bulklike atomic structure. Detailed analysis shows that this monolayer Al(111)-1×1Al(111)-1×1 film is electronically decoupled from the Si substrate, and it shows metallic characteristics.

  4. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces.

    Science.gov (United States)

    Liberelle, Benoît; Banquy, Xavier; Giasson, Suzanne

    2008-04-01

    We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.

  5. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of ~90% of lipid with 10% integrated proteins. Among its lipid compounds, di- palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). No other lipid but DPPC was so far reported to be compressible to very high surface pressure (~70mN/m) before its monolayer collapsed. Its liquid......-expanded/liquid-condensed (LE/LC) phase transition at ~10mN/m is well known. Here we present results from Langmuir isotherm measurements that evidence a so far not documented second phase transition at elevated surface pressure Π (~50mN/m). The varying lateral structures of the monolayer at 8mN/m, 20mN/m, 30mN/m, 40mN/m, 50m...

  6. Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    2013-09-08

    from squalane and PFPE surfaces,[8,13] indicating a localized collision with a region of the surface with a finite effective mass. Nesbitt and co...distributions. Average final energies may also be obtained from the translational energy distributions. It was suggested by Nesbitt and co...In their work on CO2 molecules scattering from PFPE surfaces, Nesbitt and co-workers presented a two temperature (or “two-Boltzmann”) model for

  7. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment

    Science.gov (United States)

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon

    2008-01-01

    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  8. Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics.

    Science.gov (United States)

    Vohra, Akhil; Carmichael, R Stephen; Carmichael, Tricia Breen

    2016-10-11

    Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices.

  9. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    Science.gov (United States)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  10. Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface.

    Science.gov (United States)

    Pluchery, O; Zhang, Y; Benbalagh, R; Caillard, L; Gallet, J J; Bournel, F; Lamic-Humblot, A-F; Salmeron, M; Chabal, Y J; Rochet, F

    2016-02-07

    Organic layers chemically grafted on silicon offer excellent interfaces that may open up the way for new organic-inorganic hybrid nanoelectronic devices. However, technological achievements rely on the precise electronic characterization of such organic layers. We have prepared ordered grafted organic monolayers (GOMs) on Si(111), sometimes termed self-assembled monolayers (SAMs), by a hydrosilylation reaction with either a 7-carbon or an 11-carbon alkyl chain, with further modification to obtain amine-terminated surfaces. X-ray photoelectron spectroscopy (XPS) is used to determine the band bending (∼ 0.3 eV), and ultraviolet photoelectron spectroscopy (UPS) to measure the work function (∼ 3.4 eV) and the HOMO edge. Scanning tunneling microscopy (STM) confirms that the GOM surface is clean and smooth. Finally, conductive AFM is used to measure electron transport through the monolayer and to identify transition between the tunneling and the field emission regimes. These organic monolayers offer a promising alternative to silicon dioxide thin films for fabricating metal-insulator-semiconductor (MIS) junctions. We show that gold nanoparticles can be covalently attached to mimic metallic nano-electrodes and that the electrical quality of the GOMs is completely preserved in the process.

  11. Recovering ferromagnetic metal surfaces to fully exploit chemistry in molecular spintronics

    Science.gov (United States)

    Galbiati, Marta; Delprat, Sophie; Mattera, Michele; Mañas-Valero, Samuel; Forment-Aliaga, Alicia; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-05-01

    Organic spintronics is a new emerging field that promises to offer the full potential of chemistry to spintronics, as for example high versatility through chemical engineering and simple low cost processing. However, one key challenge that remains to be unlocked for further applications is the high incompatibility between spintronics key materials such as high Curie temperature Co, Ni, Fe (and their alloys) and wet chemistry. Indeed, the transition metal proneness to oxidation has so far hampered the integration of wet chemistry processes into the development of room temperature organic spintronics devices. As a result, they had mainly to rely on high vacuum physical processes, restraining the choice of available organic materials to a small set of sublimable molecules. In this letter, focusing on cobalt as an example, we show a wet chemistry method to easily and selectively recover a metallic surface from an air exposed oxidized surface for further integration into spintronics devices. The oxide etching process, using a glycolic acid based solution, proceeds without increasing the surface roughness and allows the retrieval of an oxygen-free chemically active cobalt layer. This unlocks the full potential of wet chemistry processes towards room temperature molecular spintronics with transition metals electrodes. We demonstrate this by the grafting of alkylthiols self-assembled monolayers on recovered oxidized cobalt surfaces.

  12. Recovering ferromagnetic metal surfaces to fully exploit chemistry in molecular spintronics

    Directory of Open Access Journals (Sweden)

    Marta Galbiati

    2015-05-01

    Full Text Available Organic spintronics is a new emerging field that promises to offer the full potential of chemistry to spintronics, as for example high versatility through chemical engineering and simple low cost processing. However, one key challenge that remains to be unlocked for further applications is the high incompatibility between spintronics key materials such as high Curie temperature Co, Ni, Fe (and their alloys and wet chemistry. Indeed, the transition metal proneness to oxidation has so far hampered the integration of wet chemistry processes into the development of room temperature organic spintronics devices. As a result, they had mainly to rely on high vacuum physical processes, restraining the choice of available organic materials to a small set of sublimable molecules. In this letter, focusing on cobalt as an example, we show a wet chemistry method to easily and selectively recover a metallic surface from an air exposed oxidized surface for further integration into spintronics devices. The oxide etching process, using a glycolic acid based solution, proceeds without increasing the surface roughness and allows the retrieval of an oxygen-free chemically active cobalt layer. This unlocks the full potential of wet chemistry processes towards room temperature molecular spintronics with transition metals electrodes. We demonstrate this by the grafting of alkylthiols self-assembled monolayers on recovered oxidized cobalt surfaces.

  13. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces.

    Science.gov (United States)

    Bould, Jonathan; Macháček, Jan; Londesborough, Michael G S; Macías, Ramón; Kennedy, John D; Bastl, Zdeněk; Rupper, Patrick; Baše, Tomáš

    2012-02-01

    Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be

  14. An Improved Method for the Preparation of Organic Monolayers of 1-Alkenes on Hydrogen-Terminated Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Vleeming, V.; Zuilhof, H.; Sudhölter, E.J.R.

    1999-01-01

    The possibility to use dilute alkene solutions for the formation of alkene monolayers with 1-hexadecene on a hydrogen-terminated silicon(100) surface has been investigated for a variety of solvents. The resulting monolayers were analyzed by water contact angles. Anisole, n-butylbenzene, and n-decane

  15. Simple method for coating Si (1 0 0) surfaces with ferritin monolayers-Iron oxide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Georgios, E-mail: geopap@bio.uth.gr [University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aeolou, 41221 Larisa (Greece); Anetakis, Constantine, E-mail: kanetaki@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Gravalidis, Christoforos, E-mail: cgrava@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Kassavetis, Spiros, E-mail: skasa@physics.auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Vouroutzis, Nikolaos, E-mail: nikosv@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Frangis, Nikolaos, E-mail: frangis@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece); Logothetidis, Stergios, E-mail: logot@auth.gr [Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films - Nanosystems and Nanometrology and Laboratory of Electronic Microscopy, 54124 Thessaloniki (Greece)

    2011-04-15

    With the goal to develop iron oxide quantum dots we developed a simple method to spread horse spleen ferritin monolayers on a Si (1 0 0) surface. Application of atomic force microscopy and spectroscopic ellipsometry showed the existence of regions with dense ferritin monolayers. Application of transmission electron microscopy identified the core of the spread ferritin as FeO nanocrystals.

  16. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Science.gov (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  17. Surface chemistry and mineralogy. [of planet Mars

    Science.gov (United States)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  18. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  19. Effects of smooth random surface on fluid monolayer thermodynamics

    Science.gov (United States)

    Khlyupin, A. N.

    2016-11-01

    We consider the lattice gas approach to statistical mechanics of fluid adsorbed on random surfaces with fluid-fluid and fluid-surface potentials. It was shown that effective Hamiltonian contains quenched random interactions and random site fields. Their statistical features combine the properties of random geometry and fluid-fluid pair interaction potential. The high-temperature expansion leads to infinite-ranged random field model and Sherrington-Kirkpatrick spin-glass model. Thermodynamic properties are evaluated using replica theory procedure widely used to analyze quenched disorder systems. On the other hand we consider the random field model in random graph with finite connectivity instead of previous “infinite-ranged” approximations. This model has been investigated using finite connectivity technique. The replica symmetry ansatz for the order function is expressed in terms of an effective-field distribution. Analysis of random geometry effects on thermodynamic properties in such approach was done for the first time.

  20. The role of surface Pt on the coadsorption of hydrogen and CO on Pt monolayer film modified Ru(0001) surfaces

    Science.gov (United States)

    Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J.

    2016-10-01

    We have investigated the impact and role of the Pt surface modification on the coadsorption of hydrogen and CO on structurally well defined bimetallic Pt monolayer island/film modified Ru(0001) surfaces with Pt contents up to a complete Pt layer, employing temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS). Kinetic limitations in the surface diffusion are shown to play an important role for adsorption at 90 K, and lead to profound effects of the dosing sequence on the adsorption and desorption characteristics. Furthermore, they are responsible for spill-over effects during the TPD measurements, where COad becomes mobile and can spill-over from weakly bonding Pt monolayer areas to strongly bonding Pt-free Ru(0001) areas, which displaces Dad from these surface areas. The present findings are discussed in comparison with previous results on related metallic and bimetallic adsorption and coadsorption systems.

  1. Oligo(ethylene glycol)-terminated monolayers on silicon surfaces and their nanopatterning with a conductive atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Functionalization of silicon substrate surfaces with a stable monolayer for resisting non-specific adsorption of proteins has attracted great interest,since it is directly relevant to the development of miniature,silicon-based biosensors and implantable microdevices,such as silicon-neuron interfaces.This brief review summarizes our contribution to the development of robust monolayers grown by surface hydrosilylation on atomically flat,hydrogen-terminated silicon surfaces.The review also outlines our strategy and progress on the fabrication of single molecule patterns on such monolayer platforms.

  2. Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(1 1 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Zuilhof, Han, E-mail: Han.Zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-12-15

    This study reports on fluorine-containing alkyne-derived monolayers onto Si(1 1 1) substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear properties were measured using atomic force microscopy (AFM). The presence of the fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, with a decrease of the depth of wear scratches of up to 120 times as compared to the unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-alkyl based monolayer for scratching normal forces as high as 38 μN.

  3. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  4. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    Science.gov (United States)

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-08

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  5. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    Science.gov (United States)

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  6. Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators

    NARCIS (Netherlands)

    Faber, E.J.; Smet, de L.C.P.M.; Olthuis, W.; Zuilhof, H.; Sudhölter, E.J.R.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Herein, the influence of silicon surface modification via SiCnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V) me

  7. Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators

    NARCIS (Netherlands)

    Faber, E.J.; Smet, de L.C.P.M.; Olthuis, W.; Zuilhof, H.; Sudhölter, E.J.R.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Herein, the influence of silicon surface modification via SiCnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V)

  8. Photopatterning of stable, low-density, self-assembled monolayers on gold.

    Science.gov (United States)

    Safazadeh, Leila; Berron, Brad J

    2015-03-10

    Photoinitiated thiol-yne chemistry is utilized as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers on a gold substrate to create stable, low-density monolayers. The resulting monolayers are compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous low-density monolayers prepared through a solution phase synthetic approach. The overall structuring of the monolayer prepared by solid-phase grafting is characterized by contact angle goniometry and Fourier transform infrared spectroscopy. The results show that the product monolayer has an intermediate surface energy and a more disordered chemical structuring compared to a traditional well-packed self-assembled monolayer, showing a low-packing density of the chains at the monolayer surface. The monolayer's structure and electrochemical stability were studied by reductive desorption of the thiolates. The prepared low-density monolayers have a higher electrochemical stability than traditional well-packed monolayers, which results from the crystalline structure at the gold interface. This technique allows for simple, fast preparation of low-density monolayers of higher stability than well-packed monolayers. The use of a photomask to restrict light access to the substrate yielded these low-density monolayers in patterned regions defined by light exposure. This general thiol-yne approach is adaptable to a variety of analogous low-density monolayers with diverse chemical functionalities.

  9. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    Science.gov (United States)

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  10. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface.

    Science.gov (United States)

    Simon, A; Cohen-Bouhacina, T; Porté, M C; Aimé, J P; Baquey, C

    2002-07-15

    In order to establish a 3-aminopropyltriethoxysilane (APTES) grafting procedure with limited number of APTESs noncovalently linked to the silica surface, two different methods of grafting (in acid-aqueous solution and in anhydrous solution) were compared. The grafted surface state was investigated by atomic force microscopy (AFM). The stability of the grafting was checked at different temperatures by AFM. Continuous and plane APTES grafted surfaces were successfully prepared using both grafting preparations. The grafting in an anhydrous solution behaves homogeneously and stably compared to the grafting in an acid-aqueous solution. Moreover, with anhydrous solution, results showed that a unique monolayer of APTES was grafted.

  11. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  12. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... film substrates. Complementing these findings, we introduce a novel technique for fabricating surface chemical gradients on PEDOT-N3 substrates. The technique is based on applying “electro-click chemistry” to locally induce covalent modifications. Further supplementing these results, we develop......)-chemistries. In the course of our studies, we find that PEDOT-N3 thin films undergo a significant yet reversible swelling when exposed to dimethyl-sulfoxide (DMSO). This swelling is found to be of practical use for controlling the reaction density and depth. This, for example, enables the fabrication of dense poly...

  13. Underpotential deposition of a copper monolayer on a gold film sensed by integrated optical surface plasmon resonance

    OpenAIRE

    Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.

    2000-01-01

    An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.

  14. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    Science.gov (United States)

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  15. Elemental and compound semiconductor surface chemistry: Intelligent interfacial design facilitated through novel functionalization and deposition strategies

    Science.gov (United States)

    Porter, Lon Alan, Jr.

    The fundamental understanding of silicon surface chemistry is an essential tool for silicon's continued dominance of the semiconductor industry in the years to come. By tapping into the vast library of organic functionalities, the synthesis of organic monolayers may be utilized to prepare interfaces, tailored to a myriad of applications ranging from silicon VLSI device optimization and MEMS to physiological implants and chemical sensors. Efforts in our lab to form stable organic monolayers on porous silicon through direct silicon-carbon linkages have resulted in several efficient functionalization methods. In the first chapter of this thesis a comprehensive review of these methods, and many others is presented. The following chapter and the appendix serve to demonstrate both potential applications and studies aimed at developing a fundamental understanding of the chemistry behind the organic functionalization of silicon surfaces. The remainder of this thesis attempts to demonstrate new methods of metal deposition onto both elemental and compound semiconductor surfaces. Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ULSI device fabrication, MEMS, and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. In order to apply this metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing, and scanning probe nanolithography has been demonstrated.

  16. Determination of Surface pKa of Pure Mercaptoacetic Acid and 2- Mercaptobenzothiazole Mixed Monolayers by Impedance Titration

    Institute of Scientific and Technical Information of China (English)

    Guang Han LU; Chuan Yin LIU; Hong Yan ZHAO; Wei LIU; Li Ping JIANG; Ling Yan JIANG

    2004-01-01

    Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.

  17. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  18. Efficient functionalization of oxide-free silicon(111) surfaces: thiol-yne versus thiol-ene click chemistry.

    Science.gov (United States)

    Bhairamadgi, Nagendra S; Gangarapu, Satesh; Caipa Campos, Mabel A; Paulusse, Jos M J; van Rijn, Cees J M; Zuilhof, Han

    2013-04-09

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol-ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbonyl cysteine, thio-β-d-glucose tetraacetate, thioacetic acid, thioglycerol, thioglycolic acid, and 1H,1H,2H,2H-perfluorodecanethiol was immobilized using TYC under photochemical conditions, and all modified surfaces were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy (including a simulation thereof by density functional calculations), and infrared absorption reflection spectroscopy. Surface-bound TYC proceeds with an efficiency of up to 1.5 thiols per alkyne group. This high surface coverage proceeds without oxidizing the Si surface. TYC yielded consistently higher surface coverages than TEC, due to double addition of thiols to alkyne-terminated monolayers. This also allows for the sequential and highly efficient attachment of two different thiols onto an alkyne-terminated monolayer.

  19. Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate

    Institute of Scientific and Technical Information of China (English)

    LI Di; SUN Chunyan; HUANG Yunjie; LI Jinghong; CHEN Shaowei

    2005-01-01

    Electron transfer through the self-assembled monolayers (SAMs) on gold nanoparticles is investigated by using the monolayer protected gold nanoclusters (MPCs) as electron-transfer mediators. 3-Mercaptopropionic acid (MPA) and 11-meraptoundecanoic acid (MUA) MPCs were employed to catalyze the redox reaction between potassium ferricyanide and sodium thiosulfate. The catalytic mechanism was proposed that the MPCs act as diffusing electron-mediators and electron transfers to and from the MPCs surface. Therefore the electron transfer rate through the capping layers would be proportional to the MPCs catalyzed reaction rate, which was monitored by the UV absorbance of ferricyanide. The calculated apparent rate constant was orders of magnitude smaller than that of the maximum of tunneling current, which was attributed to the splited energy level of the nanoscale particles.

  20. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.

    Science.gov (United States)

    Ivanov, Michael R; Haes, Amanda J

    2011-01-07

    Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques.

  1. Electrochemically driven organic monolayer formation on silicon surfaces using alkylammonium and alkylphosphonium reagents

    Science.gov (United States)

    Wang, Dong; Buriak, Jillian M.

    2005-10-01

    The functionalization of silicon surfaces with organic monolayers, bound through Si-C bonds, is an area of wide interest due to the technological promise of organosilicon hybrid devices, but also to investigate fundamental surface reactivity. In this paper, the use of alkylammonium and alkylphosphonium cations as sources of organic moieties to bind to hydrogen-terminated flat and porous silicon is demonstrated. Tetraalkylammonium, tetraalkyl/arylphosphonium reagents, and alkyl pyridinium salts can be utilized, but trialkylammonium salts cannot as they yield substantial surface oxidation. Under electrochemical conditions, either potentiostatic or galvanostatic modes, alkyl groups derived from the ammonium or phosphonium salts are grafted to the silicon surface and are bound through Si-C bonds. Covalent attachment of the organic monolayers to the surface was demonstrated by XPS, AFM scribing, and FTIR. The mechanism may proceed via reduction of the ammonium salt yielding alkyl radicals, R rad , which may be reduced to R - and attack surface Si-Si bonds, leading to Si-C bonds, or the formation of silyl anions (≡Si -) under the cathodic conditions followed by nucleophilic attack on the trialkylammonium cation.

  2. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    Science.gov (United States)

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  3. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  4. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  5. Variation of Surface Adhesion Force During the Formation of OTS Self-assembled Monolayer Investigated by AFM

    Institute of Scientific and Technical Information of China (English)

    徐国华; HigashitaniKo

    1999-01-01

    Variation of the surface adhesion force during the formation of octadecyl trichlororilane (OTS) .self-assembled monolayer on a glass substrate surface was investigated hy atomic force microscope (AFM). The research shows that the hydrophobicity and the adbeslon force of the sample surface increases gradualy while the substrate surface is covered by OTS molecules as the reaction proceeds. After 15 min reaction, a cloee-pac.ked and smooth OTS self-assembled monolayer could from on the glass subetrate surface with an advancing contact angle of 105° and an interfaeial energy of 55.79 mJ.m-2.

  6. The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces.

    Science.gov (United States)

    Bowker, Michael

    2007-11-01

    The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for his seminal work in the area of surface science, particularly at the gas-solid interface. Although Ertl began his career at a time when the term "nanotechnology" was not yet known, his contributions to the field have paved the way for many future scientists in this area and led to a deeper understanding of catalysis and other surface-specific processes at the nanoscale. Here, we summarize the scientific developments that guided early progress in surface science, and we explore the major advancements in Ertl's career, including his work on adsorption and oxidation of small molecules on metal surfaces. Significant contributions of other key scientists to this rich area are also presented.

  7. Chemically sensitive surface plasmon devices employing a self-assembled monolayer composite film

    Science.gov (United States)

    DePriest, J. C.; Meriaudeau, Fabrice; Oden, Patrick I.; Downey, Todd R.; Passian, A.; Wig, A. G.; Ferrell, Trinidad L.

    1998-12-01

    In this paper the results of detecting volatile organic compounds (VOC) employing surface plasmon-based sensors are presented. The initial step in preparing the sensing elements herein requires depositing Au degree(s) on a quartz slide. The sensing elements are based on either (1) freshly deposited Au degree(s) or (2) growth of a self assembled monolayer composite film (SAM) on to a freshly deposited Au degree(s) surface. The desired SAM is either (1) acid terminated using (omega) -mercaptoundecanoic acid (MUA-COOH) or (2) Cu2+ metal ion terminated yielding (omega) - mercaptoundecanoic acid-Cu2+ (MUA-Cu2+). The experimental apparatus shown here measures the reflectivity of the Au degree(s) surface as a function of time at a given angle. The response of this surface plasmon device to various VOC's is correlated to the composition of the SAM film.

  8. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    Science.gov (United States)

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  9. Electronic Structure of Single-Crystal Monolayer Graphene on Hydrogen-Terminated Germanium Surface

    Science.gov (United States)

    Ahn, Sung Joon; Lee, Jae-Hyun; Ahn, Joung Real; Whang, Dongmok

    2015-03-01

    Graphene, atomically flat 2-Dimensional layered nano material, has a lot of interesting characteristics from its unusual electronic structure. Almost properties of graphene are influenced by its crystallinity, therefore the uniform growth of single crystal graphene and layer control over the wafer scale areas remains a challenge in the fields of electronic, photonic and other devices based on graphene. Here, we report the method to make wafer scale single crystal monolayer graphene on hydrogen terminated germanium(110) surface and properties and electronic band structure of the graphene by using the tool of scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, electron transport measurement, electron diffraction and angle-resolved photoemission spectroscopy.

  10. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    Science.gov (United States)

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  11. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in

  12. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  13. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements.

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M; Grainger, David W; Castner, David G; Gamble, Lara J

    2006-05-15

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  14. Surface chemistry: Key to control and advance myriad technologies

    Science.gov (United States)

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  15. Interaction of hydrocarbon monolayer surfaces across n-alkanes: A steric repulsion

    Science.gov (United States)

    Herder, Christina E.; Ninham, Barry W.; Christenson, Hugo K.

    1989-05-01

    We present results of force measurements between hydrocarbon monolayer surfaces across n-alkanes (hexane, decane, and tetradecane). The interaction is qualitatively different from that of any previously studied system and, in particular, bears no resemblance to an oscillatory solvation force. Instead, the force is repulsive from about 2.5 nm, with the exception of a shallow minimum just outside a force maximum at 0.8-0.9 nm. At smaller separations the force becomes attractive and there is a weak adhesion at contact. We suggest that the force law is due to a steric effect—a repulsive interaction originating in restrictions on chain conformations of the alkanes at small surface separations. This interaction is accessible via simple mean-field theories. The similarity of the liquid-liquid and liquid-surface interactions allows this to dominate over solvation effects. The results are of significance for interaggregate interactions in lamellar liquid crystals, microemulsions, and surfactant-stabilized dispersions.

  16. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  17. Preparation and characterization of 3-(triethoxysilyl) propyl isocyanate self-assembled monolayer on surface of chip

    Institute of Scientific and Technical Information of China (English)

    XIE Yao; GENG LiNa; QU Feng; LUO AiQin; QU Feng; DENG YuLin

    2009-01-01

    Monolayer of 3-(triethoxysilyl) propyl isocyanate was prepared on the slide by self-assembled tech-nique. X-ray photoelectron spectroscopy (XPS) was employed to analyze the elementary composition of the film. Contact angle of distilled water was measured to characterize the surface state. It was shown that 3-(triethoxysilyl) propyl isocyanate had been successfully assembled on the slide. The in-crease of contact angle to 80 demonstrated that the hydrophobicity of the surface of chip was in-creased significantly. Moreover, further self-assembly of bovine serum albumin (BSA) on 3-(trietho-xysilyl) propyl isocyanate was also carried out with the advantages such as simple and convenient preparation. Therefore, the potential of broader applications in the modification of micro-channel in the μ-TAS system, the immobilization of protein or peptide and the surface modification of materials are all expectative.

  18. Preparation of surface-tethered polymer layer on inorganic substrates by photoreactive self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Ho; Ohtsuka, Hanae [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tria, Maria Celeste R. [University of Houston, Department of Chemistry, 136 Fleming Building, Houston, TX 77204-5008 (United States); Tanaka, Kuniaki [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Advincula, Rigoberto C. [Case Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Cleveland, OH 44106 (United States); Usui, Hiroaki, E-mail: h_usui@cc.tuat.ac.jp [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-03-03

    A self-assembled monolayer (SAM) that has benzophenone (BP) terminal group was prepared on Si and indium–tin oxide (ITO) substrates, on which poly(9-vinyl carbazol) (PVK) was spin-coated and then irradiated with ultraviolet (UV) light. Upon UV irradiation, the BP unit reacted with the PVK backbone, yielding a crosslinked PVK layer that was covalently tethered to the substrate surface. Using this procedure, a patterned thin film of PVK was obtained by irradiating UV light through a photomask and then rinsing in chloroform. When polystylene (PSt) was spin-coated on the BP-SAM, only a thin interfacial layer was tethered by UV irradiation because PSt does not crosslink upon UV irradiation. The BP-SAM improved the adhesion strength between the PVK layer and ITO substrate without reducing the carrier injection from ITO to PVK. The photoreactive BP-SAM appeared to be an effective method to improve the interface between an inorganic electrode and a polymer layer deposited on its surface. - Highlights: • Polyvinylcarbazole (PVK) was tethered to substrate by self-assembled monolayer (SAM). • The photoreactive SAM was effective in improving adhesion strength of the films. • This process was applied for photopatterning of PVK layer. • The photoreactive SAM did not impede carrier injection from electrode to PVK.

  19. Synthesis of Crown Ether-tethered β-Cyclodextrin and Fabrication of Its Self-assembled Monolayer on Gold Surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel β-cyclodextrin derivative 6 bearing a crown ether moiety has been synthesized by a convenient method in 9.4% yield. Its self-assembled monolayer (SAM) was fabricated on the gold surface, which was characterized by using surface-enhanced Raman spectra.

  20. Highly Polymer-Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom

    NARCIS (Netherlands)

    Wang, Zhanhua; Pujari, S.P.; Lagen, van B.; Smulders, M.M.J.; Zuilhof, H.

    2016-01-01

    Organic monolayers or polymer brushes, often in combination with surface structuring, are widely used to prevent nonspecific adsorption of polymeric or biological material on sensor and microfluidic surfaces. Here it is demonstrated for the first time how robust, covalently attached alkyne-derived m

  1. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Science.gov (United States)

    Chen, Jinjie; Edelmann, Kevin; Wulfhekel, Wulf

    2015-01-01

    Summary We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy. PMID:26733215

  2. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Directory of Open Access Journals (Sweden)

    Hironari Isshiki

    2015-12-01

    Full Text Available We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionatoterbium(III, onto metal surfaces of Cu(111, Ag(111 and Au(111 in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy.

  3. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Kyung [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Sangjin [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jon, Sangyong [Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, Insung S [Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701 (Korea, Republic of)

    2007-10-03

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer'' (registered) bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of {approx}163 deg., which is indicative of superhydrophobic surfaces.

  4. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces

    Science.gov (United States)

    Cho, Woo Kyung; Park, Sangjin; Jon, Sangyong; Choi, Insung S.

    2007-10-01

    In this paper, we suggest a facile and effective method for water-repellent coating of oxide surfaces. As a coating material, we synthesized a new random copolymer, referred to as poly(TMSMA-r-fluoroMA), by the radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and a fluoromonomer® bearing methacrylate moiety (fluoroMA). The random copolymer was designed to consist of a 'surface-reactive part' (trimethoxysilyl group) for anchoring onto oxide-based surfaces and a 'functional part' (perfluoro group) for water repellency. The polymeric self-assembled monolayers (pSAMs) of poly(TMSMA-r-fluoroMA) were constructed on three different aluminum oxide substrates, such as flat, concave-textured, and nanoporous plates, and the static water contact angle of each surface before and after the formation of pSAMs was measured. The formation of pSAMs resulted in significantly enhanced hydrophobicity compared with the corresponding bare surfaces. In particular, among three poly(TMSMA-r-fluoroMA)-coated surfaces, the nanoporous plate showed the highest water-repellent property, with a static contact angle of ~163°, which is indicative of superhydrophobic surfaces.

  5. Mass spectrometric analysis of monolayer protected nanoparticles

    Science.gov (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  6. Modification of degenerative photoluminescence in aged monolayer WSsub>2sub> by PCsub>61sub>BM surface processing.

    Science.gov (United States)

    Liu, Yu; Zheng, Xin; Li, Han; Xu, Zhongjie; Jiang, Tian

    2017-02-01

    Owing to their unique physical properties, monolayer transition metal dichalcogenides (TMDCs) have been widely used in applications of light-emitting diodes (LEDs). However, monolayers of TMDCs undergo dramatic aging effects, including intense degradation in optical behavior, extensive cracking, and severe quenching of the direct gap photoluminescence (PL), seriously limiting the device performance. In this work, we show that monolayer WSsub>2sub> stored for three months even in the glovebox exhibits obvious degenerative PL with changed peak position that can be attributed to the presence of a large number of trions induced by the aging effect. PCsub>61sub>BM surface processing was used to modify the surface of the aged monolayer WSsub>2sub>. As expected, higher uniformity in the PL spectrum was obtained. Besides, the PL peak wavelength was modified to be the same as that of the nonaged one and did not change even at higher excitation power. This strategy is shown to successfully suppress the formation of the trion by transferring the excess electrons from WSsub>2sub> to PCsub>61sub>BM. The results demonstrate the feasibility of applying PCsub>61sub>BM surface modification to improve the performance of the LED based on monolayer WSsub>2sub>.

  7. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  8. The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures

    CERN Document Server

    Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

    2014-01-01

    The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

  9. Chemisorption and catalytic reactivity of cobalt and sulfur monolayers on ordered molybdenum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knight, C.C.

    1992-03-01

    Complex Co/Mo sulfide catalysts are modelled by the chemisorption of layers on Mo single crystal surfaces. Growth and structure of overlayers on flat, stepped and kinked surfaces were investigated. Growth of Co overlayers on clean and S covered Mo surfaces was studied using AES and CO chemisorption; results reveal that Co grows as a flat monolayer on clean Mo surfaces. Co multilayers then form 3-D islands. When Co is deposited on S covered surfaces, the S overlayer migrates to the top; this topmost overlayer reduces CO adsorption capacity. While growth mode of Co overlayers are similar on flat and stepped surfaces, the number and type of ordered Co and S structures on flat and stepped surfaces are different. In the case of Co, an ordered (3 {times} 1) structure is formed on Mo(910) and (28,4,1) surfaces; this structure does not develop on clean (100) surface. Only one of two possible (3 {times} 1) Co domains are formed on Mo(910) and Mo(28,4,1) surfaces. These domains have one side of (3 {times} 1) unit cell parallel to the step edges, suggesting that Co adsorbs at the step edges. The (3 {times} 1) structure does not form on Mo(911) surface, indicating that step orientation can restrict formation of ordered overlayers. For chemisorbed S, only a subset of ordered overlayers on flat (100) surface nucleate on (910) and (911) and (28,4,1) surfaces. Ordered S overlayers also form domains that maximize the number of sulfur-step atom bonds. The adsorption and ordering of S overlayers on stepped and kinked Mo surfaces lead to doubling of step height and terrace width. Thiophene hydrodesulfurization (HDS) reactions were performed over Mo crystal surfaces modified by chemisorption of S, Co, C, and S + Co. The stepped and kinked Mo surfaces have reactivities greater than low Miller index (100) surface. Chemisorption of adsorbates decreased the thiophene HDS reactivity. Deposition of Co on Mo single crystal surfaces did not lead to increased HDS activity.

  10. Giant perpendicular magnetic anisotropy of an Ir monolayer on a NiAl(001) surface

    Science.gov (United States)

    Kim, Dongyoo; Yang, Jeonghwa; Hong, Jisang

    2009-08-01

    Using the state-of-the-art full potential linearized augmented plane-wave method, we have investigated the magnetic properties of Os and Ir monolayer (ML) film on NiAl(001) surface. It has been found that the one ML of Os and Ir film can have ferromagnetic ground state with magnetic moment of 0.35 and 0.64μB on Ni terminated surface, whereas both films display no sign of magnetic state on Al terminated surface. In addition, the surface Ni atom has an induced magnetic moment of 0.26μB in Ir/NiAl(001), while only 0.09μB is observed in Os/NiAl(001). We attribute the existence of magnetism to the interaction between 5d of adlayer and 3d of surface Ni. Moreover, we have obtained that the Os/NiAl(001) and Ir/NiAl(001) films show a perpendicular magnetic anisotropy (PMA). Surprisingly, it appears that the Ir/NiAl(001) has a giant PMA energy of 7.18 meV.

  11. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors.

    Science.gov (United States)

    Paska, Yair; Haick, Hossam

    2012-05-01

    Gated silicon nanowire gas sensors have emerged as promising devices for chemical and biological sensing applications. Nevertheless, the performance of these devices is usually accompanied by a "hysteresis" phenomenon that limits their performance under real-world conditions. In this paper, we use a series of systematically changed trichlorosilane-based organic monolayers to study the interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. The results show that the density of the exposed or unpassivated Si-OH groups (trap states) on the silicon nanowire surface play by far a crucial effect on the hysteresis characteristics of the gated silicon nanowire sensors, relative to the effect of hydrophobicity or molecular density of the organic monolayer. Based on these findings, we provide a tentative model-based understanding of (i) the relation between the adsorbed organic molecules, the hysteresis, and the related fundamental parameters of gated silicon nanowire characteristics and of (ii) the relation between the hysteresis drift and possible screening effect on gated silicon nanowire gas sensors upon exposure to different analytes at real-world conditions. The findings reported in this paper could be considered as a launching pad for extending the use of the gated silicon nanowire gas sensors for discriminations between polar and nonpolar analytes in complex, real-world gas mixtures.

  12. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture.

    Science.gov (United States)

    Diaz-Romero, Jose; Gaillard, Jean Philippe; Grogan, Shawn Patrick; Nesic, Dobrila; Trub, Thomas; Mainil-Varlet, Pierre

    2005-03-01

    Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications. 2004 Wiley-Liss, Inc.

  13. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  14. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Roshan Entezar, Samad

    2014-11-01

    We investigated theoretically the existence of surface polaritons (SPs) at the interface of a one-dimensional photonic crystal containing graphene monolayers. It is shown that the structure has a new type of the photonic band gap in the THz region which is strictly omnidirectional for the TM-polarization and can support the SPs for both TM-polarization and TE-polarization. The results show that the characteristics of the SPs depends on the optical properties of the graphene sheets which can be controlled by a gate voltage. We plotted the electromagnetic field profiles of the SPs at the frequency range of the graphene induced band gap and a conventional Bragg gap of the structure. It is found that the SPs at the graphene induced band gap are more localized than the SPs at the Bragg gaps.

  15. Band structure and Fermi surface of electron-doped C60 monolayers.

    Science.gov (United States)

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  16. Influence of surface properties of mix-monolayers on lipolytic hydrolysis

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Dahmen, U.; Brezesinski, G.

    2000-01-01

    Fluorescence microscopy, surface potential, and activity measurements were used to investigate the influence of fatty acids and fatty alcohols on the lipolytic activity of several lipases. We have determined the lateral lipid distribution and interfacial properties of Langmuir mixed monolayers...... correlates with the isoelectric point (pI) of the enzymes. A simpler mechanism is observed by the addition of fatty alcohol. Within the concentration range studied, 1-octadecanol is immiscible in the diacylglyceride matrix, forming liquid-condensed domains. The inhibitory effect is related to the reduction...... composed of 1,2-didecanoylglycerol/eicosanoic acid or 1,2-didecanoylglycerol/1-octadecanol molecules and have measured lipase activities toward these films. Enzymatic activities are remarkably influenced by the addition of fatty acid. Activity decreases continuously up to a mole fraction of ≈ 0.1 fatty...

  17. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    Science.gov (United States)

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-10-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

  18. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  19. Preparation and Characterization of Covalently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface

    Directory of Open Access Journals (Sweden)

    Lv Zhengjian

    2009-01-01

    Full Text Available Abstract The 16-mercaptohexadecanoic acid (MHA film and rat anti-human IgG protein monolayer were fabricated on gold substrates using self-assembled monolayer (SAM method. The surface properties of the bare gold substrate, the MHA film and the protein monolayer were characterized by contact angle measurements, atomic force microscopy (AFM, grazing incidence X-ray diffraction (GIXRD method and X-ray photoelectron spectroscopy, respectively. The contact angles of the MHA film and the protein monolayer were 18° and 12°, respectively, all being hydrophilic. AFM images show dissimilar topographic nanostructures between different surfaces, and the thickness of the MHA film and the protein monolayer was estimated to be 1.51 and 5.53 nm, respectively. The GIXRD 2θ degrees of the MHA film and the protein monolayer ranged from 0° to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p or N1s, respectively. Taken together, these results indicate that MHA film and protein monolayer were successfully formed with homogeneous surfaces, and thus demonstrate that the SAM method is a reliable technique for fabricating protein monolayer.

  20. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Science.gov (United States)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica

    2017-01-01

    We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  1. Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.

    Science.gov (United States)

    Tatay, Sergio; Galbiati, Marta; Delprat, Sophie; Barraud, Clément; Bouzehouane, Karim; Collin, Sophie; Deranlot, Cyrile; Jacquet, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2016-03-09

    Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such as magnetic tunnel junctions fabricated using a nano-indentation based lithography technique. The observed exponential increase of tunnel resistance as a function of alkyl chain length is a direct proof of the successful connection of molecules to ferromagnetic electrodes. For all alkyl chains studied we obtain stable and robust tunnel magnetoresistance, with effects ranging from a few tens to 10 000%. These results show that functionalized electrodes can be integrated in spintronics devices and open the door to a molecular engineering of spintronics.

  2. Covalently attached organic monolayers on SiC and SixN4 surfaces: Formation using UV light at room temperature

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Arafat, A.; Schroën, C.G.P.H.; Zuilhof, H.

    2009-01-01

    We describe the formation of alkyl monolayers on silicon carbide (SiC) and silicon-rich silicon nitride (SixN4) surfaces, using UV irradiation in the presence of alkenes. Both the surface preparation and the monolayer attachment were carried out under ambient conditions. The stable coatings obtained

  3. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  4. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    Energy Technology Data Exchange (ETDEWEB)

    Schougaard, Steen B. [Departement de Chimie, Universite du Quebec a Montreal, Case postale 8888, Succ. Centre-ville, Montreal, Quebec, H3C 3P8 (Canada); Texas Materials Institute, Center for Nano and Molecular Science and Engineering, Department Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78722 (United States)], E-mail: schougaard.steen@uqam.ca; Reitzel, Niels; Bjornholm, Thomas [Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Kjaer, Kristian [Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg, D-14476 Potsdam (Germany); Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Jensen, Torben R. [Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, DK-8000 Aarhus C (Denmark); Shmakova, Olga E.; Colorado, Ramon; Lee, T. Randall [Department of Chemistry, University of Houston, Houston, TX 77204-5003 (United States); Choi, J.-H.; Markert, John T.; Derro, David; Lozanne, Alex de [Department of Physics, University of Texas at Austin, Austin, TX 78712-1081 (United States); McDevitt, John T. [Texas Materials Institute, Center for Nano and Molecular Science and Engineering, Department Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78722 (United States)

    2007-09-14

    A self-assembled monolayer of CF{sub 3}(CF{sub 2}){sub 3}(CH{sub 2}){sub 11}NH{sub 2} atop the (001) surface of the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 A square {radical}2 x {radical}2R45{sup o} unit cell previously predicted for alkyl amines by molecular modeling [J.E. Ritchie, C.A. Wells, J.-P. Zhou, J. Zhao, J.T. McDevitt, C.R. Ankrum, L. Jean, D.R. Kanis, J. Am. Chem. Soc. 120 (1998) 2733]. Additionally, the 3D structure of an analogous Langmuir monolayer of CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 11}NH{sub 2} on water was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed.

  5. The Electrochemical Characteristics of Multilayer Assembly of Hemoglobin and Polystyrene Sulfonate at Self-assembled Monolayer Surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A multilayer film of hemoglobin (Hb) molecules and polyelectrolyte sulfonate were fabricated on a thiol self-assembled monolayers (SAMs) by electrostatic force.The Hb maintains electroactive property in the multilayer film, methylene blue (MB) incorporated into the multilayer can enhance the electron transfer rate between the Hb and the electrode surface.

  6. Molecular dynamics studies of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Newton, J. C.; Taub, H.

    1993-01-01

    The effect of molecular steric properties on the melting of quasi-two-dimensional solids is investigated by comparing results of molecular dynamics simulations of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite. These molecules differ only in their leng...

  7. Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2016-06-09

    The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known to stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.

  8. Surface chemistry and tribology of MEMS.

    Science.gov (United States)

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  9. Adsorption and dissociation of H2S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Science.gov (United States)

    Li, Yi; Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai; Su, Wenyue; Zhang, Yongfan

    2016-11-01

    Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H2S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H2S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H2S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first Hsbnd S bond is the rate-determining step for the H2S dissociation. Our results reveal that in most cases, the decomposition of H2S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H2S molecule.

  10. Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM.

    Science.gov (United States)

    Guo, Quanmin; Li, Fangsen

    2014-09-28

    The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.

  11. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  12. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Adsorption of biopolymers human serum albumin and human gamma globulin to well-defined surfaces of self-assembled monolayers

    Science.gov (United States)

    Cregger, Tricia Ann

    The tenacity with which the blood proteins Human Serum Albumin (HSA) and Human Gamma Globulin (HGG) adsorb to a surface modified with a monomolecular coating varies with the packing of the alkyl chains in the coating. The adsorption of proteins onto well-defined surfaces of self-assembled monolayers (SAMs) was studied with X-ray reflectometry (XR), neutron reflectometry (NR), optical reflectometry, and total internal reflection fluorescence (TIRF). NR and XR was used to study adsorption in the absence of flow, while optical reflectometry and TIRF were used to probe the adsorption under flow conditions. In particular, competitive adsorption measurements of binary solutions of HSA, HGG and Fibrinogen (FIB) were performed with TIRE The properties of the surface were varied by altering the alkyl chains' packing density and the chain end functionality of the SAMs. The depth profiles of protein concentration near the adsorbing surface measured by NR were dependent upon the chain packing density in the case of HSA. The concentration depth profile of HGG was unaltered by varying chain packing density. Measurements performed under flow using optical reflectometry showed a different behavior: the surface excess of adsorbed HSA was relatively independent of the surface packing, while the surface excess of HGG depended on the packing density of the SAM. The tenacity with which the proteins adsorbed to different functionalized surfaces was determined by attempting to remove the protein using a strong surfactant, sodium dodecyl sulfate (SDS). Ex situ XR measurements suggested that both HSA and HGG adsorb more tenaciously to a less densely-packed monolayer, almost independent of surface functionality. Two exceptions were a less densely-packed vinyl-terminated monolayer and a less densely-packed bromine-terminated monolayer, from which HSA could not be removed at all.

  14. Do organic surface films on sea salt aerosols influence atmospheric chemistry? ─ a model study

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2007-11-01

    Full Text Available Organic material from the ocean's surface can be incorporated into sea salt aerosol particles often producing a surface film on the aerosol. Such an organic coating can reduce the mass transfer between the gas phase and the aerosol phase influencing sea salt chemistry in the marine atmosphere. To investigate these effects and their importance for the marine boundary layer (MBL we used the one-dimensional numerical model MISTRA. We considered the uncertainties regarding the magnitude of uptake reduction, the concentrations of organic compounds in sea salt aerosols and the oxidation rate of the organics to analyse the possible influence of organic surfactants on gas and liquid phase chemistry with a special focus on halogen chemistry. By assuming destruction rates for the organic coating based on laboratory measurements we get a rapid destruction of the organic monolayer within the first meters of the MBL. Larger organic initial concentrations lead to a longer lifetime of the coating but lead also to an unrealistically strong decrease of O3 concentrations as the organic film is destroyed by reaction with O3. The lifetime of the film is increased by assuming smaller reactive uptake coefficients for O3 or by assuming that a part of the organic surfactants react with OH. With regard to tropospheric chemistry we found that gas phase concentrations for chlorine and bromine species decreased due to the decreased mass transfer between gas phase and aerosol phase. Aqueous phase chlorine concentrations also decreased but aqueous phase bromine concentrations increased. Differences for gas phase concentrations are in general smaller than for liquid phase concentrations. The effect on gas phase NO2 or NO is very small (reduction less than 5% whereas liquid phase NO2 concentrations increased in some cases by nearly 100%. We list suggestions for further laboratory studies which are needed for improved model studies.

  15. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Marks, T.J.

    1992-02-01

    The long-range goal of this project is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. The nature of the adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecular-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  16. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  17. Surface Shear Viscosity and Phase Transitions of Monolayers at the Air-Water Interface

    Science.gov (United States)

    Relini, A.; Ciuchi, F.; Rolandi, R.

    1995-08-01

    The canal method has been employed to measure the in-plane steady shear viscosity of monolayers of bolaform lipids extracted from the membrane of the thermophilic microorganism Sulfolobus solfataricus. Monolayers were formed with the polar lipid extract (PLE), which is a mixture of several bolaform lipids, each one endowed with two nonequivalent polar headgroups. Viscosities were obtained from the measured flows by using the equation introduced by Joly; this equation contains a semiempirical parameter A, which takes into account the monolayer-subphase mechanical coupling. Measuring the flows for two different substances (PLE and oleic acid) and channel widths, the monolayer viscosities and the parameter A were determined at the same time. The analysis of the viscosity data according to the free area model shows evidences of the molecular conformational changes matching monolayer phase transitions.

  18. Surface chemistry studies of phosphate glasses

    Science.gov (United States)

    Barnes, Amy Suzanne

    This research examined the surface of an undoped and rare-earth doped sodium alumino metaphosphate glass after fracture or surface finishing and subsequent exposure to humid and aqueous environments. In addition, the adsorption of aminopropyl triethoxysilane (APS), and the dominant parameters controlling the structure of the deposited film, were studied. Typically, commercial glasses must be cut and polished into optical components for engineering applications. This process involves a series of aqueous treatments in both acidic and basic media. The experiments performed here on aluminophosphate glass showed that this results in dissolution, surface composition changes (depletion of Na) and surface pitting. In both alkaline detergent and acid etching solution, dissolution at a rate of approximately 4 x 10 -3 mol/m2/hr (0.2 mum/hr) occurs along with a drastic alteration of the surface morphology. When exposed to an environment of elevated humidity and temperature for an extended period of time, this aluminophosphate glass was observed to break down, forming a soluble phosphate gel that dissolves away from the surface. Simultaneously, the surface became enriched in silica, a trace contaminant in the glass, which eventually precipitated and coalesced into a dendritic pattern that covered the surface. The freshly powdered phosphate glass was found to contain surface hydroxyls weakly associated with one another, and some bound by a stronger hydrogen bond, likely to adjacent non-bridging oxygens. Most of these hydroxyls could be desorbed upon heating above the glass transition temperature to leave only a small concentration of weakly associated hydroxyls and free hydroxyls on the surface. The characterization of hydroxyls and water on the phosphate glass surface was used to understand the adsorption of aminopropyl tri-ethoxysilane (APS) also through the use of in-situ DRIFTS. The concentration of adsorbed APS was found to be independent of solution pH, but the measured

  19. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.

    Science.gov (United States)

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Wu, Yi-Hao

    2012-11-07

    As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10(-14) M and an enhancement factor of 5.0 × 10(8). Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2'-bipyridine (BPy).

  20. Chemistry in the near-surface atmosphere at Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  1. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  2. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs

  3. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    Laskin, Julia; Hu, Qichi

    2017-03-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  4. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Science.gov (United States)

    Laskin, Julia; Hu, Qichi

    2017-07-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  5. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  6. Chemistry and Physics of Solid Surfaces 5

    Science.gov (United States)

    1984-04-01

    53, 76? (1981); f) B.K. Teo , D.C. Joy (eds.): EXAFS Spectroscopy, Techniques and Appli- cations (Plenum, New York 1981) 10.6 A. Bianconi: Appl. Surf...Meeussen, B.P. Veltman, P. Bennema, C. van Leeuwen , G.H. Gilmer: J. Crystal Growth 24/25, 491 (1974) 13.3 A review of surface roughening and crystal

  7. Fundamentals of Chemistry at Surfaces and Beyond

    Science.gov (United States)

    2013-09-23

    Identification of a Wagging Vibrational Mode of Water Molecules at the Water/Vapor Interface,” Phys. Rev. E (Stat., Nonlinear, Soft Matter Phys...of the Water Surface,” Chem. Phys., 258, 371-390 (2000). 54A. Perry, C. Neipert, C. Ridley, B. Space, “Identification of a Wagging Vibrational Mode

  8. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengWu; YI XiZhang

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO-3/CH3(CH2)nN+(CH3)3 as an example, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solution has been studied. εcan be obtained with two methods. One is from the relationship between εand the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  9. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  10. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Science.gov (United States)

    Dong, Bin; Driver, M. Sky; Emesh, Ismail; Shaviv, Roey; Kelber, Jeffry A.

    2016-10-01

    In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1-3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H2 or NH3 plasma cleaning of Co, and He or NH3 plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiOxNy), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp3 adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  11. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  12. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  13. Metal-Free Click Chemistry Reactions on Surfaces

    NARCIS (Netherlands)

    Escorihuela, J.; Marcelis, A.T.M.; Zuilhof, H.

    2015-01-01

    In the last decade, interest in the functionalization of surfaces and materials has increased dramatically. In this regard, click chemistry deserves a central focus because of its mild reaction conditions, high efficiency, and easy post-treatment. Among such novel click reactions, those that do not

  14. Metal-Free Click Chemistry Reactions on Surfaces

    NARCIS (Netherlands)

    Escorihuela, J.; Marcelis, A.T.M.; Zuilhof, H.

    2015-01-01

    In the last decade, interest in the functionalization of surfaces and materials has increased dramatically. In this regard, click chemistry deserves a central focus because of its mild reaction conditions, high efficiency, and easy post-treatment. Among such novel click reactions, those that do not

  15. Architecture and Surface Chemistry of Compound Nanoclusters

    Science.gov (United States)

    2012-08-01

    size. Surface enhanced Raman spectroscopy on silver nanorods substrates were undertaken to determine the structure of the Co4O4(CH3CN)6 species...potential new applications is the controlled synthesis of desired nanoparticles with favorable composition and stability. Our research project explores new...macroscopic synthesis of cluster materials, and new synthetic experiments employing ligand-coating strategies have been initiated using a “laser ablation

  16. Theoretical Insights into C1 Surface Chemistry

    Science.gov (United States)

    Neurock, Matthew

    2008-03-01

    Reforming and partial oxidation of methane as well as other C1 fuels are important processes in the production of hydrogen and synthesis gas and will likely play important roles future energy strategies. Herein we use theory and simulation to examine the reactivity of methane, methanol and dimethyl ether with CO2, H2O, or O2 over supported transition metals. We systematically probe the elementary C-H bond activation as well as the oxidation pathways involved in both reforming as the oxidation of methane and other C1 intermediates over well defined transition metal surfaces, metal alloys and metal nanoparticles. The calculations demonstrate well-established trends in C-H bond activation as the result of changes in the metal, the activating molecule (methane, methanol, and DME) as well as the reaction conditions. The reaction conditions ultimately dictate the surface coverage of carbon and oxygen which have important consequences on the surface reactivity. The theoretical and simulation results are compared with well defined experiments carried out at Berkeley over supported particles.

  17. Specific binding of avidin to biotin containing lipid lamella surfaces studied with monolayers and liposomes.

    Science.gov (United States)

    Liu, Z; Qin, H; Xiao, C; Wen, C; Wang, S; Sui, S F

    1995-01-01

    The interaction of avidin (from egg white) with phospholipid (monolayer and bilayer) model membranes containing biotin-conjugated phospholipids has been studied. In the first part, using surface sensitive techniques (ellipsometry and surface plasmon resonance) we demonstrated that the nonspecific adsorption of avidin to phospholipid lamella could be abolished by adding an amount of Ca2+, Mg2+ or Ba2+ that led to an electrostatic interaction. The specific binding of avidin to lipid mixtures containing biotin-conjugated phospholipids was obviously composition dependent. The ratio 1:12 of a B-DPPE/DPPE mixture was found to be the optimum molar ratio. When we compared the results from the surface sensitive techniques with those from the electron micrographs of a two dimensional crystal of avidin (obtained in our laboratory), the optimum ratio was found to be determined by the effect of lateral steric hindrance. In the second part, we observed the pattern of the layers of fluorescently labeled phospholipid and adsorbed proteins with a home-made micro fluorescence film balance. The fluorescence images showed that avidin was preferentially bound to the receptors that were in the fluid domains. Further, with a sensitive fluorescence assay method, the effect of the phase behavior of liposomes on the specific binding of avidin was measured. This showed that avidin interacted with biotinlipid more weakly in the gel state liposome than in the liquid state liposome. The major conclusion was that the binding of avidin to a membrane bound model receptor was significantly restricted by two factors: one was the lateral steric hindrance and the other was the fluidity of the model membrane.

  18. Quantitative Evaluation of Bioorthogonal Chemistries for Surface Functionalization of Nanoparticles

    DEFF Research Database (Denmark)

    Feldborg, Lise Nørkjær; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2012-01-01

    We present here a highly efficient and chemoselective liposome functionalization method based on oxime bond formation between a hydroxylamine and an aldehyde-modified lipid component. We have conducted a systematic and quantitative comparison of this new approach with other state-of-the-art...... affinity between the peptide and the liposome surface. These studies demonstrate the importance of hoosing the correct chemistry in order to obtain a quantitative surface functionalization of liposomes....

  19. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  20. Applications of Self-Assembled Monolayers in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Charles K. Klutse

    2012-01-01

    Full Text Available The increasing applications of surface-enhanced Raman scattering (SERS has led to the development of various SERS-active platforms (SERS substrates for SERS measurement. This work reviews the current optimization techniques available for improving the performance of some of these SERS substrates. The work particularly identifies self-assembled-monolayer- (SAM- based substrate modification for optimum SERS activity and wider applications. An overview of SERS, SAM, and studies involving SAM-modified substrates is highlighted. The focus of the paper then shifts to the use of SAMs to improve analytical applications of SERS substrates by addressing issues including long-term stability, selectivity, reproducibility, and functionalization, and so forth. The paper elaborates on the use of SAMs to achieve optimum SERS enhancement. Specific examples are based on novel multilayered SERS substrates developed in the author’s laboratory where SAMs have been demonstrated as excellent dielectric spacers for improving SERS enhancement more than 20-fold relative to conventional single layer SERS substrates. Such substrate optimization can significantly improve the sensitivity of the SERS method for analyte detection.

  1. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy

    Science.gov (United States)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2017-09-01

    The internal structure of self-assembled monolayers (SAMs) such as 3-aminopropyltriethoxysilane (APTES) fabricated on a glass substrate is difficult to characterize and analyze at nanometer level. In this study, we employed surface-enhanced Raman spectroscopy (SERS) to study the internal molecular structure of APTES SAMs. The sample APTES SAMs were deposited with Ag nanoparticles to enhance the Raman signal and to obtain subtler structure information, which were supported by density functional theory calculations. In addition, in order to carry out high-resolution analysis, especially for vertical direction, a fine piezo electric positioner was used to control the depth scanning with a step of 0.1 nm. We measured and distinguished the vertical Raman intensity variations of specific groups in APTES, such as Ag/NH2, CH2, and Sisbnd O, with high resolution. The interfacial bond at the two interfaces of Ag-APTES and APTES-SiO2 was identified. Moreover, APTES molecule orientation was demonstrated to be inhomogeneous from frequency shift.

  2. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

    Directory of Open Access Journals (Sweden)

    Yaron Paz

    2011-12-01

    Full Text Available The ability to control the properties of self-assembled monolayers (SAMs attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO2 or, in a complementary manner, as TiO2 grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO2 is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed.

  3. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    Science.gov (United States)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  4. Selected Bibliography II-Diamond Surface Chemistry

    Science.gov (United States)

    1993-09-30

    34Scanning Tunneling Microscopy of Polished Diamond Surfaces" JNL: Appl. Surf. Sci. REF: 62(4) (1992) 263-8 91 AUTHOR: Vazquez L., Martin -Gago J. A...Absorption in Semiconducting Synthetic Diamond" JNL: Physical Review REF: 140 (1965) A1272 AUTHOR: Keown R. TITLE: "Energy Bands in Diamond" JNL...34Determination of Optical Constant of Diamond Thin Films" JNL: Proc. SPIE-Int. Soc. Opt. Eng. REF: 1759(Diamond Opt. V) (1992) 218-23 AUTHOR: Fazzio A., Martins

  5. Phosphatidylcholine Monolayer Formation at a Liquid:Liquid Interface as Monitored by the Dynamic Surface Tension

    Science.gov (United States)

    2007-11-02

    concentration, while liquid crystalline vesicles form tightly packed monolayers at bulk PC concentrations above 2 ^Molar. Resolving this paradigm ...regardless of lipid bilayer phase. Initially, vesicle rupture probably represents an entropically driven process. The system will become increasingly

  6. Fabrication of molecular nanopatterns at aluminium oxide surfaces by nanoshaving of self-assembled monolayers of alkylphosphonates.

    Science.gov (United States)

    El Zubir, Osama; Barlow, Iain; Leggett, Graham J; Williams, Nicholas H

    2013-11-21

    Nanoshaving, by tracing an atomic force microscope probe across a surface at elevated load, has been used to fabricate nanostructures in self-assembled monolayers of alkylphosphonates adsorbed at aluminium oxide surfaces. The simple process is implemented under ambient conditions. Because of the strong bond between the alkylphosphonates and the oxide surface, loads in excess of 400 nN are required to pattern the monolayer. Following patterning of octadecylphosphonate SAMs, adsorption of aminobutyl phosphonate yielded features as small as 39 nm. Shaving of monolayers of aryl azide-terminated alkylphosphonates, followed by attachment of polyethylene glycol to unmodified regions in a photochemical coupling reaction, yielded 102 nm trenches into which NeutrAvidin coated, dye-labelled, polymer nanospheres could be deposited, yielding bright fluorescence with little evidence of non-specific adsorption to other regions of the surface. Structures formed in alkylphosphonate films by nanoshaving were used to etch structures into the underlying metal. Because of the isotropic nature of the etch process, and the large grain size, some broadening was observed, but features 25-35 nm deep and 180 nm wide were fabricated.

  7. Copper Contamination of Self-Assembled Organic Monolayer Modified Silicon Surfaces Following a "Click" Reaction Characterized with LAPS and SPIM.

    Science.gov (United States)

    Wu, Fan; Zhang, De-Wen; Wang, Jian; Watkinson, Michael; Krause, Steffi

    2017-04-04

    A copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction combined with microcontact printing was used successfully to pattern alkyne-terminated self-assembled organic monolayer-modified silicon surfaces. Despite the absence of a copper peak in X-ray photoelectron spectra, copper contamination was found and visualized using light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) after the "click"-modified silicon surfaces were rinsed with hydrochloric acid (HCl) solution, which was frequently used to remove copper residues in the past. Even cleaning with an ethylenediaminetetraacetic acid (EDTA) solution did not remove the copper residue completely. Different strategies for avoiding copper contamination, including the use of bulky chelators for the copper(I) catalyst and rinsing with different reagents, were tested. Only cleaning of the silicon surfaces with an EDTA solution containing trifluoroacetic acid (TFA) after the click modification proved to be an effective method as confirmed by LAPS and SPIM results, which showed the expected potential shift due to the surface charge introduced by functional groups in the monolayer and allowed, for the first time, imaging the impedance of an organic monolayer.

  8. Photocatalytic oxidation of the organic monolayers on TiO{sub 2} surface investigated by in-situ sum frequency generation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yujin; Peng, Qiling; Ma, Tongsen; Nishida, Takuma; Ye, Shen, E-mail: ye@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 060-0811 (Japan)

    2015-10-01

    In-situ vibrational sum frequency generation (SFG) spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA) monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS) monolayer prepared by the self-assembling method, on a TiO{sub 2} surface under ultraviolet (UV) irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO{sub 2} surface.

  9. Photocatalytic oxidation of the organic monolayers on TiO2 surface investigated by in-situ sum frequency generation spectroscopy

    Directory of Open Access Journals (Sweden)

    Yujin Tong

    2015-10-01

    Full Text Available In-situ vibrational sum frequency generation (SFG spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS monolayer prepared by the self-assembling method, on a TiO2 surface under ultraviolet (UV irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO2 surface.

  10. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  11. Structure and dynamics of monolayer films of squalane molecules adsorbed on a solid surface

    Science.gov (United States)

    D. T Enevoldsen, A.; Hansen, F. Y.; Diama, A.; Taub, H.

    2003-03-01

    Squalane is a branched alkane (C_30H_62). It consists of a straight chain with 24 carbon atoms, as in tetracosane (C_24H_50), and has six methyl side groups. Branched polymers such as squalane are thought to be better lubricants than n-alkanes. At low temperature, our molecular dynamics (MD) simulations show that the molecules form an ordered monolayer which melts at approximately 325 K compared to the tetracosane monolayer melting point of ˜ 340 K. Our MD simulations indicate the same melting mechanism in the squalane monolayer that was found previously for tetracosane (F. Y. Hansen and H. Taub, Phys. Rev. Lett. 69, 652 (1992).) They also show that the adsorbed molecules are distorted from an all-trans carbon backbone in contrast to what was found for tetracosane. This may explain why the Bragg diffraction peaks were observed to be broader for the squalane monolayer than for tetracosane (D. Fuhrmann, A. P. Graham, L. Criswell, H. Mo, B. Matthies, K. W. Herwig, and H. Taub, Surf. Sci. 482-485, 77 (2001).). The diffusive motion in a squalane monolayer has been investigated by both quasielastic neutron scattering and MD simulations and compared to the dynamics in tetracosane monolayers. Focus will be on differences in the dynamics.

  12. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    Science.gov (United States)

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  13. Surface Chemistry and Properties of Oxides as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    DeBusk, Melanie Moses [ORNL; Narula, Chaitanya Kumar [ORNL; Contescu, Cristian I [ORNL

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  14. Probing Surface Chemistry at the Nanoscale Level

    Science.gov (United States)

    Rene-Boisneuf, Laetitia

    Studies various nanostructured materials have gained considerable interest within the past several decades. This novel class of materials has opened up a new realm of possibilities, both for the fundamental comprehension of matter, but also for innovative applications. The size-dependent effect observed for these systems often lies in their interaction with the surrounding environment and understanding such interactions is the pivotal point for the investigations undertaken in this thesis. Three families of nanoparticles are analyzed: semiconductor quantum dots, metallic silver nanoparticles and rare-earth oxide nanomaterials. The radical scavenging ability of cerium oxide nanoparticles (CeO 2) is quite controversial since they have been labeled as both oxidizing and antioxidant species for biological systems. Here, both aqueous and organic stabilized nanoparticles are examined in straightforward systems containing only one reactive oxygen species to ensure a controlled release. The apparent absence of their direct radical scavenging ability is demonstrated despite the ease at which CeO2 nanoparticles generate stable surface Ce 3+ clusters, which is used to explain the redox activity of these nanomaterials. On the contrary, CeO2 nanoparticles are shown to have an indirect scavenging effect in Fenton reactions by annihilating the reactivity of Fe 2+ salts. Cadmium selenide quantum dots (CdSe QD) constitute another highly appealing family of nanocolloids in part due to their tunable, size-dependent luminescence across the visible spectrum. The effect of elemental sulfur treatment is investigated to overcome one of the main drawbacks of CdSe QD: low fluorescence quantum yield. Herein, we report a constant and reproducible quantum yield of 15%. The effect of sulfur surface treatment is also assessed following the growth of a silica shell, as well as the response towards a solution quencher (4-amino-TEMPO). The sulfur treated QD is also tested for interaction with

  15. Surface diffusion of CO on Ni(111) studied by diffraction of optical second-harmonic generation off a monolayer grating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.D.; Rasing, T.; Shen, Y.R.

    1988-12-19

    Diffraction of optical second-harmonic generation from a monolayer grating created by laser desorption of adsorbates can be used to study surface diffusion of molecules on substrates. Application of this novel technique to CO on Ni(111) yields a diffusion activation energy of 6.9 kcal/mol and a preexponential factor of approx. =1.2 x 10/sup -5/ cm/sup 2/s/sup -1/.

  16. Surface chemistry of black phosphorus under a controlled oxidative environment

    Science.gov (United States)

    Luo, Wei; Zemlyanov, Dmitry Y.; Milligan, Cory A.; Du, Yuchen; Yang, Lingming; Wu, Yanqing; Ye, Peide D.

    2016-10-01

    Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 Å for 5 h. On the other hand, in the O2/H2O mixture, a 30 Å thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.

  17. Use of enzyme label for quantitative evaluation of liposome adhesion on cell surface: studies with J774 macrophage monolayers.

    Science.gov (United States)

    Trubetskoy, V S; Dormeneva, E V; Tsibulsky, V P; Repin, V S; Torchilin, V P

    1988-07-01

    A method for quantitation of cell surface-bound liposomes utilizing J774 macrophage monolayers is developed. Surface-bound biotinyl-containing and 125I-labeled liposomes were quantified with avidin-peroxidase in an ELISA-like assay. Peroxidase substrate absorbance values were recalculated into the absolute amount of liposomal lipid using a special calibration plot. Total liposome uptake by macrophages was determined following the binding of 125I radioactivity. The approach suggested allows quantitative evaluation of the changes in the content of surface-adhered liposomes during their interaction with cells in vitro.

  18. Self-Spreading of Lipid Bilayer on a Hydrophobic Surface Made by Self-Assembled Monolayer with Short Alkyl Chain.

    Science.gov (United States)

    Omori, Yuya; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi

    2016-04-01

    Behaviors of self-spreading of lipid bilayer membrane on a glass surface modified with self-assembled monolayer (SAM) with short alkyl chain were observed with fluorescence microscopy. Hydrophobic surface made by SAM was found to hamper the self-spreading phenomenon but the lipid bilayer spread on a hydrophilic one where SAM was decomposed by oxidation. On a binary surface having a hydrophobic region and a hydrophilic one, the lipid bilayer spread on the hydrophilic region but it stopped at the boundary of the hydrophobic region.

  19. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    Science.gov (United States)

    2012-12-11

    Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures, Chemistry of Materials, (01...of the C–H bond to form carboxyl, both of which decompose via a COd 2 intermediate to evolve CO2 and H2. High surface area, porous titanium carbide films...characterization of nanocrystalline titanium carbide with tunable porous architectures” Chem. Mater. 22, 319-329 (2010). http://dx.doi.org/10.1021/cm902184m 3

  20. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  1. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gokcen, Dincer; Bae, Sang-Eun [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Brankovic, Stanko R., E-mail: Stanko.Brankovic@mail.uh.edu [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemical and Biomolecular Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemistry Department, University of Houston, Houston, TX 772004-4005 (United States)

    2011-06-30

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  2. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    Science.gov (United States)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.; Dimeo, R. M.; Neumann, D. A.; Copley, J. R. D.

    2007-03-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon backbone, and squalane has an additional six methyl side groups symmetrically placed along its length. The authors' principal objective has been to determine the influence of the side groups on the dynamics of the squalane monolayer and thereby assess its potential as a nanoscale lubricant. To investigate the dynamics of these monolayers they used both the disk chopper spectrometer (DCS) and the high flux backscattering spectrometer (HFBS) at the National Institute of Standards and Technology. These instruments made it possible to study dynamical processes such as molecular diffusive motions and vibrations on very different time scales: 1-40ps (DCS) and 0.1-4ns (HFBS). The MD simulations were done on corresponding time scales and were used to interpret the neutron spectra. The authors found that the dynamics of the two monolayers are qualitatively similar on the respective time scales and that there are only small quantitative differences that can be understood in terms of the different masses and moments of inertia of the two molecules. In the course of this study, the authors developed a procedure to separate out the low-frequency vibrational modes in the spectra, thereby facilitating an analysis of the quasielastic scattering. They conclude that there are no major differences in the monolayer dynamics caused by intramolecular branching. It remains to be seen whether this similarity in monolayer dynamics also holds for the lubricating properties of these molecules in confined geometries.

  3. Self-assembling Process of Alkanethiol Monolayers on Gold Surface via Underpotential Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

  4. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  5. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  6. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  7. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin, E-mail: bindong@my.unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Driver, M. Sky, E-mail: Marcus.Driver@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Emesh, Ismail, E-mail: Ismail_Emesh@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Shaviv, Roey, E-mail: Roey_Shaviv@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Kelber, Jeffry A., E-mail: Jeffry.Kelber@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States)

    2016-10-30

    Highlights: • O{sub 2}-free plasma treatment of air-exposed Co or Cu surfaces yields remnant C layers inert to further plasma cleaning. • The formation of the remnant C layer is graphitic (Cu) or carbidic (Co). • The formation of a remnant C layer is linked to plasma cleaning of a metal surface. - Abstract: In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1–3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H{sub 2} or NH{sub 3} plasma cleaning of Co, and He or NH{sub 3} plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiO{sub x}N{sub y}), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp{sup 3} adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  8. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Science.gov (United States)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  9. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-Juan [School of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Xing, Zhen-Jiao [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Duan, Zheng-Kang [School of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Meng Li [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China)

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption–desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm{sup 3} min{sup −1}. Under these conditions, AC with a BET surface area of 1210 m{sup 2} g{sup −1} and total pore volume of 0.542 cm{sup −3} g{sup −1}was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g{sup −1} for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  10. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their...

  11. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.;

    2007-01-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon...

  12. Immobilization of rhodium complexes at thiolate monolayers on gold surfaces : Catalytic and structural studies

    NARCIS (Netherlands)

    Belser, T; Stöhr, Meike; Pfaltz, A

    2005-01-01

    Chiral rhodium-diphosphine complexes have been incorporated into self-assembled thiolate monolayers (SAMS) on gold colloids. Catalysts of this type are of interest because they combine properties of homogeneous and heterogeneous systems. In addition, it should be possible to influence the catalytic

  13. pH sensitivity of Si-C linked organic monolayers on crystalline silicon surfaces

    NARCIS (Netherlands)

    Faber, Erik Jouwert; Sparreboom, Wouter; Groeneveld, Wilrike; de Smet, Louis C.P.M.; Bomer, Johan G.; Olthuis, Wouter; Zuilhof, Han; Sudholter, Ernst; Sudhölter, Ernst J.R.; Bergveld, Piet; van den Berg, Albert

    2007-01-01

    The electrochemical behaviour of Si-C linked organic monolayers is studied in electrolyte-insulator-Si devices, under conditions normally encountered in potentiomeric biosensors, to gain fundamental knowledge on the behaviour of such Si electrodes under practical conditions. This is done via

  14. The impact of surface chemistry modification on macrophage polarisation.

    Science.gov (United States)

    Rostam, Hassan M; Singh, Sonali; Salazar, Fabian; Magennis, Peter; Hook, Andrew; Singh, Taranjit; Vrana, Nihal E; Alexander, Morgan R; Ghaemmaghami, Amir M

    2016-11-01

    Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflammatory (M1) and anti-inflammatory (M2) macrophages with distinct functional and phenotypical characteristics. Macrophages also play a crucial role in orchestrating immune responses to biomaterials used in the fabrication of implantable devices and drug delivery systems. To assess the impact of different surface chemistries on macrophage polarisation, human monocytes were cultured for 6 days on untreated hydrophobic polystyrene (PS) and hydrophilic O2 plasma-etched polystyrene (O2-PS40) surfaces. Our data clearly show that monocytes cultured on the hydrophilic O2-PS40 surface are polarised towards an M1-like phenotype, as evidenced by significantly higher expression of the pro-inflammatory transcription factors STAT1 and IRF5. By comparison, monocytes cultured on the hydrophobic PS surface exhibited an M2-like phenotype with high expression of mannose receptor (MR) and production of the anti-inflammatory cytokines IL-10 and CCL18. While the molecular basis of such different patterns of cell differentiation is yet to be fully elucidated, we hypothesise that it is due to the adsorption of different biomolecules on these surface chemistries. Indeed our surface characterisation data show quantitative and qualitative differences between the protein layers on the O2-PS40 surface compared to PS surface which could be responsible for the observed differential macrophage polarisation on each surface.

  15. Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties

    Science.gov (United States)

    Malyar, Ivan V.; Titov, Evgenii; Lomadze, Nino; Saalfrank, Peter; Santer, Svetlana

    2017-03-01

    We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). It was found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of the work function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions.

  16. Cyclodextrin-modified zeolites: host-guest surface chemistry for the construction of multifunctional nanocontainers.

    Science.gov (United States)

    Szarpak-Jankowska, Anna; Burgess, Christine; De Cola, Luisa; Huskens, Jurriaan

    2013-10-25

    The functionalization of nanoporous zeolite L crystals with β-cyclodextrin (CD) has been demonstrated. The zeolite surface was first modified with amino groups by using two different aminoalkoxysilanes. Then, 1,4-phenylene diisothiocyanate was reacted with the amino monolayer and used to bind CD heptamine by using its remaining isothiocyanate groups. The use of the different aminoalkoxysilanes, 3-aminopropyl dimethylethoxysilane (APDMES) and 3-aminopropyl triethoxysilane (APTES), led to drastic differences in uptake and release properties. Thionine was found to be absorbed and released from amino- and CD-functionalized zeolites when APDMES was used, whereas functionalization by APTES led to complete blockage of the zeolite channels. Fluorescence microscopy showed that the CD groups covalently attached to the zeolite crystals could bind adamantyl-modified dyes in a specific and reversible manner. This strategy allowed the specific immobilization of His-tagged proteins by using combined host-guest and His-tag-Ni-nitrilotriacetic acid (NTA) coordination chemistry. Such multifunctional systems have the potential for encapsulation of drug molecules inside the zeolite pores and non-covalent attachment of other (for example, targeting) ligand molecules on its surface.

  17. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.

    Science.gov (United States)

    Mogilevsky, Alina; Jelinek, Raz

    2011-02-15

    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  18. Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elton J.G.; Sullion, Declan; Chu, Ximo S.; Li, Duo O.; Guisinger, Nathan P.; Wang, Qing Hua

    2017-09-21

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C60 molecules self-assembled on the surface of WSe2 in well-ordered arrays with large grain sizes (∼5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure in the C60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. This rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.

  19. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  20. The role of "inert" surface chemistry in marine biofouling prevention.

    Science.gov (United States)

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-01

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  1. Laser desorption ionization-time-of-flight mass analysis of perfluoropolyether monolayer directly from hard disk medium surface.

    Science.gov (United States)

    Kudo, Toshiji; Macht, Marcus; Kuroda, Masami

    2011-07-15

    Modern life is dependent on computer technology, and because the volume of digital data in the world is increasing rapidly, the importance of data storage devices is also increasing rapidly. Among them, demands for magnetic disk drive well-known as hard disk drives is quite huge and information recording density on the disk media is continuing to grow dramatically. For the research and development of the magnetic disk media, it is critical to investigate and characterize the lubricant layer formed on the disk media surface. However, it is difficult because the layer is only a monolayer which has only approximately 1 nm thickness in many cases. Although matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) measurements of monolayers have already been reported (Su, J.; Mrksich, M. Langmuir, 2003, 19, 4867-4870), lubricants used here are (co)polymers which have molecular weight distributions and are mixtures of various degrees of polymerization. This can reduce the sensitivity of MS measurement because the number (or density) of distinct single molecular species is lower than for homogeneous samples. In this report, direct measurement and characterization of lubricant monolayers using the LDI-TOF-MS instrument is performed to gain insight into detailed information like average molecular weight, polymer distribution, and two-dimensional mapping directly from magnetic disk monolayers. To our knowledge, this is the first time such information was acquired directly from hard disk media. The technique reported here might open up new possibilities also for investigations of various electronic devices other than magnetic hard disks.

  2. Adsorption and dissociation of H{sub 2}S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: liy99@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005 (China); Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Su, Wenyue [State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China); Zhang, Yongfan, E-mail: zhangyf@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China)

    2016-11-30

    Highlights: • For the molecular adsorption, the introducing Ni monolayer on Pd(111) can reduce the binding strength between H{sub 2}S and the surface. • The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. • Monolayer Ni-Pd(111) surface may exhibit a good sulfur resistance performance because there is a competition between the desorption and decomposition of H{sub 2}S molecule. - Abstract: Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H{sub 2}S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H{sub 2}S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first H−S bond is the rate-determining step for the H{sub 2}S dissociation. Our results reveal that in most cases, the decomposition of H{sub 2}S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H{sub 2}S molecule.

  3. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    Science.gov (United States)

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components.

  4. From monomer to monolayer: a global optimisation study of (ZnO)n nanoclusters on the Ag surface.

    Science.gov (United States)

    Demiroglu, Ilker; Woodley, Scott M; Sokol, Alexey A; Bromley, Stefan T

    2014-12-21

    We employ global optimisation to investigate how oxide nanoclusters of increasing size can best adapt their structure to lower the system energy when interacting with a realistic extended metal support. Specifically, we focus on the (ZnO)@Ag(111) system where experiment has shown that the infinite Ag(111)-supported ZnO monolayer limit corresponds to an epitaxially 7 : 8 matched graphene-like (Zn(3)O(3))-based hexagonal sheet. Using a two-stage search method based on classical interatomic potentials and then on more accurate density functional theory, we report global minina candidate structures for Ag-supported (ZnO)n cluster with sizes ranging from n = 1-24. Comparison with the respective global minina structure of free space (ZnO)n clusters reveals that the surface interaction plays a decisive role in determining the lowest energy Ag-supported (ZnO)n cluster structures. Whereas free space (ZnO)n clusters tend to adopt cage-like bubble structures as they grow larger, Ag-supported (ZnO)n clusters of increasing size become progressively more like planar cuts from the infinite graphene-like ZnO single monolayer. This energetic favourability for planar hexagonal Ag-supported clusters over their 3D counterparts can be partly rationalised by the ZnO-Ag(111) epitaxial matching and the increased number of close interactions with the Ag surface. Detailed analysis shows that this tendency can also be attributed to the capacity of 2D clusters to distort to improve their interaction with the Ag surface relative to more rigid 3D bubble cluster isomers. For the larger sized clusters we find that the adsorption energies and most stable structural types appear to be rather converged confirming that our study makes a bridge between the Ag-supported ZnO monomer and the infinite Ag-supported ZnO monolayer.

  5. X-ray diffraction studies of organic monolayers on the surface of water

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P.; Peng, J.B.; Lin, B.; Ketterson, J.B.; Prakash, M.; Georgopoulos, P.; Ehrlich, S.

    1987-05-25

    We have used synchrotron radiation to study organic monolayers on water (''Langmuir films''). At high monolayer pressures, lead stearate (Pb(C/sub 17/H/sub 35/COO)/sub 2/) shows a powder peak at 1.60 A/sup -1/, implying an area per unit cell of 17.8 A/sup 2/ if the lattice is triangular. The correlation length is about 250 A. Lignoceric acid (C/sub 23/H/sub 47/COOH) shows a similar peak even though no heavy ions are attached. When the pressure is reduced, the peak in lead stearate does not observably move or broaden; below the ''knee'' in the isotherm, however, the peak height decreases slowly with increasing area, implying a first-order melting transition.

  6. Surface passivation of (100 GaSb using self-assembled monolayers of long-chain octadecanethiol

    Directory of Open Access Journals (Sweden)

    E. Papis-Polakowska

    2016-05-01

    Full Text Available The passivation of (100 GaSb surface was investigated by means of the long-chain octadecanethiol (ODT self-assembled monolayer (SAM. The properties of ODT SAM on (100 GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10mM ODT-C2H5OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.

  7. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.

    Science.gov (United States)

    Romashov, Leonid V; Ananikov, Valentine P

    2013-12-23

    Self-assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur-based self-assembled monolayers and newly developed selenium-based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.

  8. Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces

    Science.gov (United States)

    2017-01-01

    Inspired by the homogeneous catalyst tris(pentafluorophenyl) borane [B(C6F5)3], which acts as a promotor of Si–H bond activation, we developed and studied a method of modifying silicon oxide surfaces using hydrosilanes with B(C6F5)3 as the catalyst. This dedihydrosiloxanation reaction yields complete surface coverage within 10 min at room temperature. Organic monolayers derived from hydrosilanes with varying carbon chain lengths (C8–C18) were prepared on oxidized Si(111) surfaces, and the thermal and hydrolytic stabilities of the obtained monolayers were investigated in acidic (pH 3) medium, basic (pH 11) medium, phosphate-buffered saline (PBS), and deionized water (neutral conditions) for up to 30 days. DFT calculations were carried out to gain insight into the mechanism, and the computational results support a mechanism involving silane activation with B(C6F5)3. This catalyzed reaction path proceeds through a low-barrier-height transition state compared to the noncatalyzed reaction path. PMID:28230381

  9. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  10. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  11. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  12. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  13. Characteristics of localized surface plasmons excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles.

    Science.gov (United States)

    Tanaka, Daisuke; Imazu, Keisuke; Sung, Jinwoo; Park, Cheolmin; Okamoto, Koichi; Tamada, Kaoru

    2015-10-07

    The fundamental characteristics of localized surface plasmon resonance (LSPR) excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles (AgNPs and AuNPs, respectively) were investigated. Mixed monolayered films were fabricated at the air-water interface at different mixing ratios. The films retained their phase-segregated morphologies in which AuNPs formed several 10 to 100 nm island domains in a homogeneous AgNP matrix phase. The LSPR bands originating from the self-assembled domains shifted to longer wavelengths as the domain size increased, as predicted by a finite-difference time-domain (FDTD) simulation. The FDTD simulation also revealed that even an alternating-lattice-structured two-dimensional (2D) AgNP/AuNP film retained two isolated LSPR bands, revealing that the plasmon resonances excited on each particle did not couple even in a continuous 2D sheet, unlike in the homologous NP system. The fluorescence quenching test of Cy3 and Cy5 dyes confirmed that the independent functions of AuNPs and AgNPs remained in the mixed films, whereas the AuNPs exhibited significantly higher quenching efficiency for the Cy3 dye compared with AgNPs due to the overlap of the excitation/emission bands of the dyes with the AuNP LSPR band. Various applications can be considered using this nanoheterostructured plasmonic assembly to excite spatially designed, high-density LSPR on macroscopic surfaces.

  14. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface.

    Science.gov (United States)

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-04-13

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties.

  15. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    Science.gov (United States)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  16. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.

  17. Templating gold surfaces with function: a self-assembled dendritic monolayer methodology based on monodisperse polyester scaffolds.

    Science.gov (United States)

    Öberg, Kim; Ropponen, Jarmo; Kelly, Jonathan; Löwenhielm, Peter; Berglin, Mattias; Malkoch, Michael

    2013-01-01

    The antibiotic resistance developed among several pathogenic bacterial strains has spurred interest in understanding bacterial adhesion down to a molecular level. Consequently, analytical methods that rely on bioactive and multivalent sensor surfaces are sought to detect and suppress infections. To deliver functional sensor surfaces with an optimized degree of molecular packaging, we explore a library of compact and monodisperse dendritic scaffolds based on the nontoxic 2,2-bis(methylol)propionic acid (bis-MPA). A self-assembled dendritic monolayer (SADM) methodology to gold surfaces capitalizes on the design of aqueous soluble dendritic structures that bear sulfur-containing core functionalities. The nature of sulfur (either disulfide or thiol), the size of the dendritic framework (generation 1-3), the distance between the sulfur and the dendritic wedge (4 or 14 Å), and the type of functional end group (hydroxyl or mannose) were key structural elements that were identified to affect the packaging densities assembled on the surfaces. Both surface plasmon resonance (SPR) and resonance-enhanced surface impedance (RESI) experiments revealed rapid formation of homogenously covered SADMs on gold surfaces. The array of dendritic structures enabled the fabrication of functional gold surfaces displaying molecular covering densities of 0.33-2.2 molecules·nm(-2) and functional availability of 0.95-5.5 groups·nm(-2). The cell scavenging ability of these sensor surfaces for Escherichia coli MS7fim+ bacteria revealed 2.5 times enhanced recognition for G3-mannosylated surfaces when compared to G3-hydroxylated SADM surfaces. This promising methodology delivers functional gold sensor surfaces and represents a facile route for probing surface interactions between multivalently presented motifs and cells in a controlled surface setting.

  18. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications.

    Science.gov (United States)

    Cheng, Cathy I; Chang, Yi-Pin; Chu, Yen-Ho

    2012-03-07

    Interactions between molecules are ubiquitous and occur in our bodies, the food we eat, the air we breathe, and myriad additional contexts. Although numerous tools are available for the recognition of biomolecular interactions, such tools are often limited in their sensitivity, expensive, and difficult to modify for various uses. In contrast, the quartz crystal microbalance (QCM) has sub-nanogram detection capabilities, is label-free, is inexpensive to create, and can be readily modified with a number of diverse surface chemistries to detect and characterize diverse interactions. To maximize the versatility of the QCM, scientists need to know available methods by which QCM surfaces can be modified. Therefore, in addition to summarizing the various tools currently used for biomolecular recognition, explicating the fundamental principles of the QCM as a tool for biomolecular recognition, and comparing the QCM with other acoustic sensors, we systematically review the numerous types of surface chemistries-including hydrophobic bonds, ionic bonds, hydrogen bonds, self-assembled monolayers, plasma-polymerized films, photochemistry, and sensing ionic liquids-used to functionalize QCMs for various purposes. We also review the QCM's diverse applications, which include the detection of gaseous species, detection of carbohydrates, detection of nucleic acids, detection of non-enzymatic proteins, characterization of enzymatic activity, detection of antigens and antibodies, detection of cells, and detection of drugs. Finally, we discuss the ultimate goals of and potential barriers to the development of future QCMs.

  19. Surface chemistry interventions to control boiler tube fouling - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2004-06-15

    This is the third in a series of reports from an investigation co-funded by the Electric Power Research Institute (EPRI) and by Atomic Energy of Canada Limited (AECL) into the effectiveness of alternative amines for controlling the rate of tube-bundle fouling under steam generator (SG) operating conditions. The objectives of this investigation are to determine whether the fouling rate depends on the amine used for pH control, to identify those factors that influence the effectiveness, and use this information to optimize the selection of an amine for chemistry control and deposit control in the steam cycle and steam generator, respectively. Work to date has demonstrated that the rate of particle deposition under steam generator operating conditions is strongly influenced by surface chemistry (Turner et al., 1997; Turner et al., 1999). This dependence upon surface chemistry is illustrated by the difference between the deposition rates measured for hematite and magnetite, and by the dependence of the particle deposition rate on the amine used for pH control. Deposition rates of hematite were found to be more than 10 times greater than those for magnetite under similar test conditions (Turner et al., 1997). At 270{sup o}C and pH{sub T} 6.2, the surfaces of hematite and magnetite are predicted to be positively charged and negatively charged, respectively (Shoonen, 1994). Measurements of the point of zero charge (PZC) of magnetite at temperatures from 25{sup o}C to 290{sup o}C by Wesolowski et al. (1999) have confirmed that magnetite is negatively charged at the stated conditions. A PZC of 4.2 was measured for Alloy 600 at 25{sup o}C (Balakrishnan and Turner, un-published results), and its surface is expected to remain negatively charged for alkaline chemistry over the temperature range of interest. Therefore, there will be a repulsive force between the surfaces of magnetite particles and Alloy 600 at 270{sup o}C and pH{sub T} 6.2 that is absent for hematite particles

  20. Triblock polyphiles through click chemistry: self-assembled thermotropic cubic phases formed by micellar and monolayer vesicular aggregates.

    Science.gov (United States)

    Tan, Xiaoping; Kong, Leiyang; Dai, Heng; Cheng, Xiaohong; Liu, Feng; Tschierske, Carsten

    2013-11-25

    Three series of triblock polyphiles consisting of a rigid 4-phenyl-1,2,3-triazole or 1,4-diphenyl-1,2,3-triazole core with three lipophilic and flexible alkoxyl chains at one end and a polar glycerol group at the opposite end were synthesized by copper-catalyzed azide-alkyne click reactions. Their mesophase behavior was studied by polarizing optical microscopy, differential scanning calorimetry, and XRD. Depending on alkyl chain length and core length, a transition from hexagonal columnar to Pm3n-type cubic phases was observed. In the cubic phases, the molecules are organized as spherical objects. Remarkably, compounds with a longer core unit have a higher tendency to form these cubic phases, and their stability is strongly enhanced over those of the compounds with a shorter core, despite longer cores having a smaller cone angle and therefore being expected to disfavor the formation of spherical objects. There is a large difference in the number of molecules involved in the spherical aggregates formed by compounds with long and short cores. Whereas the aggregates in the cubic phases of the compounds with short rod units are small and could be regarded as micellar, the long-core compounds form much larger aggregates which are regarded as a kind of monolayer vesicular aggregate.

  1. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    Directory of Open Access Journals (Sweden)

    Frederik Böke

    2014-06-01

    Full Text Available High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side.

  2. Detection of C-reactive protein on a functional poly(thiophene) self-assembled monolayer using surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Chul; Lee, Soo-Keun; Jeon, Won Bae; Lyu, Hong-Kun [Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230 (Korea, Republic of); Lee, Seung Woo [School of Display and Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jeong, Sang Won [Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230 (Korea, Republic of)], E-mail: sjeong@dgist.ac.kr

    2008-09-15

    The preparation of a new poly(thiophene) with pendant N-hydroxysuccinimide ester groups and its application to immobilization of biomolecules are reported. A thiophene derivative of N-hydroxysuccinimide ester was polymerized with FeCl{sub 3} in chloroform and the resulting poly(thiophene) was characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). This polymer reacts with amine-bearing molecules to yield new poly(thiophene) derivatives and the specific interactions at the side groups could be detected. Thus, a self-assembled monolayer (SAM) using the polymer was formed on a gold-coated quartz cell and anti-C-reactive protein (anti-CRP) was immobilized. The binding behavior of CRP on the surface was monitored by use of a surface plasmon resonance (SPR) sensor system.

  3. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    Science.gov (United States)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  4. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Chattopadhyay, Samir; Dey, Abhishek

    2015-10-14

    The protonation state of thiols in self-assembled monolayers (SAMs) on Ag and Au surfaces and nanoparticles (NPs) has been an issue of contestation. It has been recently demonstrated that deuterating the thiol proton produces ostentatious changes in the Raman spectra of thiols and can be used to detect the presence of the thiol functional group. Surface enhanced Raman spectroscopy (SERS) of H/D substituted aliphatic thiols on Ag surfaces clearly shows the presence of S-H vibration between 2150-2200 cm(-1) which shifts by 400 cm(-1) upon deuteration and a simultaneous >20 cm(-1) shift in the C-S vibration of thiol deuteration. Large shifts (>15 cm(-1)) in the C-S vibration are also observed for alkyl thiol SAMs on Au surfaces. Alternatively, neither the S-H vibration nor the H/D isotope effect on the C-S vibration is observed for alkyl thiol SAMs on Ag/Au NPs. XPS data on Ag/Au surfaces bearing aliphatic thiol SAMs show the presence of both protonated and deprotonated thiols while on Ag/Au NPs only deprotonated thiols are detected. These data suggest that aliphatic thiol SAMs on Au/Ag surfaces are partially protonated whereas they are totally deprotonated on Au/Ag NPs. Aromatic PhSH SAMs on Ag/Au surfaces and Ag/Au NPs do not show these vibrations or H/D shifts as well indicating that the thiols are deprotonated at these interfaces.

  5. Carbon dioxide chemistry on the surface of Titan

    Science.gov (United States)

    Hodyss, Robert; Piao, Sophie; Malaska, Michael; Cable, Morgan

    2016-10-01

    Titan possesses many of the basic elements of habitability, including a rich organic chemistry. However, the thick atmosphere of Titan shields the surface from radiation, which makes the incorporation of oxygen into organic compounds difficult, due to a reducing environment and low temperatures that slow chemical reactions. These obstacles may be overcome by impacts or cryovolcanic heating of ice, which would mix organics with liquid water and allow chemical reactions that can incorporate oxygen. However, reactions involving oxygen can occur on Titan without invoking such unusual conditions. We show that the reaction of carbon dioxide with amines can lead to oxygenated organics at Titan's surface without the need for external energy input, via the carbamation reaction: R-NH2 + CO2 → R-NH-COOH. Using a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy, we examine the reaction products and kinetics of the carbamation reaction for a variety of primary and secondary amines. We have observed carbamic acid formation in mixtures of methylamine, ethylamine and dibutylamine with CO2 at cryogenic temperatures. This indicates that both primary and secondary amines can undergo carbamation at low temperatures. Reaction was observed with methylamine as low as 40 K, and with ethylamine at 100 K, demonstrating that carbamation is fast at Titan surface temperatures. We will present data on the kinetics of the carbamation reaction for a variety of amines, as well as estimates of the quantity of carbamic acids that may be produced on Titan's surface and in the atmosphere.

  6. Surface chemistry and physics of III/V compound semiconductors

    Science.gov (United States)

    Fu, Qiang

    The surface chemistry of gallium arsenide and indium phosphide has been investigated using infrared spectroscopy (IR), scanning tunneling microscopy (STM), and ab initio molecular cluster calculations. The work presented here provides the first theoretical framework for studying the reaction sites on compound semiconductor surfaces. These sites consist of dimers and threefold-coordinated atoms in the second layer. Stable clusters of gallium arsenide, i.e., GaxAsyHz, where x, y = 4, 5 and z = 11, 13, are those in which the arsenic dangling bonds are filled, while the gallium dangling bonds are empty. By contrast, stable clusters of indium phosphide, i.e., InxPyHz, where x, y = 4, 5 and z = 10, 11, 13, are those in which the phosphorous dangling bonds are either filled or half filled, and the indium dangling bonds are empty. The most important contribution of this work is the discovery of a new surface structure, the InP (001)-(2 x 1). The InP (2 x 1) is terminated with a complete layer of phosphorous dimers with a half-filled dangling bond on every other phosphorous atom. The half-filled orbital violate the electron counting model [Pashley, Phys. Rev. B 1989, 40, 10481], and indicate that many more reconstructions are possible on these surfaces than was originally thought. Excellent agreement is achieved between the molecular cluster calculations and the measured vibrational frequencies of adsorbed hydrogen and arsine on gallium arsenide and indium phosphide (001) surfaces. On both GaAs and InP, mono-hydrogen and di-hydrogen bonds are formed with the three-coordinate, group V atoms and dimers. Conversely, electron deficient bridging hydrides are produced on the group III dimers. These latter species occur in isolated or coupled structures involving two or three metal atoms. In addition, we have elucidated the kinetics and mechanism of arsine decomposition on gallium-rich GaAs (001). The combination of STM, IR, and ab initio molecular cluster calculations provides a

  7. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    Science.gov (United States)

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.

  8. Surface chemistry governs cellular tropism of nanoparticles in the brain

    Science.gov (United States)

    Song, Eric; Gaudin, Alice; King, Amanda R.; Seo, Young-Eun; Suh, Hee-Won; Deng, Yang; Cui, Jiajia; Tietjen, Gregory T.; Huttner, Anita; Saltzman, W. Mark

    2017-05-01

    Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with `stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.

  9. Crystalline structures of alkylamide monolayers adsorbed on the surface of graphite.

    Science.gov (United States)

    Bhinde, Tej; Clarke, Stuart M; Phillips, Tamsin K; Arnold, Thomas; Parker, Julia E

    2010-06-01

    Synchrotron X-ray and neutron diffraction have been used to determine the two-dimensional crystalline structures of alkylamides adsorbed on graphite at submonolayer coverage. The calculated structures show that the plane of the carbon backbone of the amide molecules is parallel to the graphite substrate. The molecules form hydrogen-bonded dimers, and adjacent dimers form additional hydrogen bonds yielding extended chains. By presenting data from a number of members of the homologous series, we have identified that these chains pack in different arrangements depending on the number of carbons in the amide molecule. The amide monolayers are found to be very stable relative to other closely related alkyl species, a feature which is attributed to the extensive hydrogen bonding present in these systems. The characteristics of the hydrogen bonds have been determined and are found to be in close agreement with those present in the bulk materials.

  10. Functionalizing Arrays of Transferred Monolayer Graphene on Insulating Surfaces by Bipolar Electrochemistry

    DEFF Research Database (Denmark)

    Koefoed, Line; Pedersen, Emil Bjerglund; Thyssen, Lena

    2016-01-01

    graphene sheets supported on SiO2. Using this technique, transferred graphene can be electrochemically functionalized without the need of a metal support or the deposition of physical contacts. X-ray photoelectron spectroscopy and Raman spectroscopy are used to map the chemical changes and modifications....... Furthermore, it is shown that it is possible to simultaneously modify an array of many small graphene electrodes (1 × 1 mm2) on SiO2.......Development of versatile methods for graphene functionalization is necessary before use in applications such as composites or as catalyst support. In this study, bipolar electrochemistry is used as a wireless functionalization method to graft 4-bromobenzenediazonium on large (10 × 10 mm2) monolayer...

  11. Exploring silicon surface chemistry with spectroscopy and microscopy

    Science.gov (United States)

    Zheng, Fan

    Recent technology advances have pushed the development of silicon devices to their physical performance limits. An alternative way to keep Moore's law valid and avoid the physical limits of today's magnetic memory is to combine molecules with the silicon. Molecules possess degrees of freedom that traditional silicon devices lack, such as rotation, conformation, oxidation states, spontaneous dipole moment, and discrete energy levels. Cleverly taking advantage of these properties may lead to next generation devices that are more powerful and efficient than today's silicon devices. To realize such an ambitious goal, it is necessary to understand the surface chemistry of silicon, i.e., the adsorption, reaction, and disorder phenomena of molecules at the surface. Spectroscopy and microscopy are two complementary methods to study surface chemistry and provide insight into mechanisms for next generation silicon devices. In this thesis, the major spectroscopy method used is Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. To make full use of this technique, a new model is introduced in order to disentangle the concepts of disorder and orientation, both of which are provided by a NEXAFS measurement. The disorder information is obtained by introducing a disorder parameter sigma, whose magnitude directly measures the spread of the orientation angle around its average. This model clarifies some long existing controversial interpretations of NEXAFS measurements and provides insights into disorder-related physical properties. The second emphasis of this thesis is the development of molecular nanostructures where one-dimensional molecular arrays with strong dipole moments are formed on the Si(111) 5x2-Au surface. Scanning Tunneling Microscopy (STM) is used to characterize these nanostructures. The study shows that upward versus downward orientations of the dipole moment of the molecules can be distinguished by STM barrier height imaging. Such structures could be a

  12. Molecular Dynamics Simulation of the Self-assembled Monolayers of 1-Adamantanethiolate and Its Derivatives on Au(111)Surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Jun-Hong; ZHU, Rui-Xin; SHI, Liang-Wei; ZHANG, Tao; CHEN, Min-Bo

    2007-01-01

    The self-assembled monolayers (SAMs) of 1-adamantanethiolate and its derivatives on Au(111) surface were investigated. Density functional theory (DFT) calculation indicates that the most stable configuration for absorption is at the face centered cubic (fcc)-bridge site. Canonical ensemble molecular dynamics (MD) simulations were carried out to study the structures and energies of the SAMs. The ordered structures of the SAMs were analyzed by means of radial distribution function and the relative stability of the SAMs was compared. It was concluded by the comparison of various contributions to the SAM formation energy that the formation of the SAMs was determined by the intermolecular nonbonding interaction and the chemical bonding interaction of sulfur and gold.

  13. Hotspot-engineered quasi-3D metallic network for surface-enhanced Raman scattering based on colloid monolayer templating

    Science.gov (United States)

    Du, Wei; Liu, Long; Gu, Ping; Hu, Jingguo; Zhan, Peng; Liu, Fanxin; Wang, Zhenlin

    2016-09-01

    A hotspot-engineered quasi-3D metallic network with controllable nanogaps is purposed as a high-quality surface-enhanced Raman scattering (SERS) substrate, which is prepared by a combination of non-close-packed colloid monolayer templating and metal physical deposition. The significant SERS effect arises from a strongly enhanced local electric field originating from the ultra-small-gaps between neighboring metal-caps and tiny interstices and between the metal-caps and the metal-bumps on the base, which is recognized by the numerical simulation. A remarkable average SERS enhancement factor of up to 1.5 × 108 and a SERS intensity relative standard deviation (RSD) of 10.5% are achieved by optimizing the nanogap size to sub-10 nm scale, leading to an excellent capability for Raman detection, which is represented by the clearly identified SERS signal of the Rhodamine 6G solution with a fairly low concentration of 1 nM.

  14. Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Techane, Sirnegeda D.; Baer, Donald R.; Castner, David G.

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) and x-ray photoelectron spectroscopy (XPS). XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron take-off angles (5o to 85o in 5o increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing angle results, it was found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05 and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs were determined to be 0.9Å/CH2 group and 1.06 RSA with a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  15. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.

    Science.gov (United States)

    Zhang, Meining; Yu, Ping; Mao, Lanqun

    2012-04-17

    To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically

  16. The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001 surface

    Directory of Open Access Journals (Sweden)

    Moitra A.

    2011-01-01

    Full Text Available We report a first-principles calculations to study the effect of a vanadium-carbon (VC monolayer on the adsorption process of tungsten (W and carbon (C atoms onto tungsten-carbide (WC (0001 surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001 surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001 surface is compared with that of a W and C adatom on a WC (0001 surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.

  17. Study of PEGylated lipid layers as a model for PEGylated liposome surfaces: molecular dynamics simulation and Langmuir monolayer studies.

    Science.gov (United States)

    Stepniewski, Michał; Pasenkiewicz-Gierula, Marta; Róg, Tomasz; Danne, Reinis; Orlowski, Adam; Karttunen, Mikko; Urtti, Arto; Yliperttula, Marjo; Vuorimaa, Elina; Bunker, Alex

    2011-06-21

    We have combined Langmuir monolayer film experiments and all-atom molecular dynamics (MD) simulation of a bilayer to study the surface structure of a PEGylated liposome and its interaction with the ionic environment present under physiological conditions. Lipids that form both gel and liquid-crystalline membranes have been used in our study. By varying the salt concentration in the Langmuir film experiment and including salt at the physiological level in the simulation, we have studied the effect of salt ions present in the blood plasma on the structure of the poly(ethylene glycol) (PEG) layer. We have also studied the interaction between the PEG layer and the lipid bilayer in both the liquid-crystalline and gel states. The MD simulation shows two clear results: (a) The Na(+) ions form close interactions with the PEG oxygens, with the PEG chains forming loops around them and (b) PEG penetrates the lipid core of the membrane for the case of a liquid-crystalline membrane but is excluded from the tighter structure of the gel membrane. The Langmuir monolayer results indicate that the salt concentration affects the PEGylated lipid system, and these results can be interpreted in a fashion that is in agreement with the results of our MD simulation. We conclude that the currently accepted picture of the PEG surface layer acting as a generic neutral hydrophilic polymer entirely outside the membrane, with its effect explained through steric interactions, is not sufficient. The phenomena we have observed may affect both the interaction between the liposome and bloodstream proteins and the liquid-crystalline-gel transition and is thus relevant to nanotechnological drug delivery device design.

  18. Coupling of Ligands to the Liposome Surface by Click Chemistry.

    Science.gov (United States)

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2017-01-01

    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  19. Change of the surface electronic structure of Au(111) by a monolayer MgO(001) film

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yi; Nilius, Niklas; Freund, Hans-Joachim [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Benedetti, Stefania [CNR, Istituto Nanoscienze, Centro S3, Via G. Campi 213/a, 41100 Modena (Italy)

    2011-07-01

    Monolayer films of MgO(001) have been prepared on an Au(111) surface and explored with scanning tunneling microscopy and spectroscopy. The symmetry mismatch between the hexagonal substrate and the squared over-layer results in the formation of a (6 x 1) super-lattice, as revealed from the distinct stripe pattern observed in the STM. The presence of the oxide film modifies the potential situation at the interface, which induces a substantial up-shift of the Shockley-type surface band on Au(111). The resulting MgO/Au interface band is also characterized by a pseudo-gap at around 0.5 eV that opens at the position of the new Brillouin zone of the enlarged (6 x 1) cell. In addition, the oxide layer gives rise to a drastic decrease of the Au(111) work function, as deduced from the energy position of field-emission resonance on the bare and MgO-covered surface. The work function drop is explained by an interfacial charge transfer from the oxide film into the electro-negative gold surface.

  20. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    Science.gov (United States)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  1. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Science.gov (United States)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; van Rijn, Cees J. M.

    2016-11-01

    Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C16H30-xFx) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Sisbnd H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core-shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  2. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were...

  3. Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions

    Science.gov (United States)

    2015-10-30

    Distribution Unlimited Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions The views...peer-reviewed journals: Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions Report...2.00 4.00 Evan Vargas, Michelle L. Pantoya, Mohammed A Saed, Brandon L Weeks. Advanced Susceptors for Microwave Heating of Energetic Materials

  4. Towards the hybrid organic semiconductor fet (hosfet) : electrical and electrochemical characterization of functionalized and unfunctionalized, covalently bound organic monolayers on silicon surfaces

    NARCIS (Netherlands)

    Faber, Erik Jouwert

    2006-01-01

    Since their introduction in 1993 the class of covalently bound organic monolayers on oxide free silicon surfaces have found their way to multiple application fields such as passivation layers in solar cells, masking layers in lithographic processing, insulating films in hybrid moleculesilicon electr

  5. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface.

  6. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal du

  7. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers.

    Science.gov (United States)

    Li, Xin-Hao; Chen, Jie-Sheng; Wang, Xinchen; Schuster, Manfred E; Schlögl, Robert; Antonietti, Markus

    2012-04-01

    Clean sheets: Stable aqueous dispersions of graphene sheets (GSs) are obtained by exposing graphene oxide to irradiation with light at room temperature, without using any chemical additives. The photochemical reduction method is sustainable and scalable, repairs a majority of defects in the graphene layers, and can be used to fine-tune surface functional groups. Interestingly, the aqueous GS dispersions are stable without any added surfactant. The existence of a water layer that is strongly bound to GS is evidenced.

  8. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.

    Science.gov (United States)

    Roling, Oliver; Mardyukov, Artur; Lamping, Sebastian; Vonhören, Benjamin; Rinnen, Stefan; Arlinghaus, Heinrich F; Studer, Armido; Ravoo, Bart Jan

    2014-10-21

    Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (μCC) in order to create enhanced surface functions. μCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing μCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via μCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).

  9. Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers.

    Science.gov (United States)

    Kuo, Che-Hung; Liu, Chi-Ping; Lee, Szu-Hsian; Chang, Hsun-Yun; Lin, Wei-Chun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2011-09-07

    It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.

  10. Dynamics of Energy Transfer and Soft-Landing in Collisions of Protonated Dialanine with Perfluorinated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha; Kohale, Swapnil C.; Bhakta, Dhruv G.; Laskin, Julia; Hase, William L.

    2014-11-21

    Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H+, with a perfluorinateted octanethiolate self-assembled monolayer (F-SAM ) surface. The simulations are performed at collisions energy Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0o 0 (normal) and grazing 45o. Excellent agreement with experiment (J. Am. Chem. Soc. 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H+ internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H+ vibration, but for Ei = 5.0 eV ~20% of the energy transfer is to ala2-H+ rotation. Energy transfer to ala2-H+ rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H+ (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on//in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H+ is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B 2014, 118, 5577-5588) shows that thermally accommodated ala2-H+ ions have an binding energy with the F-SAM surface of at least ~15 kcal/mol.

  11. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  12. Surface Chemistry and Growth of Large Molecules in Protoplanetary Disks

    Science.gov (United States)

    Walsh, Catherine; Aikawa, Yuri; Herbst, Eric; Millar, Tom; Widicus Weaver, Susanna; Nomura, Hideko

    Protoplanetary disks are vital objects in star and planet formation, possessing all the material - dust, gas, and ice - which may form a planetary system orbiting the new star. To date, a handful of small and relatively simple molecules have been observed in nearby disks reflecting the limitations of existing telescopes. However, in the era of ALMA, the Atacama Large Millimeter/Submillimeter Array, we expect the molecular inventory of protoplanetary disks to significantly increase. Of particular interest are so-called complex organic molecules (COMs) which are thought to be necessary precursors to molecules important for prebiotic chemistry, such as, amino acids. The formation of COMs remains one of the puzzles of astrochemistry. Under the physical conditions in interstellar and circumstellar environments, COMs do not have efficient gas-phase routes to formation. Instead, they are postulated to form via association reactions on and within ice mantles on the the surfaces of dust grains and released to the gas phase via either thermal desorption (sublimation) or desorpton triggered by the absorption of UV radiation (photodesorption). In this presentation, I will discuss the synthesis of COMs in protoplanetary disks to investigate the potential origin of complex molecules in planetary systems. I will present results from exploratory models of a protoplanetary disk around a low-mass star including a large grain-surface chemical network to model the formation of large complex organic molecules. I will compare the resulting abundances of COMs in the gas phase and in the solid phase with existing observations towards nearby low-mass star-disk systems and comets, respectively. I will also discuss how the formation of COMs is influenced by the birth environment of the young stellar system.

  13. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    Science.gov (United States)

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  14. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    Science.gov (United States)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  15. Role of the surface chemistry of ceria surfaces on silicate adsorption.

    Science.gov (United States)

    Seo, Jihoon; Lee, Jung Woo; Moon, Jinok; Sigmund, Wolfgang; Paik, Ungyu

    2014-05-28

    Ceria nanoparticles (NPs) have been widely explored as a promising material in various fields. As synthesized under various physicochemical conditions, it exhibits the different surface chemistry. Here, the role of hydroxyl and nitrate group on ceria surface, formed under various physicochemical conditions, for the silicate adsorption was experimentally and theoretically investigated based on the adsorption isotherms and theoretical analyses using density functional theory (DFT) calculation. Experimental results acquired from adsorption isotherms with Freundlich model indicated that the nitrate group shows a much higher affinity with silicate than the hydroxyl groups. These phenomena were demonstrated through the theoretical approaches that exhibit the binding energy of the NO3-ceria (-4.383 eV) on the SiO2 surface being much higher than that of the OH-ceria (-3.813 eV). In good agreement with the experimental and the theoretical results based on adsorption properties, the results of chemical mechanical planarization (CMP) also show that the nitrate groups significantly enhance the removal of SiO2 than the hydroxyl groups. The results investigated in this study will provide researchers, studying the ceria NPs, with guidelines on the importance of exploring the surface chemistry of ceria.

  16. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers.

    Science.gov (United States)

    Kulkarni, Sneha A; Ogale, Satishchandra B; Vijayamohanan, Kunjukrishanan P

    2008-02-15

    Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.

  17. Surface symmetry of monolayer titanium oxide on Mo(1 1 2) studied via fast atom diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, J., E-mail: jan.seifert@physik.hu-berlin.de; Winter, H.

    2013-11-15

    In studies on titanium oxide thin films we demonstrate the potential of Fast Atom Diffraction (FAD) and triangulation methods to derive the surface unit cell with enhanced surface sensitivity. Helium atoms with energies of 1–2 keV are scattered from the surface along low indexed surface directions under grazing angles of incidence. From the observed diffraction patterns, the lateral periodicity of the surface structures is derived. For low TiO{sub x} coverages a well-ordered c(2 × 4) superstructure and for higher coverage a p(8 × 2) film is observed. Based on FAD and triangulation methods for azimuthal rotation of the target the arrangement of topmost atoms in smaller sub-unit cells is revealed.

  18. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  19. Dynamic pattern formation of liquid crystals using binary self-assembled monolayers on an ITO surface under DC voltage.

    Science.gov (United States)

    Ishida, Takao; Oyama, Makiko; Terada, Kei-ichi; Haga, Masa-aki

    2014-12-07

    There have been numerous studies of liquid crystal (LC) convection using sandwich-type LC cells under AC voltage. In contrast to previous LC convection studies under AC voltage, we propose the use of a binary self-assembled monolayer (SAM) with a redox-active Ru complex and insulating octadecyl phosphonic acid (C18) molecules on an indium tin oxide (ITO) surface as the electrode of sandwich-type LC cells under DC bias voltage. This is because the functionalized molecules immobilized on the ITO surface are expected to control the LC orientation and electrical conduction of LC cells, under an exact DC bias voltage. We successfully achieved LC pattern formation using ITO electrodes with binary SAMs in LC cells. Moreover, we confirmed that the LC pattern size was increased by increasing the coverage of the Ru complex in binary SAMs. We consider that a combination of three factors, electrical conduction change, controlling of LC orientation in the initial stage and redox-activity of the Ru-complex, is the reason for LC convection although we cannot fully explain the distribution of these three factors. We believe that our LC pattern formation is promising for new type devices e.g., artificial compound eyes using the LC device technology.

  20. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers.

    Science.gov (United States)

    Cifuentes, Anna; Borrós, Salvador

    2013-06-04

    The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.

  1. Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111).

    Science.gov (United States)

    Bauer, Udo; Mohr, Susanne; Döpper, Tibor; Bachmann, Philipp; Späth, Florian; Düll, Fabian; Schwarz, Matthias; Brummel, Olaf; Fromm, Lukas; Pinkert, Ute; Görling, Andreas; Hirsch, Andreas; Bachmann, Julien; Steinrück, Hans-Peter; Libuda, Jörg; Papp, Christian

    2017-01-31

    We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160 K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η(2) :η(1) geometry with an agostic Pt-H interaction of the bridgehead CH2 subunit and the surface. Strong spectral changes are observed between 190 and 220 K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380 K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.

  2. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface%空气/水界面上的纯组分磷酯单分子膜的表面状态方程

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation,r-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC),1,2-dipalmitoylphosphatidylglycerol (DPPG),and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  3. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose Maria; Bielen, Abraham A.M. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Olthuis, Wouter [BIOS Lab on a Chip Group, MESA+ and MIRA Institutes, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kengen, Servé W.M. [Laboratory of Microbiology, Wageningen University, 6703HB Wageningen (Netherlands); Zuilhof, Han, E-mail: han.zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Franssen, Maurice C.R., E-mail: maurice.franssen@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands)

    2016-10-15

    Highlights: • Three different oxidases are covalently attached to alkene based SAMs on PtOx. • Attached enzymes remain active and their activity is assessed by chronoamperometry. • Functionalized PtOx allows electron mediator free chronoamperometry measurements. • The thus formed enzyme electrodes are useful as biosensors for glucose and lactate. • Immobilization of human HAOX foresees in vivo lactate monitoring in humans. - Abstract: Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH{sub 2}-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  4. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  5. Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at sub-monolayer and multilayer coverages

    CERN Document Server

    Noble, J A; Dulieu, F; Fraser, H J

    2011-01-01

    The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments exploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.

  6. Work function shifts of a zinc oxide surface upon deposition of self-assembled monolayers: a theoretical insight.

    Science.gov (United States)

    Cornil, D; Van Regemorter, T; Beljonne, D; Cornil, J

    2014-10-14

    We have investigated at the theoretical Density Functional Theory level the way the work function of zinc oxide layers is affected upon deposition of self-assembled monolayers (SAMs). 4-tert-Butylpyridine (4TBP) and various benzoic acids (BA) were adsorbed on the apolar (101[combining macron]0) ZnO and used as probe systems to assess the influence of several molecular parameters. For the benzoid acids, we have investigated the impact of changing the nature of the terminal group (H, CN, OCH3) and the binding mode of the carboxylic acid (monodentate versus bidentate) on the apolar (101[combining macron]0) surface. For each system, we have quantified the contribution from the molecular core and the anchoring group as well as of the degree of surface reconstruction on the work function shift. For the benzoic acids, the structural reorganization of the surface induces a negative shift of the work function by about 0.3 ± 0.15 eV depending on the nature of the binding mode, irrespective of the nature of the terminal function. The bond-dipole potential strongly contributes to the modification of the work function, with values in the range +1.2 to +2.0 eV. In the case of 4TBP, we further characterized the influence of the degree of coverage and of co-adsorbed species (H, OH, and water molecules) on the ZnO/SAM electronic properties as well as the influence of the ZnO surface polarity by considering several models of the polar (0001) ZnO surface. The introduction of water molecules in the (un)dissociated form at full coverage on the non-polar surface only reduces the work function by 0.3-0.4 eV compared to a reference system without co-adsorbed species. Regarding the polar surface, the work function is also significantly reduced upon deposition of a single 4BTP molecule (from -1.44 eV to -1.73 eV for our model structures), with a shift similar in direction and magnitude compared to the non-polar surfaces.

  7. Sub-monolayer growth of Ag on flat and nanorippled SiO2 surfaces

    Science.gov (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Smith, Roger; Mukherjee, Subroto

    2016-05-01

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on the flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.

  8. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  9. Surface Geometry and Chemistry of Hydrothermally Synthesized Single Crystal Thorium Dioxide

    Science.gov (United States)

    2015-03-01

    THORIUM DIOXIDE THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...UNLIMITED. AFIT-ENP-MS-15-M-87 SURFACE GEOMETRY AND CHEMISTRY OF HYDROTHERMALLY SYNTHESIZED SINGLE CRYSTAL THORIUM DIOXIDE Scott W. Key...27 10. Process chart for determining geometry and chemistry of ThO2. .............................. 28 11. This AFM

  10. Influence of Dielectric Surface Chemistry on the Microstructure and Carrier Mobility of an n-Type Organic Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Dhagat, P.; Haverinen, H; Klein, J; Jung, Y; Fischer, D; Delongchamp, D; Jabbour, G

    2009-01-01

    This paper examines the microstructure evolution of 3,4,9,10-perylene-tetracarboxylic bis-benzimidazole (PTCBI) thin films resulting from conditions imposed during film deposition. Modification of the silicon dioxide interface with a hydrophobic monolayer (octadecyltrichlorosilane (OTS-18)) alters the PTCBI growth habit by changing the unit cell contact plane. PTCBI films deposited on oxide surface have an orientation of (011), while films atop OTS-treated oxide surface have a preferred orientation of (001). The quality of the self assembled monolayer does not appear to influence the PTCBI growth preference significantly yet it enhances the carrier mobility, suggesting that charge traps are adequately passivated due to uniform monolayer coverage. High-quality monolayers result in n-type carrier mobility values of 0.05 cm2V-1s-1 Increasing the substrate temperature during PTCBI film deposition correlates with an increase in mobility that is most significant for films deposited on OTS-treated surface.

  11. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    Science.gov (United States)

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1

  12. Surface pK(sub a) of Self-Assembled Monolayers

    Science.gov (United States)

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.

    2005-01-01

    The difference between solution and surface properties such as pK(sub a) is illustrated enabling students to understand the differences between nanoscale and macroscopic systems. Details regarding the usage of electrochemical instrumentation, such as a potentiostat, and of the technique such as cyclic voltammetry are given.

  13. Syntheses of alkenylated carbohydrate derivatives toward the preparation of monolayers on silicon surfaces

    NARCIS (Netherlands)

    Smet, de L.C.P.M.; Pukin, A.V.; Stork, G.A.; Vos, de C.H.; Visser, G.M.; Zuilhof, H.; Sudhölter, E.J.R.

    2004-01-01

    This note describes the synthesis of different alkenylated carbohydrate derivatives suitable for direct attachment to hydrogen-terminated silicon surfaces. The derivatives were alkenylated at the C-1 position, while the remaining hydroxyl groups were protected. The development of such new carbohydra

  14. Molecular modeling of alkyl monolayers on the Si(100)-2 x 1 surface.

    Science.gov (United States)

    Lee, Michael V; Guo, Dawei; Linford, Matthew R; Zuilhof, Han

    2004-10-12

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit.

  15. Symmetry Control of Polymer Colloidal Monolayers and Crystals by Electrophoretic Deposition on Patterned Surfaces

    NARCIS (Netherlands)

    Dziomkina, Nina V.; Hempenius, Mark A.; Vancso, G. Julius

    2005-01-01

    Colloidal crystals with body-centered cubic packing (see Figure) can be fabricated by electrophoretic deposition of charged latex particles onto patterned surfaces. Laser-interference lithography produces SiO2 layers patterned with controlled symmetry that can then be used to control the orientation

  16. Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties

    Science.gov (United States)

    2015-06-01

    mercurial, and the combustible.  Combustion can be studied in gas (i.e., natural gas), liquid (i.e., gasoline,  kerosene ) and solid (i.e., coal, thermites...10.1088/0957‐ 0233/21/2/025202.  Oberg, K., P. Persson, A. Shchukarev, and B. Eliasson. 2001. “Comparison of  Monolayer Films of Stearic Acid and  Methyl

  17. Uranium(VI) sorption onto magnetite. Increasing confidence in surface complexation models using chemically evident surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Surface complexation models have made great efforts in describing the sorption of various radionuclides on naturally occurring mineral phases. Unfortunately, many of the published sorption parameter sets are built upon unrealistic or even wrong surface chemistry. This work describes the benefit of combining spectroscopic and batch sorption experimental data to create a reliable and consistent surface complexation parameter set.

  18. Adsorption geometry and electronic properties of flat-lying monolayers of tetracene on the Ag(111) surface

    Science.gov (United States)

    Zaitsev, N. L.; Nechaev, I. A.; Höfer, U.; Chulkov, E. V.

    2016-10-01

    The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of a localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate γ -Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied molecular orbital remains being unoccupied in the case of γ -Tc/Ag(111) as well as in the α phase with increased coverage. The unit cell of the α phase with point-on-line registry was adapted for calculations based on the available experimental data and computed structures of the γ phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.

  19. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul D.

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with ({radical}7x{radical}7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  20. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  1. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals.

    Science.gov (United States)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  2. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  3. Initiation of blood coagulation - Evaluating the relevance of specific surface functionalities using self assembled monolayers

    OpenAIRE

    Fischer, Marion

    2010-01-01

    The surface of biomaterials can induce contacting blood to coagulate, similar to the response initiated by injured blood vessels to control blood loss. This poses a challenge to the use of biomaterials as the resulting coagulation can impair the performance of hemocompatible devices such as catheters, vascular stents and various extracorporeal tubings [1], what can moreover cause severe host reactions like embolism and infarction. Biomaterial induced coagulation processes limit the therape...

  4. Pyridine coordination chemistry for molecular assemblies on surfaces.

    Science.gov (United States)

    de Ruiter, Graham; Lahav, Michal; van der Boom, Milko E

    2014-12-16

    CONSPECTUS: Since the first description of coordination complexes, many types of metal-ligand interactions have creatively been used in the chemical sciences. The rich coordination chemistry of pyridine-type ligands has contributed significantly to the incorporation of diverse metal ions into functional materials. Here we discuss molecular assemblies (MAs) formed with a variety of pyridine-type compounds and a metal containing cross-linker (e.g., PdCl2(PhCN2)). These MAs are formed using Layer-by-Layer (LbL) deposition from solution that allows for precise fitting of the assembly properties through molecular programming. The position of each component can be controlled by altering the assembly sequence, while the degree of intermolecular interactions can be varied by the level of π-conjugation and the availability of metal coordination sites. By setting the structural parameters (e.g., bond angles, number of coordination sites, geometry) of the ligand, control over MA structure was achieved, resulting in surface-confined metal-organic networks and oligomers. Unlike MAs that are constructed with organic ligands, MAs with polypyridyl complexes of ruthenium, osmium, and cobalt are active participants in their own formation and amplify the growth of the incoming molecular layer. Such a self-propagating behavior for molecular systems is rare, and the mechanism of their formation will be discussed. These exponentially growing MAs are capable of storing metal salts that can be used during the buildup of additional molecular layers. Various parameters influencing the film growth mechanism will be presented, including (i) the number of binding sites and geometry of the organic ligands, (ii) the metal and the structure of the polypyridyl complexes, (iii) the influence of the metal cross-linker (e.g., second or third row transition metals), and (iv) the deposition conditions. By systematic variation of these parameters, switching between linear and exponential growth could

  5. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    Science.gov (United States)

    Lawrence, Katie N.

    Semiconductor nanocrystals (SNCs) are a class of material with one dimension synthesis and/or post-synthetic modification procedure, which due to the high surface to volume ratio of ultrasmall SNCs, is a significant problem. Currently, direct synthetic methods produce SNCs that are either soluble in an aqueous media or soluble in organic solvents therefore limiting their applicability. In addition, use of insulating ligands hinder SNCs' transport properties and thus their potential application in solid state devices. Appropriate choice of surface ligation can provide 1) solubility, 2) stability, and 3) facilitate exciton delocalization. In this dissertation, the effects of appropriate surface ligation on strongly quantum confined ultrasmall SNCs was investigated. Due to their high surface to volume ratio, we are able to highly control their optical and electronic properties through surface ligand modification. Throughout this dissertation, we utilized a variety of ligands (e.g. oleylamine, cadmium benzoate, and PEGn-thiolate) in order to change the solubility of the SNC as well as investigate their optical and electronic properties. First delocalization of the excitonic wave function 1) into the ligand monolayer using metal carboxylates and 2) beyond the ligand monolayer to provide strong inter-SNC electronic coupling using poly(ethylene) glycol (PEG)-thiolate was explored. Passivation of the Se sites of metal chalcogenide SNCs by metal carboxylates provided a two-fold outcome: (1) facilitating the delocalization of exciton wave functions into ligand monolayers (through appropriate symmetry matching and energy alignment) and (2) increasing fluorescence quantum yield (through passivation of midgap trap states). An ˜240 meV red-shift in absorbance was observed upon addition of Cd(O2CPh)2, as well as a ˜260 meV shift in emission with an increase in PL-QY to 73%. Through a series of control experiments, as well as full reversibility of our system, we were able to

  6. Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers

    Science.gov (United States)

    Rouhi, Saeed; Atfi, Amin

    2017-03-01

    Molecular dynamics simulations are used here to study the interactions between BmNn graphyne-like monolayers and four different polymer chains. BN, B1N9, and B2N8 graphyne-like monolayers are selected from the family of BmNn graphyne-like monolayers. It is observed that increasing the number of B atoms in the structure of BmNn graphyne-like monolayers results in larger interaction energies of nanosheet/polymer systems. It is also shown that the polymer chains with the linear adsorbed configurations on the nanosheets have larger interaction energies with the nanosheets. Investigating the effect of number of polymer repeat units on the polymer/nanosheet interaction energy, it is observed that increasing the number of repeat units of polymers leads to enhancing the polymer/nanosheet interaction energy.

  7. A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lisjak, Darja, E-mail: darja.lisjak@ijs.si [Jožef Stefan Institute, Ljubljana (Slovenia); Ovtar, Simona; Kovač, Janez [Jožef Stefan Institute, Ljubljana (Slovenia); Gregoratti, Luca; Aleman, Belen; Amati, Matteo [Elettra – Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste (Italy); Fanetti, Mattia [University of Nova Gorica, Nova Gorica (Slovenia); Istituto Officina dei Materiali CNR, Area Science Park, Trieste (Italy); Makovec, Darko [Jožef Stefan Institute, Ljubljana (Slovenia)

    2014-06-01

    Barium ferrite (BaFe{sub 12}O{sub 19}) is a ferrimagnetic oxide with a high magnetocrystalline anisotropy that can be exploited in magnetically aligned ceramics or films for self-biased magnetic applications. Magnetic alignment of the films can be achieved by the directed assembly of barium ferrite nanoplates. In this investigation the nanoplates were synthesized hydrothermally and suspended in 1-butanol using dodecylbenzene sulphonic acid (DBSa) as a surfactant. They were then deposited in an electric or magnetic field on flat substrates and exhibited a significant preferential alignment in the plane of the substrate, allowing a differentiation between the analysis of their basal and side planes using scanning photoelectron microscopy with a lateral resolution down to 100 nm. The surface chemistry of the nanoplates was additionally studied with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. For a comparison, bare barium ferrite nanoplates were also analyzed after decomposing the DBSa at 460 °C. The deviation of the surface chemistry from the stoichiometric composition was observed and the adsorption of the DBSa molecules on the nanoplates was confirmed with all three methods. Different types of bonding (physi- or chemisorption) were possible and considered with respect to the assembly of the barium ferrite nanoplates into anisotropic magnetic films.

  8. A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces

    Science.gov (United States)

    Lisjak, Darja; Ovtar, Simona; Kovač, Janez; Gregoratti, Luca; Aleman, Belen; Amati, Matteo; Fanetti, Mattia; Makovec, Darko

    2014-06-01

    Barium ferrite (BaFe12O19) is a ferrimagnetic oxide with a high magnetocrystalline anisotropy that can be exploited in magnetically aligned ceramics or films for self-biased magnetic applications. Magnetic alignment of the films can be achieved by the directed assembly of barium ferrite nanoplates. In this investigation the nanoplates were synthesized hydrothermally and suspended in 1-butanol using dodecylbenzene sulphonic acid (DBSa) as a surfactant. They were then deposited in an electric or magnetic field on flat substrates and exhibited a significant preferential alignment in the plane of the substrate, allowing a differentiation between the analysis of their basal and side planes using scanning photoelectron microscopy with a lateral resolution down to 100 nm. The surface chemistry of the nanoplates was additionally studied with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. For a comparison, bare barium ferrite nanoplates were also analyzed after decomposing the DBSa at 460 °C. The deviation of the surface chemistry from the stoichiometric composition was observed and the adsorption of the DBSa molecules on the nanoplates was confirmed with all three methods. Different types of bonding (physi- or chemisorption) were possible and considered with respect to the assembly of the barium ferrite nanoplates into anisotropic magnetic films.

  9. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    Science.gov (United States)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  10. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, N; Belisle, RA; Hatton, B; Wong, TS; Aizenberg, J

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.

  11. Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami

    Science.gov (United States)

    Cai, Kun; Luo, Jing; Ling, Yiru; Wan, Jing; Qin, Qing-Hua

    2016-10-01

    Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson’s ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs. Using molecular dynamics experiments, the size effects on the auxetic behaviour of GK are investigated. In some cases, the auxetic difference between the hydrogenated GK and continuum kirigami (CK) is negligible, in which the results from macro CK can be used to predict auxetic behaviour of nano kirigami. Surface effect of GK is demonstrated from two aspects. One is to identify the difference of mechanical responses between the pure carbon GK and the hydrogenated GK at same geometry and loading condition. Another is from the difference of mechanical responses between the GK model and the CK model under same loading condition and geometric configuration. Generally, surface energy makes the GK possess higher variation of auxetic behaviour. It also results in higher modulus for the GK as comparing with that of the CK.

  12. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

    Directory of Open Access Journals (Sweden)

    Yongfeng Tong

    2016-02-01

    Full Text Available This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

  13. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    -S reductive desorption at -0.8 V (SCE) in 0.1 M NaOH, while the charge is only about 8 x 10(-6) C cm(-2) (pH 7.7) for the 0 to -0.1 V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher....... This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO- and -NH3+ groups...... approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric peak. This scenario is incorporated in a simple phenomenological model....

  14. Study on surface acid-base property of carboxylic acid-terminated self-assembled monolayers by cyclic voltammetry and electro-chemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    罗立强; 程志亮; 杨秀荣; 汪尔康

    2000-01-01

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers (SAMs). A carboxylic acid-terminated thiol, such as thioctic acid (1,2-dithiolane-3-pentanoic acid), was self-assembled on gold electrodes. Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63 as a probe. The surface pK. of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6±0.1 and 5.8±0.1, respectively. The method is compared with other methods of monolayer pK.measurement.

  15. Surface chemistry of hierarchical nanosprings for sensing and catalysis

    Science.gov (United States)

    Fouetio Kengne, Blaise-Alexis

    Silica nanosprings (NS) were grown and their surface chemistry was modified depending upon the application. For explosive detection, NS were subsequently coated with ZnO, decorated with metal nanoparticles, and functionalized with thiols; while NS supported cobalt catalysts (Co/NS) were prepared for Fischer-Tropsch synthesis (FTS). Scanning and transmission electron microscopies (SEM and TEM), X-ray diffraction (XRD), N2 physisorption, H2-temperatature programmed reduction (H2-TPR, and X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS) have been used to characterize the hierarchical NS. Based on XPS analysis of the thiolated NS, a single S 2p core level is observed for 4-mercaptobenzoic acid and11-(1-pyrenyl)-1-undecathiol, which is assigned to the S-Au bond. The S 2p core level of L-cysteine, 6-mercaptohexanol and DL-thioctic acid consists of two doublets, where one is S-Au bond and the other is the S-Zn bond. UPS analysis shows that the hybridization of the S 3p states and the Au d-bands produces antibonding and bonding states, above and below the Au d-bands, which is characteristic of molecular chemisorption on Au nanoparticles. Gas sensors functionalized with functionalized with 4-mercaptobenzoic acid and 6-mercaptohexanol showed the strongest responses to ammonium nitrate by factors of 4 to 5, respectively, relative to the less responsive thiols. For FTS, even though Co/NS had 75 times less gravimetric Co content than the reference catalyst, without being fully reduced, it still showed higher activity. This is attributed to higher Co dispersion on NS and greater gases acessibility. In situ XPS has been used to monitor the reduction of Co/NS. The analysis shows that cobalt is present in the starting catalyst as a Co 3O4 spinel phase. At 385 ºC and 10-6 Torr of H2 a two-step reduction from Co3O4 to CoO and then to Co0 is observed, which is consistent with H2-TPR results. The two reduction steps are concurrent. The reduction saturates at the value

  16. Improving the dielectric properties of ethylene-glycol alkanethiol self-assembled monolayers.

    Science.gov (United States)

    Zaccari, Irene; Catchpole, Benjamin G; Laurenson, Sophie X; Davies, A Giles; Wälti, Christoph

    2014-02-11

    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor.

  17. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  18. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  19. Inelastic neutron scattering (INS) observations of rotational tunneling within partially deuterated methane monolayers adsorbed on MgO(1 0 0) surfaces

    Science.gov (United States)

    Hicks, Andy S.; Larese, J. Z.

    2013-12-01

    High resolution inelastic neutron scattering (INS) measurements of the low temperature (T ∼ 2.0 K) rotational dynamics of isotopically substituted methane monolayers adsorbed on MgO(1 0 0) are presented. These spectra, obtained using BASIS at SNS, represent the most detailed measurements available for surface-adsorbed monolayer films of methane. Distinct excitations are readily observed at 15, 31, 45 and 127 μeV for the CH2D2 on MgO monolayer and at 40, 51, 95 and 138 μeV for CH3D/MgO. These features are attributed to tunneling transitions between sublevels within the ground librational state and are interpreted using the pocket state (PS) formalism first proposed by Hüller. This theoretical analysis employs the findings of earlier studies of CH4 on MgO(1 0 0) which suggest that molecules adsorb with their C2v axes normal to the surface plane. The comparison between theory and experiment provides direct insight into the impact of molecular versus surface symmetry on the observed tunneling spectra.

  20. Fenton Redox Chemistry: Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  1. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.

    Science.gov (United States)

    Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping

    2017-05-10

    Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.

  2. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Sheikh Uddin

    2013-05-01

    Full Text Available The strong affinity of carbon nanotubes (CNTs to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB from multi-walled carbon nanotubes (MWNTs. The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH 7. In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.

  3. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  4. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede;

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer....

  5. A 3:1 site-differentiated [4Fe-4S] cluster immobilized on a self-assembled monolayer

    NARCIS (Netherlands)

    Geer, Erwin P.L. van der; Brom, Coenraad R. van den; Arfaoui, Imad; Houssiau, Laurent; Rudolf, Petra; Koten, Gerard van; Klein Gebbink, Robertus J.M.; Hessen, Bart

    2008-01-01

    A 3:1 site-differentiated [4Fe-4S] cluster is immobilized on a thiol-functionalized self-assembled monolayer (SAM) on Au(111) by thiol-thiolate exchange chemistry. Fe 2p signals observed by X-ray photoelectron spectroscopy support the presence of [4Fe-4S] clusters at the SAM surface; further evidenc

  6. The Molecular Boat: A Hands-On Experiment to Demonstrate the Forces Applied to Self-Assembled Monolayers at Interfaces

    Science.gov (United States)

    Chan, Charlene J.; Salaita, Khalid

    2012-01-01

    Demonstrating how surface chemistry and self-assembled monolayers (SAMs) control the macroscopic properties of materials is challenging as it often necessitates the use of specialized instrumentation. In this hands-on experiment, students directly measure a macroscopic property, the floatation of glass coverslips on water as a function of…

  7. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  8. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Trevor M. [Univ. of California, Davis, CA (United States)

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the

  9. Plasmonic Hot Electron Transport Driven Site-Specific Surface-Chemistry with Nanoscale Spatial Resolution

    CERN Document Server

    Cortés, Emiliano; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2016-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nanometre resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot carrier transport from...

  10. Tethering Growth Factors to Collagen Surfaces Using Copper-Free Click Chemistry: Surface Characterization and in Vitro Biological Response.

    Science.gov (United States)

    Lee, Hyun Jong; Fernandes-Cunha, Gabriella M; Putra, Ilham; Koh, Won-Gun; Myung, David

    2017-07-19

    Surface modifications with tethered growth factors have mainly been applied to synthetic polymeric biomaterials in well-controlled, acellular settings, followed by seeding with cells. The known bio-orthogonality of copper-free click chemistry provides an opportunity to not only use it in vitro to create scaffolds or pro-migratory tracks in the presence of living cells, but also potentially apply it to living tissues directly as a coupling modality in situ. In this study, we studied the chemical coupling of growth factors to collagen using biocompatible copper-free click chemistry and its effect on the enhancement of growth factor activity in vitro. We verified the characteristics of modified epidermal growth factor (EGF) using mass spectrometry and an EGF/EGF receptor binding assay, and evaluated the chemical immobilization of EGF on collagen by copper-free click chemistry using surface X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) spectroscopy, and enzyme-linked immunosorbent assay (ELISA). We found that the anchoring was noncytotoxic, biocompatible, and rapid. Moreover, the surface-immobilized EGF had significant effects on epithelial cell attachment and proliferation. Our results demonstrate the possibility of copper-free click chemistry as a tool for covalent bonding of growth factors to collagen in the presence of living cells. This approach is a novel and potentially clinically useful application of copper-free click chemistry as a way of anchoring growth factors to collagen and foster epithelial wound healing.

  11. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Marks, T.J.

    1990-02-01

    The goal of our program is to define those modes of interaction that take place between organometallic molecules and inorganic surfaces and, ultimately, to correlate various molecule-surface structures with catalytic properties.

  12. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  13. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  14. 2D "soap"-assembly of nanoparticles via colloid-induced condensation of mixed Langmuir monolayers of fatty surfactants.

    Science.gov (United States)

    Babenko, Denis I; Ezhov, Alexander A; Turygin, Dmitry S; Ivanov, Vladimir A; Ivanov, Vladimir K; Arslanov, Vladimir V; Kalinina, Maria A

    2012-01-10

    We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.

  15. Etching of Crystalline ZnO Surfaces upon Phosphonic Acid Adsorption: Guidelines for the Realization of Well-Engineered Functional Self-Assembled Monolayers.

    Science.gov (United States)

    Ostapenko, Alexandra; Klöffel, Tobias; Eußner, Jens; Harms, Klaus; Dehnen, Stefanie; Meyer, Bernd; Witte, Gregor

    2016-06-01

    Functionalization of metal oxides by means of covalently bound self-assembled monolayers (SAMs) offers a tailoring of surface electronic properties such as their work function and, in combination with its large charge carrier mobility, renders ZnO a promising conductive oxide for use as transparent electrode material in optoelectronic devices. In this study, we show that the formation of phosphonic acid-anchored SAMs on ZnO competes with an unwanted chemical side reaction, leading to the formation of surface precipitates and severe surface damage at prolonged immersion times of several days. Combining atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal desorption spectroscopy (TDS), the stability and structure of the aggregates formed upon immersion of ZnO single crystal surfaces of different orientations [(0001̅), (0001), and (101̅0)] in phenylphosphonic acid (PPA) solution were studied. By intentionally increasing the immersion time to more than 1 week, large crystalline precipitates are formed, which are identified as zinc phosphonate. Moreover, the energetics and the reaction pathway of this transformation have been evaluated using density functional theory (DFT), showing that zinc phosphonate is thermodynamically more favorable than phosphonic acid SAMs on ZnO. Precipitation is also found for phosphonic acids with fluorinated aromatic backbones, while less precipitation occurs upon formation of SAMs with phenylphosphinic anchoring units. By contrast, no precipitates are formed when PPA monolayer films are prepared by sublimation under vacuum conditions, yielding smooth surfaces without noticeable etching.

  16. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C/sub 3/ to C/sub 8/), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10/sup -4/ A sec cm/sup -2/ at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references.

  17. Switchable Surface Wettability by Using Boronic Ester Chemistry.

    Science.gov (United States)

    Taleb, Sabri; Noyer, Elisabeth; Godeau, Guilhem; Darmanin, Thierry; Guittard, Frédéric

    2016-01-18

    Here, we report for the first time the use of a boronic ester as an efficient tool for reversible surface post-functionalization. The boronic ester bond allows surfaces to be reversibly switched from hydrophilic to hydrophobic. Based on the well-known boronic acid/glycol affinity, this strategy offers the opportunity to play with surface hydrophobic properties by adding various boronic acids onto substrates bearing glycol groups. The post-functionalization can then be reversed to regenerate the starting glycol surface. This pathway allows for the preparation of various switchable surfaces for a large range of applications in biosensors, liquid transportation, and separation membranes.

  18. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede;

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3......,4-ethylenedioxythiophene)) thin films. The method is based on contacting PEDOT-type thin films with a micropatterned agarose stamp containing an oxidant (aqueous hypochlorite) and applying a nonionic detergent. Where contacted, PEDOT not only loses its conductance but is entirely removed, thereby locally revealing...... the underlying substrate. Surface analysis showed that the substrate surface chemistry was fully exposed and not affected by the treatment. Click chemistry could thus be applied to selectively modify re-exposed alkyne and azide functional groups of functionalized polystyrene substrates. The versatility...

  19. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    Science.gov (United States)

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  20. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  1. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    Science.gov (United States)

    2015-06-23

    Characterization of these ligand- coated oxides included laser desorption mass spectrometry, infrared, Raman and UV - visible spectroscopy ...desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV - visible absorption and...clusters are studied with laser desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV

  2. Geochemistry and Organic Chemistry on the Surface of Titan

    Science.gov (United States)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  3. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...

  4. Geochemistry and Organic Chemistry on the Surface of Titan

    Science.gov (United States)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  5. The role of mineral surface chemistry in modified dextrin adsorption.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  6. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    OpenAIRE

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  7. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry.......2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces....

  8. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)

    2014-05-01

    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  9. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis. Progress report, February 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Marks, T.J.

    1992-02-01

    The long-range goal of this project is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. The nature of the adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecular-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  10. Surface chemistry interventions to control boiler tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25{sup o}C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both.

  11. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  12. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  13. From helical to planar chirality by on-surface chemistry.

    Science.gov (United States)

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G; Jelínek, Pavel; Starý, Ivo

    2017-03-01

    The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.

  14. From helical to planar chirality by on-surface chemistry

    Science.gov (United States)

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2016-11-01

    The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.

  15. Reaction kinetics of fluorite in flow systems and surface chemistry

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏

    1996-01-01

    The kinetic experiments of fluorite in water-HCl solution in an open-flow system at the temperatures ≤100℃ reveal that the variation of flow rate (U) can change the reaction rate orders from 0 to 2 or higher. In the far from equilibrium systems, the dissolution rates of fluorite in aqueous solutions have a zero order.The reaction rates are controlled by pH values of input solutions. In fact, the reaction rates are related to the concentrations of the active sites occupied by H+ on fluorite surface [SOH]. X-ray photospectroscopy observations on fluorite surface before and after reaction indicate that surface chemical processes control the reaction rates: Cl- cations attach on and enter into surface of fluorite besides H+ when fluorites react with HCl solutions, which affect the reaction rates.

  16. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide.

    Science.gov (United States)

    van den Berg, Sebastiaan A; Alonso, Jose Maria; Wadhwa, Kuldeep; Franssen, Maurice C R; Wennekes, Tom; Zuilhof, Han

    2014-09-09

    The rate of formation of covalently linked organic monolayers on HF-etched silicon carbide (SiC) is greatly increased by microwave irradiation. Upon microwave treatment for 60 min at 100 °C (60 W), 1-alkenes yield densely packed, covalently attached monolayers on flat SiC surfaces, a process that typically takes 16 h at 130 °C under thermal conditions. This approach was extended to SiC microparticles. The monolayers were characterized by X-ray photoelectron spectroscopy and static water contact angle measurements. The microwave-assisted reaction is compatible with terminal functionalities such as alkenes that enable subsequent versatile "click" chemistry reactions, further broadening the range and applicability of chemically modified SiC surfaces.

  17. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  18. EFFECT OF HYPERCROSSLINKED RESINS SURFACE CHEMISTRY ON THEADSORPTION OF PHENOL FROM AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Guan-hua Meng; Ai-min Lia; Wei-ben Yang; Fu-qiang Liu; Quan-xing Zhang

    2006-01-01

    Two hypercrosslinked resins with similar physical characters but different surface chemistry were synthesized and used to remove phenol from aqueous solutions. The FTIR spectra, elemental analysis and the Boehm titration were used to characterize the chemical properties of the resins. The adsorption experiments were carried out using the bottle-point technique, and the effects of the surface chemistry on the adsorption were discussed. The adsorption data fit well with the Freundlich model, indicating the heterogeneity of the resins surface. It could be seen from the experimental results that the adsorption capacity increased with the increase in the total surface concentration of oxygen-containing groups. The pH dependence and the effects of ionic strength were also discussed. The kinetic adsorption data fit well with the pseudo-second order model, and the results showed that the surface oxygen-containing groups have little effect on the adsorption rate.

  19. Modeling Stimuli-Responsive Nanoparticle Monolayer

    Science.gov (United States)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  20. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.

    Science.gov (United States)

    Kilina, Svetlana V; Tamukong, Patrick K; Kilin, Dmitri S

    2016-10-18

    Colloidal quantum dots (QDs) are near-ideal nanomaterials for energy conversion and lighting technologies. However, their photophysics exhibits supreme sensitivity to surface passivation and defects, of which control is problematic. The role of passivating ligands in photodynamics remains questionable and is a focus of ongoing research. The optically forbidden nature of surface-associated states makes direct measurements on them challenging. Therefore, computational modeling is imperative for insights into surface passivation and its impact on light-driven processes in QDs. This Account discusses challenges and recent progress in understanding surface effects on the photophysics of QDs addressed via quantum-chemical calculations. We overview different methods, including the effective mass approximation (EMA), time-dependent density functional theory (TDDFT), and multiconfiguration approaches, considering their strengths and weaknesses relevant to modeling of QDs with a complicated surface. We focus on CdSe, PbSe, and Si QDs, where calculations successfully explain experimental trends sensitive to surface defects, doping, and ligands. We show that the EMA accurately describes both linear and nonlinear optical properties of large-sized CdSe QDs (>2.5 nm), while TDDFT is required for smaller QDs where surface effects dominate. Both approaches confirm efficient two-photon absorption enabling applications of QDs as nonlinear optical materials. TDDFT also describes the effects of morphology on the optical response of QDs: the photophysics of stoichiometric, magic-sized XnYn (X = Cd, Pb; Y = S, Se) QDs is less sensitive to their passivation compared with nonstoichiometric Xn≠mYm QDs. In the latter, surface-driven optically inactive midgap states can be eliminated by anionic ligands, explaining the better emission of metal-enriched QDs compared with nonmetal-enriched QDs. Ideal passivation of magic-sized QDs by amines and phosphine oxides leaves lower-energy transitions

  1. Surface Physics and Chemistry of Electrical Contact Phenomena.

    Science.gov (United States)

    1982-09-24

    EVOLUIONS Fig. 2. Electrical contact resistances and coefficients of friction vs. number of slip ring revolutions under 1 atm of wet CO2 and a 30 A brush...number is in actual contact. However, the results especially at 50 A clearly point towards melting temperatures. Further, the ’AD-A12 2 i SURFACE

  2. Surface chemistry and rheology of polysulfobetaine-coated silica.

    Science.gov (United States)

    Starck, Pierre; Mosse, Wade K J; Nicholas, Nathan J; Spiniello, Marisa; Tyrrell, Johanna; Nelson, Andrew; Qiao, Greg G; Ducker, William A

    2007-07-03

    We have measured the viscosity of suspensions of colloidal silica particles (d = 300 nm) and the properties of silica surfaces in solutions of a polymer consisting of zwitterionic monomer groups, poly(sulfobetaine methacrylate), polySBMA. This polymer has potential use in modifying surface properties because the polymer is net uncharged and therefore does not generate double-layer forces. The solubility of the polymer can be controlled and varies from poor to good by the addition of sodium chloride salt. Ellipsometry was used to demonstrate that polySBMA adsorbs to silica and exhibits an increase in surface excess at lower salt concentration, which is consistent with a smaller area per molecule at low salt concentration. Neutron reflectivity measurements show that the adsorbed polymer has a thickness of about 3.7 nm and is highly hydrated. The polymer can be used to exercise considerable control over suspension rheology. When silica particles are not completely covered in polymer, the suspension produces a highly viscous gel. Atomic force microscopy was used to show this is caused by bridging of polymer between the particles. At higher surface coverage, the polymer can produce either a high or very low viscosity slurry depending on the sodium chloride concentration. At high salt concentration, the suspension is stable, and the viscosity is lower. This is probably because the entrainment of many small ions renders the polymer film highly hydrophilic, producing repulsive surface forces and lubricating the flow of particles. At low salt concentrations, the polymer is barely soluble and more densely adsorbed. This produces less stable and more viscous solutions, which we attribute to attractive interactions between the adsorbed polymer layers.

  3. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    Science.gov (United States)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  4. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Science.gov (United States)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  5. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  6. Facile modification of silica substrates provides a platform for direct-writing surface click chemistry.

    Science.gov (United States)

    Oberhansl, Sabine; Hirtz, Michael; Lagunas, Anna; Eritja, Ramon; Martinez, Elena; Fuchs, Harald; Samitier, Josep

    2012-02-20

    Please click here: a facile two-step functionalization strategy for silicon oxide-based substrates generates a stable platform for surface click chemistry via direct writing. The suitability of the obtained substrates is proven by patterning with two different direct-writing techniques and three different molecules.

  7. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans

    1997-01-01

    process, The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel...... before destruction. The predicted mean concentration profile, however, shows only a small deviation from the logarithmic behavior of a conserved scalar. The solution is consistent with assuming a flux-gradient relationship with a turbulent diffusivity corrected by the Damkohler ratio, the ratio...... of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  8. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    Science.gov (United States)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  9. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  10. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  11. Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Andriotis, Antonis N., E-mail: andriot@iesl.forth.gr [Institute of Electronic Structure and Laser, FORTH, P.O. Box 1527, 71110 Heraklio, Crete (Greece); Mpourmpakis, Giannis, E-mail: gmpourmp@pitt.edu [Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15621 (United States); Broderick, Scott, E-mail: broderick.scott@gmail.com; Rajan, Krishna, E-mail: krajan@iastate.edu [Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Datta, Somnath, E-mail: somnath.datta@louisville.edu [Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202 (United States); Sunkara, Mahendra, E-mail: mahendra@louisville.edu [Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40202 (United States); Menon, Madhu, E-mail: super250@uky.edu [Department of Physics and Astronomy and Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-03-07

    A data driven discovery strategy based on statistical learning principles is used to discover new correlations between electronic structure and catalytic activity of metal surfaces. From the quantitative formulations derived from this informatics based model, a high throughput computational framework for predicting binding energy as a function of surface chemistry and adsorption configuration that bypasses the need for repeated electronic structure calculations has been developed.

  12. High-temperature vesuvianite: crystal chemistry and surface considerations

    Science.gov (United States)

    Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano

    2011-06-01

    A multi-methodical approach has been applied for characterizing the bulk and surface crystal chemical features of a high-temperature vesuvianite crystal from skarns of Mount Somma-Vesuvius Volcano (Naples, Italy). Vesuvianite belongs to the space group P4/ nnc with unit cell parameters a = 15.633(1) Å, c = 11.834(1) Å and chemical formula (Ca18.858 Na0.028 Ba0.004 K0.006 Sr0.005 □0.098)19.000 (Al8.813 Ti0.037 Mg2.954 Mn0.008 Fe{0.114/2+} Fe{1.375/3+} Cr0.008 B0.202)13.511 Si18.000(O0.261 F0.940 OH7.799)9.000. Structure refinement, which converges at R = 0.0328, demonstrates a strong positional disorder down the fourfold axes, indicating that the Y1 site is split into two positions (Y1A and Y1B) alternatively occupied. However, because of X4 proximity to Y1B and Y1A, X4 cannot be occupied if Y1B or Y1A are. Overall Y1 occupancy (Y1A + Y1B) reaches approximately 0.5, as common in vesuvianite and occupancy of Y1B site is extremely limited. Moreover, T1 position, limitedly occupied, accommodates the excess of cations generally related to Y position. A small quantity (0.202 apfu) of boron is sited at the T2 site that, like T1, is poorly occupied. The determination of the amount of each element on the (100) vesuvianite surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s, and Ca2p core levels, evidences that a greater amount of aluminum and a smaller amount of calcium characterize the surface with respect to the bulk. Although both of these features require further investigation, we may consider the Al increase can be related to preferential orientation of Al-rich sites on the (100) plane. Furthermore, the surface structure of vesuvianite suggests that Al, Ca, and Mg cations maintain coordination features at the surface similar to the bulk. Silica, however, while presenting fourfold coordination, shows also a [1]-fold small coordinated component at binding energy 99.85 eV, due to broken Si-O bonds at

  13. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-01-01

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature Tv, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that Tv has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  14. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  15. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

    Science.gov (United States)

    Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James

    2010-10-01

    The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds. Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO 3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ˜1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium

  16. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh, Quyen [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Nanosens, IJsselkade 7, 7201 HB Zutphen (Netherlands); Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Wang, Bin [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Wang, Zhanhua [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Haick, Hossam [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Zuilhof, Han [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Rijn, Cees J.M. van, E-mail: cees.vanrijn@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands)

    2016-11-30

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH{sub 2}){sub 6}C{sub 8}H{sub 17−x}F{sub x}; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C{sub 16}H{sub 30−x}F{sub x}) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  17. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries.

    Science.gov (United States)

    Faria, P C C; Orfão, J J M; Pereira, M F R

    2004-04-01

    The influence of the surface chemical groups of an activated carbon on the removal of different classes of dyes is evaluated. Starting from the same material (NORIT GAC 1240 PLUS), the following treatments were carried out in order to produce a series of samples with different surface chemical properties but with no major differences in their textural properties: oxidation in the liquid phase with 6M HNO(3) and 10 M H(2)O(2) (acid materials) and heat treatment at 700 degrees C in H(2) or N(2) flow (basic materials). The specific micropores volume and mesopores surface area of the materials were obtained from N(2) adsorption equilibrium isotherms at 77K. The surface chemistry was characterised by temperature programmed desorption, by the determination of the point of zero charge (pH(pzc)) and by the evaluation of the acidity/basicity of the samples. Elemental and proximate analyses were also carried out. Equilibrium isotherms of selected dyes (an acid, a basic and a reactive dye) on the mentioned samples were obtained and the results discussed in relation to their surface chemistry. In general, the Langmuir model provided the best fit for the adsorption data. It is shown that the surface chemistry of the activated carbon plays a key role in dye adsorption performance. The basic sample obtained by thermal treatment under H(2) flow at 700 degrees C is the best material for the adsorption of all the tested dyes.

  18. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au(3+) ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  19. Influence of surface chemistry on the hygienic status of industrial stainless steel.

    Science.gov (United States)

    Boulange-Petermann, L; Jullien, C; Dubois, P E; Benezech, T; Faille, C

    2004-02-01

    Coupons of fourteen different stainless steels were investigated in terms of surface chemistry and ease of cleaning. Steel surfaces were exposed to Bacillus cereus spores in static saline solution for 2 h. Surfaces were rinsed and then covered with whole milk and allowed to dry. Surfaces were then cleaned in an experimental flow system that mimics an industrial application. After cleaning, remaining spores were released by sonication, spores cultured and colony forming units determined. Surfaces with higher levels of Fe in the outer surface of the passive film cleaned more easily. There was a relation between the polar component and ease of cleaning. The higher the polar component the more easily the surface cleaned. The cleaning mechanism involves dissolution of Fe enriched hydroxide films on the surface.

  20. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Science.gov (United States)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-11-01

    Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH2) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such zwitterion modified PP surface.

  1. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    Science.gov (United States)

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  2. Surface Chemistry of Aluminium Alloy Slid against Steel Lubricated by Organic Friction Modifier in Hydrocarbon Oil

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2012-01-01

    Full Text Available The lubrication mechanism of aluminium alloy slid against steel was investigated from the standpoint of surface chemistry. Low friction and low wear were observed using glycerol mono-olate in a hydrocarbon as lubricant. Increase in the silicon content in the aluminium alloy during rubbing was observed by surface analyses using (1 Auger electron spectroscopy, (2 scanning electron microscopy along with energy dispersive X-ray spectroscopy, and (3 X-ray photoelectron spectroscopy. Mild removal of the passive state (aluminium oxide from the uppermost surface by the additive during the running-in process was proposed as the lubrication mechanism. The importance of additive chemistry that improves the running-in process was pointed out.

  3. Giant magnetoresistive biosensors for molecular diagnosis: surface chemistry and assay development

    Science.gov (United States)

    Yu, Heng; Osterfeld, Sebastian J.; Xu, Liang; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2008-08-01

    Giant magnetoresistive (GMR) biochips using magnetic nanoparticle as labels were developed for molecular diagnosis. The sensor arrays consist of GMR sensing strips of 1.5 μm or 0.75 μm in width. GMR sensors are exquisitely sensitive yet very delicate, requiring ultrathin corrosion-resistive passivation and efficient surface chemistry for oligonucleotide probe immobilization. A mild and stable surface chemistry was first developed that is especially suitable for modifying delicate electronic device surfaces, and a practical application of our GMR biosensors was then demonstrated for detecting four most common human papillomavirus (HPV) subtypes in plasmids. We also showed that the DNA hybridization time could potentially be reduced from overnight to about ten minutes using microfluidics.

  4. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress.

    Science.gov (United States)

    Li, Yan; Wang, Jinfeng; Xing, Juan; Wang, Yuanliang; Luo, Yanfeng

    2016-12-01

    Scaffolds provide a physical support for osteoblasts and act as the medium to transfer mechanical stimuli to cells. To verify our hypothesis that the surface chemistry of scaffolds regulates the perception of cells to mechanical stimuli, the sensitivity and tolerability of osteoblasts to fluid shear stress (FSS) of various magnitudes (5, 12, 20 dynes/cm(2) ) were investigated on various surface chemistries (-OH, -CH3 , -NH2 ), and their follow-up effects on cell proliferation and differentiation were examined as well. The sensitivity was characterized by the release of adenosine triphosphate (ATP), nitric oxide (NO) and prostaglandin E2 (PGE2 ) while the tolerability was by cellular membrane integrity. The cell proliferation was characterized by S-phase cell fraction and the differentiation by ALP activity and ECM expression (fibronectin and type I collagen). As revealed, osteoblasts demonstrated higher sensitivity and lower tolerability on OH and CH3 surfaces, yet lower sensitivity and higher tolerability on NH2 surfaces. Observations on the focal adhesion formation, F-actin organization and cellular orientation before and after FSS exposure suggest that the potential mechanism lies in the differential control of F-actin organization and focal adhesion formation by surface chemistry, which further divergently mediates the sensitivity and tolerability of ROBs to FSS and the follow-up cell proliferation and differentiation. These findings are essentially valuable for design/selection of desirable surface chemistry to orchestrate with FSS stimuli, inducing appropriate cell responses and promoting bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2978-2991, 2016.

  5. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Directory of Open Access Journals (Sweden)

    Tatjana Ladnorg

    2013-10-01

    Full Text Available Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE. The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.

  6. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs

    Directory of Open Access Journals (Sweden)

    NL Davison

    2015-06-01

    Full Text Available It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs, and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of ≤ 1 μm trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80 % hydroxyapatite, 20 % tricalcium phosphate were prepared with different surface structural dimensions – either ~ 1 μm (BCP1150 or ~ 2-4 μm (BCP1300 – and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti, thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-κB ligand proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested – namely, surface microstructure, macrostructure, and surface chemistry – microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation.

  7. Enabling organosilicon chemistries on inert polymer surfaces with a vapor-deposited silica layer.

    Science.gov (United States)

    Anderson, A; Ashurst, W R

    2009-10-06

    Given the large surface area-to-volume ratios commonly encountered in microfluidics applications, the ability to engineer the chemical properties of surfaces encountered in these applications is critically important. However, as various polymers are rapidly replacing glass and silicon as the chosen materials for microfluidics devices, the ability to easily modify the surface chemistry has been diminished by the relatively inert nature of some commonly employed polymer surfaces, such as poly(methyl methacrylate) (PMMA), polystyrene, and polydimethylsiloxane (PDMS). This paper describes the low-temperature, vapor-phase deposition of robust silica layers to PMMA, polystyrene, and PDMS surfaces, which enables the functionalization of these surfaces by standard organosilane chemistries. Attenuated total reflection infrared spectroscopy, contact angle goniometry, ellipsometry, and atomic force microscopy are used to characterize the silica layers that form on these surfaces. Aqueous immersion experiments indicate that the silica layer has excellent stability in aqueous environments, which is a prerequisite for microfluidics applications, but for PMMA surfaces, low adhesion of the silica layer to the underlying substrate is problematic. For PDMS substrates, the presence of the silica layer helps to slow the process of hydrophobic recovery, which is an additional advantage.

  8. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    Science.gov (United States)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  9. Effects of Surface Chemistry on the Porous Structure of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Ljubisa R; Hatcher, Patrick G

    1997-05-01

    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  10. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    Science.gov (United States)

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%).

  11. Tuning the self-assembled monolayer formation on nanoparticle surfaces with different curvatures: investigations on spherical silica particles and plane-crystal-shaped zirconia particles.

    Science.gov (United States)

    Feichtenschlager, Bernhard; Lomoschitz, Christoph J; Kickelbick, Guido

    2011-08-01

    The ordering of dodecyl-chain self-assembled monolayers (SAM) on different nanoscopic surfaces was investigated by FT-IR studies. As model systems plane-crystal-shaped ZrO(2) nanoparticles and spherical SiO(2) nanoparticles were examined. The type of capping agent was chosen dependent on the substrate, therefore dodecylphosphonic acid and octadecylphosphonic acid were used for ZrO(2) and dodecyltrimethoxysilane for SiO(2) samples. The plane ZrO(2) nanocrystals yielded more ordered alkyl-chain structures whereas spherical SiO(2) nanoparticles showed significantly lower alkyl-chain ordering. Submicron-sized silica spheres revealed a significantly higher alkyl chain ordering, comparable to an analogously prepared SAM on a non-curved plane oxidized Si-wafer. In the case of ZrO(2) nanocrystals an intense alkyl-chain alignment could be disturbed by decreasing the grafting density from the maximum of 2.1 molecules/nm(2) through the variation of coupling agent concentration to lower values. Furthermore, the co-adsorption of a different coupling agent, such as phenylphosphonic acid for ZrO(2) and phenyltrimethoxysilane for SiO(2), resulted in a significantly lower alkyl-chain ordering for ZrO(2) plane crystals and for large SiO(2) spherical particles at high grafting density. An increasing amount of order-disturbing molecules leads to a gradual decrease in alkyl-chain alignment on the surface of the inorganic nanoparticles. In the case of the ZrO(2) nanoparticle system it is shown via dynamic light scattering (DLS) that the mixed monolayer formation on the particle surface impacts the dispersion quality in organic solvents such as n-hexane.

  12. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  13. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  14. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    Science.gov (United States)

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.

  15. Electrochemically controlled self-assembled monolayers characterized with molecular and sub-molecular resolution

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, Anna Christina; Chi, Qijin

    2011-01-01

    Self-assembled organization of functional molecules on solid surfaces has developed into a powerful and sophisticated tool for surface chemistry and nanotechnology. A number of reviews on the topic have been available since the mid 1990s. This perspective article aims to focus on recent development...... in the investigations of electronic structures and assembling dynamics of electrochemically controlled self-assembled monolayers (SAMs) of thiol containing molecules on gold surfaces. A brief introduction is first given and particularly illustrated by a Table summarizing the molecules studied, the surface lattice...

  16. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry.

    Science.gov (United States)

    Kim, Hyo Won; McCloskey, Bryan D; Choi, Tae Hwan; Lee, Changho; Kim, Min-Joung; Freeman, Benny D; Park, Ho Bum

    2013-01-23

    Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O(2) concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier's principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.

  17. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  18. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  19. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  20. Surface Modification of TiO2 Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wooh, Sanghyuk; Kim, Tea-Yon; Song, Donghoon; Lee, Yong-Gun; Lee, Tae Kyung; Bergmann, Victor W; Weber, Stefan A L; Bisquert, Juan; Kang, Yong Soo; Char, Kookheon

    2015-11-25

    Dye aggregation and electron recombination in TiO2 photoanodes are the two major phenomena lowering the energy conversion efficiency of dye-sensitized solar cells (DSCs). Herein, we introduce a novel surface modification strategy of TiO2 photoanodes by the fluorinated self-assembled monolayer (F-SAM) formation with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFTS), blocking the vacant sites of the TiO2 surface after dye adsorption. The F-SAM helps to efficiently lower the surface tension, resulting in efficient repelling ions, e.g., I3(-), in the electrolyte to decrease the electron recombination rate, and the role of F-SAM is characterized in detail by impedance spectroscopy using a diffusion-recombination model. In addition, the dye aggregates on the TiO2 surface are relaxed by the F-SAM with large conformational perturbation (i.e., helix structure) seemingly because of steric hindrance developed during the SAM formation. Such multifunctional effects suppress the electron recombination as well as the intermolecular interactions of dye aggregates without the loss of adsorbed dyes, enhancing both the photocurrent density (11.9 → 13.5 mA cm(-2)) and open-circuit voltage (0.67 → 0.72 V). Moreover, the combined surface modification with the F-SAM and the classical coadsorbent further improves the photovoltaic performance in DSCs.

  1. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    Science.gov (United States)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how

  2. Surface chemistry allows for abiotic precipitation of dolomite at low temperature

    OpenAIRE

    Roberts, Jennifer A.; Kenward, Paul A.; Fowle, David A.; Goldstein, Robert H.; Luis A. González; Moore, David S.

    2013-01-01

    Abundant in the geologic record, but scarce in modern environments below 50 °C, the mineral dolomite is used to interpret ancient fluid chemistry, paleotemperature, and is a major hydrocarbon reservoir rock. Because laboratory synthesis of abiotic dolomite had been unsuccessful, chemical mechanisms for precipitation are poorly constrained, and limit interpretations of its occurrence. Here we report the abiotic synthesis of dolomite at 25 °C, and demonstrate that carboxylated surfaces on organ...

  3. Deuteration and evolution in the massive star formation process: the role of surface chemistry

    OpenAIRE

    Fontani, F.; Busquet, G.; Palau, Aina; Caselli, P.; Van, A; Sanchez-Monge; Tan, J. C.; Audard, M.

    2014-01-01

    An ever growing number of observational and theoretical evidence suggests that the deuterated fraction (column density ratio between a species containing D and its hydrogenated counterpart, Dfrac) is an evolutionary indicator both in the low- and the high-mass star formation process. However, the role of surface chemistry in these studies has not been quantified from an observational point of view. In order to compare how the deuterated fractions of species formed only in the gas and partiall...

  4. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials

    Science.gov (United States)

    1988-09-15

    the strength and fatigue characteristics of ZBLAN (zirconium barium-lanthanum-aluminum-sodium fluoride) optical glass fiber obtained from British...Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materlals 12. PERSONAL AUTHOR(S) Carlo G. Pantano 13a. TYPE OF...fluorozirconate glasses . °. DTICS ELEC T E DEC 09 I 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21.-A% RACT SECURITY CLASSIFICATION [BUNCLASSIFIED/UNLIMITED

  5. Scanning tunneling microscopic and spectroscopic studies on a crystalline silica monolayer epitaxially formed on hexagonal SiC(0001¯) surfaces

    Science.gov (United States)

    Tochihara, Hiroshi; Shirasawa, Tetsuroh; Suzuki, Takayuki; Miyamachi, Toshio; Kajiwara, Takashi; Yagyu, Kazuma; Yoshizawa, Shunsuke; Takahashi, Toshio; Tanaka, Satoru; Komori, Fumio

    2014-02-01

    An epitaxial silicon-oxide monolayer of chemical composition of Si2O3 (the Si2O3 layer) formed on hexagonal SiC(0001¯) surfaces has been observed by scanning tunneling microscopy (STM). Filled- and empty-state STM images with atomic resolution support the previously reported model. Typical structural defects in the Si2O3 layer are found to be missing SiOn (n = 1, 2, 3) molecules. The band gap of the Si2O3 layer obtained by point tunneling spectroscopy is 5.5±0.5 eV, exhibiting considerable narrowing from that of bulk SiO2, 8.9 eV. It is proposed that the Si2O3 layer is suitable as a relevant interface material for formation of SiC-based metal-oxide-semiconductor devices.

  6. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.

    Science.gov (United States)

    Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger

    2016-11-01

    All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and

  7. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    Science.gov (United States)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  8. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    Science.gov (United States)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-01-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes. PMID:27188492

  9. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  10. Surface chemistry and acid-base activity of Shewanella putrefaciens: Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, Jacqueline Wilhelmien

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  11. Surface chemistry and acid-base activity of Shewanella putrefaciens : Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, J.W.

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  12. Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS.

    Science.gov (United States)

    Eftekhari, Fatemeh; Lee, Anna; Kumacheva, Eugenia; Helmy, Amr S

    2012-02-15

    In this Letter, we demonstrate the efficacy of hollow core photonic crystal fibers (HCPCFs) as a surface-enhanced Raman spectroscopy (SERS) platform for investigating the ligand exchange process on the surface of gold nanoparticles. Raman measurements carried out using this platform show the capability to monitor minute amounts of surface ligands on gold nanoparticles used as an SERS substrate. The SERS signal from an HCPCF exhibits a tenfold enhancement compared to that in a direct sampling scheme using a cuvette. Using exchange of cytotoxic cetyltrimethylammonium bromide with α-methoxy-ω-mercaptopoly(ethylene glycol) on the surface of gold nanorods as an exemplary system, we show the feasibility of using HCPCF SERS to monitor the change in surface chemistry of nanoparticles.

  13. Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles

    Science.gov (United States)

    Shi, Miao; Kwon, Hyun Soo; Peng, Zhenmeng; Elder, Alison; Yang, Hong

    2012-01-01

    Mercaptocarboxylic acids with different carbon chain lengths were used for stabilizing uniform 15 nm copper nanoparticles. The effects of surface chemistry such as ligand type and surface oxidation on the reactive oxygen species (ROS) generated by the copper nanoparticles were examined. Transmission electron microscopy (TEM), Powder X-ray diffraction (PXRD), UV-vis spectroscopy, and an acellular ROS assay show that ROS generation is closely related to the surface oxidation of copper nanoparticles. It was found that the copper nanoparticles with longer chain ligands had surfaces that were better protected from oxidation and a corresponding lower ROS generating capacity than did particles with shorter chain ligands. Conversely, the copper nanoparticles with greater surface oxidation also had higher ROS generating capacity. PMID:22390268

  14. Chemical reactions in dense monolayers: in situ thermal cleavage of grafted esters for preparation of solid surfaces functionalized with carboxylic acids.

    Science.gov (United States)

    Dugas, Vincent; Chevalier, Yves

    2011-12-06

    The thermodynamics of a chemical reaction confined at a solid surface was investigated through kinetic measurements of a model unimolecular reaction. The thermal cleavage of ester groups grafted at the surface of solid silica was investigated together with complementary physicochemical characterization of the grafted species. The ester molecules were chemically grafted to the silica surface and subsequently cleaved into the carboxylic acids. A grafting process of a reproducible monolayer was designed using the reaction of monofunctional organosilane from its gas phase. The thermal deprotection step of the ester end-group was investigated. The thermal deprotection reaction behaves in quite a specific manner when it is conducted at a surface in a grafted layer. Different organosilane molecules terminated by methyl, isopropyl and tert-butyl ester groups were grafted to silica surface; such functionalized materials were characterized by elemental analysis, IR and NMR spectroscopy, and thermogravimetric analysis, and the thermodynamic parameters of the thermal elimination reaction at the surface were measured. The limiting factor of such thermal ester cleavage reaction is the thermal stability of grafted ester group according to the temperature order: tert-butyl groups were not selectively cleaved by temperature. The thermal deprotection of i-propyl ester groups took place at a temperature close to the thermal degradation of the organofunctional tail of the silane. The low thermolysis temperature of the grafted tert-butyl esters allowed their selective cleavage. There is a definite influence of the surface on the reaction. The enthalpy of activation is lower than in the gas phase because of the polarity of the reaction site. The major contribution is entropic; the negative entropy of activation comes from lateral interactions with the neighbor grafted molecules because of the high grafting density. Such reaction is an original strategy to functionalize the silica

  15. Impact of Surface Chemistry on Grain Boundary Induced Intrinsic Stress Evolution during Polycrystalline Thin Film Growth

    Science.gov (United States)

    Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.

    2009-02-01

    First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.

  16. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  17. Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives

    Science.gov (United States)

    Lee, Haeshin

    The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as

  18. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaithilingam, Jayasheelan, E-mail: Jayasheelan.Vaithilingam@nottingham.ac.uk [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Prina, Elisabetta [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Goodridge, Ruth D.; Hague, Richard J.M. [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Edmondson, Steve [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Rose, Felicity R.A.J. [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Christie, Steven D.R. [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM–AF surface was observed to be porous with an average surface roughness (Ra) of 17.6 ± 3.7 μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. - Highlights: • Surface chemistry of selective laser melted (SLM) Ti6Al4V parts was compared with conventionally forged Ti6Al4V parts. • The surface elemental compositions of the SLM as-fabricated surfaces were significantly different to the forged surface. • Surface oxide-layer of the SLM as-fabricated was thicker than the polished SLM surfaces and the forged Ti6Al4V surfaces.

  19. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    Science.gov (United States)

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  20. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  1. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  2. Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors.

    Science.gov (United States)

    Kisner, Alexandre; Heggen, Marc; Mayer, Dirk; Simon, Ulrich; Offenhäusser, Andreas; Mourzina, Yulia

    2014-05-21

    Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH3, -NH2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer.

  3. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.

    Science.gov (United States)

    George, Steven M; Yoon, Byunghoon; Dameron, Arrelaine A

    2009-04-21

    The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of chemical vapor deposition, allow for the growth of ultra-thin and conformal films of inorganic materials using sequential, self-limiting reactions. Molecular layer deposition (MLD) methods extend this strategy to include organic and hybrid organic-inorganic polymeric materials. In this Account, we provide an overview of the surface chemistry for the MLD of organic and hybrid organic-inorganic polymers and examine a variety of surface chemistry strategies for growing polymer thin films. Previously, surface chemistry for the MLD of organic polymers such as polyamides and polyimides has used two-step AB reaction cycles using homo-bifunctional reactants. However, these reagents can react twice and eliminate active sites on the growing polymer surface. To avoid this problem, we can employ alternative precursors for MLD based on hetero-bifunctional reactants and ring-opening reactions. We can also use surface activation or protected chemical functional groups. In addition, we can combine the reactants for ALD and MLD to grow hybrid organic-inorganic polymers that should display interesting properties. For example, using trimethylaluminum (TMA) and various diols as reactants, we can achieve the MLD of alucone organic-inorganic polymers. We can alter the chemical and physical properties of these organic-inorganic polymers by varying the organic constituent in the diol or blending the alucone MLD films with purely inorganic ALD films to build a nanocomposite or nanolaminate. The combination of ALD and MLD reactants enlarges the number of possible sequential self-limiting surface

  4. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2010-07-01

    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  5. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  6. Surface chemistry influences cancer killing effect of TiO2 nanoparticles.

    Science.gov (United States)

    Thevenot, Paul; Cho, Jai; Wavhal, Dattatray; Timmons, Richard B; Tang, Liping

    2008-09-01

    Photocatalyzed titanium dioxide (TiO2) nanoparticles have been shown to eradicate cancer cells. However, the required in situ introduction of ultraviolet light limits the use of such a therapy in humans. In the present study the nonphotocatalytic anticancer effect of surface-functionalized TiO2 was examined. Nanoparticles bearing -OH, -NH(2), or -COOH surface groups were tested for their effect on in vitro survival of several cancer and control cell lines. The cells tested included B16F10 melanoma, Lewis lung carcinoma, JHU prostate cancer cells, and 3T3 fibroblasts. Cell viability was observed to depend on particle concentrations, cell types, and surface chemistry. Specifically, -NH(2) and -OH groups showed significantly higher toxicity than -COOH. Microscopic and spectrophotometric studies revealed nanoparticle-mediated cell membrane disruption leading to cell death. The results suggest that functionalized TiO2, and presumably other nanoparticles, can be surface-engineered for targeted cancer therapy.

  7. First-Principles Surface Stress Calculations and Multiscale Deformation Analysis of a Self-Assembled Monolayer Adsorbed on a Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Yu-Ching Shih

    2014-04-01

    Full Text Available Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT calculations and finite element method (FEM analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM on the Au(111 surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.

  8. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    Science.gov (United States)

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems.

  9. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces

    OpenAIRE

    Chapleski, Robert C.; Zhang, Yafen; Troya, Diego; Morris, John R.

    2015-01-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, research...

  10. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  11. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers.

    Science.gov (United States)

    Li, Yaping; Qi, Li; Shen, Ying; Ma, Huimin

    2014-02-06

    The core@shell Fe3O4@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe3O4@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au-S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25-1600 μg L(-1) for diphenols and 1.56-100 μg L(-1) for PAHs) with good linearity (r(2)≥0.989) and low detection limits (0.34-16.67 μg L(-1) for diphenols and 0.26-0.52 μg L(-1) for PAHs) were achieved. The advantage of the developed method is that the Fe3O4@Au NPs could be reutilized for preconcentrating diverse target analytes in different SPE modes sequentially simply through treatment with desired thiol-containing ligands.

  12. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.

    Science.gov (United States)

    Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara

    2012-10-01

    Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably.

  13. Surface chemistry dependent "switch" regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes.

    Science.gov (United States)

    Das, Manasmita; Singh, Raman Preet; Datir, Satyajit R; Jain, Sanyog

    2013-04-17

    The present study explores the possibility of exploiting surface functionality as one of the key regulators for modulating the intracellular trafficking and therapeutic performance of drug loaded carbon nanotubes (CNTs). In line with that approach, a series of biofunctionalized multiwalled carbon nanotubes (f-CNTs 1-6) decorated with various functional molecules including antifouling polymer (PEG), tumor recognition modules (folic acid/hyaluronic acid/estradiol), and fluorophores (rhodamine B isothiocyanate/Alexa Fluor) were synthesized. By loading different anticancer agents (methotrexate (MTX), doxorubicin (DOX), and paclitaxel (PTX)) onto each functionalized CNT preparation, we tried to elucidate how the surface functional molecules associated with each f-CNT influence their therapeutic potential. We observed that antiproliferative or apoptotic activity of drug-loaded CNTs critically depends on their mechanistic pathway of cellular internalization and intracellular trafficking, which in turn had an intimate rapport with their surface chemistry. To our knowledge, for the first time, we have embarked on the possibility of using a surface chemistry dependent "switch" to remote-control the second and third order targeting of chemotherapeutic agents supramolecularly complexed/adsorbed on CNTs, which in turn is expected to benefit the development of futuristic nanobots for cancer theranostics.

  14. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-08-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  15. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    Science.gov (United States)

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  16. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.

    Science.gov (United States)

    Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L

    2015-03-26

    Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.

  17. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  18. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour.

  19. Saturn Magnetospheric Impact on Surface Molecular Chemistry and Astrobiological Potential of Enceladus

    Science.gov (United States)

    Cooper, P. D.; Cooper, J. F.; Sittler, E. C.; Burger, M. H.; Sturner, S. J.; Rymer, A. M.

    2008-12-01

    The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H2O2 at the surface in this region and less directly by substantial presence of CO2, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H2O neutrals dominating the emitted plume gas return to the surface mostly as H3O+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.

  20. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.

    Science.gov (United States)

    Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya

    2013-07-01

    The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets.

  1. Monolayers of a De Novo Designed 4-Alpha-Helix Bundle Carboprotein and Partial Structures on Au(111)-Surfaces

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud Jørgen

    2002-01-01

    Mapping of structure and function of proteins adsorbed on solid surfaces is important in many contexts. Electrochemical techniques based on single-crystal metal surfaces and in situ scanning probe microscopies (SPM) have recently opened new perspectives for mapping at the single-molecule level. D...

  2. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    Science.gov (United States)

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10(7) M(-1) in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10(15) M(-2) and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and

  3. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces.

    Science.gov (United States)

    Chapleski, Robert C; Zhang, Yafen; Troya, Diego; Morris, John R

    2016-07-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

  4. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n(+)/p junctions and from 7.8% to 8.8% for p(+)/n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  5. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    Science.gov (United States)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  6. Preparation of Carbazole Polymer Thin Films Chemically Bound to Substrate Surface by Physical Vapor Deposition Combined with Self-Assembled Monolayer

    Science.gov (United States)

    Katsuki, Kiyoi; Bekku, Hiroshi; Kawakami, Akira; Locklin, Jason; Patton, Derek; Tanaka, Kuniaki; Advincula, Rigoberto; Usui, Hiroaki

    2005-01-01

    Vinyl polymer thin films having carbazole units were prepared by a new method combining physical vapor deposition and self-assembled monolayer (SAM) techniques. 3-(N-carbazolyl)propyl acrylate monomer was evaporated onto a gold substrate that had a VAZO 56 (DuPont) initiator attached as a SAM. The VAZO initiator was activated by irradiating ultraviolet light after depositing the monomer. Although the polymerization reaction can proceed even without the surface initiator, the SAM was effective in improving the surface smoothness, thermal stability, and film-substrate adhesion as a consequence of the formation of covalent chemical bonds between the film and the substrate. Thermal activation of the initiator was examined for the deposition polymerization of 9-H-carbazole-9-ethylmethacryrate. Substrate heating during the evaporation was not effective for accumulating thin films. On the other hand, performing postdeposition annealing on the film after deposition at room temperature resulted in the formation of a polymer thin film chemically bound to the substrate.

  7. The influence of the surface chemistry of silver nanoparticles on cell death

    Science.gov (United States)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-09-01

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity.

  8. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  9. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    Science.gov (United States)

    Popescu, M. N.; Uspal, W. E.; Dietrich, S.

    2017-04-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.

  10. The influence of the surface chemistry of silver nanoparticles on cell death.

    Science.gov (United States)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-09-21

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity.

  11. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.

    Science.gov (United States)

    Popescu, M N; Uspal, W E; Dietrich, S

    2017-04-05

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate 'point-particle' analysis, we show analytically that-owing to this kind of induced active response (chemi-osmosis) of the wall-such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial 'swimmers' exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with 'source' chemical reactions on one half of the surface and either 'inert' or 'sink' reactions over the other half.

  12. The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Gross-Aviv, Talia; Vago, Razi

    2009-02-01

    In the present research we study the effects of surface chemistry of an aragonite crystalline biomatrix on the chondrogenesis of mesenchymal stem cells (MSCs). An aragonite matrix obtained from the coral Porites lutea and a gold-coated P. lutea matrix were seeded with MSCs, with and without the addition of growth factors (GFs). Scanning electron microscopy, histochemical staining, immunofluorescence, biochemical analyses and quantitative polymerase chain reaction showed that the chemistry of the matrix influenced the differentiation process of the MSCs. The calcium carbonate composition of the coral promoted osteogenesis, while impeding cell-material contact (by gold coating) altered the differentiation lineage of MSCs towards chondrogenic fate. Supplementation of the culture medium with GFs intensified the influence of the surface composition on the differentiation of MSCs, and the synergistic effect of the biomatrix surface composition and the GFs induced chondrogenesis and facilitated maintenance of the chondrocyte phenotype. Therefore, we suggest that scaffolding material candidates for tissue engineering should be examined for their effects on the MSCs differentiation process and their effect on signal transduction events in the cells.

  13. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry.

    Science.gov (United States)

    Dong, Haoran; He, Qi; Zeng, Guangming; Tang, Lin; Zhang, Chang; Xie, Yankai; Zeng, Yalan; Zhao, Feng; Wu, Yanan

    2016-06-01

    This study investigated the correlation between the colloidal stability and reactivity of surface-modified nano zero-valent iron (SM-nZVI) as affected by the surface coating (i.e., polyacrylic acid [PAA] and starch) under various geochemical conditions. Generally, the colloidal stability of nZVI was enhanced with increasing loading of surface coating, while there is an optimum loading for the most efficient Cr(VI) removal by SM-nZVI. At lower loadings than the optimum loading, the surface coating could enhance the particle stabilization, facilitating the Cr(VI) reduction by providing more available surface sites. However, the over-loaded surface coating on the surface of nZVI particles decreased the Cr(VI) reduction due to the occupation of the reactive sites and the inhibition of the mass transfer of Cr(VI) ions from water to the particle surface by providing the electrostatic or steric repulsion. The effects of Ca(2+) ions or humic acid (HA) on the colloidal stability and reactivity of PAA-modified nZVI (P-nZVI) and starch-modified nZVI (S-nZVI) were examined. Differing stability behavior and reactivity were observed for different SM-nZVI. It was found that the presence of Ca(2+) or HA altered surface chemistry of SM-nZVI, the particle-particle interaction and the particle-contaminant interaction, and hence influencing the stability behavior and reactivity of the particles. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    National Research Council Canada - National Science Library

    Elçin Külah; Laurent Marot; Roland Steiner; Andriy Romanyuk; Thomas A Jung; Aneliia Wäckerlin; Ernst Meyer

    2017-01-01

    .... Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide...

  15. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.

    Science.gov (United States)

    Lv, Tong; Cheng, Zhongjun; Zhang, Enshuang; Kang, Hongjun; Liu, Yuyan; Jiang, Lei

    2017-01-01

    Recently, self-healing superhydrophobic surfaces have become a new research focus due to their recoverable wetting performances and wide applications. However, until now, on almost all reported surfaces, only one factor (surface chemistry or microstructure) can be restored. In this paper, a new superhydrophobic surface with self-healing ability in both crushed microstructure and damaged surface chemistry is prepared by creating lotus-leaves-like microstructure on the epoxy shape memory polymer (SMP). Through a simple heating process, the crushed surface microstructure, the damaged surface chemistry, and the surface superhydrophobicity that are destroyed under the external pressure and/or O2 plasma action can be recovered, demonstrating that the obtained superhydrophobic surface has a good self-healing ability in both of the two factors that govern the surface wettability. The special self-healing ability is ascribed to the good shape memory effect of the polymer and the reorganization effect of surface molecules. This paper reports the first use of SMP material to demonstrate the self-healing ability of surface superhydrophobicity, which opens up some new perspectives in designing self-healing superhydrophobic surfaces. Given the properties of this surface, it could be used in many applications, such as self-cleaning coatings, microfluidic devices, and biodetection.

  16. Electrochemical metallization of self-assembled porphyrin monolayers.

    Science.gov (United States)

    Nann, Thomas; Kielmann, Udo; Dietrich, Christoph

    2002-04-01

    Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.

  17. Electrochemical fabrication of surface chemical gradients in thiol self-assembled monolayers with tailored work-functions.

    Science.gov (United States)

    Fioravanti, Giulia; Lugli, Francesca; Gentili, Denis; Mucciante, Vittoria; Leonardi, Francesca; Pasquali, Luca; Liscio, Andrea; Murgia, Mauro; Zerbetto, Francesco; Cavallini, Massimiliano

    2014-10-01

    The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.

  18. A pinch of salt is all it takes: chemistry at the frozen water surface.

    Science.gov (United States)

    Kahan, Tara F; Wren, Sumi N; Donaldson, D James

    2014-05-20

    Chemical interactions at the air-ice interface are of great importance to local atmospheric chemistry but also to the concentrations of pollutants deposited onto natural snow and ice. However, the study of such processes has been hampered by the lack of general, surface-specific probes. Even seemingly basic chemical properties, such as the local concentration of chemical compounds, or the pH at the interface, have required the application of assumptions about solute distributions in frozen media. The measurements that have been reported have tended for the most part to focus on entire ice or snow samples, rather than strictly the frozen interface with the atmosphere. We have used glancing-angle laser spectroscopy to interrogate the air-ice interface; this has yielded several insights into the chemical interactions there. The linear fluorescence and Raman spectra thus measured have the advantage of easy interpretability; careful experimentation can limit their probe depth to that which is relevant to atmospheric heterogeneous processes. We have used these techniques to show that the environment at the interface between air and freshwater ice surfaces is distinct from that at the interface between air and liquid water. Acids such as HCl that adsorb to ice surfaces from the gas phase result in significantly different pH responses than those at liquid water surfaces. Further, the solvation of aromatic species is suppressed at freshwater ice surfaces compared with that at liquid water surfaces, leading to extensive self-association of aromatics at ice surfaces. Photolysis kinetics of these species are much faster than at liquid water surfaces; this can sometimes (but not always) be explained by red shifts in the absorption spectra of self-associated aromatics increasing the extent to which solar radiation is absorbed. The environment presented by frozen saltwater surfaces, in contrast, appears to be reasonably well-described by liquid water. The extent of hydrogen

  19. Controls on Surface Water Chemistry in the Upper Merced River Basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, David W.; Alisa Mast, M.; Campbell, Donald H.

    1996-05-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 equiv. l-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 equiv. l-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from Happy Isles gauge from 1968 to 1990 was 26 equiv. l-1, which was five times higher than in atmospheric deposition (4-5 equiv. l-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 equiv. l-1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation, suggesting that sulphate may

  20. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}