Sample records for monolayer phase behavior

  1. Influence of head group methylation on the phase behavior of lipid monolayers

    DEFF Research Database (Denmark)

    Brezesinski, G.; Bringezu, F.; Weidemann, G.


    per three tails exceeds that per head, an influence of the head group methylation on the monolayer structure is observed. The tilt angles at lower lateral pressures and the transition pressure to a hexagonal packing of upright oriented chains increase with increasing methylation degree. The transition...... from the NN tilted rectangular to this hexagonal phase is connected with a pressure region where the in-plane components Q(xy) of the two peaks coincide while the out-of-plane components Q(z) differ. This indicates an undistorted hexagonal in-plane lattice even for tilted chains. The area-pressure...... and X-ray measurements below 10 mN/m, can be explained by the formation of holes in the monolayer. Possibly the tilting of the triple-chain molecules leads to an orientational ordering of the head group dipoles and therefore to an electrostatic repulsion between condensed phase domains. (C) 1998...

  2. Phase behavior of mixed Ar-Kr, Ar-Xe and Kr-Xe monolayer films on graphite: a Monte Carlo study. (United States)

    Patrykiejew, A


    Using Monte Carlo simulation methods in the grand canonical ensemble we have studied the behavior of mixed Ar-Kr, Ar-Xe and Kr-Xe monolayer films on the graphite basal plane. We have considered the adsorption of the lighter component, either argon or krypton, under the condition of a fixed chemical potential of the heavier component (krypton or xenon), as well as on the graphite surface with preadsorbed small amounts of a heavier noble gas. In both types of simulation the composition of the adsorbed layer is not conserved. We discuss the phase behavior of mixed films emerging from both types of 'computer experiment'. We also demonstrate that Monte Carlo simulation allows us to estimate the effects of preadsorbed xenon on the commensurate-incommensurate transition in the krypton monolayer film and gives the results that are in good quantitative agreement with experimental data.

  3. Stiffness of lipid monolayers with phase coexistence. (United States)

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia


    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  4. Non-rotator phases in phospholipid monolayers?

    DEFF Research Database (Denmark)

    Kenn, R.M.; Kjær, K.; Möhwald, H.


    Monolayers of diacylphosphatidylethanolamines at the air/water interface are studied by grazing incidence X-ray diffraction. The results prove the existence of phases which show analogies with the rotator phases of single-chain surfactants: hexagonal tail lattice with no tilt; rectangular lattice...

  5. Structural phase transitions in monolayer molybdenum dichalcogenides (United States)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo


    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  6. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)


    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  7. Ablation behavior of monolayer and multilayer Ir coatings under carburizing and oxidizing oxyacetylene flames (United States)

    Wu, Wangping; Jiang, Jinjin; Chen, Zhaofeng


    Iridium is one of the most promising candidates for protective barrier of refractory materials to endure high service temperature. The multilayer iridium coating was produced by a double glow plasma process on the polished tungsten carbide substrates, compared with monolayer. The ablation behaviors of the monolayer on the unpolished and polished substrates were investigated under carburizing and oxidizing oxyacetylene flames, respectively, at the same time the multilayer coating ablated under oxidizing flames. Multilayer coating was a polycrystalline phase with the preferential (220) orientation. Monolayer on the unpolished substrate had fine coarse grains and some small microcracks were present. Multilayer consisted of columnar grains with some voids between the grains boundaries. The formation of a WIr phase in the as-deposited multilayer was attributed to high deposition temperature. The monolayer could endure high temperature up to 1800 °C in carburizing flame. The substrates could be protected more effectively by multilayer than monolayer at 2000- 2200 °C in oxidizing flame.

  8. Magnetic and Structural Phases of Monolayer 02 on Graphite

    DEFF Research Database (Denmark)

    McTague, J. P.; Nielsen, Mourits


    Neutron diffraction studies of O2 thin films physisorbed on the basal plane of graphite show three distinct two-dimensional crystalline phases, all incommensurate with the substrate lattice. The low-temperature monolayer phase has a distorted triangular structure analogous to the closest-packed p......Neutron diffraction studies of O2 thin films physisorbed on the basal plane of graphite show three distinct two-dimensional crystalline phases, all incommensurate with the substrate lattice. The low-temperature monolayer phase has a distorted triangular structure analogous to the closest...

  9. Phase equilibria in model surfactants forming Langmuir monolayers. (United States)

    Ramírez, E; Santana, A; Cruz, A; López, G E


    The study of Langmuir monolayers has generated the attention of researchers because of their unique properties and their not well understood phase equilibrium. These monolayers exhibit interesting phase diagrams where the unusual liquid-liquid equilibrium can be observed for a single component monolayer. Monte Carlo computer simulations in the virtual Gibbs ensemble were used to obtain the phase diagram of Langmuir monolayers. The liquid-vapor and liquid-liquid phase equilibria were considered by constructing the Cailletet-Mathias phase diagrams. By using the Ising model and the rectilinear approximations the identification of the critical properties for both equilibria was determined. These critical parameters were calculated as a function of the strength of the interaction between the surfactant molecules and the aqueous subphase. As a result, we have identified the coexistence between a liquid expanded state (LES)-vapor and the liquid condensed state-LES, in agreement with experimental and theoretical evidence in the literature. We obtained a clear separation of phases and a strong dependence on the strength of the solvent used. Namely, as the interaction between the solvent and the head of the surfactant increases, the critical properties also increase. Equilibrium states were characterized by computing thermodynamic quantities as a function of temperature and solvent strength.

  10. Evidence for the propagation of 2D pressure pulses in lipid monolayers near the phase transition

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F


    The existence and propagation of acoustic pressure pulses on lipid monolayers at the air/water-interfaces are directly observed by simple mechanical detection. The pulses are excited by small amounts of solvents added to the monolayer from the air phase. Employing a deliberate control of the lipid interface compressibility k, we can show that the pulses propagate at velocities, which are precisely reflecting the nonlinear behavior of the interface. This is manifested by a pronounced minimum of the sound velocity in the monolayer phase transition regime, while ranging up to 1.5 m/s at high lateral pressures. Motivated by the ubiquitous presence of lipid interfaces in biology, we propose the demonstrated sound propagation as an efficient and fast way of communication and protein modulation along nerves, between cells and biological units being controlled by the physical state of the interfaces.

  11. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics. (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio


    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  12. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases. (United States)

    Vollhardt, D


    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction.

  13. Phase diagram for ortho-para-hydrogen monolayers

    CERN Document Server

    Sullivan, N S


    The phase diagram for orientational ordering of hydrogen monolayers on graphite and boron nitride is revised in view of current theory and experimental observations from nuclear magnetic resonance (NMR) studies recently reported for ortho-H sub 2 concentrations 0.35 <= c <= 0.92 and temperatures 0.14 <= T <= 1.80 K. The characteristic interaction coupling GAMMA sub 0 = 0.50 +- 0.03 K and the crystalline field amplitude V sub 0 = 0.70 +- 0.10 K are derived from experimental data, and distinct types of the local orientationally ordered structures are analysed using a proposed model for site-diluted uniaxial quadrupoles on a triangular plane lattice of hexagonal symmetry. The long-range periodic pinwheel structure and the short-range quadrupolar glass (QG) phase are stable above the 2D site-percolation limit, c sub p = 0.72, and for 0.48 < c < c sub p , respectively, where quadrupolar-order effects dominate. At very low T, the QG phase shows instability with respect to local dipole-like polariz...

  14. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong


    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  15. Topological phase diagrams of bulk and monolayer TiS2-x Tex. (United States)

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlögl, Udo


    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS(2-x) Te(x) are established. Whereas bulk TiS(2-x) Te(x) shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS(2-x) Te(x) is a unique system for studying topological phases in three and two dimensions simultaneously.

  16. Gate induced monolayer behavior in twisted bilayer black phosphorus (United States)

    Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz


    Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a  ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.

  17. Inter-domain dipolar repulsion in lipid monolayers with phase coexistence

    CERN Document Server

    Fiori, Elena Rufeil; Banchio, Adolfo J


    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in a long-range ordered phase state dispersed in a continuous, disordered phase. Because of the difference in surface densities the domains possess an excess dipolar density with respect to the surrounding liquid phase. In this work we propose an alternative method to measure the dipolar repulsion for neutral lipid monolayers. The procedure is based on the comparison of the radial distribution function, g(r), from experiments and Brownian dynamic (BD) simulations. The domains were modeled as disks with surface dipolar density, whose strength was varied to best describe the experimentally determined monolayer structure. For comparison, the point dipole approximation was also studied. As an example, we applied the method for mixed monolayers with different proportions of distearoylphosphatidylcholine (DSPC) and dimyristoylphosphatidylcholine (DMPC) and obtained the excess dipolar density, whic...

  18. Electron microscopic observation of LE/LC phase transition in dipalmitoyl phosphatidylcholine monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, R.D.; Fereshtehkhou, S.; Ovalle, R.


    The monolayer structure of L-..cap alpha..-dipalmitoyl phosphatidylcholine (DPPC) at the air/water interface was examined using improved electron microscopic techniques. The DPPC monolayer is homogeneous in both the liquid-expanded (LE) and liquid-condensed (LC) states. In the intermediate LE/LC region, however, the monolayer is nonhomogeneous and biphasic. The results of two coexisting phases are consistent with the interpretation of a first-order phase transition occurring between the LE and LC states in monomolecular films. 20 references, 2 figures.

  19. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. (United States)

    Maloney, K M; Grainger, D W


    A series of ternary mixed monolayers containing varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and equimolar additions of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LYSO-PC) and palmitic acid (PA) were studied at the air-water interface. These mixed monolayers were used to model phospholipid biomembrane interfaces resulting from phospholipase A2 (PLA2) hydrolysis. Recent work [D.W. Grainger A. Reichert, H. Ringsdorf and C. Salesse (1989) Biochim. Biophys. Acta. 1023, 365-379] has shown that PLA2 hydrolysis of pure phospholipid monolayers results in formation of large PLA2 domains at the air-water interface. These domains are proposed to result from PLA2 adsorption to phase separated regions in the hydrolyzed monolayer. To elucidate the phase behaviour in these monolayer systems, surface pressure-area isotherms were measured for the ternary mixtures on pure water and buffered subphases. Fluorescence microscopy at the air-water interface was used to image fluorescent probe-doped monolayer mixtures during isothermal compressions. A water-soluble cationic carbocyanine dye was used to probe the interfacial properties of the mixed monolayers. Isotherm data do not provide unambiguous evidence for either phase separation or ideal mixing of monolayer components. Fluorescence microscopy is more revealing, showing that lateral phase separation of microstructures containing palmitic acid occurred only when monolayer subphases contained Ca2+ ions at alkaline pH. At either low pH or on Ca(2+)-free subphases, phase separation was not observed.

  20. Surface Shear Viscosity and Phase Transitions of Monolayers at the Air-Water Interface (United States)

    Relini, A.; Ciuchi, F.; Rolandi, R.


    The canal method has been employed to measure the in-plane steady shear viscosity of monolayers of bolaform lipids extracted from the membrane of the thermophilic microorganism Sulfolobus solfataricus. Monolayers were formed with the polar lipid extract (PLE), which is a mixture of several bolaform lipids, each one endowed with two nonequivalent polar headgroups. Viscosities were obtained from the measured flows by using the equation introduced by Joly; this equation contains a semiempirical parameter A, which takes into account the monolayer-subphase mechanical coupling. Measuring the flows for two different substances (PLE and oleic acid) and channel widths, the monolayer viscosities and the parameter A were determined at the same time. The analysis of the viscosity data according to the free area model shows evidences of the molecular conformational changes matching monolayer phase transitions.

  1. Phase transition of lipid-like monolayer characterized by second harmonic generation

    Institute of Scientific and Technical Information of China (English)

    于安池; 常青; 赵新生; 周晴中; 李东; 黄岩谊; 程天蓉; 黄春辉


    Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.

  2. Removal of phase transfer agent leads to restricted dynamics of alkyl chains in monolayer protected clusters

    Indian Academy of Sciences (India)

    V R Rajeev Kumar; R Mukhopadhyay; T Pradeep


    The effect of phase transfer agent in the dynamics of monolayer protected gold nanoparticles has been investigated by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies. The experiments were performed with octadecane thiol and dodecane thiol protected gold nanoparticles. The materials prepared were characterized by UV-Visible spectroscopy, transmission electron microscopy and IR spectroscopy. Repeated purification of the monolayer protected gold clusters made the alkyl chains defect-free. Such effects are reflected in the infrared spectra. Interdigitation of the monolayers that followed the purification leads to alkyl chains with limited mobility. This was reflected in 13C and 1H NMR linewidths. The NMR measurements indicate that the removal of phase transfer agent affects the dynamics of isolated clusters and those with interdigitated monolayers in different ways.

  3. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun, E-mail: [Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Guo, Yinsheng [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Mi, Zetian [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 0E9 (Canada)


    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX{sub 2} (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

  4. Structural Properties and Phase Transition of Na Adsorption on Monolayer MoS2. (United States)

    He, Hai; Lu, Pengfei; Wu, Liyuan; Zhang, Chunfang; Song, Yuxin; Guan, Pengfei; Wang, Shumin


    First-principles calculations are performed to investigate the structural stability of Na adsorption on 1H and 1T phases of monolayer MoS2. Our results demonstrate that it is likely to make the stability of distorted 1T phase of MoS2 over the 1H phase through adsorption of Na atoms. The type of distortion depends on the concentration of adsorbed Na atoms and changes from zigzag-like to diamond-like with the increasing of adsorbed Na atom concentrations. Our calculations show that the phase transition from 1H-MoS2 to 1T-MoS2 can be obtained by Na adsorption. We also calculate the electrochemical properties of Na adsorption on MoS2 monolayer. These results indicate that MoS2 is one of potential negative electrodes for Na-ion batteries.

  5. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of ~90% of lipid with 10% integrated proteins. Among its lipid compounds, di- palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). No other lipid but DPPC was so far reported to be compressible to very high surface pressure (~70mN/m) before its monolayer collapsed. Its liquid......-expanded/liquid-condensed (LE/LC) phase transition at ~10mN/m is well known. Here we present results from Langmuir isotherm measurements that evidence a so far not documented second phase transition at elevated surface pressure Π (~50mN/m). The varying lateral structures of the monolayer at 8mN/m, 20mN/m, 30mN/m, 40mN/m, 50m...

  6. Improved aging performance of vapor phase deposited hydrophobic self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gnanappa, Arun Kumar, E-mail: [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Institute of Microelectronics, NCSR Demokritos, Athens (Greece); O' Murchu, Cian; Slattery, Orla; Peters, Frank [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); O' Hara, Tony [Memsstar Technology (registered) , Starlaw Park, Starlaw Road, Livingston (United Kingdom); Aszalos-Kiss, Balazs; Tofail, Syed A.M. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)


    A hydrophobic self-assembled monolayer (SAM) of fluoro-octyl-trichloro-silane (FOTS) was deposited on silicon using a vapor phase technique. The aging of the hydrophobic layer was examined using water contact angle measurements. It has been found that while such monolayer films suffer from a loss of hydrophobicity with time, pre-immersion nitrogen annealing can significantly improve the aging characteristics of these monolayers. The effect of nitrogen annealing on the improved aging properties of SAM coatings has been investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The hydrolytic stability and the effect of nitrogen annealing were studied by morphological evolution during immersion. A spontaneous formation of silane mounds on the surface of the monolayers was found by AFM. These mounds have been irreversibly transformed from initially uniform hydrophobic surface layers. It is highly probable that the compliance of these mounds can reasonably allow hydrophilic sites to be located around the mounds. Interestingly, the density of these mounds formation is very less on the annealed samples. XPS reveals a higher level of coverage by the N{sub 2}-annealed film due to agglomeration. A relative abundance of CF{sub 3} and CF{sub 2} moieties in the annealed film may explain the enhancement of the hydrophobicity as revealed by higher level of water contact angle. This hydrophobicity was found to be significantly stable in water. This novel finding explains the improved hydrophobic stability of FOTS monolayers as primarily a morpho-chemical effect that originates from the densification of the monolayers upon annealing.

  7. Nanopatterns by phase separation of patterned mixed polymer monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Dale L; Frischknecht, Amalie


    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  8. Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase. (United States)

    Wang, Yue; Li, Xiaoming; Sreejith, Sivaramapanicker; Cao, Fei; Wang, Zeng; Stuparu, Mihaiela Corina; Zeng, Haibo; Sun, Handong


    Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm(-2) ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

  9. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System (United States)

    Yang, Guang; Hallinan, Daniel T.


    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties.

  10. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System (United States)

    Yang, Guang; Hallinan, Daniel T.


    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  11. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun


    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  12. Phase behavior of hard particles

    NARCIS (Netherlands)

    Duijneveldt, J.S. van; Lekkerkerker, H.N.W.


    The phase behavior of hard particles and mixtures thereof is reviewed. Special attention is given to a lattice model consisting of hard hexagons and points on a triangular lattice. This model appears to have two disordered phases and an ordered phase.

  13. Phenomenological Modeling for Langmuir Monolayers (United States)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  14. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface. (United States)

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John


    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  15. Heterogeneous nanotribological response of polymorphic self-assembled monolayers arising from domain and phase dependent friction. (United States)

    Paradinas, Markos; Munuera, Carmen; Silien, Christophe; Buck, Manfred; Ocal, Carmen


    Micro-/nanoelectromechanical systems demand robust ultrathin films for lubrication. As they can drastically modify the frictional properties of surfaces, few nanometers thick self-assembled monolayers (SAMs) constitute accepted candidates as boundary lubricants. Their high stability and easy preparation make them attractive also for low cost applications. Given their high order, organosulfur SAMs have been archetypal systems for structural investigations, but few efforts have been devoted to analyze the influence of lateral inhomogeneities on their surface properties. The impact on the frictional response of the surface due to the existence of crystalline domains with lateral dimension in the sub-micrometer range is considered here. To this end, two polymorphic structures of self-assembled monolayers of ω-(4'-methylbiphenyl-4-yl) butane-1-thiol coexisting on Au(111) are investigated by scanning tunneling and force microscopy. Described by rectangular 5√5 × 3 (α-phase) and oblique 6√3 × 2√3 (β-phase) unit cells, they exhibit pronouncedly different frictional responses. The lateral nano-tribological heterogeneity of the surface is further influenced by the azimuthal orientation dependence of friction for each phase. In particular, this phenomenon is exploited in the less densely packed β-phase for which the separate analysis of forward and backward lateral force scans is used to differentiate domains rotated 180°. The results demonstrate the level of structural control required in the design of SAMs for nano-tribology applications.

  16. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers (United States)

    Kosaka, Priscila M.; González, Sheila; Domínguez, Carmen M.; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier


    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.

  17. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan


    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  18. Synthesis and Monolayer Behaviors of Succinic Acid-Type Gemini Surfactants Containing Semifluoroalkyl Groups. (United States)

    Kawase, Tokuzo; Nagase, Youhei; Oida, Tatsuo


    In this work, novel succinic acid-type gemini surfactants containing semifluoroalkyl groups, dl- and meso-2,3-bis[Rf-(CH2)n]-succinic acids (Rf = C4F9, C6F13, C8F17; n = 2, 9), were successfully synthesized, and the effects of Rf, methylene chain length (n), and stereochemistry on their monolayer behaviors were studied. Critical micelle concentrations (CMC) of dl- and meso-2,3-bis[C4F9(CH2)9]-succinic acids were one order of magnitude smaller than that of the corresponding 1+1 type surfactant, C4F9(CH2)9COOH. From surface pressure-area (π-A) measurements, the lift-off areas of the geminis were found to decrease in the order C4F9 ≥ C6F13 > C8F17, regardless of methylene chain length and stereochemistry. The zero-pressure molecular areas of the geminis were twice those of the corresponding 1+1 type surfactants. Based on Gibbs compression modulus analysis, it was clarified that 2,3-bis[C8F17(CH2)n]-succinic gemini with short methylene chains (n = 2) would form more rigid monolayers than those having long methylene chains (n = 9). Unlike for 2,3-bis(alkyl)-succinic acids, the effects of stereochemistry on the monolayer behavior of semifluoroalkylated geminis were small.

  19. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface. (United States)

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N


    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  20. Guided mode extraction in monolayer colloidal crystals based on the phase variation of reflection and transmission coefficients (United States)

    Nekuee, Seyed Amir Hossein; Akbari, Mahmood; Khavasi, Amin


    An accurate and fast method for guided modes extraction in monolayer colloidal crystals and their inverse replicas is presented. These three-dimensional structures are composed of a monolayer of spherical particles that can easily and simply be prepared by self-assembly method in close packed hexagonal lattices. In this work, we describe how the guided modes, even or odd modes and light cone boundary can be easily determined using phase variations of reflection and transmission coefficients. These coefficients are quickly calculated by Fourier modal method. The band structures are obtained for a monolayer of polystyrene particles and two-dimensional TiO2 inverse opal by this proposed method.

  1. Low-density phases of 3He monolayers adsorbed on graphite (United States)

    Ruggeri, Michele; Vitali, Ettore; Galli, Davide Emilio; Boninsegni, Massimo; Moroni, Saverio


    Quantum Monte Carlo simulations at zero temperature of a 3He monolayer adsorbed on graphite, either clean or preplated with 4He, unexpectedly point to a gas-liquid phase transition at a very low areal density of the order of 0.01 Å-2 . This result stems from an essentially unbiased calculation of the ground-state energy for an infinite, defect-free substrate, which interacts with He atoms via a realistic potential, whereas the interaction between two He atoms includes two- and three-body terms. The sensitivity of the gas-liquid coexistence region on the model Hamiltonian employed is discussed.

  2. New Features on the Phase Transitions of Behenic Acid Monolayers as Unveiled by 2D-Compressibility Coefficient

    Institute of Scientific and Technical Information of China (English)

    GAO Wen-Ying; YU Zhi-Wu


    Phase behavior of Langmuir monolayers of behenic acid (BeA) has been examined by two-dimensional compressibility.It was found that phase transitions of BeA could be classified into two distinct categories,named Type-I and Type-II in this work.The former is typified by a positive peak on the compressibility-pressure (β-π)curve,indicating the transition can occur itself in a way of collapse from the initial structure.The latter is characterized by a dropping step on the β-π curve,implying that it cannot happen itself and the driven force is continuous compression.For BeA molecules,compressibility coefficients at the initial and final state are the same,βi=βf,for Type-I phase transition from L2 to L2' state,whilst βi>βf for Type-II phase transition from L.2' state to S state.

  3. Triblock polyphiles through click chemistry: self-assembled thermotropic cubic phases formed by micellar and monolayer vesicular aggregates. (United States)

    Tan, Xiaoping; Kong, Leiyang; Dai, Heng; Cheng, Xiaohong; Liu, Feng; Tschierske, Carsten


    Three series of triblock polyphiles consisting of a rigid 4-phenyl-1,2,3-triazole or 1,4-diphenyl-1,2,3-triazole core with three lipophilic and flexible alkoxyl chains at one end and a polar glycerol group at the opposite end were synthesized by copper-catalyzed azide-alkyne click reactions. Their mesophase behavior was studied by polarizing optical microscopy, differential scanning calorimetry, and XRD. Depending on alkyl chain length and core length, a transition from hexagonal columnar to Pm3n-type cubic phases was observed. In the cubic phases, the molecules are organized as spherical objects. Remarkably, compounds with a longer core unit have a higher tendency to form these cubic phases, and their stability is strongly enhanced over those of the compounds with a shorter core, despite longer cores having a smaller cone angle and therefore being expected to disfavor the formation of spherical objects. There is a large difference in the number of molecules involved in the spherical aggregates formed by compounds with long and short cores. Whereas the aggregates in the cubic phases of the compounds with short rod units are small and could be regarded as micellar, the long-core compounds form much larger aggregates which are regarded as a kind of monolayer vesicular aggregate.

  4. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface (United States)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang


    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  5. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail:, E-mail: [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail:, E-mail:; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)


    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  6. Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111). (United States)

    Teng, Jing; Zhang, Lixin; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Ebert, Philipp; Sakurai, T; Wu, Kehui


    The formation mechanism of monolayer Al(111)1x1 film on the Si(111) radical3x radical3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the radical3x radical3-Al substrate play important roles in the growth process. The growth of Al-1x1 islands is mediated by the formation and decomposition of SiAl(2) clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth.

  7. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior (United States)

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.


    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  8. Thermodynamic behavior of D-sphingosine/cholesterol monolayers and the topography observed by AFM

    Institute of Scientific and Technical Information of China (English)

    HAO ChangChun; SUN RunGuang; ZHANG Jing; CHANG YiGuang; NIU ChunLing


    Lipid rafts are of a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer behavior of mixed systems of D-sphingosine with choles-terol was investigated in terms of the mean surface area per molecule (Am), excess molecular area (△Aex), surface excess Gibbs energy (△Gex), interaction parameter (ω) activity coefficients (f1 and f2) as well as elasticity (Cs-1) of formed films. The deposited Langmuir-Blodgett (LB) monolayers were inves-tigated with atomic force microscopy (AFM). Thermodynamic analysis indicates △Aex and △Gex in the binary systems with negative deviations from the ideal behavior, suggesting attractive interaction be-tween molecules. The stability, elasticity and activity coefficients show a marked dependence on the mole faction of D-sphingosine. The results of observation by AFM show that the single D-sphingosine molecular film took on small granule structure. When mixing the D-sphingosine and cholesterol at dif-ferent ratios, the mixed films transform from the chains structure to larger slice and net coexisting structure with the increasing of the cholesterol content. In the end, pure cholesterol forms more ag-gregated structure. AFM experiments effectively support the above findings and interpretation.

  9. Thermodynamic behavior of D-sphingosine/cholesterol monolayers and the topography observed by AFM

    Institute of Scientific and Technical Information of China (English)


    Lipid rafts are of a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer behavior of mixed systems of D-sphingosine with choles-terol was investigated in terms of the mean surface area per molecule(Am),excess molecular area(Aex),surface excess Gibbs energy(Gex),interaction parameter(ω),activity coefficients(1 and 2) as well as elasticity(Cs1) of formed films.The deposited Langmuir-Blodgett(LB) monolayers were inves-tigated with atomic force microscopy(AFM).Thermodynamic analysis indicates Aex and Gex in the binary systems with negative deviations from the ideal behavior,suggesting attractive interaction be-tween molecules.The stability,elasticity and activity coefficients show a marked dependence on the mole faction of D-sphingosine.The results of observation by AFM show that the single D-sphingosine molecular film took on small granule structure.When mixing the D-sphingosine and cholesterol at dif-ferent ratios,the mixed films transform from the chains structure to larger slice and net coexisting structure with the increasing of the cholesterol content.In the end,pure cholesterol forms more ag-gregated structure.AFM experiments effectively support the above findings and interpretation.

  10. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.


    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  11. Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers. (United States)

    Valles-Pelarda, Marta; Hames, Bruno Clasen; García-Benito, Inés; Almora, Osbel; Molina-Ontoria, Agustin; Sánchez, Rafael S; Garcia-Belmonte, Germà; Martín, Nazario; Mora-Sero, Ivan


    The use of self-assembled monolayers (SAMs) of fullerene derivatives reduces the hysteresis of perovskite solar cells (PSCs). We have investigated three different fullerene derivatives observing a decrease on hysteresis for all the cases. Several processes can contribute to the hysteresis behavior on PSCs. We have determined that the reduced hysteresis observed for devices with SAMs is produced by a decrease of the capacitive hysteresis. In addition, with an appropriated functionalization, SAMs can increase photocurrent even when no electron selective contact (ESC) is present and a SAM is deposited just on top of the transparent conductive oxide. Appropriated functionalization of the fullerene derivative, as introducing -CN groups, can enhance cell performance and reduce hysteresis. This work paves the way for a future enhancement of PSCs by a tailored design of the fullerene molecules that could actuate as an ESC by themselves.

  12. Water-binding phospholipid nanodomains and phase-separated diacylglycerol nanodomains regulate enzyme reactions in lipid monolayers. (United States)

    Nagashima, Teruyoshi; Uematsu, Shogo


    Phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) nanodomains covered with bound water as well as diacylglycerol 1-palmitoyl-2-oleoyl-sn-glycerol (POG) nanodomains separated from a lipid membrane were studied, using monolayer surfaces of POPC hydrolyzed by phospholipase C (PLC). The investigation was based on the analysis of compression isotherms and on atomic force microscope (AFM) observations of Langmuir-Blodgett (LB) films and Langmuir-Schaefer (LS) films. The results included reaction rate constants obtained by kinetic analysis of phosphocholine at surface pressures from 0.1 to 31 mN/m and determined by a luminol-enhanced chemiluminescence method. Monolayer elastic modulus values and fluorescence microscopic images confirmed that hydrolysis by PLC progressed in the intermediate monolayer between a liquid-expanded (L1) film and a liquid-condensed (L2) film at 2-17 mN/m. Furthermore, the intermediate film was confirmed to consist of L1 film and the POPC nanodomains in the L2 state are covered with bound water, conclusions based on the following AFM results: (1) nanodomains in POPC LS films were catalyzed by PLC, (2) POG nanodomains extended out from LB films of mixed POPC/POG 9/1 (mol/mol) monolayers, and (3) POPC LS films were covered with bound water, as indicated by cross-sectional analysis. At the optimal surface pressure of 10 mN/m, when POPC nanodomains (L2), with internal diameters of ∼75 nm, were hydrolyzed by PLC, they shrank down into pockets of the same size as those that appeared with POG. The resulting pocket sizes on LS films were in agreement with POG nanodomain sizes on LB films. This study demonstrated that PLC reacted with POPC nanodomains (L2) dispersed in L1/L2 mixed phase monolayers selectively and that POG nanodomains were phase-separated from the monolayer as hydrolysis proceeded.

  13. Line tension between coexisting phases in monolayers and bilayers of amphiphilic molecules (United States)

    Sriram, Indira; Schwartz, Daniel K.


    Phase coexistence is frequently observed in molecular monolayers and bilayers. The free energy per unit length of phase boundaries in these quasi-two-dimensional (2D) systems is known as line tension, and is directly analogous to surface tension in three dimensions. The existence of line tension implies the possibility of 2D capillary phenomena, a fundamentally intriguing possibility. Moreover, line tension has important implications with respect to the formation and stability of nm-scale features in thin films, ranging from lithographically-prepared molecular features in devices (e.g. sensor nanoarrays or molecular electronics) to signaling domains in biological membranes (i.e. lipid rafts). It has been proposed that such nm-scale domains may have important ramifications for budding and/or fusion in bilayer membranes. Various methods have been developed to measure line tension, including observations of domain boundary fluctuations, relaxation dynamics, nucleation rates, and others. The competition between line tension and long-range forces (e.g. electrostatic repulsion or curvature elasticity) can lead to a preferred equilibrium domain size, domain shape instabilities, or even unusual domain morphologies (e.g. stripe phases) near critical points. Since liquid crystalline mesophases are ubiquitous in 2D, it is not unusual for the line tension to be anisotropic; this can lead to non-circular domains exhibiting kinks and/or chirality. Recent efforts have been aimed at controlling line tension by the addition of line-active compounds that are analogous to surfactants potentially leading to the observation of new 2D “capillary” phenomena.

  14. [Electrochemical behavior of dopamine at dodecyl benzenesulfonate self-assembled monolayers modified electrode and its application]. (United States)

    Han, Xiao-xia; Gao, Zuo-ning


    Sodium dodecyl benzenesulfonate (SDBS) self-assembled monolayers in situ modified electrode (SDBS/CPE) was prepared. The electrochemical behaviors of dopamine (DA) on SDBS/CPE were studied. Electrochemical behaviors and kinetic parameters of DA were investigated at SDBS/CPE by cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC). The changes of the oxidation peak currents with concentration of DA were examined by square wave voltametry (SWV). The difference of peak potential at CPB/CPE was less than 149 mV comparing with that at CPE. The charge transfer coefficient alpha, diffusion coefficient D and the apparent reaction rate constant k(f) are 0.61, 3.6 x 10(-5) cm2 x s(-1) and 4.2 x 10(-3) cm x s(-1), respectively. The oxidation peak currents of DA versus its concentration have a good linear relationship in the concentration range of 2.0 x 10(-6)-1.0 x 10(-3) mol x L(-1) with the correlation coefficient of 0.9979 and the detection limit of 9.0 x 10(-7) mol x L(-1) by square wave voltammetry (SWV) response. The modified electrode showed an excellent electrocatalytic activity for the DA electrochemical oxidation. The method can be applied in the determination of DA in injection samples with the satisfactory results.

  15. Multiphase, multicomponent phase behavior prediction (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  16. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)


    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electron transfer behavior at polyoxometalate-adsorbed alkanethiol self-assembled monolayers (United States)

    Chu, Yeonyi; Kim, Jandee; Choi, Suhee; Rhee, Choong Kyun; Kim, Jongwon


    The interaction between polyoxometalate (POM) anions, SiMo 12O 404-, and a self-assembled monolayer (SAM) of dodecanethiol (DT) on Au surfaces was investigated using electrochemical methods, X-ray photoelectron spectroscopy, and scanning probe microscopy. The SiMo 12O 404- ions adsorb on the SAM of DT on Au to form a composite organic-inorganic hybrid layer. The adsorbed SiMo 12O 404- ion on the SAM layer shows its characteristic redox waves with an electron transfer rate slower than that on a bare Au electrode. The electron transfer behavior at DT-SAM could be regulated by the adsorption of SiMo 12O 404- depending on the charge of the investigated electroactive species: a significant increase toward a positively charged Ru(NH 3) 63+ ion, a moderate increase toward a neutral 1,1'-ferrocenedimethanol molecule and a slight decrease toward a negatively charged Fe(CN) 63- ion. The effect of the chain length of alkanethiols on the adsorption of SiMo 12O 404- ion was also investigated: as the chain length decreases, the amount of the adsorbed POM increases and the electron transfer rate through the composite layers increases. The nature of SiMo 12O 404- ions adsorbed on the SAMs of alkanethiols on Au is discussed in detail.

  18. Electrochemical Behavior and Determination of Trifluoperazine at Decanethiol Self- Assembled Monolayer Modified Gold Electrodes

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; YAN Quan-ping; ZENG Bai-zhao


    The electrochemical behavior of trifluoperazine at decanethiol self-assembled monolayer (SAM) modified gold electrodes (i. e. C10 H21 SH/Au) has been studied. Trifluoperazine can effectively accumulate on C10 H21 SH/Au elec trodes and generate a sensitive anodic peak at about 0. 63 V (vs. SCE) in 0.05 mol/L pH 9.4 Na2B4O7 buffer solution.Under the selected conditions, the anodic peak current was linear to trifluoperazine concentration in the range of 5.0 ×10 7-3. 0× 10-5 mol/L with correlation coefficient of 0. 997,the detection limit was 3.0 × 10-8 mol/L. This method was applied to the determination of trifluoperazine in drug samples and the recovery was 97.3%-104.0%. It was found that sodium dodecyl sulfate (SDS) could make the anodic peak current increase. In the presence of SDS, the peak at about 0.63V turned into two peaks, resulting from the change of the electrochemical mechanism.

  19. Phase Behavior and Implications for Travel time Observables (PHASE 2) (United States)


    Phase behavior and implications for travel - time observables (PHASE-2) Emmanuel Skarsoulis Foundation for Research and Technology Hellas...perturbation behavior of travel time observables due to sound-speed perturbations. OBJECTIVES The objective is to study the behavior of the wave-theoretic...for this work came from the results of previous studies, supported by ONR, suggesting that the perturbation behavior of different travel - time

  20. Phase behaviour in binary mixed Langmuir-Blodgett monolayers of triglycerides

    NARCIS (Netherlands)

    Zdravkova, A.N.; van der Eerden, J.P.J.M.


    Binary mixed monolayers of the triglycerides (TAGs)-tripalmitin (PPP), tristearin (SSS) and triarachidin (AAA) at the air–water interface are investigated with the Langmuir method. Langmuir–Blodgett (LB) layers obtained by deposition on mica are investigated by Atomic Force Microscopy. Combining

  1. Binary phase diagram of monolayers of simple 1,2-diol derivatives

    DEFF Research Database (Denmark)

    Wolf, C. De; Bringezu, F.; Brezesinski, G.;


    The miscibility properties of monolayers of two 1,2-diol derivatives, 1-palmitoylglycerol (1) and 1-hexadecylglycerol (2), have been studied at the air-water interface using grazing incidence X-ray diffraction (GIXD). While, at all pressures investigated, compound (I) exhibits only a NN...

  2. Phase transitions in polymer monolayers: Application of the Clapeyron equation to PEO in PPO-PEO Langmuir films. (United States)

    Deschênes, Louise; Lyklema, Johannes; Danis, Claude; Saint-Germain, François


    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature. Once this is validated, the Clapeyron law allows us to obtain the entropy and enthalpy differences between two coexisting phases. In turn, this information can be used to obtain insight into the conformational properties of the films and changes therein. This approach has a wide potential for obtaining additional information on polymer adsorption at interfaces and the structure of their monolayer films. The 2D Clapeyron law was applied emphasizing polyethylene oxide (PEO) in polypropylene oxide (PPO)-PEO block copolymers, based on new well-defined data for their Langmuir films. Values for enthalpy per monomer of 0.12 and 0.23 kT were obtained for the phase transition of two different PEO chains (Neo of 2295 and 409, respectively). This enthalpy was estimated to correspond to 1.2±0.4 kT per EO monomer present in train conformation at the air/water interface.

  3. Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of Cis/Trans Stereochemistry on Condensed Phase and Monolayer Structure. (United States)

    Sorrenti, Alessandro; Illa, Ona; Ortuño, Rosa M; Pons, Ramon


    New diastereomeric nonionic amphiphiles, cis- and trans-1, based on an optically pure cyclobutane β-amino ester moiety have been investigated to gain insight into the influence exerted by cis/trans stereochemistry and stereochemical constraints on the physicochemical behavior, molecular organization, and morphology of their Langmuir monolayers and dry solid states. All these features are relevant to the rational design of functional materials. trans-1 showed a higher thermal stability than cis-1. For the latter, a higher fluidity of its monolayers was observed when compared with the films formed by trans-1 whose BAM images revealed the formation of condensed phase domains with a dendritic shape, which are chiral, and all of them feature the same chiral sign. Although the formation of LC phase domains was not observed by BAM for cis-1, compact dendritic crystals floating on a fluid subphase were observed beyond the collapse, which are attributable to multilayered 3D structures. These differences can be explained by the formation of hydrogen bonds between the amide groups of consecutive molecules allowing the formation of extended chains for trans-1 giving ordered arrangements. However, for cis-1, this alignment coexists with another one that allows the simultaneous formation of two hydrogen bonds between the amide and the ester groups of adjacent molecules. In addition, the propensity to form intramolecular hydrogen bonds must be considered to justify the formation of different patterns of hydrogen bonding and, consequently, the formation of less ordered phases. Those characteristics are congruent also with the results obtained from SAXS-WAXS experiments which suggest a more bent configuration for cis-1 than for trans-1.

  4. Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. (United States)

    Li, Hongxing; Huang, Min; Cao, Gengyu


    Sulfur vacancy (SV) is one of the most typical defects in two-dimensional monolayer MoS2, leading to reactive sites. We presented a systematic study of the adsorption behaviors of gas molecules, CO2, N2, H2O, CO, NH3, NO, O2, H2 and NO2, on monolayer MoS2 with single SV by first-principles calculations. It was found that CO2, N2 and H2O molecules physisorbed at the proximity of single SV. Our adsorption energy calculations and charge transfer analysis showed that the interactions between CO2, N2 and H2O molecules and defective MoS2 are stronger than the cases of CO2, N2 and H2O molecules adsorbed on pristine MoS2, respectively. The defective MoS2 based gas sensors may be more sensitive to CO2, N2 and H2O molecules than pristine MoS2 based ones. CO, NO, O2 and NH3 molecules were found to chemisorb at the S vacancy site and thus modify the electronic properties of defective monolayer MoS2. Magnetism was induced upon adsorption of NO molecules and the defective states induced by S vacancy can be completely removed upon adsorption of O2 molecules, which may provide some helpful information for designing new MoS2 based nanoelectronic devices in future. The H2 and NO2 molecules were found to dissociate at S vacancy. The dissociation of NO2 molecules resulted in O atoms located at the S vacancy site and NO molecules physisorbed on O-doped MoS2. The calculated results showed that NO2 molecules can help heal the S vacancy of the MoS2 monolayer.

  5. A theoretical study of the electrical contact between metallic and semiconducting phases in monolayer MoS2 (United States)

    Paz, Wendel S.; Palacios, J. J.


    We present a theoretical study of the electrical contact between the two most common crystallographic phases of MoS2 monolayer crystals: the stable semiconducting 2H phase and the metastable metallic 1T phase. A density functional theory (DFT) study of the electronic structure of interface between the two phases shows a higher Schottky barrier for electrons than for holes for the undoped 2H phase. Charge transfer from the 1T to the 2H phase occurs, but, as expected for a one-dimensional contact, the generated dipole potential decays away from the interface and the naive Schottky-Mott band-alignment picture is recovered away from the interface. The decay length of the dipole potential turns out to be larger for the zigzag interface than for the armchair interface due to the different penetration of the edge states into the bulk. Tight-binding quantum transport calculations aided by the DFT results generically confirm a low contact resistance in the range of ≈200-400 Ωμm, as experimentally reported. Furthermore, the contact resistance is predicted to be smaller at the armchair interface for electron injection and, on the contrary, smaller for hole injection at the zigzag interface.

  6. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    DEFF Research Database (Denmark)

    Diama, A.; Matthies, B.; Herwig, K. W.;


    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our...... show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously...

  7. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack. (United States)

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen


    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium.

  8. Suppression of phase separation in $(AlAs)_{2ML} (InAs)_{2ML}$ superlattices using $Al_{0.48}In_{0.52}$ As monolayer insertions

    CERN Document Server

    Lee, S R; Follstaedt, D M


    Al/sub 0.48/In/sub 0.52/As monolayers (ML) are inserted at the binary-compound interfaces of (AlAs)/sub 2/ /sub ML/(InAs)/sub 2/ /sub ML/ short-period superlattices (SPSs) during growth on (001) In P. The insertion of Al/sub 0.48/In/sub 0.52/As interlayers greater than 2 ML thick tends to suppress the phase separation that normally occurs during molecular beam epitaxy of the SPS. The degree of suppression is a sensitive function of both the monolayer-scale thickness, and the intraperiod growth sequence, of the interlayers in the SPS. Given this sensitivity to monolayer-scale variations in the surface-region composition, we propose that cyclical phase transition of the reconstructed surface initiates SPS decomposition. (21 refs).

  9. Structure and Phase Transitions of Monolayers of Intermediate-length n-alkanes on Graphite Studied by Neutron Diffraction and Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Taub, H. [University of Missouri, Columbia; Hansen, F.Y. [Technical University of Denmark; Diama, Amand [National University of the Ivory Coast; Matthies, Blake [Goodyear Tire and Rubber Company, The; Criswell, Leah [University of Missouri, Columbia; Mo, Haiding [Advanced Optowave Corporation; Bai, M [University of Missouri, Columbia; Herwig, Kenneth W [ORNL


    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a 'smectic' phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  10. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation. (United States)

    Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H


    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  11. Molecular packing density of a self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane by a vapor phase process. (United States)

    Sugimura, Hiroyuki; Moriguchi, Takahiro; Kanda, Masao; Sonobayashi, Yutaka; Nishimura, Hirohito M; Ichii, Takashi; Murase, Kuniaki; Kazama, Shingo


    The molecular density of an aminosilane self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPS) by a vapor phase method has been estimated to be about 3 AEAPS molecules per nm(2) based on chemical labeling, optical absorption spectroscopy and X-ray photoelectron spectroscopy.

  12. Molecular packing density of a self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane by a vapor phase process.



    The molecular density of an aminosilane self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPS) by a vapor phase method has been estimated to be about 3 AEAPS molecules per nm(2) based on chemical labeling, optical absorption spectroscopy and X-ray photoelectron spectroscopy.

  13. Phase behaviour of self-assembled monolayers controlled by tuning physisorbed and chemisorbed states: A lattice-model view. (United States)

    Fortuna, Sara; Cheung, David L; Johnston, Karen


    The self-assembly of molecules on surfaces into 2D structures is important for the bottom-up fabrication of functional nanomaterials, and the self-assembled structure depends on the interplay between molecule-molecule interactions and molecule-surface interactions. Halogenated benzene derivatives on platinum have been shown to have two distinct adsorption states: a physisorbed state and a chemisorbed state, and the interplay between the two can be expected to have a profound effect on the self-assembly and phase behaviour of these systems. We developed a lattice model that explicitly includes both adsorption states, with representative interactions parameterised using density functional theory calculations. This model was used in Monte Carlo simulations to investigate pattern formation of hexahalogenated benzene molecules on the platinum surface. Molecules that prefer the physisorbed state were found to self-assemble with ease, depending on the interactions between physisorbed molecules. In contrast, molecules that preferentially chemisorb tend to get arrested in disordered phases. However, changing the interactions between chemisorbed and physisorbed molecules affects the phase behaviour. We propose functionalising molecules in order to tune their adsorption states, as an innovative way to control monolayer structure, leading to a promising avenue for directed assembly of novel 2D structures.

  14. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shen, Jiancang; Pan, Lijia; Shi, Yi, E-mail: [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210093 (China)


    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  15. Decoupling of crystalline and conformational degrees of freedom in lipid monolayers

    DEFF Research Database (Denmark)

    Ipsen, John Hjorth; Mouritsen, Ole G.; Zuckermann, Martin J.


    by a liquid-conformationally ordered phase. This prediction is consistent with synchrotron x-ray experiments which show that the chain-ordering transition and the crystallization process need not take place at the same lateral pressure. A characterization is provided of the nonequilibrium effects and pattern-formation...... of the experimentally observed isotherms of lipid monolayer phase behavior. It is pointed out that cholesterol, which promotes lipid-chain conformational order, has a unique capacity of acting as a `crystal breaker' in the solid monolayer phases and therefore provides a molecular mechanism for decoupling crystalline...... and conformational order in lipid monolayers containing cholesterol. The phase diagram of mixed cholesterol–lipid monolayers is derived and discussed in relation to monolayer experiments. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  16. Ab initio calculations for structural, electronic and magnetic behaviors of nitrogenized monolayer graphene decorated with 5d transition metal atoms (United States)

    Rafique, Muhammad; Shuai, Yong; Xu, Meng; Zhang, Guohua; Guo, Yanming


    Graphene-based magnetic materials have revealed great potential for developing high-performance electronic units at sub-nanometer such as spintronic data storage devices. However, a significant ferromagnetism behavior and ample band gap in the electronic structure of graphene is required before it can be used for actual engineering applications. Based on first-principles calculations, here we demonstrate the structural, electronic and magnetic behaviors of 5d transition metal (TM) atom-substituted nitrogenized monolayer graphene. We find that, during TMN(3)4 cluster-substitution, tight bonding occurs between impurity atoms and graphene with significant binding energies. Charge transfer occurs from graphene layer to the TMN(3)4 clusters. Interestingly, PtN3, TaN4 and ReN4 cluster-doped graphene structures exhibit dilute magnetic semiconductor behavior with 1.00 μB, 1.04 μB and 1.05 μB magnetic moments, respectively. While, OsN4 and PtN4 cluster-doped structures display nonmagnetic direct band gap semiconductor behavior. Remaining, TMN(3)4 cluster-doped graphene complexes exhibit half metal properties. Detailed analysis of density of states (DOS) plots indicate that d orbitals of TM atoms should be responsible for arising magnetic moments in graphene. Given results pave a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing TMN(3)4 cluster-doped graphene complexes.

  17. Manipulating interface states in monolayer-bilayer graphene planar junctions (United States)

    Zhao, Fang; Xu, Lei; Zhang, Jun


    We report on transport properties of monolayer-bilayer graphene planar junctions in a magnetic field. Due to its unique geometry, the edge and interface states can be independently manipulated by either interlayer potential or Zeeman field, and the conductance exhibits interesting quantized behaviors. In the hybrid graphene junction, the quantum Hall (QH) conductance is no longer antisymmetric with respect to the charge neutrality point. When the Zeeman field is considered, a quantum spin Hall (QSH) phase is found in the monolayer region while the weak-QSH phase stays in the bilayer region. In the presence of both interlayer potential and Zeeman field, the bilayer region hosts a QSH phase, whereas the monolayer region is still in a QH phase, leading to a spin-polarized current in the interface. In particular, the QSH phase remains robust against the disorder.

  18. Phase behavior of colloidal silica rods

    NARCIS (Netherlands)

    Kuijk, A.; Byelov, D.; Petukhov, A.V.; van Blaaderen, A.; Imhof, A.


    Recently, a novel colloidal hard-rod-like model system was developed which consists of silica rods [Kuijk et al., JACS, 2011, 133, 2346]. Here, we present a study of the phase behavior of these rods, for aspect ratios ranging from 3.7 to 8.0. By combining real-space confocal laser scanning microscop

  19. [Lunar phases as triggers for delinquent behavior?]. (United States)

    Knecht, Thomas


    For many centuries, mankind has been concerned about the potential impact that the moon may have on human behavior, especially delinquency. The author presents a case report, in which the delinquency of the offender seems to show a certain synchronisation with the lunar phases. Finally, the issue is discussed on the basis of today's scientific literature on this topic.

  20. Phase behavior and hydration of silk fibroin. (United States)

    Sohn, Sungkyun; Strey, Helmut H; Gido, Samuel P


    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.

  1. Morphology of self assembled monolayers using liquid phase reaction on silica and their effect on the morphology of adsorbed insulin (United States)

    Sharma, Indu; Pattanayek, Sudip K.; Aggarwal, Varsha; Ghosh, Subhasis


    The effect of roughness of two different categories of self-assembled monolayers (SAMs) with propyl amine and propyl groups respectively on the morphology of adsorbed insulin is observed. SAMs are obtained by liquid phase reaction of silica with organo silane coupling agents (SCA). The influence of the morphology and physical characteristics of the SAMs on the reaction time and concentration of the modifiers are explored. We have tested three SCA containing propyl amine with varying groups linked to Si present on it. In addition, we have used a silane coupling agent to prepare SAM of methyl head group. The approach of these molecules towards the surface depends on the head group and the groups linked to Si of the SCA. The morphology of the surfaces is analysed using power spectral density distribution (PSD), skewness, ellipsometry thickness and surface energy. Both chemical nature and physical morphology of the adsorbent influence the morphology of the adsorbed insulin. In general, a low number of aggregates of big size are formed on the surfaces obtained from low concentration of SAMs, while a higher number but of smaller size of aggregates are formed over surfaces obtained from 1% concentration of SAMs modifiers. The peak to valley ratio of the aggregates of insulin is strongly influenced by the size of grains of SCA over the adsorbent.

  2. Patterning silver nanocubes in monolayers using phase separated lipids as templates

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Nur; Prezgot, Daniel; Ianoul, Anatoli, E-mail: [Carleton University, Department of Chemistry (Canada)


    Strategies for assembling silver nanocubes (NCs) into distinct 2D patterns on Langmuir-Blodgett (LB) films are demonstrated using two different lipid mixtures as vehicles: (1) raft mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SPM), and cholesterol in different mole ratios (2:2:1 and 1:1:1) and (2) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) at a 1:3 mol ratio. Atomic force microscopy was employed to unveil the mechanisms of such pattern formation in the LB film. The results demonstrate that aggregation of NCs into round-like pattern is governed by preferential localization of NCs within the liquid condensed (LC) domains of DOPC/SPM/Cholesterol mixture. Cholesterol was found to govern the size and shape of the rounded islands. On the other hand, incorporation of NCs within the liquid expanded (LE) phase of DPPC/DLPC mixture produced linear-branched chains, oriented normal to the Langmuir film transfer direction. The as engineered patterns of silver NCs exhibited characteristic plasmonic signatures. Our results reveal the potential in assembling plasmonic metal nanoparticles into diverse patterns on solid substrates by exploiting their preferential localization either in LC or LE phase of appropriate lipid mixture in Langmuir film.

  3. Phase behavior of mixed submonolayer films of krypton and xenon on graphite (United States)

    Patrykiejew, A.; Sokołowski, S.


    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√{3}× √{3})R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  4. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains. (United States)

    Hao, Song; Yang, Bingchu; Gao, Yongli


    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices.

  5. Phase behavior of an amphiphilic fluid. (United States)

    Schoen, Martin; Giura, Stefano; Klapp, Sabine H L


    We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation dependence of the interactions consists of a contribution analogous to the interaction potential between a pair of "spins" in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature decaying as r-6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg "spins" both mean-field approximations generate three topologically different and generic types of phase diagrams that are observed in agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995)]. Whereas the dipolar contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the general topology of the DFT phase diagrams is confirmed.

  6. Investigation of Tribological Behavior of Lanthanum-Based Thin Films Deposited on Sulfonated Self-Assembled Monolayer

    Institute of Scientific and Technical Information of China (English)


    3-mercaptopropyl trimethoxysilane (MPTS) was prepared on glass substrate so as to form a two-dimensional self-assembled monolayer (SAM), and the terminal -SH group in the film was in situ oxidized to -SO3H group to confer good chemisorption ability to the film. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM, making use of the chemisorption ability of -SO3H group. Atomic force microscopy (AFM) and X-ray photoelectron spectrometry (XPS) and contact angle measurements were used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. Tribological experiment shows that the friction coefficient of glass substrate decreases from 0.8 to 0.08 after the rare earth (RE) self-assembled films (SAMs) are formed on its surface. And the RE self-assembled films have longer wear life (500 sliding passes). It is demonstrated that RE self-assembled film exhibits good wear-resistant property. The marked decrease in friction and the longer wear life of RE films are attributed to the excellent adhesion of the film to the substrate and to the special characteristics of the RE elements. The frictional behaviors of RE thin-films-coated silicon surface were sensitive to the applied load and the sliding velocity of the steel ball.

  7. Voltametric Behavior of Noradrenaline at 2-Mercaptoethanol Self-Assembled Monolayer Modified Gold Electrode and its Analytical Application

    Directory of Open Access Journals (Sweden)

    ShengFu Wang


    Full Text Available 2-Mercaptoethanol self-assembled monolayer (ME/Au SAMs was prepared on a gold electrode. The ME/Au SAMs was characterized by using ATR-FTIR and dynamic contact angle measurements. The electrochemical behaviors of noradrenaline (NE on the ME/Au SAMs were studied in BR buffer solution. The modified electrode accelerated electron transfer rate of the redox of NE and showed an excellent eletrocatalytic activity. The diffusion coefficient (D of NE was obtained to be 4.3×10-8 cm2 s-1. The catalytic current increased linearly with the concentration of NE in the range of 2.0×10-6 -1.0×10-3 M by square wave voltammetry response. The modified electrode could eliminate the interference of ascorbic acid (AA at 40-fold concentration of NE and could be satisfactorily used for the determination of NE in the drug injection.

  8. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS{sub 2} under tension via atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Khanh Q. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Spearot, Douglas E., E-mail: [Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)


    Atomistic simulation is used to study the structure and energy of defects in monolayer MoS{sub 2} and the role of defects on the mechanical properties of monolayer MoS{sub 2}. First, energy minimization is used to study the structure and energy of monosulfur vacancies positioned within the bottom S layer of the MoS{sub 2} lattice, and 60° symmetric tilt grain boundaries along the zigzag and armchair directions, with comparison to experimental observations and density functional theory calculations. Second, molecular dynamics simulations are used to subject suspended defect-containing MoS{sub 2} membranes to a state of multiaxial tension. A phase transformation is observed in the defect-containing membranes, similar to prior work in the literature. For monolayer MoS{sub 2} membranes with point defects, groups of monosulfur vacancies promote stress-concentration points, allowing failure to initiate away from the center of the membrane. For monolayer MoS{sub 2} membranes with grain boundaries, failure initiates at the grain boundary and it is found that the breaking force for the membrane is independent of grain boundary energy.

  9. Growth, stabilization and conversion of semi-metallic and semiconducting phases of MoTe2 monolayer by molecular-beam epitaxy



    Monolayer (ML) transition-metal dichalcogenides exist in different phases, such as the hexagonal (2H) and distorted octahedral or monoclinic (1T') phases. The different structures show vastly different properties. For example, the 2H MoTe2 ML is a direct-gap semiconductor while 1T' MoTe2 is a semi-metal. It has been suggested that the formation energies between 2H and 1T' MoTe2 differ very little, so there is a high chance to tune the structures of MoTe2 and thereby to bring in new applicatio...

  10. Effect of 3-Aminopropyltriethoxysilane Monolayer Self-Assembled Quartz Substrate on the Quality of Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Nanofilm. (United States)

    Choi, Byoungbok; Choi, Sangil; Sohn, Honglae; Kim, Sungsoo


    Polymer thin film coated on the delay line section of a surface acoustic wave (SAW) sensor has been a main focus in sensor industry to improve its sensitivity. In this study, for an effort to build a highly sensitive SAW sensor, a versatile conducting polymer, Poly(3,4-ethylenedioxythiophene) (PEDOT), has been vapor phase polymerized on 3-aminopropyltriethoxysilane (APS) monolayer self-assembled quartz substrate, which is a representative piezoelectric materials for SAW sensor. And then, the quality and electrical properties of the thin film were evaluated by several thin film analyzing tools such as contact angle analyzer, FE-SEM, optical microscope, adhesion test and 4 point probe. From the evaluation, it was discovered that PEDOT nanofilm is highly smooth and dense, and it is strongly adhered to the substrate particularly when the quartz surface was coated with APS monolayer. Such good quality PEDOT thin film could be a potential candidate for a base platform of highly sensitive SAW sensor devices.

  11. Molecular Modeling of Solid Fluid Phase Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Monson


    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  12. Thermodynamic and real-space structural evidence of a 2D critical point in phospholipid monolayers

    DEFF Research Database (Denmark)

    Nielsen, Lars K.; Bjørnholm, Thomas; Mouritsen, Ole G.


    The two-dimensional phase diagram of phospholipid monolayers at air-water interfaces has been constructed from Langmuir compression isotherms. The coexistence region between the solid and fluid phases of the monolayer ends at the critical temperature of the transition. The small-scale lateral...... structure of the monolayers has been imaged by atomic force microscopy in the nm to mu m range at distinct points in the phase diagram. The lateral structure is immobilized by transferring the monolayer from an air-water interface to a solid mica support using Langmuir-Blodgett techniques. A transfer...... a critical point. The critical behavior inferred from the thermodynamic as well as the structural data is found to be consistent with the 2D Ising universality class. Additional results are presented demonstrating the presence of striped phases and coexisting domains in binary mixtures....

  13. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, Priyanka; Sellmyer, D. J.; Skomski, Ralph [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sharma, Vinit [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Yu, Hongbin [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)


    The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX{sub 2}; X = S, Se, and Te) are investigated using density-functional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX{sub 2} monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications.

  14. Sitting Phase Monolayers of Polymerizable Phospholipids Create Dimensional, Molecular-Scale Wetting Control for Scalable Solution-Based Patterning of Layered Materials. (United States)

    Choong, Shi Wah; Russell, Shane R; Bang, Jae Jin; Patterson, Justin K; Claridge, Shelley A


    The use of dimensionally ordered ligands on layered materials to direct local electronic structure and interactions with the environment promises to streamline integration into nanostructured electronic, optoelectronic, sensing, and nanofluidic interfaces. Substantial progress has been made in using ligands to control substrate electronic structure. Conversely, using the exposed face of the ligand layer to structure wetting and binding interactions, particularly with scalable solution- or spray-processed materials, remains a significant challenge. However, nature routinely utilizes wetting control at scales from nanometer to micrometer to build interfaces of striking geometric precision and functional complexity, suggesting the possibility of leveraging similar control in synthetic materials. Here, we assemble striped "sitting" phases of polymerizable phospholipids on highly oriented pyrolytic graphite, producing a surface consisting of 1 nm wide hydrophilic stripes alternating with 5 nm wide hydrophobic stripes. Protruding, strongly wetting headgroup chemistries in these monolayers enable formation of rodlike wetted patterns with widths as little as ∼6 nm and lengths up to 100 nm from high-surface-tension liquids (aqueous solutions of glycerol) commonly utilized to assess interfacial wetting properties at larger length scales. In contrast, commonly used lying-down phases of diynoic acids with in-plane headgroups do not promote droplet sticking or directional spreading. These results point to a broadly applicable strategy for achieving high-resolution solution-based patterning on layered materials, utilizing nanometer-wide patterns of protruding, charged functional groups in a noncovalent monolayer to define pattern edges.

  15. Positional order in Langmuir monolayers

    DEFF Research Database (Denmark)

    Kaganer, V.M.; Brezesinski, G.; Möhwald, H.;


    We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered rectangu......We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered...

  16. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T


    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  17. Modeling Stimuli-Responsive Nanoparticle Monolayer (United States)

    Yong, Xin


    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  18. Phase Behavior of Rare Earth Manganites

    Institute of Scientific and Technical Information of China (English)

    Naoki Kamegashira; Hiromi Nakano; Gang Chen; Jian Meng


    Among complex oxides containing rare earth and manganese BaLn2Mn2O7 (Ln=rare earth) with the layered perovskite type and Ln2(Mn, M)O7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn2Mn2O7 there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P42/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln2Mn2-xMxO7 (M=Ta, Nb, W etc), there also appear several phases with different crystal structures. With regard to every rare earth, Ln2MnTaO7 phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type (P3121 space group). On the other hand Ln2Mn2/3Nb4/3O7 phase has monoclinic (C2/c space group) and zirconolite type structure. All of these structural models have the fundamental structure based on HTB (hexagonal tungsten bronze) layers formed by the arrangement of oxygen octahedra.

  19. Scaling Behavior and Phase Change in Complex Network

    Directory of Open Access Journals (Sweden)

    Wei Cheng


    Full Text Available Scaling behavior is a extremely typical phenomenon in complex system research, as well as it can act that many Macro indicators in system or distribution function of some variables meet exactly power-law behavior, which possesses different kinds of Exponents. In this article, according to Phase Change concept in Physics, it is researched that the nature in critical state of complex network with Seepage model, and it is totally stated that the basic reason of Self-similar behavior, Fractal behavior, and so on, and also Phase Change in complex network in critical state of complex network in accord with power-law distribution.    

  20. Phase behavior and structure formation of hairy-rod supramolecules

    NARCIS (Netherlands)

    Subbotin, A; Stepanyan, R; Knaapila, M; Ikkala, O; ten Brinke, G


    Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered struct

  1. Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Herwig, K.W.; Matthies, B.


    to 350 K above which a large thermal expansion and decrease in coherence length occurs. The MD simulations provide evidence that this behavior is due to a phase transition in the monolayer in which intramolecular and translational order are lost simultaneously. This melting transition is qualitatively...

  2. Phase Formation Behavior in Ultrathin Iron Oxide. (United States)

    Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas


    Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films.

  3. First-leaflet phase effect on properties of phospholipid bilayer formed through vesicle adsorption on LB monolayer. (United States)

    Park, Jin-Won


    Phospholipid bilayers were formed on mica using the Langmuir-Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin-Landau-Verwey-Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.

  4. Intermolecular forces in spread phospholipid monolayers at oil/water interfaces. (United States)

    Mingins, James; Pethica, Brian A


    The lateral intermolecular forces between phospholipids are of particular relevance to the behavior of biomembranes, and have been approached via studies of monolayer isotherms at aqueous interfaces, mostly restricted to air/water (A/W) systems. For thermodynamic properties, the oil/water (O/W) interface has major advantages but is experimentally more difficult and less studied. A comprehensive reanalysis of the available thermodynamic data on spread monolayers of phosphatidyl cholines (PC) and phosphatidyl ethanolamines (PE) at O/W interfaces is conducted to identify the secure key features that will underpin further development of molecular models. Relevant recourse is made to isotherms of single-chain molecules and of mixed monolayers to identify the contributions of chain-chain interactions and interionic forces. The emphasis is on the properties of the phase transitions for a range of oil phases. Apparent published discrepancies in thermodynamic properties are resolved and substantial agreement emerges on the main features of these phospholipid monolayer systems. In compression to low areas, the forces between the zwitterions of like phospholipids are repulsive. The molecular model for phospholipid headgroup interactions developed by Stigter et al. accounts well for the virial coefficients in expanded phospholipid O/W monolayers. Inclusion of the changes in configuration and orientation of the zwitterion headgroups on compression, which are indicated by the surface potentials in the phase transition region, and inclusion of the energy of chain demixing from the oil phase will be required for molecular modeling of the phase transitions.

  5. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    Institute of Scientific and Technical Information of China (English)

    Chang-chun Hao; Run-guang Sun; Jing Zhang


    Lipid rafts are a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) with 1,2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area △Aex at certain surface pressure,surface pressure and excess surface pressure △πex at certain mean molecular area.The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy △Gex,excess Helmholtz energy △Hex and elasticity.Thermodynamic analysis indicates △Aex and △πex in the binary systems with positive deviations from the ideal behavior,suggesting repulsive interaction.The maximum of △Gex and △Hex was at the molar fraction of ESM of 0.6,demonstrating the mixed monolayer was more unstable.The repulsive interaction induced phase separation in the monolayer.

  6. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers (United States)

    Hao, Chang-chun; Sun, Run-guang; Zhang, Jing


    Lipid rafts are a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) 1 with 2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area ΔAex at certain surface pressure, surface pressure and excess surface pressure Δπex at certain mean molecular area. The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy ΔGex, excess Helmholtz energy ΔHex and elasticity. Thermodynamic analysis indicates ΔAex and Δπex in the binary systems with positive deviations from the ideal behavior, suggesting repulsive interaction. The maximum of ΔGex and ΔHex was at the molar fraction of ESM of 0.6, demonstrating the mixed monolayer was more unstable. The repulsive interaction induced phase separation in the monolayer.

  7. Anomalous compression behavior of germanium during phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiaozhi [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Tan, Dayong [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Guangzhou Institute of Geochemistry, Chinese Academic of Sciences, Guangzhou 510640 (China); Ren, Xiangting [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Yang, Wenge, E-mail:, E-mail: [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); He, Duanwei, E-mail:, E-mail: [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China); Mao, Ho-Kwang [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States)


    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  8. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai


    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  9. Glyme-lithium salt phase behavior. (United States)

    Henderson, Wesley A


    Phase diagrams are reported for glyme mixtures with simple lithium salts. The glymes studied include monoglyme (DME), diglyme, triglyme, and tetraglyme. The lithium salts include LiBETI, LiAsF6, LiI, LiClO4, LiBF4, LiCF3SO3, LiBr, LiNO3, and LiCF3CO2. The phase diagrams clearly illustrate how solvate formation and thermophysical properties are dictated by the ionic association strength of the salt (i.e., the properties of the anions) and chain length of the solvating molecules. This information provides critical predictive capabilities for solvate formation and ionic interactions common in organometallic reagents and battery electrolytes.

  10. Re-entrant phase behavior for systems with competition between phase separation and self-assembly. (United States)

    Reinhardt, Aleks; Williamson, Alexander J; Doye, Jonathan P K; Carrete, Jesús; Varela, Luis M; Louis, Ard A


    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  11. Light phase testing of social behaviors: not a problem

    Directory of Open Access Journals (Sweden)

    Mu Yang


    Full Text Available The rich repertoire of mouse social behaviors makes it possible to use mouse models to study neurodevelopmental disorders characterized by social deficits. The fact that mice are naturally nocturnal animals raises a critical question of whether behavioral experiments should be strictly conducted in the dark phase and whether light phase testing is a major methodologically mistake. Although mouse social tasks have been performed in both phases in different laboratories, there seems to be no general consensus on whether testing phase is a critical factor or not. A recent study from our group showed remarkably similar social scores obtained from inbred mice tested in the light and the dark phase, providing evidence that light phase testing could yield reliable results as robust as dark phase testing for the sociability test. Here we offer a comprehensive review on mouse social behaviors measured in light and dark phases and explain why it is reasonable to test laboratory mice in experimental social tasks in the light phase.

  12. Carbon phosphide monolayers with superior carrier mobility (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.


    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  13. Phase Behavior of Polymer Blends for Organic Photovoltaic Applications (United States)

    Emerson, Jillian; Furst, Eric; Epps, Thomas, III


    Polymer blends offer a promising and economically-viable route to creating organic photovoltaic (OPV) devices, as blends can form bicontinuous domains via spinodal decomposition. Understanding the phase behavior of conjugated polymer blends commonly used in OPVs is vital to producing more efficient devices. In this work, we determined the Flory-Huggins solvent-polymer and polymer-polymer interaction parameters for a model system of poly(3-hexylthiophene) (P3HT) and polystyrene (PS) through solvent vapor swelling of thin polymer films. From these interaction parameters, we constructed a polymer/polymer/solvent phase diagram. The phase diagram was validated experimentally with solution-based transmission measurements of PS/P3HT. This work highlights a method to determine the phase behavior in polymer/polymer/solvent blends that can be extended to other combinations of macromolecules relevant to organic photovoltaics, composites, and other materials systems.

  14. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams


    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  15. Interfacial properties in Langmuir monolayers and LB films of DPPC with partially fluorinated alcohol (F8H7OH). (United States)

    Nakahara, Hiromichi; Hirano, Chikayo; Fujita, Ichiro; Shibata, Osamu


    Two-component interactions between (perfluorooctyl) heptanol (F8H7OH) and dipalmitoylphosphatidylcholine (DPPC), which is a major component of pulmonary surfactants in mammals, were systematically elucidated using Langmuir monolayers and Langmuir-Blodgett (LB) films of the compounds. The interactions such as the miscibility of the compounds and their phase behavior were examined from thermodynamic and morphological perspectives. The surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of the binary monolayers containing F8H7OH in different mole fractions (XF8H7OH) were measured simultaneously. The excess Gibbs free energy of mixing of the two components was calculated from the π-A isotherms. The resulting isotherm data were employed to construct a two-dimensional (2D) phase diagram of the system. The phase diagram revealed that the transition pressure as well as the monolayer collapse pressure change with changes in XF8H7OH. These thermodynamic analyses suggested that the miscibility of the two components and the solidification of DPPC monolayers can be induced by the addition of F8H7OH. The phase behavior upon monolayer compression was observed morphologically in situ using Brewster angle microscopy (BAM) and fluorescence microscopy (FM), as well as ex situ using atomic force microscopy (AFM). Interestingly, the AFM-based analysis revealed the formation of monodispersed 2D micelles consisting of F8H7OH at low surface pressures.

  16. Phase behavior and selectivity of DNA-linked nanoparticle assemblies

    NARCIS (Netherlands)

    Lukatsky, D.B.; Frenkel, D.


    We propose a model that can account for the experimentally observed phase behavior of DNA-nanoparticle assemblies [R. Jin et al., J. Am. Chem. Soc. 125, 1643 (2003); T. A. Taton et al., Science 289, 1757 (2000)]. The binding of DNA-coated nanoparticles by dissolved DNA linkers can be described by ex

  17. 17th International Conference on Petroleum Phase Behavior and Fouling

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Yan, Wei; Andersen, Simon


    This special section of Energy & Fuels contains contributedpapers from the 17th International Conference on PetroleumPhase Behavior and Fouling (Petrophase 2016). Petrophase 2016 was organized by the Technical University of Denmark and Schlumberger and took place in Elsinore (Helsingør) Denmark...

  18. Studies on Phase Behavior of Alkyl Polyglucoside Based on Microemulsions with Modified Fishlike Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    Jin Ling CHAI; Gan Zuo LI; Zhao Yu DIAO; Gao Yong ZHANG


    The three-phase behavior in the quaternary system of an alkyl (C8/10- or C12/14-) polyglucoside / 1-butanol / n-octane / water has been studied at 40 ℃ with the modified fishlike phase diagram, which is presented by us for the first time. The mass fraction of 1-butanol in the hydrophile-lipophile balanced interfacial layer, AS, the coordinates of the start point B and the end point E of the phase diagram, and the solubilities of alkyl polyglucoside and 1-butanol in n-octane phase were calculated. The solubilization of the microemulsion was also discussed.

  19. Phase Behaviors in Bi-phase Simulation of Powder Segregation in Metal Injection Molding

    Institute of Scientific and Technical Information of China (English)

    Liu Baosheng; Fan Xiaoxin; Cheng Zhiqiang


    Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.

  20. Behavior of the Lyapunov Exponent and Phase Transition in Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; WU Xi-Zhen; LI Zhu-Xia; WANG Ning; ZHUO Yi-Zhong; SUN Xiu-Quan


    Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition. We try to search a microscopic way to describe the phase transition in realnuclei. The Lyapunov exponent is employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a strong influence on the critical temperature. However, the collision term plays a minor role in the process of the liquid-gas phase transition in finite systems.

  1. Drug induced `softening' in phospholipid monolayers (United States)

    Basak, Uttam Kumar; Datta, Alokmay; Bhattacharya, Dhananjay


    Compressibility measurements on Langmuir monolayers of the phospholipid Dimystoryl Phospatidylcholine (DMPC) in pristine form and in the presence of the Non-steroidal Anti-inflammatory Drug (NSAID) Piroxicam at 0.025 drug/lipid (D/L) molecular ratio at different temperatures, show that the monolayer exhibits large increase (and subsequent decrease) in compressibility due to the drug in the vicinity of the Liquid Expanded - Liquid Condensed (LE-LC) phase transition. Molecular dynamics simulations of the lipid monolayer in presence of drug molecules show a disordering of the tail tilt, which is consistent with the above result.

  2. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    CERN Document Server

    Sherkatghanad, Zeinab; Mirzaeyan, Zahra; Mansoori, Seyed Ali Hosseini


    We consider the critical behaviors and phase transitions of Gauss Bonnet-Born Infeld-AdS black holes (GB-BI-AdS) for $d=5,6$ and the extended phase space. We assume the cosmological constant, $\\Lambda$, the coupling coefficient $\\alpha$, and the BI parameter $\\beta$ to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find "reentrant and triple point phase transitions" (RPT-TP) and "multiple reentrant phase transitions" (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient $\\alpha$ in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for $d=6$. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third order of Lovelock gravity and in the grand canonical ensemble to find a Van der Waals behavior for $d=7$ ...

  3. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.


    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...... and of process, voltage and temperature variations on the BBPD behavior is also investigated. The proposed model can be used with advantage in the high-level design and verification of e.g. clock and data recovery (CDR) circuits...

  4. Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer. (United States)

    Harrison, Katharine L; Biedermann, Laura B; Zavadil, Kevin R


    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  5. A trough for improved SFG spectroscopy of lipid monolayers (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias


    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  6. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces (United States)

    Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini

    We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.

  7. In-plane X-ray diffraction from monolayers of perfluorinated fatty acids: evidence for azimuthal ordering in the condensed phase


    Goldmann, M; Nassoy, Pierre; Rondelez, Francis; Renault, Anne; Shin, Seokmin; Rice, Stuart


    We report the results of new grazing incidence X-ray diffraction studies of Langmuir monolayers of F(CF2)11COOH and F(CF2)10CH2COOH supported on water ; in each case the locations and intensities of the first three diffraction peaks ((1, 0), (1, 1) and (2, 0)) have been measured. These new data are consistent with earlier ones in that both monolayers have simple hexagonal packing of molecules with their long axes nearly perpendicular to the water surface at maximum surface densities. By compa...

  8. Controlling block copolymer phase behavior using ionic surfactant (United States)

    Ray, D.; Aswal, V. K.


    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  9. Photopatterning of stable, low-density, self-assembled monolayers on gold. (United States)

    Safazadeh, Leila; Berron, Brad J


    Photoinitiated thiol-yne chemistry is utilized as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers on a gold substrate to create stable, low-density monolayers. The resulting monolayers are compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous low-density monolayers prepared through a solution phase synthetic approach. The overall structuring of the monolayer prepared by solid-phase grafting is characterized by contact angle goniometry and Fourier transform infrared spectroscopy. The results show that the product monolayer has an intermediate surface energy and a more disordered chemical structuring compared to a traditional well-packed self-assembled monolayer, showing a low-packing density of the chains at the monolayer surface. The monolayer's structure and electrochemical stability were studied by reductive desorption of the thiolates. The prepared low-density monolayers have a higher electrochemical stability than traditional well-packed monolayers, which results from the crystalline structure at the gold interface. This technique allows for simple, fast preparation of low-density monolayers of higher stability than well-packed monolayers. The use of a photomask to restrict light access to the substrate yielded these low-density monolayers in patterned regions defined by light exposure. This general thiol-yne approach is adaptable to a variety of analogous low-density monolayers with diverse chemical functionalities.

  10. Polyelectrolyte Complexation: A Field-Theoretic Description of Phase Behavior (United States)

    Audus, Debra; Fredrickson, Glenn


    Our research focuses on a type of polyelectrolyte complexation called complex coacervation where two oppositely charged polymers in solution phase separate to form a dense polymer phase, known as the coacervate, and a supernatant, which typically has very low concentrations of polymer. To understand the effects of various parameters on coacervation, we previously developed a simple analytic theory for flexible polymers and small ions, which reproduces many general experimental trends. However, this theory is only valid for symmetric oppositely charged polymers, which limits its direct applicability to many experimental systems. Consequently, we have extended this theory to describe more complicated experimental systems where salt concentrations are high, pH equilibria shift with the complexation process, polymer concentrations are highly asymmetric, and counterion condensation may play an important role. To validate the modified theory, we compare our predictions with an exhaustive study of the phase behavior of polyacrylic acid and polyallylamine hydrochloride.

  11. Phase behavior and interfacial tension studies of surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.


    Parallel studies of isomerically pure sodium P(1-heptylnonyl) benzene sulfoante, Texas No. 1, its mixture with sodium dodecyl sulfate (SDS), and the petroleum sulfonate TRS 10-80 were made. Phase behavior in water, in decane, and in water-decane mixtures was studied by spectroturbidimetry, polarizing light microscopy, ultracentrifugation, ultrafiltration, densitometry, conductimetry, low-frequency, 0.2 to 20 kHz, dielectric relaxation, isopiestic vapor pressure, and nuclear magnetic resonance spectroscopy. It was deduced that ultralow tensions (less than 0.01 dyn/cm) arise from the dispersed microcrystallites which form a third, usually liquid crystalline, phase at the decane-brine interfacial region. It appears that neither molecular adsorption from solution for micelles have anything to do with ultralow tensions, which appear to be sensitive to the third phase microstructure. The implications of these results for the mechanism of ultralow tensions in surfactant flooding processes for enhanced petroleum recovery are discussed.

  12. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.


    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  13. Itinerant to localized electronic behavior in phase segregated ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Biswajit; Sarkar, Babusona; De, S.K., E-mail:


    Simultaneous doping of Ba and Zr for Sr and Ru in SrRuO{sub 3} leads to phase separation of orthorhombic SrRuO{sub 3} (SRO) and nine layer rhombohedral BaRuO{sub 3} (9R-BRO). Differences in ionic radius and electronegativity between the cations are responsible for the chemical phase separation with increase of doping concentration. Random substitution of Ru by Zr localizes electron and induces Metal-Insulator (M−I) transition for lower doping concentration (5% and 10%). Electron–electron interaction dominates electrical conduction process due to cationic disorder in SRO lattice. Dilution of ferromagnetic interaction due to non-magnetic element Zr decreases both Curie temperature and Curie-Wiess constant and produces Griffiths phase just above the Curie temperature. At higher doping concentration (40%), solid solution of ruthenates reveals magnetism purely related to 9R-BRO phase. - Graphical abstract: Random substitution of Sr and Ru by Ba and Zr respectively localizes electron and induces Metal-Insulator (M−I) transition for lower doping concentration. Insulating state at low temperature originates from Weak localization (WL) and electron–electron interaction (EEI) due to diffusive motion of electrons in the presence of disorder, introduced by random substitution. - Highlights: • Simultaneous doping of Ba and Zr in SrRuO{sub 3} leads to phase separation of ruthenates. • Substitution of Ru by non-magnetic Zr localizes electron and induces M–I transition. • Competition between lattice disorder and spin order leads to double M–I transition. • Critical behavior study supports 3D Heisenberg-type ferromagnet. • Dilution of ferromagnetic phase along with separate chemical phase produces Griffiths phase.

  14. Protein-induced surface structuring in myelin membrane monolayers. (United States)

    Rosetti, Carla M; Maggio, Bruno


    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  15. Phase behavior and shear alignment in SWNT-surfactant dispersions. (United States)

    Nativ-Roth, Einat; Yerushalmi-Rozen, Rachel; Regev, Oren


    The effect of single-walled carbon nanotubes (SWNT) on the phase behavior of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions is investigated at room temperature. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) are used for characterization of bulk dispersions and nanometrically thin films. Additional carbonaceous additives (fullerenes, multi-walled carbon nanotubes, and carbon black) serve as reference systems. It is found that dispersions of carbonaceous additive (excluding fullerenes) at intermediate surfactant concentrations (below the liquid-crystalline region of the native surfactant) induce demixing and macroscopic phase separation in otherwise homogeneous solutions of CTAB. Two coexisting liquid phases of similar CTAB concentrations are observed, with the carbonaceous species residing within the lower phase. At high CTAB concentrations (liquid-crystal region) the SWNTs are found to incorporate into the ordered lyotropic liquid-crystalline phase while preserving the native d-spacing. Investigation of nanometrically thin films at intermediate surfactant concentrations under external shear reveals shear-induced structure (SIS) in the presence of minute amounts of SWNTs. The effect is found to be exclusive to SWNT and does not occur in dispersions of other carbonaceous additives.

  16. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  17. Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.


    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements

  18. [Enantioseparation behavior of chiral stationary phases AD, AS and OD]. (United States)

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang


    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs.

  19. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Venema, P.; Bot, A.; Flöter, E.; Adel, den R.; Linden, van der E.


    The phase behavior of binary mixtures of ¿-oryzanol and ß-sitosterol and ternary mixtures of ¿-oryzanol and ß-sitosterol in sunflower oil was studied. Binary mixtures of ¿-oryzanol and ß-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was der

  20. Phase transitions in tumor growth: III vascular and metastasis behavior (United States)

    Llanos-Pérez, J. A.; Betancourt-Mar, J. A.; Cocho, G.; Mansilla, R.; Nieto-Villar, José Manuel


    We propose a mechanism for avascular, vascular and metastasis tumor growth based on a chemical network model. Vascular growth and metastasis, appear as a hard phase transition type, as "first order", through a supercritical Andronov-Hopf bifurcation, emergence of limit cycle and then through a cascade of bifurcations type saddle-foci Shilnikov's bifurcation. Finally, the thermodynamics framework developed shows that the entropy production rate, as a Lyapunov function, indicates the directional character and stability of the dynamical behavior of tumor growth according to this model.

  1. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.


    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  2. Phase behaviors and membrane properties of model liposomes: Temperature effect (United States)

    Wu, Hsing-Lun; Sheng, Yu-Jane; Tsao, Heng-Kwong


    The phase behaviors and membrane properties of small unilamellar vesicles have been explored at different temperatures by dissipative particle dynamics simulations. The vesicles spontaneously formed by model lipids exhibit pre-transition from gel to ripple phase and main transition from ripple to liquid phase. The vesicle shape exhibits the faceted feature at low temperature, becomes more sphere-like with increasing temperature, but loses its sphericity at high temperature. As the temperature rises, the vesicle size grows but the membrane thickness declines. The main transition (Tm) can be identified by the inflection point. The membrane structural characteristics are analyzed. The inner and outer leaflets are asymmetric. The length of the lipid tail and area density of the lipid head in both leaflets decrease with increasing temperature. However, the mean lipid volume grows at low temperature but declines at high temperature. The membrane mechanical properties are also investigated. The water permeability grows exponentially with increasing T but the membrane tension peaks at Tm. Both the bending and stretching moduli have their minima near Tm. Those results are consistent with the experimental observations, indicating that the main signatures associated with phase transition are clearly observed in small unilamellar vesicles.

  3. Oleic acid disorders stratum corneum lipids in Langmuir monolayers. (United States)

    Mao, Guangru; VanWyck, Dina; Xiao, Xin; Mack Correa, M Catherine; Gunn, Euen; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M


    Oleic acid (OA) is well-known to affect the function of the skin barrier. In this study, the molecular interactions between OA and model stratum corneum (SC) lipids consisting of ceramide, cholesterol, and palmitic acid (PA) were investigated with Langmuir monolayer and associated techniques. Mixtures with different OA/SC lipid compositions were spread at the air/water interface, and the phase behavior was tracked with surface pressure-molecular area (π-A) isotherms. With increasing OA levels in the monolayer, the films became more fluid and more compressible. The thermodynamic parameters derived from π-A isotherms indicated that there are preferential interactions between OA and SC lipids and that films of their mixtures were thermodynamically stable. The domain structure and lipid conformational order of the monolayers were studied through Brewster angle microscopy (BAM) and infrared reflection absorption spectroscopy (IRRAS), respectively. Results indicate that lower concentrations of OA preferentially mix with and disorder the ceramide-enriched domains, followed by perturbation of the PA-enriched domains and disruption of SC lipid domain separation at higher OA levels.

  4. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia


    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  5. On the phase behavior of binary mixtures of nanoparticles. (United States)

    Ben-Simon, Avi; Eshet, Hagai; Rabani, Eran


    The assembly of mixtures of nanoparticles with different properties into a binary nanoparticle superlattice (BNSL) provides a route to fabricate novel classes of materials with properties emerging from the choice of the building blocks. The common theoretical approach based on the hard-spheres model predicts crystallization of only a few metastable binary superstructures (NaCl, AlB₂ or the AB₁₃). Recently [Shevchenko, E. V.; Talapin, D. V.; O'Brien, S.; Murray, C. B. Nature 2006; 439, 55.)], it has been demonstrated that with the use of a combination of semiconducting, metallic, and magnetic nanoparticles, a variety of novel BNSL structures were formed, where at least 10 were low density structures that have not been previously reported. While some of the structures can be explained by the addition of electrostatic interactions, it is clear that at the nanometer scale one needs to consider other influences, such as van der Waals forces, steric effects, etc. Motivated by those experiments, we study, using Monte Carlo simulations, the phase behavior of binary mixtures of nanoparticles interacting via a combination of hard-core electrostatics and van der Waals forces. We include a tuning parameter that can be used to balance between electrostatic and dispersion interactions and study the phase behavior as a function of the different charges and size ratios of the nanoparticles. The results indicate that at the nanoscale, both electrostatic and dispersion interactions are necessary to explain the experimental observed BNSL structures.

  6. Polymer compatibility in two dimensions. Modeling of phase behavior of mixed polymethacrylate Langmuir films. (United States)

    Bernardini, C; Stuart, M A Cohen; Stoyanov, S D; Arnaudov, L N; Leermakers, F A M


    We analyze the possibility of polymer blends undergoing phase separation in two dimensions. To this end, we investigate a model system consisting of water-supported Langmuir monolayers, obtained from binary polyalkyl-methacrylate mixtures (PXMA, where X stands for any of the type of ester side groups used: M, methyl-; E, ethyl-; B, butyl-; H, hexyl-; O, octyl-; L, lauryl-methacrylate), by means of self consistent field (SCF) calculations. In particular, we address the conditions which determine demixing and phase separation in the two-dimensional system, showing that a sufficient chain length mismatch in the ester side group moieties is able to drive the polymer demixing. When the difference in length of the alkyl chain of the ester moieties on the two types of polymers is progressively reduced, from 11 carbon atoms (PMMA/PLMA) to 4 carbons only (POMA/PLMA), the demixing tendency is also reduced. The polymer/subphase interactions affect more the distribution of the polymer coils in the POMA/PLMA blend monolayer. Mixing of the two polymers is observed, but also a partial layering along the vertical direction. We also add, to a PMMA/PLMA blended monolayer, a third component, namely, a symmetrical diblock copolymer of the type PLMA-b-PMMA. We observe adsorption of the diblock copolymer exclusively at the contact line between the two homopolymer domains, and a concomitant lowering of the line tension. The line tension varies with the chemical potential of the diblock copolymer according to Gibbs' law, which demonstrates that PLMA-b-PMMA can act as a "lineactant" (the equivalent of a surfactant in two-dimensional systems) in the binary demixed PMMA/PLMA Langmuir monolayer.

  7. Freezing in porous media: Phase behavior, dynamics and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)


    This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way

  8. Freezing in porous media: Phase behavior, dynamics and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)


    This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way

  9. Deformation Behavior across the Zircon-Scheelite Phase Transition (United States)

    Yue, Binbin; Hong, Fang; Merkel, Sébastien; Tan, Dayong; Yan, Jinyuan; Chen, Bin; Mao, Ho-Kwang


    The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO4 ) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO4 develops a (001) compression texture associated with dominant slip along ⟨100 ⟩{001 } starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.

  10. Hydrodynamic Behavior of Three-Phase Airlift Loop Slurry Reactor

    Institute of Scientific and Technical Information of China (English)

    任飞; 王金福; 王铁峰; 金涌


    A novel fiber optic probe system and a set of commercial ultrasonic Doppler velocimeters have been used to study the hydrodynamic behavior of a three-phase airlift loop (TPAL) slurry reactor. Experiments have been carried out in a loop reactor with 100 mm inner diameter and 2.5 m height, in which air, tap water and silica gel particles are used as the gas, liquid and solid phase, respectively. The radial profile of gas holdup, bubble size, bubble rising velocity, liquid circulating velocity, and the influence of the main operating conditions such as superficial gas velocity and solids concentration have been studied experimentally in the TPAL slurry reactor. The experimental results show that the bubble characteristics are different in various flow regimes and the radial profiles of some hydrodynamic parameters in the TPAL slurry reactor are more uniform than those in traditional three-phase reactors. The distribution of the bubble size and bubble rising velocity can be described by a lognormal function. The influence of superficial gas velocity on the hydrodynamic parameters is more remarkable than that of the solids concentration.

  11. Deformation Behavior across the Zircon-Scheelite Phase Transition. (United States)

    Yue, Binbin; Hong, Fang; Merkel, Sébastien; Tan, Dayong; Yan, Jinyuan; Chen, Bin; Mao, Ho-Kwang


    The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO_{4}) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO_{4} develops a (001) compression texture associated with dominant slip along ⟨100⟩{001} starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.

  12. Structure and phase behaviors of confined two penetrable soft spheres (United States)

    Kim, Eun-Young; Kim, Soon-Chul


    We study the phase behaviors of two penetrable soft spheres, whose interactions include the soft repulsion and attraction, in a hard spherical pore. The exact partition function, one-body density, and equation of state for the confined two penetrable soft spheres have been calculated using the Fourier transform method. The phase diagrams have been determined from the negative compressibility of the van der Waals type, which imitates the phase transition of many particle system. The addition of the soft repulsion and attraction beyond the soft-core potential gives rise to the van der Waals instability. The soft attraction beyond the soft-core potential significantly enhances the van der Waals instability, whereas the soft repulsion reduces the van der Waals instability. For two hard spheres and hard square-well spheres, the van der Waals instability is not observed. However, the addition of a short-range soft repulsion beyond the hard-core gives rise to the van der Waals instability.

  13. Electrochemical Behaviors of Nonionic Fluorosurfactant Zonyl FSN Self-Assembled Monolayers on Au( 111 ) and Au(100)%Au单晶表面氟表面活性剂FSN自组装膜的电化学行为

    Institute of Scientific and Technical Information of China (English)

    汤永安; 颜佳伟; 朱凤; 孙春凤; 毛秉伟


    研究Au(111)和Au(100)表面非离子型氟表面活性剂FSN自组装膜的电化学行为.电化学扫描隧道显微术和循环伏安法测试表明,在0-0.8 V电位区间,FSN自组装膜未发生氧化还原,均一性好,可稳定地存在于电极表面,并显著抑制硫酸根离子在电极表面的吸附和Au单晶表面的重构.在FSN自组装膜Au单晶电极的初始氧化阶段,Au(111)表面有少量突起,而Au(100)表面呈现台阶剧烈变化,但FSN自组装膜的吸附结构没有改变.与Au(100)表面相比,Au(111)表面形成的FSN自组装膜可更有效地抑制Au表面的氧化.%The electrochemical behaviors of nonionic fluorosurfactant Zonyl FSN self-assembled monolayers on Au( 111 ) and Au(100) were investigated by electrochemical scanning tunneling microscopy and cyclic voltam metry. In the potential range where the redox reaction of FSN molecules doesn't occur,the structures of FSN self-assembled monolayers are uniform, which may suppress the adsorption of suffate and the surface reconstruction of Au single crystal. At the initial stage of the oxidation of Au( 111 ) and Au(100) surfaces covered by FSN self-assembled monolayers,Au( 111 ) surface is characteristic of some protuberance,while Au(100) surface is characteristic of the movement of steps, however the structures of FSN self-assembled monolayers keep unchanged. Compared with Au(100) ,FSN self-assembled monolayers formed on Au( 111 ) surface can suppress the oxidation of Au surface more efficiently.

  14. Clustering of behavioral phases in FSMs and its applications to VLSI test

    Institute of Scientific and Technical Information of China (English)

    李华伟; 闵应骅; 李忠诚


    This paper presents a new level of description between behavioral and state descriptions of a finite-state machine (FSM). The description is termed behavioral phase clustering description. New concepts of behavioral phase and clustering of behavioral phases in an FSM are introduced. The new description simplifies functional analysis, verification and test of FSM designs. If an FSM is described at low level, some states can be clustered into behavioral phases directly. If it is described at behavioral level, behavioral phases can be extracted from the behavioral description, and clustering of behavioral phases can be performed through easy functional analysis. As one application of behavioral phase clustering descriptions, a new technique employed in a test generation system, ATCLUB, at Register Transfer (RT)-level based on a behavioral phase transition fault model is introduced in this paper. In ATCLUB, test generation process is accelerated through clustering of behavioral phases. Experimental results show that ATCLUB generates test sequence efficiently, with a sharp decrease in vector count at the penalty of a slightly decrease in fault coverage comparing to other ATPG tools.

  15. Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study. (United States)

    Nakahara, Hiromichi; Hagimori, Masayori; Mukai, Takahiro; Shibata, Osamu


    Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.

  16. Tethered Nanoparticle -Polymer Composites: Phase behavior and rheology (United States)

    Mangal, Rahul; Archer, Lynden A.


    Polymer nanocomposites with particle radius (a) approaching the radius of gyration (Rg) of entangled host polymer have been reported to exhibit an unusual negative reinforcement effect, which leads to an anomalous reduction in relative an anomalous reduction in relative viscosity at low particle loadings (φ) . This so-called Non-Einsteinian flow behavior is understood to be sensitive to the dispersion state of particles in host polymer. We studied suspensions of SiO2 nanoparticles tethered with polethylene glycol (PEG) in polymethylmethacralate (PMMA) with molecular weights (Mw) from 17 KDa to 280 KDa. Due to strong enthalpic interactions between PEG and PMMA (χ = -0.65), nanoparticles are expected to be well-dispersed, independent of Mw of PMMA. Using small angle x-ray scattering measurements we show that the phase stability of suspensions depends on Mw of the tethered PEG, host PMMA, and φ. Particles functionalized with low molecular weight PEG aggregate at low φ, but disperse at high φ. In contrast, nanoparticles functionalized with higher molecular weight PEG are well dispersed for host chain lengths (P) to tethered chain length (N), (P/N), is as high as 160. The stability boundary of these suspensions extends well beyond expectations for nanocomposites based on tethered PEG chains suspended in PEG. Through in-depth analysis of rheology and x-ray photon correlation spectra we explore the fundamental origins of non-Einsteinian flow behavior. King Abdullah University of Science and Technology (KAUST), Advanced Photon Source (APS).

  17. Thermodynamic phase behavior of API/polymer solid dispersions. (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele


    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  18. Phase behavior of confined polymer blends and nanoparticle composites (United States)

    Chung, Hyun-Joong

    We have investigated phase behavior in polymer blend films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) with 33wt% AN content and their nanoparticle (NP) composites by using the combination of imaging techniques, including atomic force microscopy (AFM), focused-ion beam (FIB), transmission and scanning electron microscopy (TEM and SEM), as well as depth profiling techniques of Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). For neat PMMA:SAN films, we present a novel morphology map based on pattern development mechanisms. Six distinct mechanisms are found for thickness values (d) and bulk compositions between 50-1000 nm and φPMMA = 0.3 to 0.8, respectively. When PMMA is depleted from the mid-layer by preferential wetting at φ PMMA = 0.3 (A), stable PMMA/SAN/PMMA trilayer structure is obtained. With increasing φPMMA (0.4 to 0.7), pattern development is driven by phase separation in the mid-layer, which produces circular domains (B), irregular domains (C), and bicontinuous patterns (D). Here, the growth of circular domains can be explained by the coalescence mechanism, which predicts ξ˜(sigma/eta) 1/3d2/3t1/3 , where ξ, sigma, and eta are correlation length between domains, interfacial tension between phases, and viscosity, respectively. In bicontinuous patterns, hydrodynamic pumping mechanism is suppressed with thickness confinement. When SAN composition is lean, φPMMA = 0.8 (E), the SAN phase is minority component in the mid-layer and breaks up into droplets in smooth PMMA film. When film thickness is less than 80 nm at φPMMA = 0.4 or 0.5 (F), films initially display trilayer structure, which then ruptures upon dewetting of the SAN mid-layer. Building upon the understanding of the neat PMMA:SAN blend films, we have performed the first systematic on the effect of NPs in morphology evolution and stability of polymer blend films. Whereas the location of NP impacts morphology evolution, silica

  19. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.


    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two...

  20. Fluctuations in a ferrofluid monolayer: an integral equation study. (United States)

    Luo, Liang; Klapp, Sabine H L


    Using integral equation theory in the reference hypernetted chain (RHNC) approximation we investigate the structure and phase behavior of a monolayer of dipolar spheres. The dipole orientations of the particles fluctuate within the plane. The resulting angle dependence of the correlation functions is treated via an expansion in two-dimensional rotational invariants. For homogeneous, isotropic states the RHNC correlation functions turn out to be in good agreement with Monte Carlo simulation data. We then use the RHNC theory combined with a stability (fluctuation) analysis to identify precursors of the low-temperature behavior. As expected, the fluctuations point to pair and cluster formation in the range of low and moderate densities. At high densities, there is no clear indication for a ferroelectric transition, contrary to what is found in three-dimensional dipolar fluids. The stability analysis rather indicates an alignment of chains supplemented by local crystal-like order.

  1. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang


    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  2. On the phase behavior of mixed Ar-Xe submonolayer films on graphite

    Directory of Open Access Journals (Sweden)

    A. Patrykiejew


    Full Text Available Using Monte Carlo simulation methods in the canonical and grand canonical ensembles, we discuss the melting and the formation of ordered structures of mixed Ar-Xe submonolayer films on graphite. The calculations have been performed using two- as well as three-dimensional models of the systems studied. It is demonstrated that out-of plane motion does not affect the properties of the adsorbed films as long as the total density is not close to the monolayer completion. On the other hand, close to the monolayer completion, the promotion of particles to the second layer considerably affects the properties of mixed films. It has been shown that the mixture exhibits complete mixing in the liquid phase and freezes into solid phases of the structure depending upon the film composition. For submonolayer densities, the melting temperature exhibits non-monotonous changes with the film composition. In particular, the melting temperature initially increases when the xenon concentration increases up to about 20%, then it decreases and reaches minimum for the xenon concentration of about 40%. For still higher xenon concentrations, the melting point gradually increases to the temperature corresponding to pure xenon film. It has been also demonstrated that the topology of phase diagrams of mixed films is sensitive to the composition of adsorbed layers.

  3. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus. (United States)

    Kawasaki, Masashi; Leonard, John


    An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

  4. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system by system review methodology and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. The evaluation of the mercury behavior in the salt processing flowsheet indicates: • In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. • Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. • In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. More information can be found about what

  5. Fullerene monolayer formation by spray coating. (United States)

    Cervenka, J; Flipse, C F J


    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  6. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.


    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  7. A simulation study on the phase behavior of hard rhombic platelets

    NARCIS (Netherlands)

    Tasios, N.; Dijkstra, M.


    Using Monte Carlo simulations, we investigate the phase behavior of hard rhombic platelets as a function of the thickness of the platelets, T. The phase diagram displays a columnar phase and a crystal phase in which the platelets are stacked in columns that are arranged in a two-dimensional lattice.

  8. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D., E-mail: [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina); Sanchez, F.H. [Departamento de Fisica-Instituto de Fisica de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 69, (1900), La Plata (Argentina); Pampillo, L.G.; Saccone, F.D. [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina)


    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  9. Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin).



    Aqueous suspensions of mixtures of the rodlike virus tobacco mosaic virus (TMV) with globular macromolecules such as polyethylene oxide (PEO) or bovine serum albumin (BSA) phase separate and exhibit rich and strikingly similar phase behavior. Isotropic, nematic, lamellar, and crystalline phases are observed as a function of the concentration of the constituents and ionic strength. The observed phase behavior is considered to arise from attractions between the two particles induced by the pres...

  10. Unusual phase behavior of decane-dodecane mixtures confined in SBA-15: Size effect on binary phase diagram

    Institute of Scientific and Technical Information of China (English)

    Hai Rong Pei; Xiao Yan; Xiao Zheng Lan


    Phase behavior of normal decane-dodecane (n-C10H22-C12H26,C10-C12) system confined in SBA-15 (Santa Barbara Amorphous,pore diameters 3.8,7.8,and 17.2 nm) has been studied by using differential scanning calorimetry.It has been found solid-liquid phase diagram of the C 10-C12/SBA-15 system is composed of a straight line (3.8 nm),a curve (7.8 nm) and a loop line (17.2 nm).The growth of the phase diagram clearly shows the size effect on phase behavior of binary alkanes.Phase behavior has been compared among the systems C10H22-C12H26/SBA-15,C12H26-C14H30/SBA-15 and C14H30-C16H34/SBA-15.

  11. Fluorinated microemulsions: A study of the phase behavior and structure

    Energy Technology Data Exchange (ETDEWEB)

    LoNostro, P. [Univ. of Florence, Firenze (Italy). Dept. of Chemistry; Choi, S.M.; Chen, S.H. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering; Ku, C.Y. [Argonne National Lab., IL (United States)


    Fluorinated surfactants have been studied for their peculiar property to form micellar aggregates in water and oils (hydrocarbons or fluorocarbons) and to produce stable microemulsions. Because of their capacity to dissolve large amounts of gases (such as oxygen and carbon dioxide) and for their characteristic physicochemical properties, fluorocarbons have been tested for specific medical purposes, and their microemulsions are among the most promising candidates for the production of suitable blood substitutes and other biocompatible fluids. The authors have synthesized a new partially fluorinated nonionic surfactant, namely, F(CF{sub 2}){sub 7}-CO-(OCH{sub 2}CH{sub 2}){sub 7.2}OCH{sub 3} (I), that forms stable microemulsions with water and perfluorocarbons such as perfluorooctane (PFO). In this paper the authors describe for the first time the phase behaviors of perfluorooctanoic acid (PFOA) in water/PFH and in water/PFO, and that of ester I in water/PFO. Small-angle neutron-scattering (SANS) experiments provide a detailed description of the microstructure of the H{sub 2}O/PFO/PFOA ternary system.

  12. Swelling, Compressibility, and Phase Behavior of Soft Ionic Microgels (United States)

    Denton, Alan

    Soft colloids have inspired great attention recently for their rich and tunable materials properties. Particular interest has focused on microgels - microscopic cross-linked polymer gel particles that, when dispersed in water, become swollen and can acquire charge through dissociation of counterions. Electrostatic interparticle interactions strongly influence the structure and thermodynamics of ionic microgel suspensions*. Permeability to solvent molecules and small ions creates a competition between elastic and electrostatic forces that determines equilibrium particle sizes. Swelling can be controlled by adjusting temperature, pH, and salt concentration, with applications to chemical/biosensing and targeted drug delivery. By combining molecular dynamics and Monte Carlo simulation with Poisson-Boltzmann theory of electrostatics and Flory-Rehner theory of swollen polymer networks, we investigate swelling and compressibility of ionic microgel particles and implications for thermodynamic phase behavior of bulk suspensions at concentrations approaching and exceeding hard-sphere close packing. Predictions for particle size and osmotic pressure are compared with available experimental data. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  13. Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude Oscillations. (United States)

    Lum, Jordan S; Dove, Jacob D; Murray, Todd W; Borden, Mark A


    Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 μm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.

  14. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer. (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu


    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states.

  15. 单层二硫化钼多相性质及相变的第一性原理研究∗%First-principles study on multiphase prop erty and phase transition of monolayer MoS2

    Institute of Scientific and Technical Information of China (English)

    张理勇; 方粮; 彭向阳


    Using first principles calculations within density functional theory, we investigate multiphase property and phase transition of monolayer MoS2. All the quantities are calculated using the Vienna ab initio simulation package. Calcula-tions are performed within the generalized gradient approximation with van der Waals corrections (optimized Perdew-Burke-Ernzerhof-vdW). The cutoff energy of plane-wave is set to be 400 eV. The atomic plane and its neighboring image are separated by a 15 Å vacuum layer. The k-meshes for the structure relaxation and post analysis are 11 × 11 × 1 and 19 × 19 × 1 respectively. Firstly, we obtain the geometry configurations of 2H-MoS2, 1T-MoS2 and ZT-MoS2 phases through structure re-laxing. The lattice constants of 2H-MoS2 are a=3.190 Å and b=5.524 Å, and total energy is−39.83 eV which means that it is the most stable phase. The lattice constants of 1T-MoS2 are a=3.191 Å and b=5.528 Å, and total energy is−38.21 eV, which means that it is the most unstable phase. Both 2H-MoS2 and 1T-MoS2 have a three-layer structure with two S layers sandwiching one Mo layer. The difference of 1T-MoS2 from the 2H-MoS2 is the upper S layer shifting. The ZT-MoS2 derives from 1T-MoS2 through lattice distortion. The lattice constants of ZT-MoS2 are a = 3.185 Å and b = 5.725 Å, and total energy is −38.80 eV. The total energy determines the following stability order of three phases: 2H-MoS2>ZT-MoS2>1T-MoS2. Our computed results agree well with the other computed and experimental results. Band structure and density of states confirm that 1T-MoS2 is metallic and ZT-MoS2 is semiconducting. But the bandgap of ZT-MoS2 phase is only 0.01 eV. Then we compute the intrinsic carrier mobility values of 2H-MoS2 and ZT-MoS2 at 300 K with the deformation potential theory. The carrier mobility of 2H-MoS2 is between 100 cm2·V−1·s−1 and 400 cm2·V−1·s−1. Owing to ZT-MoS2 carrier effective mass decreasing obviously, the carrier mobility of ZT phase

  16. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates. (United States)

    Ferguson, Andrew L; Giovambattista, Nicolás; Rossky, Peter J; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G


    Thin films of water under nanoscopic confinement are prevalent in natural and manufactured materials. To investigate the equilibrium and dynamic behavior of water in such environments, we perform molecular dynamics simulations of water confined between atomistically detailed hydrophobic plates at T = 298 K for pressures (-0.1) ≤ P ≤ 1.0 GPa and plate separations of 0.40 ≤ d ≤ 0.80 nm. From these simulations, we construct an expanded P-d phase diagram for confined water, and identify and characterize a previously unreported confined monolayer ice morphology. We also study the decompression-induced sublimation of bilayer ice in a d = 0.6 nm slit, employing principal component analysis to synthesize low-dimensional embeddings of the drying trajectories and develop insight into the sublimation mechanism. Drying is observed to proceed by the nucleation of a bridging vapor cavity at one corner of the crystalline slab, followed by expansion of the cavity along two edges of the plates, and the subsequent recession of the remaining promontory of bilayer crystal into the bulk fluid. Our findings have implications for the understanding of diverse phenomena in materials science, nanofluidics, and protein folding and aggregation.

  17. Bauschinger effect and springback behavior of dual phase sheet steels (United States)

    Ma, Hongwei


    With the increasing use of advanced high strength steels in the automotive industry, springback control has become a more critical issue. It is now realized that a more accurate simulation of springback has to take the Bauschinger effect into account, especially when sheet experiences complicated plastic deformation. In this study, the Bauschinger effect in dual-phase (DP) steels was investigated through tension-unloading-reloading tests. Fundamental mechanisms of the Bauschinger effect were examined via two special experiments: (i) TEM study of the dislocation distribution at the different plastic pre-strains in Bauschinger tests; and (ii) residual stress measurement after different tensile strains using in-situ neutron diffraction technology. To investigate the influence of the Bauschinger effect on springback, deep-draw bending tests were carried out with the different friction conditions. The experimental results of the tension-unloading-reloading tests show the Bauschinger effect in DP steel is much stronger than that in interfacial-free (IF) steel. TEM observation revealed very strong interactions between dislocations and martensite in DP steels. In-situ neutron diffraction tests show that the residual strains caused by inhomogeneous deformation of the two phases in DP steel after deformation are much higher than those in IF steels. The above results support the observation of a strong Bauschinger effect in DP steels. A composite model based on the analysis of internal stress shows further clearly that the residual stresses are the predominant mechanism of the Bauschinger effect in DP steels. A newly defined Bauschinger energy parameter (E beta) was found to be able to quantitatively describe this transient softening before reversed loading. The unloading responses showed the total recovery comes not only from elastic recovery but also from inelastic recovery. An effective unloading modulus was therefore introduced to reflect the inelastic recovery. Based on

  18. Liquid-expanded-liquid-condensed phase transition in amphiphilic monolayers: A renormalization-group approach to chiral-symmetry breaking of hydrocarbon-chain defects (United States)

    Legré, J.-P.; Albinet, G.; Firpo, J.-L.; Tremblay, A.-M. S.


    This paper is concerned with the liquid-expanded (LE) -liquid-condensed (LC) transition in monolayers of amphiphilic molecules at the air-water interface. A model, which can be mapped into the Blume-Emery-Griffiths Hamiltonian, has been considered before within the (mean-field) Bragg-Williams approximation and it gave results which could be successfully compared with experiment. The LE-LC transition has been associated with a chiral-symmetry breaking of the hydrocarbon-chain defects. This model is treated here with a Migdal-Kadanoff approximate position-space renormalization group. Renormalization-group flows are consistent with those obtained by previous authors. The connection between experimental and Hamiltonian parameters is easiest for a particular choice of ensemble, which turns out to be rather subtle for this problem. As in the work of Lavis, Southern, and Bell, isotherms in the surface-pressure-molecular-area plane do not show a signature of the LE-LC transition. The better agreement between experiments (showing a compressibility jump at the LE-LC transition) and mean-field theory suggests that in these cases long-range forces depending on the nature of the polar head and on the water substrate pH are responsible for the jump.

  19. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen


    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  20. Monte Carlo studies of model Langmuir monolayers. (United States)

    Opps, S B; Yang, B; Gray, C G; Sullivan, D E


    This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters sigma(hh) and sigma(tt), respectively. The tails consist of n(t) approximately 4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with sigma(hh)=sigma(tt), we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'(2)/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in T(c) with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in T(c) due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard

  1. Structure, interfacial properties, and dynamics of the sodium alkyl sulfate type surfactant monolayer at the water/trichloroethylene interface: a molecular dynamics simulation study. (United States)

    Shi, Wen-Xiong; Guo, Hong-Xia


    In this work, we perform a series of molecular dynamics (MD) simulations on the category of sodium alkyl sulfate (SDS-type) surfactant monolayers at the water/trichloroethylene (TCE) interface. Three separate tail-length SDS-type molecules are used. We investigate the conformation of surfactant chain (i.e., packing, orientation, and order), interfacial properties (i.e., interfacial thickness, interfacial tension, area compressibility, and bending modulus), their dependence on the chain length, and the average area per surfactant chain. We also examine the behavior of the surfactant monolayer in the metastable regime of negative surface tension with reference to collapse. The simulation has clearly shown that the very dilute monolayer is well described as a two-dimensional gas. With the increase of interfacial surfactant coverage, the monolayer is in the liquid-expanded (LE) phase. The surfactant tails at the interface become straighter, more ordered, and thicker at higher surfactant coverage. At the same time, interfacial tension of long-tail systems is always lower than that of short-tail systems. In the LE phase, the area compressibility modulus and the bending modulus increase with an increase in tail length. With a further decrease in molecular areas, the monolayer with large negative surface tension becomes unstable. Our simulations show that buckling of the monolayers is of dynamic nature as a response to mechanical instability. The further transformation pathway from buckling to bud can be controlled by the bending modulus, which depends crucially on the tail length and interfacial surfactant coverage. At a given area per molecule, the short tail chain makes the monolayer softer, and the budding process becomes more probable. For the supersaturated softer SDS monolayer, the collapse transition is initiated by the buckling of monolayers, followed primarily by budding and detachment of the nanoscale swollen micelle from the monolayer. Despite a number of

  2. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems. (United States)

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji


    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.

  3. Coulomb excitations of monolayer germanene (United States)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa


    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  4. Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level

    CERN Document Server

    Gudmand, M; Hatzakis, N S; Peneva, K; Muellen, K; Stamou, D; Uji-I, H; Hofkens, J; Bjornholm, T; Heimburg, T


    We monitored the action of phospholipase A2 (PLA2) on L- and D-dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity and diffusion behavior of single PLA2 molecules in a heterogeneous lipid environment during active hydrolysis. The experiments showed that enzyme molecules adsorbed and interacted almost exclusively with the fluid region of the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from the gel-fluid interface where the build-up of negatively charged hydrolysis products, fatty acid salts, led to changes in the mobility of PLA2. The mobility of individual enzymes on the monolayers was characterized by single particle tracking (SPT). Diffusion coefficients of enzymes adsorbed to the fluid interface were between 3 mu m^2/s on the L-DPPC and 4.6 mu m^/s on the D-DPPC monolayers. In regions enriched with hydrolysis produc...

  5. Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A(2) Action at the Single Molecule Level

    DEFF Research Database (Denmark)

    Gudmand, Martin Jesper; Rocha, Susana; Hatzakis, Nikos;


    We monitored the action of phospholipase A(2) (PLA(2)) on L- and D-dipalmitoyl-phosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity and diffus......We monitored the action of phospholipase A(2) (PLA(2)) on L- and D-dipalmitoyl-phosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity...... and diffusion behavior of single PLA(2) molecules in a heterogeneous lipid environment during active hydrolysis. The experiments showed that enzyme molecules adsorbed and interacted almost exclusively with the fluid region of the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from...... interface were between 3.2 microm(2)/s on the L-DPPC and 4.9 microm(2)/s on the D-DPPC monolayers. In regions enriched with hydrolysis products, the diffusion dropped to approximately 0.2 microm(2)/s. In addition, slower normal and anomalous diffusion modes were seen at the L-DPPC gel domain boundaries...

  6. Sexual behavior in lesbian and heterosexual women: relations with menstrual cycle phase and partner availability. (United States)

    Burleson, Mary H; Trevathan, Wenda R; Gregory, W Larry


    Using a prospective design over three complete menstrual cycles, 147 heterosexual and 89 lesbian women made daily recordings of their basal body temperature (BBT), cervical mucus status, menses, and completed a daily checklist of various sexual behaviors (including sexual self-stimulation and sexual activity with a partner). They also gave their age, height, weight, age at menarche, number of pregnancies, duration of sleep, tobacco, caffeine, and alcohol use, and whether they had a live-in sexual partner. Using BBT, cervical mucus status, and menses information, cycle days were grouped into five discrete phases: menses, follicular, ovulatory, early luteal, and premenstrual. Daily frequencies of sexual behavior with a partner and autosexual behavior were computed for each phase. Mixed ANOVAs on the resultant proportional data revealed similar patterns for autosexual behavior across the phases for both heterosexuals and lesbians who did not have a live-in partner, in which autosexual behavior was highest during the follicular and ovulatory phases. For those with live-in partners, autosexual behavior did not vary across the phases. Lesbians engaged in more autosexual behavior overall. Allosexual behavior peaked during the follicular phase for both heterosexuals and lesbians, and the phasic pattern was unrelated to live-in partner status. Additional analyses suggest that the observed patterns were unrelated to anticipated changes in sexual activity due to menses. Results are discussed in terms of social variables and hormonal fluctuations associated with the menstrual cycle.

  7. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei


    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  8. Dissolution kinetics and behavior of δ phase in Inconel 718

    Institute of Scientific and Technical Information of China (English)

    蔡大勇; 张伟红; 聂璞林; 刘文昌; 姚枚


    Dissolution kinetics of δ phase in Inconel 718 at 980,1000 and 1020℃ respectively was established using the quantitative X-ray diffraction(XRD)method.Microstructure evolution during dissolution process was analyzed with scanning electron microscopy(SEM).Dissolution rate of δ phase during high temperature heating keeps at a high level at the beginning stage,and then decreases gradually with the increase of heating time.A dynamic equilibrium state approaches after being heated at 980℃ for more than 30 min and at 1000℃ for more than 2 h,and the equilibrium mass fraction are 3% and 0.6% respectively.δ phase fully dissolves into the austenitic matrix after being heated at 1020℃ for more than 2 h.The dissolution and fracture effects cause the morphology evolution of δphase from long needle shape to short bars or particles at high temperature.

  9. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions. (United States)

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K


    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  10. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    Directory of Open Access Journals (Sweden)

    Samo Kralj


    Full Text Available We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  11. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.


    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  12. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers. (United States)

    Li, Yaping; Qi, Li; Shen, Ying; Ma, Huimin


    The core@shell Fe3O4@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe3O4@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au-S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25-1600 μg L(-1) for diphenols and 1.56-100 μg L(-1) for PAHs) with good linearity (r(2)≥0.989) and low detection limits (0.34-16.67 μg L(-1) for diphenols and 0.26-0.52 μg L(-1) for PAHs) were achieved. The advantage of the developed method is that the Fe3O4@Au NPs could be reutilized for preconcentrating diverse target analytes in different SPE modes sequentially simply through treatment with desired thiol-containing ligands.

  13. Electronic properties of organic monolayers and molecular devices

    Indian Academy of Sciences (India)

    D Vuillaume; S Lenfant; D Guerin; C Delerue; C Petit; G Salace


    We review some of our recent experimental results on charge transport in organic nanostructures such as self-assembled monolayer and monolayers of organic semiconductors. We describe a molecular rectifying junction made from a sequential self-assembly on silicon. These devices exhibit a marked current–voltage rectification behavior due to resonant transport between the Si conduction band and the molecule highest occupied molecular orbital of the molecule. We discuss the role of metal Fermi level pinning in the current–voltage behavior of these molecular junctions. We also discuss some recent insights on the inelastic electron tunneling behavior of Si/alkyl chain/metal junctions.

  14. Adhesion-induced phase behavior of two-component membranes and vesicles. (United States)

    Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard


    The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.

  15. On phase transformation behavior of porous Shape Memory Alloys. (United States)

    Liu, Bingfei; Dui, Guansuo; Zhu, Yuping


    This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniaxial response under compression for a porous Ni-Ti SMA material considering hydrostatic stress is supplied. Good agreement between the theoretical prediction of the proposed model and published experimental data is observed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Prediction of Phase Behavior for Styrene/CO2/Polystyrene Mixtures

    Institute of Scientific and Technical Information of China (English)

    吴家龙; 潘勤敏; 等


    A lattice fluid model,Sanchez-Lacombe equation,is used to predict the phase behavior for a styrene/CO2/polystyrene ternary system.The binary parameters involved in the equation were optimized using experimental data.Phase diagrams and the distribution coefficients of styrene between polymer phase and fluid phase are obtained over a wide rang of pressure,temperature and composition.The analysis of ternary phase diagrams indicates that this system at relatively high pressure or low temperature may display two-phase equilibrium,and at low pressures or high temperatures three-phase equilibrium may appear.The distribution coefficients of styrene between the fluid phase and the polymer phase increase asymptotically to unity when the concentration of styrene increases.The results provide thermodynamic knowledge for further exploitation of supercritical carbon dioxide assisted devolatilization and impregnation.

  17. Fluidizing and Solidifying Effects of Perfluorooctylated Fatty Alcohols on Pulmonary Surfactant Monolayers. (United States)

    Nakahara, Hiromichi


    Pulmonary surfactant (PS) preparations based mainly on bovine or porcine extracts are commonly administered to patients with neonatal respiratory distress syndrome (NRDS) for therapy. The preparations are sufficiently effective to treat NRDS; however, they are associated with a risk of infection and involve costly purification procedures to achieve batch-to-batch reproducibility. Therefore, we investigated the mechanism and interfacial behavior of synthetic PS preparations containing a mimicking peptide (KLLKLLLKLWLKLLKLLL, Hel 13-5). In particular, a hybrid PS formulation with fluorinated amphiphiles is reported from the perspective of surface chemistry. Fluorinated amphiphiles are characterized by exceptional chemical and biological inertness, high oxygen-dissolving capacity, low surface tension, excellent spreading ability, and high fluidity. These properties are superior to those for the corresponding hydrocarbon analogs. Indeed, a small amount of fluorinated long-chain alcohols enhances the effectiveness of the model PS preparation for in vitro pulmonary functions. Moreover, the mode of the improved efficacy differs depending on the hydrophobic chain length in the alcohols. For alcohols with a short fluorocarbon (FC) chain, the monolayer phase of the model PS preparation remains disordered (fluidization). However, the addition of alcohols containing a long FC chain reduces the disordered/ordered phase transition pressure and the growth of ordered domains of the monolayer (condensation). Furthermore, repeated compression-expansion isotherms of the monolayers, which can simulate respiration in the lung, suggest irreversible elimination of the short-FC alcohol into the subphase and enhancement of the squeeze-out phenomenon of certain PS components by solid-like monolayer formation induced by the long-FC alcohol. We demonstrated that fluorinated amphiphiles may be used as additives for synthetic or commercial PS preparations for RDS treatment.

  18. Fracture Characteristics of Monolayer CVD-Graphene (United States)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo


    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  19. The influence of the membrane-polymer interface on colloidal membrane dynamics and phase behavior (United States)

    Zakhary, Mark J.

    A primary challenge in the field of self-assembly is to identify simple interactions that produce well-defined, complex, and controllable materials. A large part of this task is to creatively engineer appropriate assembly components with such suitable interactions built-in. Here, we demonstrate that rod-like subunits, experimentally modeled by fd bacteriophage viruses, with simple and predictable hard-core repulsive interactions, exhibit a great wealth of fascinating self-assembly behavior. These rods form two-dimensional liquid crystalline colloidal membranes consisting of monolayers of aligned particles owing purely to entropic considerations. Due to surface tension, rods near the edge of the monolayers twist, resulting in an elastic nematic ring surrounding the fluid-like membrane interior, and it is the rich phenomena rooted in the interplay between the edge and the interior that is the subject of this thesis. The chiral nature of the fd subunits causes a symmetry breaking at the membrane edge, which leads to chiral control of interfacial tension and resultantly a controllable, reversible morphological transition between membranes and one-dimensional twisted ribbons. Using optical microscopic and optical tweezer techniques, we show that a nucleation barrier exists in association with the membrane-ribbon transition, and investigate this barrier using fluctuation analysis as well as highly controlled force-extension experiments. The finite bending rigidity of the membrane edge is studied, and we show that long filamentous polymers spontaneously adhere to the edge, introducing the concept of geometrical edge-active agents. By analyzing the suppressed edge fluctuations of filament-bound membranes, it is found that the edge bending rigidity varies by up to an order of magnitude in a predictable and controllable way. Finally, we study the effect of the monolayer edge on the membrane coalescence, and observe two types of stable liquid crystalline defects that form at

  20. Phase behavior of self-associating fluids with weaker dispersion interactions between bonded particles. (United States)

    Talanquer, V


    In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.

  1. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation. (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin


    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.


    Institute of Scientific and Technical Information of China (English)

    DAI Yingkun; FENG Zhiliu


    The compatibility and phase behavior of PS/SBR blends was studied with torsional braid analysis technique. The technique used in this study for preparation of braids was first developed by one of the authors, which gives more precise phase diagram as compared to other conventional methods.The results obtained are in good agreement with those obtained in our previous work.

  3. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou


    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  4. Phase behavior of multicomponent membranes: Experimental and computational techniques

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Kumar, P.B. Sunil


    membranes. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating liquid ordered-liquid disordered coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior....... This review includes basic foundations on membrane model systems and experimental approaches applied in the membrane research area, stressing on recent advances in the experimental and computational techniques....

  5. Designing stable finite state machine behaviors using phase plane analysis and variable structure control

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.


    This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that one can begin to design provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove asymptotically stable group behavior is especially important for applications such as locating military targets or land mines.

  6. Phase Behavior and Structural Transitions in Sodium Dodecyl Sulfonate Microemulsions

    Institute of Scientific and Technical Information of China (English)

    杨根生; 施介华; 等


    The forming mechanism of microemulsion of sodium dodecyl sulfonate.alcohols,water and isooctane was studied,with particular emphasis on the effect of molecular weight and concentration of alocohols.Phase diagram of the four components,alcohol, sodium dodecyl sulfonate,water and isooctane,was used as a means of study,through which the microemulsion regions were determined.Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at km=2(km=Wn-pentanol/WSDS)is presented. The variation of conductivities of different microemulsion samples with water was measured.From the conductivities we investigated a change in structure from water droplets in oil(W/O)at low water content to liquid crystal at intermediate water content and a structure of oil droplets in water(O/W)at high water content.

  7. Study on the Phase Behavior of Coating Matrix in Supercritical or Sub—critical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    曹维良; 徐金龙; 张敬畅


    The high-pressure phase behavior of coating -solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally.The coating matrix used was 108-acrylic resin at concentration raging from 10% to 50%(by mass) in mixtures with n-butyl acetate ,The experiments were conducted in a high-pressure view cell for temperatures from 35℃to 65 ℃ and for pressures from 3.0 MPa to 8.0 MPa ,The effect of temperature,pressure and content of every component on the phase behavior of the systems was observed,Finally ,the ternary phase diagram for resin-solvent-CO2 was plotted.

  8. Phase behavior of chromonic liquid crystal mixtures of Sunset Yellow and Disodium Cromoglycate (United States)

    Yamaguchi, Akihiro; Smith, Gregory; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Clark, Noel


    Chromonic liquid crystals (CLCs) are formed when planar molecules dissolved in water stack into rod-like aggregates that can order as liquid crystals. Isotropic, nematic, and M-phases can be observed depending on the degree of molecular orientational and positional order by variation of the CLC concentration. We focused on mixtures of two well-known CLCs, Sunset Yellow, a food dye, and disodium cromoglycate (DSCG), an asthma medication. In order to study the phase behaviors of these mixtures, we observed their textures in glass cells and capillaries using polarized light microscopy. We report here a ternary phase diagram describing the complete phase behavior of the CLC mixtures. We observed a variety of phase behaviors depending on species ratio and concentration. In the isotropic phase, no clear phase separation of the two dyes was observed, while separation did occur in many nematic and M-phase combinations. We will also describe phase observations made using a light spectroscopy and bulk centrifugal partitioning. Grant support: NSF DMR 1207606 and NSF MRSEC DMR-0820579.

  9. Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChengFeng; LIU YuHai; LIU ShaoXuan; LI HuiZhen; HUANG Kun; PAN QingHua; HUA XiaoHui; HAO ChaoWei; MA QingFang; LV ChangYou; LI WeiHong; YANG ZhanLan; ZHAO Ying; WANG DuJin; LAI GuoQiao; JIANG JianXiong; XU YiZhuang; WU JinGuang


    Recently we have successfully produced fine denier PA6 fibers by using additives containing lanthanide compounds.Meanwhile,crystallization and phase transition of PA6 fibers during spinning and drawing processes were investigated.During the spinning process,β phase crystal could be obtained In as-spun PA6 fibers which were produced with relatively high melt draw ratio,while γ phase crystal predominated when the melt draw ratio was relatively low.β phase crystal,whose behaviors ere similar with those of γ phase by FT-IR and XRD characterization,could be transformed to α form easily when PA6 fibers are immersed in boiling water.However,γ phase crystal of PA6 remains unchanged in boiling water.Thus,β and γ phase crystals of PA6 can be differentiated by the crystalline behaviors of PA6 fibers after treatment in boiling water.Further experiments demonstrate that the β phase can also be produced during a drawing process where a phase transformation from γ to α occurs.In other words,βphase may act as an intermediate state during the phase transformation.

  10. Dynamic behavior of pipes conveying gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Chen, E-mail: [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)


    Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.

  11. Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices

    Institute of Scientific and Technical Information of China (English)

    Ersin Kantar


    Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).

  12. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels (United States)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.


    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  13. Synthesis and Thermotropic Phase Behavior of Four Glycoglycerolipids

    Directory of Open Access Journals (Sweden)

    Marité Cárdenas


    Full Text Available Four glycoglycerolipids with different head groups have been synthesized and their physicochemical properties studied. The lengths of the head groups from a mono-saccharide to a trisaccharide, in addition to the anomeric stereochemistry for the smaller glycoglycerolipids, have been modified. The synthesis has been optimized to avoid glycerol epimerization and to allow up-scaling. The physicochemical properties of the glycoglycerolipids were studied and a strong de-mixing of the gel-phase, depending on the head-group, was observed.

  14. Effect of saline on transitions in poly(ethylene glycol)-grafted succinyl-phosphoethanolamine monolayers bearing C16 aliphatic chains. (United States)

    Shahid, Muhammad Naeem; Tsoukanova, Valeria


    To investigate the effect of saline on miscibility, phase, and conformational transitions in binary mixtures of a succinyl-phosphoethanolamine bearing C(16) aliphatic chains, DPPE-succinyl, and a poly(ethylene glycol) (PEG)-phospholipid conjugate with a PEG molecular weight of 2000, DPPE-PEG2000, we have compared the properties of monolayers spread on water and on phosphate buffered saline (PBS). A comparative analysis of monolayer surface pressure, surface potential, compressibility, and epifluorescence microscopy data has revealed that spreading on PBS induces unfavorable interactions between the two phospholipids, which stabilizes immiscible phases in mixed monolayers. Strikingly, the conformational transition in grafted PEG2000 chains on PBS could not be easily described by the existing interpretive schemes. Plausibly, this transition becomes partially impaired due to interactions with PBS. Thus, saline has a significant effect on miscibility, phase, and conformational transitions in these PEG-grafted monolayers bearing C(16) aliphatic chains, which may have implications for understanding the behavior of PEG-grafted phospholipid surfaces in aqueous media of biological relevance.

  15. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail:; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)


    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  16. Structure and phase behavior of aqueous methylcellulose solutions (United States)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank


    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  17. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids. (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob


    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

  18. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)


    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  19. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024 (United States)

    Hintze, Paul E.; Calle, Luz Marina


    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  20. Partition Behavior of Penicillin in Three-liquid-phase Extraction System

    Institute of Scientific and Technical Information of China (English)

    谭显东; 季清荣; 常志东


    Partition behavior of penicillins G and V was studied in a novel three-liquid-phase extraction system, which is composed of butyl acetate (BA), polyethylene glycol (PEG), ammonia sulfate [(NH4)2SO4] and water (H2O). The main components in the top, middle and bottom phases are butyl acetate, polyethylene glycol aqueous solution and ammonia sulfate aqueous solution, respectively. Some parameters such as partition coefficients Di/j and mass fractions Ei ofpenicillins G and V were determined at the room temperature, respectively. Experimental efforts have been made to investigate the partition behavior of penicillin in the three-liquid-phase extraction system, including initial concentrations of phase-forming components [PEG and (NH4)2SO4], PEG molecular weight, pH, initial concentration of penicillin. The results indicated that penicillins G and V have the similar partition behavior. They preferentially distribute into the middle phase with the increase of initial concentration of phase-forming components and into the top phase with the decrease of pH, while partition coefficient Dm/b is hardly affected by pH value. The variation of PEG molecular weight has little effect on mass fractions of penicillin. The increase of initial concentration of penicillins G and V could lead to the increase of Dt/b, Dm/b and the decrease of Dt/m, while their mass fractions in all phases were almost independent on their initial concentrations.

  1. Dielectric behavior of manganese titanate in the paraelectric phase (United States)

    Acharya, Truptimayee; Choudhary, R. N. P.


    Rhombohedral MnTiO3 powder has been synthesized by a high-temperature solid-state reaction method. The formation of single-phase compound is confirmed through XRD, Rietveld refinement and FTIR analysis. The optical band in MnTiO3 obtained from the UV-Vis absorption spectrum has been analyzed. The study of SEM micrographs suggested that the prepared material has good sinter ability and high density with homogeneous grain distribution on the surface and in the bulk. From the impedance and dielectric measurements, the electrical parameters were obtained. It was found that the magnitude of relative dielectric constant ( ɛ r) was relatively high with low dielectric loss. The study of frequency dependence of AC conductivity suggests that the material obeys Jonscher's universal power law. The variation of DC conductivity with inverse of absolute temperature follows the Arrhenius relation.

  2. Monolayer patterning using ketone dipoles. (United States)

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B


    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  3. Monolayer and Brewster angle microscopy study of human serum albumin-dipalmitoyl phosphatidyl choline mixtures at the air-water interface. (United States)

    Toimil, Paula; Prieto, Gerardo; Miñones, José; Trillo, José M; Sarmiento, Félix


    The aim of this study is to deepen the understanding of the behavior of human serum albumin (HSA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers. For this purpose, different amounts of DPPC were spread at 25°C on the water surface containing a monolayer of HSA. Surface film balance and Brewster angle microscopy techniques have been used to analyze the structural and energetic characteristics (structure, topography, thickness, miscibility and interactions) of these mixtures. HSA/DPPC mixed monolayers exhibit two phase transitions evidenced by two discontinuities in the corresponding π-A isotherms and by two minimum values in the compressional modulus (C(s)(-1))-surface pressure (π) curves. The plot of the molecular areas occupied by the mixed monolayers as function of the mass fraction of DPPC shows the absence of deviations from linearity, a typical behavior for ideal or inmiscible system. This result was confirmed from the values calculated for the free energy of excess (ΔG(exc)), which are practically zero whatever the composition of the mixtures and the surface pressures at which ΔG(exc) values were calculated. In addition, relative thickness values of HSA/DPPC mixed monolayers showed the existence of an exclusion surface pressure (π(exc)), below which the monolayer is composed of a mixture of both components, while above π(exc) the HSA molecules are squeezed out the interface, but not totally. In fact, although in this region DPPC domains predominate at the interface, the existence of protein molecules in a packing "loops" configuration can be observed in BAM images. Moreover, relative thickness measurements confirm this hypothesis.

  4. Thermoelectric properties of SnSe2 monolayer (United States)

    Li, Guanpeng; Ding, Guangqian; Gao, Guoying


    The 2H (MoS2-type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport properties of 1T (CdI2-type) SnSe2 monolayer, a recently realized 2D metal dichalcogenide semiconductor. The calculated band gap is 0.85 eV, which is a little larger than the bulk value. Lower phonon thermal conductivity and higher power factor are obtained in 1T-SnSe2 monolayer compared to 2H-TMDCs monolayers. The low phonon thermal conductivity (3.27 W mK-1 at room temperature) is mainly due to the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes. We also find that the p-type has better thermoelectric performance than the n-type, and the figure of merit within p-type can reach 0.94 at 600 K for 1T-SnSe2 monolayer, which is higher than those of most 2H-TMDCs monolayers, making 1T-SnSe2 monolayer a promising candidate for thermoelectric applications.

  5. The role of specific interaction in phase behavior of polyelectrolyte-surfactant-water mixtures. (United States)

    Sitar, Simona; Goderis, Bart; Hansson, Per; Kogej, Ksenija


    Aqueous phase behavior and structures of phases were studied in systems containing sodium poly(styrenesulfonate), NaPSS, and complex salt CTAPSS, formed between cetyltrimethylammonium cations, CTA+, and PSS- anions. It was shown that hydrophobic interaction of the polyion styrene groups with surfactant aggregates, which supports the strong electrostatic attraction between CTA+ and PSS-, has a significant effect on phase behavior and structures. Only the disordered micellar (L1) and the ordered hexagonal (H1) phase were found that are connected over a broad two-phase region of L1-H1 coexistence. At water contents above 60 wt%, CTAPSS is easily dissolved in proportion to the amount of added NaPSS, whereas at lower water contents a large excess of NaPSS is needed to dissolve CTAPSS. Phase separation in the two-phase region is controlled by two tendencies: (i) to maximize the contact between the hydrophobic groups and micelles (assisted by hydrophobic interaction) and (ii) to form as dense phase as possible (assisted by both, electrostatic and hydrophobic interactions). Structural characteristics of soluble non-stoichiometric complexes from the L1 phase show that hydrophobic interaction contributes also to a relatively small size of PSS-induced micelles and leads to a network-like association between PSS chains in which micelles serve as cross-links.

  6. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. (United States)

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di


    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  7. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞


    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  8. Phase behaviors involved in surimi gel system: Effects of phase separation on gelation of myofibrillar protein and kappa-carrageenan. (United States)

    Zhang, Tao; Xu, Xiaoqi; Ji, Lei; Li, Zhaojie; Wang, Yuming; Xue, Yong; Xue, Changhu


    Phase behaviors of mixtures of myofibrillar protein and κ-carrageenan at different mixing ratios and temperatures were examined by digital images and confocal scanning laser microscopy, showing that that the extent of phase separation was enhanced as the ratio of polysaccharides and temperature increased. The zeta potential of the mixtures became less negative as the protein ratio increased, and the complex became saturated at or above the protein/κ-carrageenan ratio of R4 (3.2%:0.8%). Gelation process performed by dynamic rheological analysis demonstrated that the presence of carrageenan decreased the gelation temperature but increased the storage modulus. Analysis of the microstructures of the mixed gels showed that the networks were significantly influenced by the concentrations of κ-carrageenan. The present work could be applied to evaluate the mechanism of competition between phase separation and gelation in mixtures of proteins and polysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Langmuir monolayers composed of single and double tail sulfobetaine lipids. (United States)

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E


    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to

  10. Rheology and phase behavior of dense casein micelle dispersions (United States)

    Bouchoux, A.; Debbou, B.; Gésan-Guiziou, G.; Famelart, M.-H.; Doublier, J.-L.; Cabane, B.


    Casein micelle dispersions have been concentrated through osmotic stress and examined through rheological experiments. In conditions where the casein micelles are separated from each other, i.e., below random-close packing, the dispersions have exactly the flow and dynamic properties of the polydisperse hard-sphere fluid, demonstrating that the micelles interact only through excluded volume effects in this regime. These interactions cause the viscosity and the elastic modulus to increase by three orders of magnitude approaching the concentration of random-close packing estimated at Cmax≈178 g/l. Above Cmax, the dispersions progressively turn into "gels" (i.e., soft solids) as C increases, with elastic moduli G' that are nearly frequency independent. In this second regime, the micelles deform and/or deswell as C increases, and the resistance to deformation results from the formation of bonds between micelles combined with the intrinsic mechanical resistance of the micelles. The variation in G' with C is then very similar to that observed with concentrated emulsions where the resistance to deformation originates from a set of membranes that separate the droplets. As in the case of emulsions, the G' values at high frequency are also nearly identical to the osmotic pressures required to compress the casein dispersions. The rheology of sodium caseinate dispersions in which the caseins are not structured into micelles is also reported. Such dispersions have the behavior of associative polymer solutions at all the concentrations investigated, further confirming the importance of structure in determining the rheological properties of casein micelle systems.

  11. Modeling multiphase, multicomponent flows at the pore scale: Wetting phenomena and non-equilibrium phase behavior (United States)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.


    The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.

  12. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution. (United States)

    Kumar, Sugam; Ray, D; Aswal, V K; Kohlbrecher, J


    Small-angle neutron scattering (SANS) studies have been carried out to examine the evolution of interaction and structure in a nanoparticle (silica)-polymer (polyethylene glycol) system. The nanoparticle-polymer solution interestingly shows a reentrant phase behavior where the one-phase charged stabilized nanoparticles go through a two-phase system (nanoparticle aggregation) and back to one-phase as a function of polymer concentration. Such phase behavior arises because of the nonadsorption of polymer on nanoparticles and is governed by the interplay of polymer-induced attractive depletion with repulsive nanoparticle-nanoparticle electrostatic and polymer-polymer interactions in different polymer concentration regimes. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. However, the increase in polymer concentration enhances the depletion attraction to give rise to the nanoparticle aggregation in the two-phase system. Further, the polymer-polymer repulsion at high polymer concentrations is believed to be responsible for the reentrance to one-phase behavior. The SANS data in polymer contrast-matched conditions have been modeled by a two-Yukawa potential accounting for both repulsive and attractive parts of total interaction potential between nanoparticles. Both of these interactions (repulsive and attractive) are found to be long range. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the depletion interaction leading to reentrant phase behavior. The nanoparticle clusters in the two-phase system are characterized by the surface fractal with simple cubic packing of nanoparticles within the clusters. The effect of varying ionic strength and polymer size in tuning the interaction has also been examined.

  13. Phase behavior of a PVAL-based polymer proton conductor

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.A. [Univ. Popular del Cesar, Valledupar (Colombia). Dept. de Fisica; Vargas, R.A. [Dept. de Fisica, Univ. del Valle, Cali (Colombia); Mellander, B.-E. [Physics Dept., Chalmers Univ. of Technology, Gothenburg (Sweden)


    Solid protonic conductor gels were synthesized using poly(vinyl alcohol) (PVAL), hypophosphorous acid (H{sub 3}PO{sub 2}) and water as prime chemicals. The samples were characterized by means of impedance spectroscopy, fuel cell measurements, differential scanning calorimetry (DSC), thermogravimetry (TG) and X-ray diffraction. The electrical conductivity of the samples at room temperature showed a sensitive variation between 10{sup -6} and 10{sup -1} S/cm as the acid concentration was increased. Using the raw membranes as electrolytic separator in a fuel cell, voltages up to 726 mV were obtained. DSC thermograms showed a well-resolved step anomaly associated to a glass transition for samples with the highest acid concentrations: at about -130 C for the first set of samples and at about -120 C for the other sets, which indicates the amorphous character of the samples. TG traces confirmed that the membranes with higher acid concentrations have higher water contents and that the maximum rate of water removal is at about 50 C for all samples. X-ray spectra for the raw samples at room temperature show a large peak at about 2{theta} = 20 , which is smaller for the higher acid content samples and increases when the samples are annealed at 70 C, indicating that the amorphousness of PVAL complexes increases with the H{sub 3}PO{sub 2} content and drops with the water removal. The results, then, indicated the presence of a separate acid/water phase in the raw samples and an increasing polymer chain intervention in the ionic mobility as the samples are thermally treated. (orig.)


    Institute of Scientific and Technical Information of China (English)

    Kwang-Un Jeong; Alexander J. Jing; Bart Mansdorf; Matthew J. Graham; Yingfeng Tu; Frank W. Harris; Stephen Z. D. Cheng


    The phase behaviors and structures of a triphenylene-derived discotic liquid crystal (LC) hexa-n-octoxyl-triphenylene (C8HET) were studied using the combined techniques of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), selected area electron diffraction (SAED) and polarized light microscopy (PLM). Onedimensional (1D) powder WAXD results at different temperatures coupled with DSC and PLM observations revealed that the C8HET compound possessed an LC phase and three different crystalline (K3, K2 and K1) phases below the isotropic (Ⅰ)melt. The I (←→) LC phase transition was thermodynamically reversible and independent of the heating and cooling rates. The development and experimental observation of the three crystalline phases relied on different thermal histories. Among the three crystalline phases in C8HET, the K3 phase is the most stable phase, while the K2 and K1 phases are metastable. Note that the K1 phase only formed via a quenching process. On the basis of structure sensitive diffraction experiments such as 2D WAXD of oriented samples and SAED of single crystals, detailed structures and molecular packings of these four ordered phases were identified. The LC phase exhibited a hexagonal columnar phase with 2D lattice dimensions of a = b = 2.38 nm and γ= 120°. All the three crystalline phases possess monoclinic unit cells, yet the γ angle is not 90° in the cases of the K2 and the K3 phases, while in the case of the K1 phase the α angle is not 90°.

  15. Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS2 Crystals. (United States)

    Feng, Shanghuai; Yang, Ruilong; Jia, Zhiyan; Xiang, Jianyong; Wen, Fusheng; Mu, Congpu; Nie, Anmin; Zhao, Zhisheng; Xu, Bo; Tao, Chenggang; Tian, Yongjun; Liu, Zhongyuan


    Tensile strain is intrinsic to monolayer crystals of transition metal disulfides such as Mo(W)S2 grown on oxidized silicon substrates by chemical vapor deposition (CVD) owing to the much larger thermal expansion coefficient of Mo(W)S2 than that of silica. Here we report fascinating fluorescent variation in intensity with aging time in CVD-grown triangular monolayer WS2 crystals on SiO2 (300 nm)/Si substrates and formation of interesting concentric triangular fluorescence patterns in monolayer crystals of large size. The novel fluorescence aging behavior is recognized to be induced by the partial release of intrinsic tensile strain after CVD growth and the induced localized variations or gradients of strain in the monolayer crystals. The results demonstrate that strain has a dramatic impact on the fluorescence and photoluminescence of monolayer WS2 crystals and thus could potentially be utilized to tune electronic and optoelectronic properties of monolayer transition metal disulfides.

  16. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams (United States)

    Kantar, Ersin


    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  17. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter


    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  18. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan


    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  19. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers. (United States)

    Mogilevsky, Alina; Jelinek, Raz


    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  20. Reversed-phase thin-layer chromatography behavior of aldopentose derivatives

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.


    Full Text Available Quantitative structure-retention relationships (QSRR have been used to study the chromatographic behavior of some aldopentose. The behavior of aldopentose derivatives was investigated by means of the reversed-phase thin-layer chromatography (RP TLC on the silica gel impregnated with paraffin oil stationary phases. Binary mixtures of methanol-water, acetone-water and dioxane-water were used as mobile phases. Retention factors, RM0, corresponding to zero percent organic modifier in the aqueous mobile phase was determined. Lipophilicity C0 was calculated as the ratio of the intercept and slope values. There was satisfactory correlation between them and log P values calculated using different theoretical procedures. Some of these correlations offer very good predicting models, which are important for a better understanding of the relationships between chemical structure and retention. The study showed that the hydrophobic parameters RM0 and C0 can be used as a measures of lipophilicity of investigated compounds.

  1. Processing of monolayer materials via interfacial reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter Werner; Sutter, Eli Anguelova


    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  2. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç


    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  3. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly (United States)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  4. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives. (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu


    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution (1)H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  5. Influence of Chain Rigidity on the Phase Behavior of Wormlike Diblock Copolymers (United States)

    Jiang, Ying; Chen, Jeff Z. Y.


    We utilize the wormlike chain model in the framework of the self-consistent field theory to investigate the influence of chain rigidity on the phase diagram of AB diblock copolymers in the full three-dimensional space. We develop an efficient numerical scheme that can be used to calculate the physical properties of ordered microstructures self-assembled from semiflexible block copolymers. The calculation describes the entire physical picture of the phase diagram, crossing from the flexible over to rodlike polymer behavior.

  6. A generic model for lipid monolayers, bilayers, and membranes

    CERN Document Server

    Schmid, F; Lenz, O; West, B


    We describe a simple coarse-grained model which is suited to study lipid layers and their phase transitions. Lipids are modeled by short semiflexible chains of beads with a solvophilic head and a solvophobic tail component. They are forced to self-assemble into bilayers by a computationally cheap `phantom solvent' environment. The model reproduces the most important phases and phase transitions of monolayers and bilayers. Technical issues such as Monte Carlo parallelization schemes are briefly discussed.

  7. Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior. (United States)

    Avvisati, Guido; Dasgupta, Tonnishtha; Dijkstra, Marjolein


    Colloidal photonic crystals display peculiar optical properties that make them particularly suitable for application in different fields. However, the low packing fraction of the targeted structures usually poses a real challenge in the fabrication stage. Here, we propose a route to colloidal photonic crystals via a binary mixture of hard tetramers and hard spheres. By combining theory and computer simulations, we calculate the phase diagram as well as the stacking diagram of the mixture and show that a colloidal analogue of the MgCu2 Laves phase-which can serve as a precursor of a photonic band-gap structure-is a thermodynamically stable phase in a large region of the phase diagram. Our findings show a relatively large coexistence region between the fluid and the Laves phase, which is potentially accessible by experiments. Furthermore, we determine the sedimentation behavior of the suggested mixture, by identifying several stacking sequences in the sediment. Our work uncovers a self-assembly path toward a photonic structure with a band gap in the visible region.

  8. Simulated Effects of Odd-Alkane Impurities in a Hexane Monolayer on Graphite


    Pint, Cary L.; Roth, Michael W.


    We present the results of molecular dynamics simulations of odd alkane impurities present within the hexane (even alkane) monolayer. We simulate various temperatures at ca. 3%, 5%, 10%, and 15% impurities of propane, pentane, heptane, nonane, and undecane, each having a low-temperature solid phase belonging to a different space group as compared to hexane, to study the effects of impurities on the various phases and phase transitions for hexane monolayers that are well-characterized through p...

  9. Monolayer-directed assembly and magnetic properties of FePt nanoparticles on patterned aluminum oxide. (United States)

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N; Blank, Dave H; van der Wiel, Wilfred G; Rijnders, Guus; Huskens, Jurriaan


    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al(2)O(3) substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al(2)O(3), which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al(2)O(3) surface and controlling the immersion time of the modified Al(2)O(3) substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N(2)/4%H(2)) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  10. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders


    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  11. Polymerization of a diacetylenic phospholipid monolayer at the air-water interface (United States)

    Bourdieu, L.; Chatenay, D.; Daillant, J.; Luzet, D.


    Monolayers of a polymerizable phospholipid on water have been studied both before and after polymerization. Before polymerization, the phase diagram is established by isotherm measurements and optical microscopy (epifluorescence and direct observation between crossed polarizer and analyzer). This allows us to bring into evidence a coexistence region between a condensed and an expanded phase, above a triple point temperature T_t = 20 ^{circ}C. The dramatic influence of impurities on the size of coexistence domains between the condensed phase and the expanded one is clearly demonstrated, even at a very low concentration of impurities. Structural and morphological modifications during the polymerization where investigated using X-ray surface scattering together with atomic force microscopy. Whatever the polymerization conditions (constant area or constant pressure), X-ray reflectivity clearly shows the reorientation of the diacetylenic links. Only constant area polymerization leads to a viscoelastic behavior of the film, as shown by talcum decoration. The topochemical nature of the polymerization of diacetylenic groups induces strong constraints on the monolayers and, when the polymerization is achieved at constant area, leads to the collapse of the films evidenced by both techniques.

  12. Mediated Electron Transfer at Redox Active Monolayers

    Directory of Open Access Journals (Sweden)

    Michael E.G. Lyons


    Full Text Available A theoretical model describing the transport and kinetic processes involved in heterogeneous redox catalysis of solution phase reactants at electrode surfaces coated with redox active monolayers is presented. Although the analysis presented has quite general applicability, a specific focus of the paper is concerned with the idea that redox active monolayers can be used to model an ensemble of individual molecular nanoelectrodes. Three possible rate determining steps are considered: heterogeneous electron transfer between immobilized mediator and support electrode ; bimolecular chemical reaction between redox mediator and reactant species in the solution phase, and diffusional mass transport of reactant in solution. A general expression for the steady state reaction flux is derived which is valid for any degree of reversibility of both the heterogeneous electron transfer reaction involving immobilized mediator species and of the bimolecular cross exchange reaction between immobilized mediator and solution phase reactant. The influence of reactant transport in solution is also specifically considered. Simplified analytical expressions for the net reaction flux are derived for experimentally reasonable situations and a kinetic case diagram is constructed outlining the relationships between the various approximate solutions. The theory enables simple diagnostic plots to be constructed which can be used to analyse experimental data.

  13. Predicting Two-Dimensional Silicon Carbide Monolayers. (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I


    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  14. Phase Behavior of the Ternary Solution Involving Rodlike and Random Coil Polymers

    Institute of Scientific and Technical Information of China (English)


    The present paper covers the phase behavior of poly(p-benzamide)(PBA)/Nylon 6/H2SO4 and poly(p-phenylene terephthalamide) (PPTA)/Nylon 6/H2SO4 systems. The transition temperatures detected by the Depolarized Light Intensity measurements were used to construct the phase diagram in which the influence of temperature was shown. The enhanced depolarized light intensity observed in the ternary system suggests that the coil polymer chains may tend to be extended and contribute to the overall anisotropy of the liquid crystal phase.

  15. Phase behavior of polyampholytes from charged hard-sphere chain model. (United States)

    Jiang, Jianwen; Feng, Jian; Liu, Honglai; Hu, Ying


    A molecular thermodynamic theory is developed for polyampholytes from the coarse-grained charged hard-sphere chain model. The phase behavior of polyampholytes with variations in sequence and chain length is satisfactorily predicted by the theory, consistent with simulation results and experimental observations. At a fixed chain length, the phase envelope expands as the sequence of charge distribution becomes less random. With increasing chain length, the phase envelope expands for diblock and random polyampholytes, but shrinks for zwitterionic polyampholytes. The predicted critical temperature, density, and pressure exhibit scaling relations with chain length for all the three (diblock, random, and zwitterionic) polyampholytes.

  16. Taking another look with fluorescence microscopy: image processing techniques in Langmuir monolayers for the twenty-first century. (United States)

    Stottrup, Benjamin L; Nguyen, Andrew H; Tüzel, Erkan


    Fluorescence microscopy has become a powerful and standard complementary technique in the study of amphiphilic films at the air-water interface. For nearly three decades the coupling of traditional thermodynamic measurements with direct visualization has provided a better understanding of self-assembled Langmuir monolayers and their application in the study of the physical properties of membranes and interfaces. As an introduction we provide a brief overview of this established technique and demonstrate its continued utility in the recent observation of novel phase behavior in monolayers of 25-hydroxycholesterol (25-OH) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). We then focus our review on new analysis techniques which take advantage of the ability to store, process, and analyze large sets of images. We pay particular attention to efforts measuring the line tension between coexisting two dimensional fluid phases in the Langmuir monolayer. Using non-perturbative methods, we can measure fundamental mechanical properties of these two dimensional systems. Finally, we highlight the use of Model Convolution Microscopy as a new tool to provide insight on the experimental limits in these studies. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Cooperative behavior and phase transitions in co-evolving stag hunt game (United States)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.


    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  18. Phase behavior of olive and soybean oils in compressed propane and n-butane

    Directory of Open Access Journals (Sweden)

    P. M. Ndiaye


    Full Text Available The aim of this work is to report the experimental data and thermodynamic modeling of phase equilibrium of binary systems containing soybean and olive oils with propane and n-butane. Phase equilibrium experiments were carried out using the static synthetic method in a high-pressure variable-volume view cell in the temperature range from 30 to 70ºC and varying the solvent overall composition from 5 to 98 wt%. Vapor-liquid, liquid-liquid and vapor-liquid-liquid phase transitions were observed at relatively low pressures. The Peng-Robinson and the SAFT equations of state without any binary interaction parameters were employed in an attempt at representing the phase behavior of the systems. Results show the satisfactory performance of SAFT-EoS in predicting qualitatively all phase transitions reported in this work.

  19. Phase behavior, self-assembly, and emulsification of Tween 80/water mixtures with limonene and perfluoromethyldecalin. (United States)

    Sharma, Suraj Chandra; Warr, Gregory G


    The phase behavior, microstructure, and emulsification of polyoxyethylene (20) sorbitan monooleate (Tween 80), water, and d-limonene (LM) or perfluoromethyldecalin (PFMD) has been studied by small-angle X-ray scattering and polarizing optical microscopy. In the Tween 80/water binary system, a micellar solution (L(1)), a hexagonal (H(1)) phase, and a water-swellable isotropic surfactant liquid (L(2)) phase are successively formed at 25 °C. LM can be solubilized into all of the phases formed by Tween 80/water mixtures, whereas no solubilization of PFMD occurs. The L(2) phase was found by small-angle neutron scattering to be bicontinuous with low interfacial curvature. Added water swells and amplifies the pre-existing amphiphilic structure. The stability of oil-in-H(1) complex emulsions is found to be sensitive to changes in structure that accompany solubilization.

  20. Modeling the Phase Behavior in Mixtures of Pharmaceuticals with Liquid or Supercritical Solvents

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios


    the phase behavior of mixtures of six pharmaceuticals (i.e., ibuprofen, ketoprofen, naproxen, benzoic acid, methyl paraben, and ethyl paraben). The pure fluid parameters of the studied pharmaceuticals were estimated using limited available experimental (or predicted) data on sublimation pressures, liquid...

  1. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.


    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  2. Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior (United States)


    Colloidal photonic crystals display peculiar optical properties that make them particularly suitable for application in different fields. However, the low packing fraction of the targeted structures usually poses a real challenge in the fabrication stage. Here, we propose a route to colloidal photonic crystals via a binary mixture of hard tetramers and hard spheres. By combining theory and computer simulations, we calculate the phase diagram as well as the stacking diagram of the mixture and show that a colloidal analogue of the MgCu2 Laves phase—which can serve as a precursor of a photonic band-gap structure—is a thermodynamically stable phase in a large region of the phase diagram. Our findings show a relatively large coexistence region between the fluid and the Laves phase, which is potentially accessible by experiments. Furthermore, we determine the sedimentation behavior of the suggested mixture, by identifying several stacking sequences in the sediment. Our work uncovers a self-assembly path toward a photonic structure with a band gap in the visible region. PMID:28787126

  3. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan


    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  4. Surface viscoelastic properties of spread ferroelectric liquid crystal monolayer on air-water interface (United States)

    Kaur, Ramneek; Bhullar, Gurpreet Kaur; Raina, K. K.


    Ferroelectric Liquid crystal having Smectic C* phase at room temperature was capable of forming Langmuir monolayer due to presence of both hydrophilic and hydrophobic groups in it. Surface viscoelasticity properties of FLC monolayer spread on water surface had been determined by dynamic oscillation method and discussed as a function of surface pressure. Dynamic viscoelastic properties such as G (Elastic modulus), G' (storage (elastic) modulus), G' (Loss (viscous) modulus) and phase change with sinusoidal oscillation had been measured at phase changing surface pressure values. As monolayer was becoming condensed, increasing trend was observed in G' values while G' was decreasing. At higher frequencies, viscous modulus G' had negative values. This relaxation phenomenon was probably caused by conformational rearrangements that acted to fluidize monolayer. Phase change tan θ was positive, response in surface pressure was ahead of the de-formation in area and the monolayer had positive dilatational viscosity. Phase change tan θ was negative, response in surface pressure was hysteretic to the deformation in area, and negative dilatational viscosity had been observed. Studies of monolayer in barrier oscillating mode provided us the surface pressure which was most suitable for Langmuir Blodgett monolayer deposition.

  5. A phase-field study on the oxidation behavior of Ni considering heat conduction

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Shigang Ai; Daining Fang


    Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the tem-perature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600, 700, and 800◦C. The oxidation rate was measured by ther-mogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc−T relationship con-structed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field model-ing approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials.

  6. Effects of pentanol isomers on the phase behavior of phospholipid bilayer membranes. (United States)

    Griffin, Kathryn L; Cheng, Chih-Yin; Smith, Eric A; Dea, Phoebe K


    Differential scanning calorimetry (DSC) was used to analyze the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of pentanol isomers. The concentration of each pentanol isomer needed to induce the interdigitated phase was determined by the appearance of a biphasic effect in the main transition temperatures, the onset of a hysteresis associated with the main transition from the gel-to-liquid crystalline phase, and the disappearance of the pretransition. Lower threshold concentrations were found to correlate with isomers of greater alkyl chain length while branching of the alkyl chain was found to increase biphasic behavior. The addition of a methyl group to butanol systems drastically decreased threshold concentrations. However, as demonstrated in the DPPC/neopentanol system, branching of the alkyl chain away from the -OH group lowers the threshold concentration while maintaining a biphasic effect.

  7. Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

    Directory of Open Access Journals (Sweden)

    Helen R. Mazzer


    Full Text Available High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] and carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60. Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K. As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.

  8. Structure-rheology relationship in weakly amphiphilic block copolymer Langmuir monolayers. (United States)

    Li Destri, Giovanni; Miano, Fausto; Marletta, Giovanni


    The linear viscoelastic behavior in the low-frequency regime at the water/air interface of three different polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) copolymer monolayers, with block length ratio varying from 66-33 to 50-50 and 25-75 in molecular units, was studied and related to the interfacial behavior, characterized by means of Langmuir isotherms, and their structure, characterized by means of the atomic force microscopy technique. The two monolayers with the highest PMMA amount showed a single phase transition at about 12 mN/m, the viscoelastic behavior changing from a predominantly elastic to a viscoelastic one. This change in the viscoelastic properties was ascribed to the beginning of entanglement among the PMMA coronas of the predominantly circular quasi-2D micelles formed by the two copolymer systems. Conversely, the polymer with the lowest PMMA amount, despite having the same PMMA block length of the PS-PMMA 50-50 block copolymer, was found to behave as a viscoelastic system at any surface pressure value. This characteristic behavior cannot therefore be simply related to the molecular weight difference, but it has been put in connection to the irregular micelle structure observed in this case, consisting of a mixture of spherical and wormlike micelles, and to the different conformation adopted by the PMMA block. By blending this copolymer with an immiscible elastic homopolymer, namely poly(2-vinylpyridine), it was possible to tune the micelle nanostructure, obtaining regular circular quasi-2D micelles, with viscoelastic properties as expected for the PMMA-rich copolymer monolayers. To the best of our knowledge, this study shows for the first time the explicit dependence upon the relative block length and, in turn, upon the nanostructure of the quasi-2D micelles, of the viscoelastic properties of Langmuir monolayers and suggests that molecular weight and intermolecular interactions are not the only parameters governing the polymer conformation and

  9. First principles calculations of the site substitution behavior in gamma prime phase in nickel based superalloys (United States)

    Chaudhari, Mrunalkumar

    Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (gamma') Ni3Al phase within the random solid solution of the gamma (gamma) matrix, with the gamma' phase being the strengthening phase of the superalloys. How the alloying elements partition into the gamma and gamma' phases and especially in the site occupancy behaviors in the strengthening gamma' phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co was found to have a compositionally dependent site preference. In addition, the interaction energies between Cr-Cr, Co-Co, Ti-Ti and Cr-Co atoms have also been determined. Along with the charge transfer, chemical bonding and alloy chemistry associated with the substitutions has been investigated by examining the charge density distributions and electronic density of states to explain the chemical nature of the site substitution. Results show that Cr and Co atoms prefer to be close by on either Al sublattice or on a Ni-Al mixed lattice, suggesting a potential tendency of Cr and Co segregation in the gamma' phase.

  10. Effect of Geometrical Asymmetry on the Phase Behavior of Rod-Coil Diblock Copolymers

    Directory of Open Access Journals (Sweden)

    Jingying Yu


    Full Text Available The effect of geometrical asymmetry β (described by the length-diameter ratio of rods on the rod-coil diblock copolymer phase behavior is studied by implementation of self-consistent field theory (SCFT in three-dimensional (3D position space while considering the rod orientation on the spherical surface. The phase diagrams at different geometrical asymmetry show that the aspect ratio of rods β influences not only the order-disorder transition (ODT but also the order-order transition (OOT. By exploring the phase diagram with interactions between rods and coils plotted against β, the β effect on the phase diagram is similar to the copolymer composition f. This suggests that non-lamellae structures can be obtained by tuning β, besides f. When the rods are slim compared with the isotropic shape of the coil segment (β is relatively large, the phase behavior is quite different from that of coil-coil diblock copolymers. In this case, only hexagonal cylinders with the coil at the convex side of the interface and lamella phases are stable even in the absence of orientational interaction between rods. The phase diagram is no longer symmetrical about the symmetric copolymer composition and cylinder phases occupy the large area of the phase diagram. The ODT is much lower than that of the coil-coil diblock copolymer system and the triple point at which disordered, cylinder and lamella phases coexist in equilibrium is located at rod composition fR = 0.66. In contrast, when the rods are short and stumpy (β is smaller, the stretching entropy cost of coils can be alleviated and the phase behavior is similar to coil-coil diblocks. Therefore, the hexagonal cylinder phase formed by coils is also found beside the former two structures. Moreover, the ODT may even become a little higher than that of the coil-coil diblock copolymers due to the large interfacial area per chain provided by the stumpy rods, thus compensating the stretching entropy loss of the coils.

  11. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. (United States)

    Hoda, Kazuki; Ikeda, Yuriko; Kawasaki, Hideya; Yamada, Koji; Higuchi, Ryuichi; Shibata, Osamu


    The surface pressure (pi)-area (A), the surface potential (DeltaV)-A, and the dipole moment (mu( perpendicular))-A isotherms were obtained for monolayers made from a ganglioside originated from echinoderms [Diadema setosum ganglioside (DSG-1)], dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylethanolamine (DMPE), cholesterol (Ch), and their combinations. Monolayers spread on several different substrates were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, fluorescence microscopy (FM) and atomic force microscopy (AFM). Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort [R.J. Demchak, T. Fort, J. Colloid Interface Sci. 46 (1974) 191-202]. The new finding was that DSG-1 was stable and showed a liquid-expanded film and that its monolayer behavior of DeltaV was sensitive for the change of the NaCl concentration in the subphase. Moreover, the miscibility of DSG-1 and three major lipids in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the DSG-1 molar fraction (X(DSG-1)), using the additivity rule. From the A-X(DSG-1) and DeltaV(m)-X(DSG-1) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. The miscibility was also investigated from the two-dimensional phase diagrams. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between them. The observations using fluorescence microscopy and AFM image also provide us the miscibility in the monolayer state.

  12. Elucidating the effects of cholesterol on the molecular packing of double-chained cationic lipid langmuir monolayers by infrared reflection-absorption spectroscopy. (United States)

    Kuo, An-Tsung; Chang, Chien-Hsiang


    Cholesterol has been suggested to play a role in stable vesicle formation by adjusting the molecular packing of the vesicular bilayer. To explore the mechanisms involved in adjusting the bilayer structure by cholesterol, the molecular packing behavior in a mimic outer layer of cationic dialkyldimethylammonium bromide (DXDAB)/cholesterol vesicular bilayer was investigated by the Langmuir monolayer approach with infrared reflection-absorption spectroscopy (IRRAS). The results indicated that the addition of cholesterol in the DXDAB Langmuir monolayers not only restrained the desorption of the DXDAB with short hydrocarbon chains, such as ditetradecyldimethylammonium bromide or dihexadecyldimethylammonium bromide, into the aqueous phase but also induced a condensing effect on the DXDAB monolayers. At a liquid-expanded (LE) state, the ordering effect of cholesterol accompanying the condensing effect occurred in the mixed DXDAB/cholesterol monolayers due to the tendency of maximizing hydrocarbon chain contact between cholesterol and the neighboring hydrocarbon chains. However, for the mixed monolayers containing the DXDAB with long hydrocarbon chains, such as dioctadecyldimethylammonium bromide (DODAB), the disordering effect of cholesterol took place at a liquid-condensed (LC) state. This was related to the molecular structure of cholesterol and hydrocarbon chain length of DODAB. The rigid sterol ring of cholesterol hindered the portion of neighboring hydrocarbon chains from motion. However, the flexible alkyl side-chain of cholesterol along with the corresponding portion of neighboring hydrocarbon chains formed a fluidic region, counteracting the enhanced conformational order induced by the sterol ring of cholesterol. Furthermore, the long hydrocarbon chains of DODAB possessed a more pronounced motion freedom, resulting in a more disordered packing of the monolayers.

  13. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.


    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  14. Behavioral indicators to detect ovarian phase in the dromedary she-camel. (United States)

    Padalino, B; Rateb, S A; Ibrahim, N B; Monaco, D; Lacalandra, G M; El-Bahrawy, K A


    This pilot study was conducted to test the hypothesis that female camels behave differently in various ovarian phases in the presence of a restrained male camel. The aim was to identify behavioral patterns which could be used as indicators to detect ovulatory phase by visual observation in the presence of a restrained virile bull. Twenty-four healthy, nonpregnant, and nonlactating adult females were used. Transrectal ultrasonography was performed for each animal once a week over a 3-week period to determine the phase of the ovarian cycle. Females were considered to be in the ovulatory phase (O) when there was at least one preovulatory follicle (12ethogram (states: looking at the male; looking outside; standing close to the male; searching; and lying down; events: interaction with the male; urination; defecation; sound emission; and steps). A score for tail position (tail score: 1 = close to the vulva, 2 = horizontal, 3 = vertical) and for interest in the bull (male time score: from 1 to 5; 1 = ethogram. The present results clarify that camels behave differently in different ovarian phases and that monitoring their behavior in the presence of a restrained bull could help detect their ovulatory phase. This would have profound implications for enhancing fertility in dromedary camels by improving timing of mating or artificial insemination.

  15. Atomic stick-slip friction between commensurate self-assembled monolayers

    Institute of Scientific and Technical Information of China (English)


    The classical molecular dynamics simulations have been used to examine the compression and friction between commensurate self-assembled monolayers (SAMs) on Au (111). The friction force changes in a period corresponding to the geometric structure of sliding surfaces. The simulations reveal an ordered atomic stick-slip motion and discontinuous movements of diverse monomers, mainly head and tail groups. All of the head groups of the static film have 2~3 metastable positions (MPs). They oscillate around one of the MPs in stick phases and jump simultaneously to a new MP in slip phases. The tail groups of the sliding film are pulled forward together with opposite ones while sticking and jump forward half of the lattice constant relative to opposite ones while slipping. A complete vision of the motion of SAM chains is thereby built up and compared with the molecule behavior predicted by the Tomlinson model.

  16. Phospholipidic Monolayers on Formamide (United States)

    Graner, François; Perez-Oyarzun, Santiago; Saint-Jalmes, Arnaud; Flament, Cyrille; Gallet, François


    We report the first phase diagram of a Langmuir film at the air-formamide interface. Stable films of phospholipids such as DPPC or DSPC undergo phase transitions observed on isotherms or by fluorescence microscopy. They display bidimensional gas, liquid and solid phases, as well as two mesophases; the latter coexist with liquid on a sharp first-order transition plateau. We compare these observations with known results on films on water. Nous présentons le premier diagramme de phase d'un film de Langmuir à l'interface air-formamide. On observe, sur des isothermes et par microscopie de fluorescence, des transitions de phase dans des films stables de phospholipides comme le DPPC ou le DSPC. Cinq phases bidimensionnelles sont mises en évidence : gaz, liquide, solide, ainsi que deux mésophases ; ces deux dernières coexistent avec le liquide sur un plateau très marqué de transition du premier ordre. Nous comparons ces observations avec les résultats connus pour les films sur l'eau.

  17. Preparation and biocompatibility of BSA monolayer on silicon surface. (United States)

    Tao, Caihong; Zhang, Junyan; Yang, Shengrong


    This paper describes a general strategy for grafting protein molecules on silicon surface by using dopamine as adhesive layer. With this method, silicon surface had been successfully modified by BSA monolayer. Fourier transform infrared spectra, X-ray photoelectron spectroscopy, contact angle analysis and atomic force microscopy confirmed the sequential grafting of initiator and protein molecules. Cell adhesion experiments with PC-12 cells showed that the obtained monolayer exhibits good biocompatibility. The corrosion resistance behavior of the polydopamine and BSA modified silicon wafers was investigated by potentiodynamic test, which indicated that the modified surfaces exhibited a better anti-corrosion capability than silicon surface. All these results must be valuable for the application of protein monolayer in biological and biomedical technology.

  18. Dependence of bicellar system phase behavior and dynamics on anionic lipid concentration. (United States)

    MacEachern, Lauren; Sylvester, Alexander; Flynn, Alanna; Rahmani, Ashkan; Morrow, Michael R


    Bicellar dispersions of chain perdeuterated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC-d54) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) were prepared with the molar fraction of DHPC held fixed at 20% and varying amounts of DMPC replaced by the anionic lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG). (2)H NMR spectra were examined to assess the effect of added DMPG on mixture phase behavior and morphology. Quadrupole echo decay and quadrupole-Carr-Purcell-Mieboom-Gill echo train measurements provided information about slow motions contributing to echo decay in the high temperature phases. The spectra and quadrupole echo decay properties of DMPC-d54/DHPC (4:1) and DMPC-d54/DMPG/DHPC (3:1:1) were qualitatively similar. With increasing DMPG concentration, the transition between the magnetically orientable phase and the higher temperature phase became increasingly distinct, and the spectral shape and echo decay characteristics of the high temperature bicellar phase became increasingly similar to those of DMPC-d54 in the liquid crystalline phase. The observation that DMPG changes spectra in the orientable phase incrementally while increasing the distinction between the orientable and high temperature bicellar phases provides new insights into how DMPG influences bicellar mixture morphology.

  19. Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems. (United States)

    Angelico, Ruggero; Ceglie, Andrea; Colafemmina, Giuseppe; Delfine, Fabio; Olsson, Ulf; Palazzo, Gerardo


    The isothermal pseudo-ternary-phase diagram was determined at 25 degrees C for systems composed oflecithin, water, and, as oil, either isooctane or decane. This was accomplished by a combination of polarizing microscopy, small-angle X-ray scattering, and NMR techniques. The lecithin-rich region of the phase diagram is dominated by a lamellar liquid-crystalline phase (Lalpha). For lecithin contents less than 60% and low hydration (mole ratio water/lecithin = W0 isooctane (for lecithin 25%). These two-phase regions are very thin with respect to water dilution. For 8 isooctane and Lalpha, (ii) equilibrium between reverse micelles and spherulites, and, finally, (iii) disconnected reverse micelles that fail to solubilize water for W0 > 54. This results in a Winsor II phase equilibrium at low lecithin content, while for lecithin > 20% the neat water is in equilibrium with a reverse hexagonal phase and an isotropic liquid-crystalline phase. The use of the decane as oil does not change the main features of the phase behavior.

  20. Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization. (United States)

    Eeman, M; Berquand, A; Dufrêne, Y F; Paquot, M; Dufour, S; Deleu, M


    Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.

  1. The crystalline structures of carboxylic acid monolayers adsorbed on graphite. (United States)

    Bickerstaffe, A K; Cheah, N P; Clarke, S M; Parker, J E; Perdigon, A; Messe, L; Inaba, A


    X-ray and neutron diffraction have been used to investigate the formation of solid crystalline monolayers of all of the linear carboxylic acids from C(6) to C(14) at submonolayer coverage and from C(8) to C(14) at multilayer coverages, and to characterize their structures. X-rays and neutrons highlight different aspects of the monolayer structures, and their combination is therefore important in structural determination. For all of the acids with an odd number of carbon atoms, the unit cell is rectangular of plane group pgg containing four molecules. The members of the homologous series with an even number of carbon atoms have an oblique unit cell with two molecules per unit cell and plane group p2. This odd-even variation in crystal structure provides an explanation for the odd-even variation observed in monolayer melting points and mixing behavior. In all cases, the molecules are arranged in strongly hydrogen-bonded dimers with their extended axes parallel to the surface and the plane of the carbon skeleton essentially parallel to the graphite surface. The monolayer crystal structures have unit cell dimensions similar to certain close-packed planes of the bulk crystals, but the molecular arrangements are different. There is a 1-3% compression on increasing the coverage over a monolayer.

  2. Controlled electrodeposition of Au monolayer film on ionic liquid (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank


    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  3. Phosphatidylcholine Monolayer Formation at a Liquid:Liquid Interface as Monitored by the Dynamic Surface Tension (United States)


    concentration, while liquid crystalline vesicles form tightly packed monolayers at bulk PC concentrations above 2 ^Molar. Resolving this paradigm ...regardless of lipid bilayer phase. Initially, vesicle rupture probably represents an entropically driven process. The system will become increasingly

  4. Phase Behavior and Aggregate Structure in Aqueous Mixtures of Sodium Cholate and Glycerol Monooleate. (United States)

    Gustafsson; Nylander; Almgren; Ljusberg-Wahren


    The phase behavior of the glycerol monooleate (GMO)-sodium cholate-water (or 0.9 wt% NaCl) system has been examined in the solvent-rich part, using small-angle X-ray scattering and conventional methods. Addition of cholate up to 7% of the total amphiphile swells the cubic phase of the binary GMO-water system so that it takes up almost 70% of water in the salt-free case and 55% in salt. With more bile salt the lamellar phase also appears highly swollen (up to 85% in water, 75% in brine). In the salt solution a small isotropic L3-phase region replaces the lamellar phase at a solvent content of about 79%. The lamellar phase can accept only about 0.2 cholate molecule per GMO, in both water and brine, and a phase with globular micelles (L1) follows and dominates the diagram. No threadlike micelles appear in this system. Investigation of the particle structures with cryo-transmission electron microscopy (TEM) in dilute systems (99% solvent) show globular micelles and coexisting vesicles and globular micelles. In the presence of salt, dilution of the L3 phase results in dispersed globular particles with an irregular internal morphology that suggests they are a dispersed L3 phase. These particles coexist with faceted particles having an inner structure giving a hexagonal pattern in projection, suggested to derive from the cubic phase. The cubic phase in the salt-free systems did not give dispersions stable enough for cryo-TEM examination. Copyright 1999 Academic Press.

  5. Phase transformation induced resistive switching behavior in Al/Cu2Se/Pt (United States)

    Rehman, Shania; Kim, Kihwan; Hur, Ji-Hyun; Kim, Deok-kee


    The phase transformation induced resistive switching behavior of an Al/Cu2Se/Pt device was studied. While the device did not demonstrate any resistive switching behavior at room temperature, it exhibited resistive switching behavior at 125 °C, near the transition temperature of copper(I) selenide (Cu2Se) (137 °C), where Cu2Se is known to transform from the monoclinic to superionic phase. The increase in ionic conductivity and structural variations (from ordered to disordered structure) associated with phase transformation were observed to be responsible for the origin of the switching behavior and increase in the on/off resistance ratio near the transition temperature. Thermodynamic calculations showed that a reduction in Gibb’s free energy of nucleation and an increase in the migration speed of the Cu ion associated with the ionic conductivity and order to disorder the transition of the Cu2Se at the transition temperature were the important factors responsible for the reduction in the SET voltages at 155 °C.

  6. Elemental Solubility Tendency for the Phases of Uranium by Classical Models Used to Predict Alloy Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Van Blackwood; Travis Koenig; Saleem Drera; Brajenda Mishra; Davis Olson; Doug Porter; Robert Mariani


    Traditional alloy theory models, specifically Darken-Gurry and Miedema’s analyses, that characterize solutes in solid solvents relative to physical properties of the elements have been used to assist in predicting alloy behavior. These models will be applied relative to the three solid phases of uranium: alpha (orthorhombic), beta (tetragonal), and gamma (bcc). These phases have different solubilities for specific alloy additions as a function of temperature. The Darken-Gurry and Miedema models, with modifications based on concepts of Waber, Gschneider, and Brewer will be used to predict the behavior of four types of solutes: 1) Transition metals that are used for various purposes associated with the containment as alloy additions in the uranium fuel 2) Transuranic elements in the uranium 3) Rare earth fission products (lanthanides) 4) Transition metals and other fission products Using these solute map criteria, elemental behavior will be predicted as highly soluble, marginally soluble, or immiscible (compound formers) and will be used to compare solute effects during uranium phase transformations. The overlapping of these solute maps are convenient first approximation tools for predicting alloy behavior.

  7. Off-lattice model for the phase behavior of lipid-cholesterol bilayers

    DEFF Research Database (Denmark)

    Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth


    Lipid bilayers exhibit a phase behavior that involves two distinct, but coupled, order-disorder processes, one in terms of lipid-chain crystalline packing (translational degrees of freedom) and the other in terms of lipid-chain conformational ordering (internal degrees of freedom). Experiments...... and previous approximate theories have suggested that cholesterol incorporated into lipid bilayers has different microscopic effects on lipid-chain packing and conformations and that cholesterol thereby leads to decoupling of the two ordering processes, manifested by a special equilibrium phase, "liquid......-lattice model based on a two-dimensional random triangulation algorithm and represents lipid and cholesterol molecules by hard-core particles with internal (spin-type) degrees of freedom that have nearest-neighbor interactions. The phase equilibria described by the model, specifically in terms of phase diagrams...

  8. Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides

    CERN Document Server

    Nixon, Sean


    Many classes of non-parity-time (PT) symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this article, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that the first class of these non-PT-symmetric waveguides support continuous families of solitons and robust amplitude-oscillating solutions both above and below phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity even if the waveguide is below phase transition. These analytical predictions are confirmed by direct computations of the full system.

  9. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others


    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  10. Experimental study on transient behavior of semi-open two-phase thermosyphon

    Institute of Scientific and Technical Information of China (English)

    朱华; 王建新; 张巧惠; 屠传经


    An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.

  11. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail:; Li, Lihua; Li, Hong; Zhou, Changren, E-mail:


    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  12. Numerical study of light-induced phase behavior of smectic solids (United States)

    Chung, Hayoung; Park, Jaesung; Cho, Maenghyo


    By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC) phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling. In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the various phases of LC are considered as well as their relation to polymeric conformation defined by the strain energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling, the use of the proposed finite element framework offers an insight into the design of light-responsive actuating systems made of smectic solids.

  13. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability.

    Directory of Open Access Journals (Sweden)

    Thomas H Hraha


    Full Text Available The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. β-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new

  14. Electromelting of Confined Monolayer Ice

    CERN Document Server

    Qiu, Hu


    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  15. Diacetylene mixed Langmuir monolayers for interfacial polymerization. (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis


    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  16. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang


    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  17. Complex phase behavior of a fluid in slits with semipermeable walls modified with tethered chains. (United States)

    Borówko, M; Patrykiejew, A; Rżysko, W; Sokołowski, S; Ilnytskyi, J


    We study the phase behavior of a two-component fluid in a pore with the walls modified by tethered chains. The walls are completely permeable for one component of the fluid and completely impenetrable for the second component. The fluid is perfectly mixed in a bulk phase. We have found that depending on the details of the model the fluid undergoes capillary condensation inside the pore and wetting and layering transitions at the outer walls. Moreover, we have found transitions connected with the change of symmetry of the distribution of chains and fluid inside the pore.

  18. Modulating cell adhesion dynamics on carbon nanotube monolayer engineered with extracellular matrix proteins. (United States)

    Cai, Ning; Wong, Chee C; Gong, Ying X; Tan, Samuel C W; Chan, Vincent; Liao, Kin


    Although it has been demonstrated that carbon nanotubes (CNTs) may have potentials for tissue engineering applications because of their unparalleled physical properties, little has been known on the cell adhesion mechanisms on model CNT monolayer pertaining to the design of novel cell therapeutics device. In this study, the adhesion dynamics of primary porcine esophageal fibroblasts (PEFs) on CNT monolayer were elucidated with confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy. Moreover, CNT monolayer (CNT-ML) was functionalized with two typical extracellular matrix (ECM) proteins including collagen type I (COL) and fibronectin (FN) in order to promote its biocompatibility. First, it is shown by atomic force microscopy that the topographical features of CNT-ML were dependent on the types of immobilized ECM protein. Second, significant time lag in adhesion contact evolution (around 10 min) for PEFs was found on both CNT-ML and CNT-COL compared to the negligible time lag on CNT-FN. It was found that adhesion energy of PEFs on the CNT-COL and CNT-FN surfaces reached steady state at 60 and 30 min after cell seeding compared to 70 min on CNT-ML surface. At steady state, the adhesion energy of PEFs on the CNT-COL and CNT-FN surfaces was about twice as much than that on the CNT-ML surface. Moreover, immobilization of collagen or fibronectin on CNT monolayer led to an increase in seeding efficiency and proliferation rate of PEFs. Scanning electron microscopy and immunostaining together demonstrated that PEFs displayed an elongated morphology and highly polarized actin network on both CNT-COL and CNT-FN surfaces, whereas PEFs displayed nonuniform cell morphology and actin organization on the CNT-ML surface. Overall, our results demonstrated that the biophysical responses and biological behavior of PEFs on unmodified or functionalized CNT monolayer were different. Functionalization of CNT through extracellular matrix

  19. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075-T6 Under Biaxial and Uniaxial Fatigue with Different Phases (United States)



  20. The phase behavior study of human antibody solution using multi-scale modeling (United States)

    Sun, Gang; Wang, Ying; Lomakin, Aleksey; Benedek, George B.; Stanley, H. Eugene; Xu, Limei; Buldyrev, Sergey V.


    Phase transformation in antibody solutions is of growing interest in both academia and the pharmaceutical industry. Recent experimental studies have shown that, as in near-spherical proteins, antibodies can undergo a liquid-liquid phase separation under conditions metastable with respect to crystallization. However, the phase diagram of the Y-shaped antibodies exhibits unique features that differ substantially from those of spherical proteins. Specifically, antibody solutions have an exceptionally low critical volume fraction (CVF) and a broader and more asymmetric liquid-liquid coexistence curve than those of spherical proteins. Using molecular dynamics simulation on a series of trimetric Y-shaped coarse-grained models, we investigate the phase behavior of antibody solutions and compare the results with the experimental phase diagram of human immunoglobulin G (IgG), one of the most common Y-shape typical of antibody molecules. With the fitted size of spheres, our simulation reproduces both the low CVF and the asymmetric shape of the experimental coexistence curve of IgG antibodies. The broadness of the coexistence curve can be attributed to the anisotropic nature of the inter-protein interaction. In addition, the repulsion between the inner parts of the spherical domains of IgG dramatically expands the coexistence region in the scaled phase diagram, while the hinge length has only a minor effect on the CVF and the overall shape of the coexistence curve. We thus propose a seven-site model with empirical parameters characterizing the exclusion volume and the hinge length of the IgG molecules, which provides a base for simulation studies of the phase behavior of IgG antibodies.

  1. Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity. (United States)

    López-Montero, Iván; Catapano, Elisa R; Espinosa, Gabriel; Arriaga, Laura R; Langevin, Dominique; Monroy, Francisco


    The present work addresses the fundamental question of membrane elasticity of ceramide layers with a special focus on the plastic regime. The compression and shear viscoelasticity of egg-ceramide Langmuir monolayers were investigated using oscillatory surface rheology in the linear regime and beyond. High compression and shear moduli were measured at room temperature-a clear signature for a solid behavior. At deformations larger than one per mill, egg-ceramide monolayers display plastic features characterized by a decrease of the storage modulus followed by a viscous regime typical of fluid lipids. This behavior is accompanied by a marked decrease of the loss modulus with increasing stress above a yield point. The results permit to univocally classify ceramide monolayers as 2D solids able to undergo plastic deformations, at the difference of typical fluid lipid monolayers. These unusual features are likely to have consequences in the mechanical behavior of ceramide-rich emplacements in biological membranes.

  2. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator. (United States)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier; Davis, Zachary James


    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotide for monolayers of single stranded (ss) DNA and after hybridization with the complementary DNA strand. Our results differ from previous data obtained with bulk samples, showing the genuine behavior of these self-assembled monolayers. The hybridization cannot be inferred from the water adsorption isotherms due to the low hybridization efficiency of these highly packed monolayers. Strikingly, we efficiently detect the hybridization by measuring the thermal desorption of water at constant relativity humidity. This finding adds a new nanomechanical tool for developing a label-free nucleic acid sensor based on the interaction between water and self-assembled monolayers of nucleic acids.

  3. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui


    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  4. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Ku [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of)


    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim; PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim; PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  5. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Han, G. M.; Wang, H.; Lin, De-Ye; Zhu, X. Y.; Hu, S. Y.; Song, H. F.


    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on void growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.


    Directory of Open Access Journals (Sweden)

    Silas R. Ferreira


    Full Text Available Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (subfractions were extracted from an asphaltic residue (AR02, characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01 described in a previous article. The (subfractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN, presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.

  7. Improved mechanical stability of acetoxypropyl cellulose upon blending with ultranarrow PbS nanowires in Langmuir monolayer matrix. (United States)

    Maji, Subrata; Kundu, Sudarshan; Pinto, L F V; Godinho, M H; Khan, Ali Hossain; Acharya, Somobrata


    Cellulose and cellulose derivatives have long been used as membrane fabrication. Langmuir monolayer behavior, which naturally mimics membranes, of acetoxypropyl cellulose (APC) and lead sulfide (PbS) nanowire mixtures at different volume ratios is reported. Surface pressure (π)-area (A) isotherms of APC and PbS nanowires mixtures at different volume ratios show a gradual decrease in the monolayer area with increasing volume fraction of PbS nanowires. Change of surface potential with monolayer area at different volume ratios also reveals a gradual increase in the surface potential indicating incorporation of PbS nanowires within APC matrix. The compressibility and elastic constants measurements reveal an enhancement of the elasticity upon incorporation of PbS nanowires up to certain volume fractions. An enhancement in stability of the blend is observed upon PbS nanowire incorporation to the APC matrix. Rheological measurements also support the robustness of the mixture of APC and PbS nanowires in 3D bulk phase. Such robust ultrathin films of cellulose based-nanowire blend obtained by means of the Langmuir technique may lead to novel routes for designing cellulosic-based thin films and membranes.

  8. Linear magnetotransport in monolayer MoS2 (United States)

    Wang, C. M.; Lei, X. L.


    A momentum balance equation is developed to investigate the magnetotransport properties in monolayer molybdenum disulphide when a strong perpendicular magnetic field and a weak in-plane electric field are applied simultaneously. At low temperature, in the presence of intravalley impurity scattering, Shubnikov-de Haas oscillation shows up accompanied by a beating pattern arising from large spin splitting and its period may halve due to the high-order oscillating term at large magnetic field for samples with ultrahigh mobility. In the case of intervalley disorders, there exists a magnetic-field range where the magnetoresistivity almost vanishes. For a low-mobility layer, a phase inversion of oscillating peaks is acquired in accordance with recent experiment. At high temperature when Shubnikov-de Haas oscillation is suppressed, the magnetophonon resonances induced by both optical phonons (mainly due to homopolar and Fröhlich modes) and acoustic phonons (mainly due to intravalley transverse and longitudinal acoustic modes) emerge for a suspended system with high mobility. For the single layer on a substrate, another resonance due to surface optical phonons may occur, resulting in a complex behavior of the total magnetoresistance. The beating pattern of magnetophonon resonance due to optical phonons can also be observed. However, for a nonsuspended layer with low mobility, the magnetoresistance oscillation almost disappears and the resistivity increases with field monotonically.

  9. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers (United States)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven


    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  10. Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants. (United States)

    Fong, Celesta; Wells, Darrell; Krodkiewska, Irena; Weerawardeena, Asoka; Booth, Jamie; Hartley, Patrick G; Drummond, Calum J


    The solid state and lyotropic phase behavior of 10 new nonionic urea-based surfactants has been characterized. The strong homo-urea interaction, which can prevent urea surfactants from forming lyotropic liquid crystalline phases, has been ameliorated through the use of isoprenoid hydrocarbon tails such as phytanyl (3,7,11,15-tetramethyl-hexadecyl) and hexahydrofarnesyl (3,7,11-trimethyl-dodecyl) or the oleyl chain (cis-octadec-9-enyl). Additionally, the urea head group was modified by attaching either a hydroxy alkyl (short chain alcohol) moiety to one of the nitrogens of the urea or by effectively "doubling" the urea head group by replacing it with a biuret head group. The solid state phase behavior, including the liquid crystal-isotropic liquid, polymorphic, and glass transitions, is interpreted in terms of molecular geometries and probable hydrogen-bonding interactions. Four of the modified urea surfactants displayed ordered lyotropic liquid crystalline phases that were stable in excess water at both room and physiological temperatures, namely, 1-(2-hydroxyethyl)-1-oleyl urea (oleyl 1,1-HEU) with a 1D lamellar phase (Lalpha), 1-(2-hydroxyethyl)-3-phytanyl urea (Phyt 1,3-HEU) with a 2D inverse hexagonal phase (HII), and 1-(2-hydroxyethyl)-1-phytanyl urea (Phyt 1,1-HEU) and 1-(2-hydroxyethyl)-3-hexahydrofarnesyl urea (Hfarn 1,3-HEU) with a 3D bicontinuous cubic phase (QII). Phyt 1,1-HEU exhibited rich mesomorphism (QII1, QII2, Lalpha, LU, and HII), as did one other surfactant, oleyl 1,3-HEU (QII1, QII2, Lalpha, LU, and HII), in the study group. LU is an unusual phase which is mobile and isotropic but possesses shear birefringence, and has been very tentatively assigned as an inverse sponge phase. Three other surfactants exhibited a single lyotropic liquid crystalline phase, either Lalpha or HII, at temperatures >50 degrees C. The 10 new surfactants are compared with other recently reported nonionic urea surfactants. Structure-property correlations are examined for

  11. Dynamics of monolayers adsorbed at the solid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Stuart M. [BP Institute, Department of Chemistry, Univ. of Cambridge (United Kingdom); Inaba, Akira [Department of Chemistry, Osaka Univ., Osaka (Japan); Arnold, Thomas [Physical and Theoretical Chemistry Laboratory, Univ. of Oxford (United Kingdom); Thomas, Robert K.; Castro, Miguel A. [Instituto de Ciencia de Materiale de Sevilla, Avda. Americo Vespucio (Spain)


    Recently we have demonstrated, using a variety of techniques including calorimetry and neutron diffraction, the existence of translationally ordered two-dimensional phases of short chain n-alkanes (CnH2n+2) on the surface of graphite. Dodecane (n=12) is unusual in that it is found from diffraction experiments to adopt a structure with parallel molecules, similar to that seen for the odd alkanes, and exhibits a monolayer phase transition at 281 K, before the layer melts at 286 K. This additional transition is reminiscent of the rotator phase transitions seen in the longer bulk alkanes. In this work we present elastic incoherent neutron scattering (EISF) data which probe the dynamics of the monolayer and clearly demonstrate that the adsorbed layer is indeed far from static but has a high degree of rotational mobility. (author)

  12. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers

    CERN Document Server

    Meinhardt, Sebastian; Schmid, Friederike


    According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer size lo domains in a ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phase induces elastic interactions, which reduce the line tensi...

  13. Feasibility analysis of phase transition signals based on e-bike rider behavior

    Directory of Open Access Journals (Sweden)

    Sheng Dong


    Full Text Available This article evaluates the feasibility of two scenarios of phase transition signals, that is, the flashing green together with red–yellow light and the green countdown together with red countdown, at signalized intersections in terms of e-bike rider behavior. An evaluation framework is first proposed. During the phase transition, the stop-go and start-up behavioral parameters are collected at four intersections in Shanghai, China. Sensitivity analysis is then performed to identify the most significant factors that influence the occurrence of traffic conflicts during the phase transition. Based on the above analysis results, case studies were finally done to look into safety performance of the two scenarios of phase transition signals, indicated by the distributions of post encroachment time at the conflict point and the occurring probability of extremely small post encroachment times. Research result shows the transition signal combination of green countdown + red countdown tends to cause traffic accidents more easily and thus less safe compared to the transition signal combination of flashing green + red-yellow. Unlike the conventional method generally based on the deterministic traffic flow theory, the proposed methodology has a wide application. With the aid of it, traffic engineers are capable of designing transition signals in a more scientific manner.

  14. Quantum phase transition and Fermi liquid behavior in Pd1 -xNix nanoalloys (United States)

    Swain, P.; Srivastava, Suneel K.; Srivastava, Sanjeev K.


    The Pd1 -xNix alloy system is an established ideal transition-metal system possessing a composition-induced paramagnetic-to-ferromagnetic quantum phase transition (QPT) at the critical concentration xc˜0.026 in bulk. A low-temperature non-Fermi liquid (NFL) behavior around xc usually indicates the presence of quantum criticality (QC) in this system. In this work, we explore the existence of such a QPT in nanoparticles of this alloy system. We synthesized single-phase, polydispersed and 40-50 nm mean diameter crystalline nanoparticles of Pd1 -xNix alloys, with x near xc and beyond, by a chemical reflux method. In addition to the determination of the size, composition, phase, and crystallinity of the alloys by microscopic and spectroscopic techniques, the existence of a possible QPT was explored by resistivity and dc magnetization measurements. A dip in the value of the exponent n near xc, and a concomitant peak in the constant A of the A Tn dependence of the low-temperature (T ) resistivity indicate the presence of a quantum-like phase transition in the system. The minimum value of n , however, remains within the Fermi liquid regime (n >2 ). The dc magnetization results suggest an anticipatory presence of a superparamagnetic-to-ferromagnetic QPT in the mean-sized nanoparticles. The observation of a possible quantum critical NFL behavior (n <2 ) through resistivity is argued to be inhibited by the electron-magnon scatterings present in the smaller nanoparticles.

  15. Properties and behavior of superconductors exhibiting a Fulde-Ferrell-Larkin-Ovchinnikov phase (United States)

    Coniglio, William A.; Agosta, Charles C.


    The body of data on the Ful-de--Fer-rell--Lar-kin--Ov-chin-ni-kov (FFLO) state in 2d organic superconductors has grown to a critical mass where we may begin studying the boundaries of the FFLO phase in detail. In some very clean layered superconductors, when a magnetic field is aligned exactly parallel to the conducting layers, a superconducting phase develops at fields above the Pauli paramagnetic limit Hp and temperatures below about Tc / 3 . The phase is widely ascribed to FFLO behavior. We focus on the superconductors κ -(ET)2 Cu(NCS)2 , β'' -(ET)2 SF5 CH2 CF2 SO3 , and λ -(BETS)2 GaCl 4 , which have been studied by rf penetration depth and other techniques. We have probed the boundaries of the FFLO phase using alignment angle to tune the amount of spin-orbit scattering and temperature to control the degree of Pauli paramagnetic limiting. Using our data collected in pulsed magnetic fields at low temperature, we have gained new understanding about the behavior of the state and the conditions necessary for it to develop. We acknowledge Department of Energy support from ER46214.


    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Qiang Zheng; Wan-jie Wang


    Rheological measurement has been a preferred approach to the characterization of the structure and phase behaviors for multi-component/multi-phase polymer systems, due to its sensitive response to the changes of structure for these heterogeneous polymers. In the present article, recent progresses in the studies on rheology for heterogeneous polymer systems including phase-separated polymeric blends and block copolymers are reviewed, mainly depending on the results by the authors' research group. By means of rheological measurements, not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained, also the corresponding results are significant for design and preparation of novel polymeric structural materials and functional materials.

  17. Phase transition and high pressure behavior of Zirconium and Niobium carbides (United States)

    Singh, Archana; Aynyas, Mahendra; Sanyal, Sankar


    We have predicted the phase transition pressure (PT)and high pressure behavior of Zirconium and Niobium carbide (ZrC, NbC). The high pressure structural phase transitions in ZrC and NbC has been studied by using a two body inter-ionic potential model, which includes the Coulomb screening effect, due to the semi-metallic nature of these compounds. These transition metal carbides have been found to undergo NaCl (B1) to CsCl (B2)-type structural phase transition, at high pressure like other binary systems. We predict such structural transformation in ZrC and NbC at a pressure of 98GPa and 85GPa respectively. We have also predicted second order elastic constant and bulk modulus. The present theoretical work has been compared with the corresponding experimental data and prediction of LAPW and GGA and LDA theories.

  18. Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition

    CERN Document Server

    Chabab, M; Iraoui, S; Masmar, K


    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged-AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of \\cite{base} to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension $d$ in the isobaric process. As to the isothermal case, we find out that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first order phase transition, but fail to disclose the signature of the second order phase transition.

  19. Relationship between solution structure and phase behavior: a neutron scattering study of concentrated aqueous hexamethylenetetramine solutions. (United States)

    Burton, R C; Ferrari, E S; Davey, R J; Finney, J L; Bowron, D T


    The water-hexamethylenetetramine system displays features of significant interest in the context of phase equilibria in molecular materials. First, it is possible to crystallize two solid phases depending on temperature, both hexahydrate and anhydrous forms. Second, saturated aqueous solutions in equilibrium with these forms exhibit a negative dependence of solubility (retrograde) on temperature. In this contribution, neutron scattering experiments (with isotopic substitution) of concentrated aqueous hexamethylenetetramine solutions combined with empirical potential structure refinement (EPSR) were used to investigate the time-averaged atomistic details of this system. Through the derivation of radial distribution functions, quantitative details emerge of the solution coordination, its relationship to the nature of the solid phases, and of the underlying cause of the solubility behavior of this molecule.

  20. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove


    of in situ combustion processes is the formation and sustained propagation of a high-temperature combustion front. Using the models developed, we study the impact of phase behavior on ignition/extinction dynamics as a function of the operating conditions. We show that when operating close to ignition/extinction...... branches, a change of phase behavior model will shift the system from a state of ignition to a state of extinction or vice versa. For both the rigorous equation of state based and a simplified, but commonly used, K-value-based phase behavior description we identify areas of operating conditions which lead...... phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...

  1. Behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition (United States)

    Petrova, Alla E.; Bauer, E. D.; Krasnorussky, Vladimir; Stishov, Sergei M.


    The itinerant helical ferromagnet MnSi reveals a number of remarkable features, which include tricritical phenomena at the phase transition line, Fermi-liquid breakdown, and so-called partial spin order in the paramagnetic state at high pressures. These features, probably interconnected, so far have no satisfactory explanations though several ideas have been suggested. Some current ideas focus on specifics of the spin fluctuations in the paramagnetic phase of MnSi close to the phase transition line. We report here the results of electrical resistivity measurements of a single crystal of MnSi across its ferromagnetic phase transition line at ambient and high pressures. Contrary to previous work in the field we made use of compressed helium as a pressure medium. Sharp peaks of the temperature coefficient of resistivity characterize the transition line. Analysis of these data shows that at pressures to ˜0.35GPa these peaks have fine structure, revealing a shoulder at ˜0.5K above the peak. That confirms the “abnormal” spin behavior in the narrow region above the Curie point and indicates the existence of a nontrivial fluctuation mode in the paramagnetic phase of MnSi . It is symptomatic that this structure disappears at pressures higher than ˜0.35GPa , which was identified earlier as a tricritical point.

  2. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    Energy Technology Data Exchange (ETDEWEB)

    Mazzanti,G.; Guthrie, S.; Marangoni, A.; Idziak, S.


    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.

  3. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases (United States)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang


    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  4. Three-Phase Behavior in a Water/C(12)EO(8)/Propanol/Cyclohexane/Heptane System. (United States)



    We studied the three-phase behavior and dissolution behavior of propanol (C(3)OH) in a water/C(12)EO(8)/C(3)OH/cyclohexane (c-C(6))/heptane (C(7)) system at 35 and 45 degrees C. Without C(12)EO(8), a three-phase region (IIIa) consisting of C(3)OH, aqueous (W), and oleic (O) phases exists between R(oil) (c-C(6)/c-C(6) + C(7)) = 0.2 and 0.3 (w/w) above 35 wt% C(3)OH. The C(3)OH phase originates from the W phase and becomes identical to the O phase with increasing R(oil). In the presence of C(12)EO(8), the three-phase region expands below 20 wt% C(3)OH. The surfactant phase behaves in two ways according to the role of C(3)OH. When R(oil) 0.3, a microemulsion (D) phase changes from water-rich to oil-rich in a chiral three-phase body. Most C(3)OH added acts as a lipophilic cosurfactant at R(oil) = 1. The two types of three-phase behavior are transformed into each other via region IIIa. C(3)OH cooperatively acts with C(12)EO(8) and a higher-order phase is formed. Copyright 1999 Academic Press.

  5. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D


    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  6. Imaging lipid distributions in model monolayers by ToF-SIMS with selectively deuterated components and principal components analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C. [Surface Science Western, University of Western Ontario, London, Ont., N6A 5B7 (Canada)]. E-mail:; Miller, David J. [Surface Science Western, University of Western Ontario, London, Ont., N6A 5B7 (Canada); Department of Chemistry, University of Western Ontario, London, Ont., N6A 5B7 (Canada); Harbottle, Robert R. [Department of Chemistry, University of Western Ontario, London, Ont., N6A 5B7 (Canada); Possmayer, Fred [Department of Obstetrics and Gynecology, University of Western Ontario, London, Ont., N6A 5B7 (Canada); McIntyre, N. Stewart [Surface Science Western, University of Western Ontario, London, Ont., N6A 5B7 (Canada); Department of Chemistry, University of Western Ontario, London, Ont., N6A 5B7 (Canada); Petersen, Nils O. [National Institute for Nanotechnology and Department of Chemistry, University of Alberta W6-017 ECERF Bldg, 9107-116th Street, Edmonton, Alta., T6G 2V4 (Canada)


    Time of flight secondary ion mass spectrometry (ToF-SIMS) provides the capability to image the distribution of molecular ions and their associated fragments that are emitted from monolayer films. ToF-SIMS can be applied to the analysis of monolayers of complex lipid mixtures that act as a model to understand the organization of cell membranes into solid-like domains called lipid rafts. The ability to determine the molecular distribution of lipids using ToF-SIMS in monolayer films is also important in studies of the function of pulmonary surfactant. One of the limitations of the use of ToF-SIMS to studies of complex lipid mixtures found in biological systems, arises from the similarity of the mass fragments that are emitted from the components of the lipid mixture. The use of selectively deuterated components in a mixture overcomes this limitation and results in an unambiguous assignment of specific lipids to particular surface domains. The use of deuterium labeling to identify specific lipids in a multi-component mixture can be done by the deuteration of a single lipid or by the addition of more than one lipid with selectively deuterated components. The incorporation of deuterium into the lipid chains does not alter the miscibility or phase behavior of these systems. The use of deuterium labeling to identify lipids and determine their distribution in monolayer films will be demonstrated using two biological systems. Principal components analysis (PCA) is used to further analyze these deuterated systems checking for the origin of the various mass fragments present.

  7. Phase and sedimentation behavior of oil (octane) dispersions in the presence of model mineral aggregates. (United States)

    Gupta, Anju; Sender, Maximilian; Fields, Sarah; Bothun, Geoffrey D


    Adsorption of suspended particles to the interface of surfactant-dispersed oil droplets can alter emulsion phase and sedimentation behavior. This work examines the effects of model mineral aggregates (silica nanoparticle aggregates or SNAs) on the behavior of oil (octane)-water emulsions prepared using sodium bis(2-ethylhexyl) sulfosuccinate (DOSS). Experiments were conducted at different SNA hydrophobicities in deionized and synthetic seawater (SSW), and at 0.5mM and 2.5mM DOSS. SNAs were characterized by thermogravimetric analysis (TGA) and dynamic light scattering (DLS), and the emulsions were examined by optical and cryogenic scanning electron microscopy. In deionized water, oil-in-water emulsions were formed with DOSS and the SNAs did not adhere to the droplets or alter emulsion behavior. In SSW, water-in-oil emulsions were formed with DOSS and SNA-DOSS binding through cation bridging led to phase inversion to oil-in-water emulsions. Droplet oil-mineral aggregates (OMAs) were observed for hydrophilic SNAs, while hydrophobic SNAs yielded quickly sedimenting agglomerated OMAs.

  8. Novel quantum behavior generated by traveling across a quantum phase transition (United States)

    Acevedo, O. L.; Rodriguez, F. J.; Quiroga, L.; Johnson, N. F.


    We report novel dynamical behavior in a multi-qubit--light system described by the Dicke model, which is being driven across its thermodynamic quantum-phase boundary. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is the starting point. Depending on the quenching regime a highly non-trivial behavior emerges in both the qubit and radiation subsystems. For the former, we find that for some paths in parameter space the final fidelity of the near-adiabatic process does not depend on the direction of the trajectory, but depends only on the speed at which the path is traveled. This behavior is contrasted with Landau-Zener tunneling and the Kibble-Zurek mechanism. Furthermore, for some qubit subsystems, we identify purification and screening effects which could be used for quantum control. By contrast, the evolution of the Wigner function shows the radiation subsystem exhibits the emergence of complexity and non-classicality. These findings could be experimentally tested in several condensed matter scenarios -- for example, diamond-NV centers and superconductor qubits in confined radiation environments.

  9. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail:; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)


    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.


    Institute of Scientific and Technical Information of China (English)

    Dong-sheng Tan; Xiao-qing Zhang; Jian-chuan Wang; Jie-hua Li; Hong Tan; Qiang Fu


    A series of fluorinated phosphatidylcholine polyurethane macromolecular additives were synthesized by solution polymerization using methylenebis(phylene isocyanates) (MDI) and 1,4-butanediol (BDO) as hard segments,a new phoshporycholine,2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-(2-hydroxyethoxy)decyloxy) ethyl phosphorycholine (HDFOPC) as end-capper,and four polydiols,poly(tetramethylene glycol)s (PTMG),polydimethylsiloxane (PDMS),poly(1,6-hexyl-1,5-pentylcarbonate) (PHPC) and poly(propylene glycol) (PPG) as soft segments,respectively.The chemical structures of the synthesized polyurethanes were characterized by 1H-NMR and FTIR.DSC and DMA were employed to study the phase behavior of these novel polyurethanes due to their great influences on the surface properties,and hence their interactions with bio-systems.The results showed that phase separation of the fluorinated phosphatidylcholine end-capped polyurethanes was increased in comparison with that of normal polyurethanes.The effect of fluorinated phosphatidylcholine end-capped groups on the phase behavior was further demonstrated by analyzing the degree of hydrogen-bonding between hard and soft segments.

  11. Tuning the phase behavior of ionic liquids in organically functionalized silica ionogels. (United States)

    Göbel, Ronald; Friedrich, Alwin; Taubert, Andreas


    We have synthesized mesoporous silica monoliths functionalized with 2-(4-pyridylethyl)triethoxysilane 1 and N,N-dimethyl-pyridine-4-yl-(3-triethoxysilyl-propyl)-ammonium iodide 2. The organically modified silica monoliths were characterized via IR spectroscopy, nitrogen sorption, small angle X-ray scattering (SAXS), thermogravimetric analysis-differential thermal analysis (TGA-DTA), and acid-base titration. The degree of functionalization can be changed by the ratio of the functional silane to the silica precursor tetramethyl orthosilicate (TMOS). The functionalized silica monoliths were filled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)2] or triflate [TfO]) ionic liquids (ILs) using an established methanol-IL exchange technique. The phase behavior of the resulting ionogels was investigated via differential scanning calorimetry (DSC). DSC curves show that the modification of the silica pore walls with organic groups strongly affects the phase behavior of the confined ILs. Modification with silane 1 completely suppresses the glassy state of [Emim][TfO] previously observed in unmodified silica monoliths (Göbel et al., Phys. Chem. Chem. Phys. 2009, 11, 3653). In contrast, modification with silane 2 leads to the appearance and disappearance, respectively, of a presumed additional phase in [Emim][TfO] and [Emim][N(CN)2] with varying degree of monolith functionalization. The data thus show that organic modification of silica matrix materials could be a viable approach for the tuning of ionogel properties.

  12. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh


    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  13. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry. (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi


    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  14. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiyuan; Sun Baojiang


    It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.

  15. Phase behavior of mixtures of magnetic colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Ewijk, G.A. van


    In this thesis, we have studied the thermodynamic stability of magnetic fluids, also called ferrofluids. These consist of spherical colloids of typically 10 nm, coated with a monolayer of oleic acid and dispersed in cyclohexane. The core material, Fe3O4, is ferrimagnetic and because of its small siz

  16. Phase behavior of mixtures of magnetic colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Ewijk, G.A. van


    In this thesis, we have studied the thermodynamic stability of magnetic fluids, also called ferrofluids. These consist of spherical colloids of typically 10 nm, coated with a monolayer of oleic acid and dispersed in cyclohexane. The core material, Fe3O4, is ferrimagnetic and because of its small

  17. Monolayers of CF4 Adsorbed on Graphite, Studied by Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Kjær, Kristian; Nielsen, Mourits; Bohr, Jakob;


    With synchrotron x-ray diffraction we have measured the phase diagram of CF4 monolayers adsorbed on the graphite substrate UCAR-ZYX. We have found four two-dimensional crystalline phases including the 2×2 commensurate structure. Between this and the denser incommensurate hexagonal phase we find...

  18. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    Energy Technology Data Exchange (ETDEWEB)

    Uppalapati, Suji [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Kong, Na; Norberg, Oscar [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Ramström, Olof, E-mail: [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Yan, Mingdi, E-mail: [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden)


    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pK{sub a} value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  19. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole


    We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...... grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...... that the correlation between the effective surface energy components of the heterogeneous Surfaces coated with fluorocarbon self-assembled monolayers is in agreement with the Cassie model....

  20. Construction of higher-ordered monolayer membranes derived from archaeal membrane lipid-inspired cyclic lipids with longer alkyl chains. (United States)

    Nakamura, Makoto; Goto, Rie; Tadokoro, Toshio; Shibakami, Motonari


    A series of artificial cyclic lipids that mimic archaeal membrane ones has been synthesized. The structural features of these molecules include a longer cyclic framework, in which the alkyl chain length ranges from 24 to 32 in carbon number, which is longer than our first analogous molecule with 20-carbon long alkyl chains [K. Miyawaki, T. Takagi, M. Shibakami, Synlett 8 (2002) 1326]. Microscopic observation reveals that these molecules have a self-assembling ability: hydration of the lipids yields multilamellar vesicles in aqueous solution and monolayer sheets on solid supports. High-sensitivity differential scanning calorimetry (24- and 28-carbon alkyl chain lipids) indicates that (i) the alkyl chain length affects their phase behavior and (ii) the enthalpies of endothermic peaks accompanied by phase transition were considerably lower than those of their monomeric phospholipid analogs. Fluorescence polarization measurements suggest that the membranes made from the 24-carbon alkyl chain lipid have a higher polarization factor than membranes composed of DMPC and DMPC plus cholesterol. These findings imply that the cyclic lipids containing 24- and 28-carbon alkyl chain construct well-organized monolayer membranes and, in particular, that the molecular order of the 24-carbon alkyl chain lipid is higher than that of bilayer membranes in the liquid-ordered phase.

  1. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)


    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  2. Crossover Leung-Griffiths model and the phase behavior of dilute aqueous ionic solutions (United States)

    Belyakov, M. Yu.; Kiselev, S. B.; Rainwater, J. C.


    A new parametric crossover model for the phase behavior of a binary mixture is presented that corresponds to the Leung-Griffiths model in the critical region and is transformed into the regular classical expansion far away from the critical point. The model is optimized to, and leads to excellent agreement with, isothermal vapor-liquid equilibrium data for dilute aqueous solutions of sodium chloride by Bischoff and co-workers. It then accurately predicts constant-composition phase equilibrium loci as measured by independent workers. This crossover model is therefore capable of representing the thermodynamic surface of ionic solutions in a large range of temperatures and densities around the critical points of vapor-liquid equilibrium.

  3. Changes in single K+ channel behavior through the lipid phase transition

    CERN Document Server

    Seeger, Heiko M; Alessandrini, Andrea; Facci, Paolo


    We show that the activity of an ion channel is strictly related to the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid disordered and the solid ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.

  4. Deterioration behavior of a multi-phase vanadium-based solid solution alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, N.; Tsukahara, M.; Takahashi, K.; Yoshinaga, H.; Takeshita, H.T.; Sakai, T


    Deterioration behavior of an electrode made of V{sub 4}TiNi{sub 0.65}Co{sub 0.05}Nb{sub 0.047}Cr{sub 0.058} was studied by means of impedance spectroscopy, scanning electron microscopy (SEM) and impedance spectroscopy. The reaction resistance related to the lowest frequency semi-circle increased considerably and dischargeability became worse with cycling. The double layer capacitance for the same semi-circle became smaller after 50 cycles. The SEM observation of the cross-section of the cycled electrodes indicated that voids were formed around alloy particles embedded in a matrix of Cu powder, and crack formation and dissolution of the TiNi second phase proceeded with cycling. These phenomena indicate that dissolution of the second phase caused loss of reaction sites and TiNi networks as a current collector.

  5. Rheology and phase behavior of aggregating emulsions related to droplet-droplet interactions

    Directory of Open Access Journals (Sweden)

    C. L. A. Berli


    Full Text Available The present work deals with the relationship between colloidal interactions and physical properties of emulsions, in particular rheology and gel transition. Experimental data on protein-stabilized oil-in-water emulsions are considered. In this system, the excess of protein in the aqueous phase yields reversible droplet aggregation by the mechanism of depletion. Thus both phase and flow behaviors can be controlled by changing protein concentration, ionic strength and temperature. Calculations of the potential of interaction between droplets are carried out in the framework of colloid science. Particular emphasis is placed on the role that droplet-droplet interaction plays in defining the morphology of the aggregates, hence the microstructure and finally, the bulk physical properties. This understanding offers new perspectives in the study of complex food systems.

  6. Phase behavior under a non-centrosymmetric interaction: shifted charge colloids investigated by Monte Carlo simulation

    CERN Document Server

    Sánchez-Díaz, Luis E; Li, Xin; Wu, Bin; Smith, Gregory S; Chen, Wei-Ren


    Using Monte Carlo simulations, we investigate the structural characteristics of an interacting hard sphere system with shifted charge to elucidate the effect of the non-centrosymmetric interaction on its phase behavior. Two different phase transitions are identified for this model system. Upon increasing the volume fraction, an abrupt liquid-to-crystal transition first occurs at a significantly lower volume fraction in comparison to that of the centro-charged system. This is due to the stronger effective inter-particle repulsion caused by the additional charge anisotropy. Moreover, within the crystal state at higher volume fraction, the system further undergoes a continuous disorder-to-order transition with respect to the charge orientation. Detailed analyses in this work disclose the nature of these transitions, and orientation fluctuation may cause non-centrosymmetric unit cells. The dependence of crystal formation and orientational ordering on temperature was also examined. These findings indicate that the...

  7. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors (United States)

    Cho, Junhan


    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  8. Phase behavior of supercritical CO2 microemulsion with food-grade surfactant AOT

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongsheng; AN Xueqin; SHEN Weiguo; ZHANG Yinghua


    Phase behavior of scCO2 microemulsion formed with food grade surfactant sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) was studied. Critical microemulsion concentration (cμc) was deduced from the dependence of pressure of cloud points on the concentration of surfactant AOT at constant temperature and water concentration. The results show that there are transition points on the cloud point curve in a very narrow range of concentration of surfactant AOT. The transition points were changed with the temperature and water concentration. These phenomena show that lower temperature is suitable to forming microemulsion droplet and the microemulsion with high water concentration is likely to absorb more surfactants to structure the interface.

  9. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening (United States)

    Peschel, Astrid; Langhoff, Arne; Uhl, Eva; Dathathreyan, Aruna; Haindl, Susanne; Johannsmann, Diethelm; Reviakine, Ilya


    Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.

  10. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies. (United States)

    Huang, Huang-Chiao; Nanda, Alisha; Rege, Kaushal


    Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.

  11. Phase behavior of UCST blends: Effects of pristine nanoclay as an effective or ineffective compatibilizer

    Directory of Open Access Journals (Sweden)

    F. Hemmati


    Full Text Available The effects of unmodified nanoclay (natural montmorillonite on the miscibility, phase behavior and phase separation kinetics of polyethylene (PE/ethylene vinyl acetate copolymer (EVA blends have been investigated. Depending on the blend composition, it was observed that the intercalated pristine nanoclay influences the biphasic morphology either as an effective compatibilizer or just as an ineffectual modifier. In spite of the presence of micrometer-sized agglomerated tactoids, natural nanoclay can play a thermodynamic role in reducing the interfacial tension of polymer components. The addition of clay nanoparticles was found to change the phase diagram slightly and diminishes the composition dependency of the binodal temperatures. Moreover, it was observed that a small amount of unmodified layered silicate slows down the phase separation process considerably and enhances the solubility of each polymer in the domains of its counterpart. The findings of this study verify that even poorly dispersed nanoclay with high surface tension can act as a conventional compatibilizer and change the immiscible PE/EVA blends to the partially miscible ones.

  12. Phase relations and hydrogenation behavior of (La1-xMgx)3Al alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Yujie; ZHANG Qing'an


    The crystal structures and hydrogenation behavior of (La1-xMgx)3Al (x = 0.1, 0.2, 0.3, and 0.4) alloys were investigated.It was found that the alloys with x = 0.1 and 0.2 consist of La(Mg,Al),La,and a novel phase. The novel phase was determined as La2Al.It is shown that the amount of La2Al decreases as the Mg content increases. When x increases to 0.3,only La(Mg,Al) and a small amount of La2Al exist.When x is 0.4, La2Al phase disappears and the alloy contains both La(Mg,Al) and La(Al,Mg)2 Laves phase.The (La0.9Mg0.1)3Al and (La0.7Mg0.3)3Al alloys can be decomposed into LaH3,MgH2,and La2Al5 by the absorption of hydrogen at 473 K.

  13. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres. (United States)

    Gilchrist, Samuel E; Rickard, Deborah L; Letchford, Kevin; Needham, David; Burt, Helen M


    The purpose of this study was to characterize the phase separation behavior of fusidic acid (FA) and rifampicin (RIF) in poly(d,l-lactic acid-co-glycolic acid) (PLGA) using a model microsphere formulation. To accomplish this, microspheres containing 20% FA with 0%, 5%, 10%, 20%, and 30% RIF and 20% RIF with 30%, 20% 10%, 5%, and 0% FA were prepared by solvent evaporation. Drug-polymer and drug-drug compatibility and miscibility were characterized using laser confocal microscopy, Raman spectroscopy, XRPD, DSC, and real-time video recordings of single-microsphere formation. The encapsulation of FA and RIF alone, or in combination, results in a liquid-liquid phase separation of solvent-and-drug-rich microdomains that are excluded from the polymer bulk during microsphere hardening, resulting in amorphous spherical drug-rich domains within the polymer bulk and on the microsphere surface. FA and RIF phase separate from PLGA at relative droplet volumes of 0.311 ± 0.014 and 0.194 ± 0.000, respectively, predictive of the incompatibility of each drug and PLGA. When coloaded, FA and RIF phase separate in a single event at the relative droplet volume 0.251 ± 0.002, intermediate between each of the monoloaded formulations and dependent on the relative contribution of FA or RIF. The release of FA and RIF from phase-separated microspheres was characterized exclusively by a burst release and was dependent on the phase exclusion of surface drug-rich domains. Phase separation results in coalescence of drug-rich microdroplets and polymer phase exclusion, and it is dependent on the compatibility between FA and RIF and PLGA. FA and RIF are mutually miscible in all proportions as an amorphous glass, and they phase separate from the polymer as such. These drug-rich domains were excluded to the surface of the microspheres, and subsequent release of both drugs from the microspheres was rapid and reflected this surface location.

  14. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides. (United States)

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O


    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  15. Characteristic Surface Oxide Film Cracking Behavior of a Fe-Ni-Cr Alloy under In-phase and Out-of-phase Thermo-mechanical Fatigue

    Institute of Scientific and Technical Information of China (English)

    HE Qingfu


    The surface oxide film cracking behavior of Fe-30Ni-20Cr alloy under in-phase and out-of-phase synchronizing thermal cycling with mechanical cycling was studied.Surface oxide film cracking along the grain boundary under in-phase overlapping was creep predominant fracture mechanisms.Strongly induced slip lines preceding were accompanied by the surface oxide film cracking under Out-of phase,and the shear cracking wa~ dominant mode.Negative mean stress could counteract a part of the tensile component of alternative stress,so as to delay the cracking process under in-phase,but positive mean stress overlapping the tensile alternative stress could accelerate the cycling cracking process under out-of-phase.

  16. Effect of added alpha-lactalbumin protein on the phase behavior of AOT-brine-isooctane systems. (United States)

    Rohloff, Catherine M; Shimek, Justin W; Dungan, Stephanie R


    We have found that the presence of isooctane systems. Nuclear magnetic resonance (NMR), Karl Fischer titration, and ultraviolet spectroscopy were used to determine the surfactant, oil, water, and protein content of the organic and aqueous phases as a function of the total surfactant and protein present. As a small amount of alpha-lactalbumin is added to the mixture, there is a substantial increase (up to 80%) in the maximum water solubility in the water-in-oil microemulsion phase. Dynamic light scattering measurements indicate that this increase is due to a decrease in the magnitude of the (negative) spontaneous curvature of the surfactant monolayer, as droplets swell in size. As the molar ratio of alpha-lactalbumin to AOT surpasses approximately 1:300, the partitioning of water, protein, and surfactant shifts to the excess aqueous phase, where soluble assemblies with positive curvature are detected by dynamic light scattering. Significant amounts of isooctane are solubilized in these aggregates, consistent with the formation of oil-in-water microemulsion droplets. Circular dichroism studies showed that the tertiary structure of the protein in the microemulsion is disrupted while the secondary structure is increased. In light of these findings, the protein most likely expands to a molten-globule type conformation in the AOT interfacial environment, but does not substantially unfold to become an extended chain.

  17. Small-Sample Behavior of Novel Phase I Cancer Trial Designs

    CERN Document Server

    Oron, Assaf P


    Novel dose-finding designs, using estimation to assign the best estimated maximum- tolerated-dose (MTD) at each point in the experiment, most commonly via Bayesian techniques, have recently entered large-scale implementation in Phase I cancer clinical trials. We examine the small-sample behavior of these "Bayesian Phase I" (BP1) designs, and also of non-Bayesian designs sharing the same main "long-memory" traits (hereafter: LMP1s). For all LMP1s examined, the number of cohorts treated at the true MTD (denoted here as n*) was highly variable between numerical runs drawn from the same toxicity-threshold distribution, especially when compared with "up-and-down" (U&D) short-memory designs. Further investigation using the same set of thresholds in permuted order, produced a nearly-identical magnitude of variability in n*. Therefore, this LMP1 behavior is driven by a strong sensitivity to the order in which toxicity thresholds appear in the experiment. We suggest that the sensitivity is related to LMP1's tenden...

  18. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL


    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  19. Zinc(II) oxide solubility and phase behavior in aqueous sodium phosphate solutions at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.


    A platinum-lined, flowing autoclave facility is used to investigate the solubility/phase behavior of zinc(II) oxide in aqueous sodium phosphate solutions at temperatures between 290 and 560 K. ZnO solubilities are observed to increase continuously with temperature and phosphate concentration. At higher phosphate concentrations, a solid phase transformation to NaZnPO{sub 4} is observed. NaZnPO{sub 4} solubilities are retrograde with temperature. The measured solubility behavior is examined via a Zn(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria are obtained from a least-squares analysis of the data. The existence of two new zinc(II) ion complexes is reported for the first time: Zn(OH){sub 2}(HPO{sub 4}){sup 2{minus}} and Zn(OH){sub 3}(H{sub 2}PO{sub 4}){sup 2{minus}}. A summary of thermochemical properties for species in the systems ZnO-H{sub 2}O and ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O is also provided. 21 refs., 10 figs., 7 tabs.

  20. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior (United States)

    Gallagher, John A.


    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  1. Ionic liquids for low-tension oil recovery processes: Phase behavior tests. (United States)

    Rodriguez-Escontrela, Iria; Puerto, Maura C; Miller, Clarence A; Soto, Ana


    Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C12mim]Br in SW. A low equilibrium IFT of ∼2·10(-3)mN/m was measured between n-octane and an aqueous solution having the optimal blend ratio for this system at 25°C. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Corrosion behavior of tempered dual-phase steel embedded in concrete

    Institute of Scientific and Technical Information of China (English)

    O(g)uzhan Kelestemur; Mustafa Aksoy; Servet Yddtz


    Dual-phase (DP) steels with different martensite contents were obtained by appropriate heat treatment of an SAE1010 structural carbon steel,which was cheap and widely used in the construction industry.The corrosion behavior of DP steels in con-crete was investigated under various tempering conditions.Intercritical annealing heat treatment was applied to the reinforcing steel to obtain DP steels with different contents of martensite.These DP steels were tempered at 200,300,and 400℃ for 45 min and then cooled to room temperature.Corrosion experiments were conducted in two stages.In the first stage,the corrosion potential of DP steels embedded in concrete was measured every day for a period of 30 d based on the ASTM C 876 standard.In the second stage,the anodic and cathodic polarization values of these steels were obtained and subsequently the corrosion currents were determined with the aid of cathodic polarization curves.It was observed that the amount of second phase had a definite effect on the corrosion behavior of the DP steel embedded in concrete.As a result of this study,it is found that the corrosion rate of the DP steel increases with an increase in the amount ofmartensite.

  3. Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kuang, Shuang [Technical Research Institute, Shougang Corporation, Ltd., Beijing 100043 (China)


    Fatigue crack growth behaviors of cold-rolled dual phase steels with different microstructures were investigated at room temperature. The ferrite–martensite dual-phase microstructure was obtained by intercritical annealing. Fatigue crack growth (FCG) behaviors were described by both the Paris model and a new exponential model; fatigue fractography and surface morphology near the fracture were arrested by scanning electron microscopy (SEM); the relationship between macroscopic and microcosmic FCG rate was analyzed quantificationally. The results showed that both the models can be used to describe the fatigue crack growth rate of the samples rather well; fatigue striations and secondary cracks were observed in the fracture surface at stable expanding region (II), while the fracture at rapid expanding region (III) combined dimple and quasi-cleavage morphology; the roughness of fracture surface and the degree of secondary cracking increased with an increase in martensite content, leading to a higher threshold value. Moreover, the changes of microcosmic FCG rate were smoother than that of the macroscopic FCG rate.

  4. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.


    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  5. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites (United States)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim


    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  6. Mating behavior of Daphnia: impacts of predation risk, food quantity, and reproductive phase of females.

    Directory of Open Access Journals (Sweden)

    Geung-Hwan La

    Full Text Available High predation risk and food depletion lead to sexual reproduction in cyclically parthenogenetic Daphnia. Mating, the core of sexual reproduction, also occurs under these conditions. Assessment of the environmental conditions and alteration of mating efforts may aid in determining the success of sexual reproduction. Here, we evaluated the impacts of predation risk, food quantity, and reproductive phase of females on the mating behavior of Daphnia obtusa males including contact frequency and duration using video analysis. Mating-related behavior involved male-female contact (mating as well as male-male contact (fighting. Mating frequency increased while unnecessary fighting decreased in the presence of predation risk. In addition, low food concentration reduced fighting between males. Males attempted to attach to sexual females more than asexual females, and fighting occurred more frequently in the presence of sexual females. Duration of mating was relatively long; however, males separated shortly after contact in terms of fighting behavior. Thus, assessment of environmental factors and primary sexing of mates were performed before actual contact, possibly mechanically, and precise sex discrimination was conducted after contact. These results suggest that mating in Daphnia is not a random process but rather a balance between predation risk and energetic cost that results in changes in mating and fighting strategies.

  7. Mating Behavior of Daphnia: Impacts of Predation Risk, Food Quantity, and Reproductive Phase of Females (United States)

    La, Geung-Hwan; Choi, Jong-Yun; Chang, Kwang-Hyeon; Jang, Min-Ho; Joo, Gea-Jae; Kim, Hyun-Woo


    High predation risk and food depletion lead to sexual reproduction in cyclically parthenogenetic Daphnia. Mating, the core of sexual reproduction, also occurs under these conditions. Assessment of the environmental conditions and alteration of mating efforts may aid in determining the success of sexual reproduction. Here, we evaluated the impacts of predation risk, food quantity, and reproductive phase of females on the mating behavior of Daphnia obtusa males including contact frequency and duration using video analysis. Mating–related behavior involved male–female contact (mating) as well as male–male contact (fighting). Mating frequency increased while unnecessary fighting decreased in the presence of predation risk. In addition, low food concentration reduced fighting between males. Males attempted to attach to sexual females more than asexual females, and fighting occurred more frequently in the presence of sexual females. Duration of mating was relatively long; however, males separated shortly after contact in terms of fighting behavior. Thus, assessment of environmental factors and primary sexing of mates were performed before actual contact, possibly mechanically, and precise sex discrimination was conducted after contact. These results suggest that mating in Daphnia is not a random process but rather a balance between predation risk and energetic cost that results in changes in mating and fighting strategies. PMID:25111600

  8. Improving the dielectric properties of ethylene-glycol alkanethiol self-assembled monolayers. (United States)

    Zaccari, Irene; Catchpole, Benjamin G; Laurenson, Sophie X; Davies, A Giles; Wälti, Christoph


    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor.

  9. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide (United States)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS

  10. Hard convex lens-shaped particles: Densest-known packings and phase behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cinacchi, Giorgio, E-mail: [Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Torquato, Salvatore, E-mail: [Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States)


    By using theoretical methods and Monte Carlo simulations, this work investigates dense ordered packings and equilibrium phase behavior (from the low-density isotropic fluid regime to the high-density crystalline solid regime) of monodisperse systems of hard convex lens-shaped particles as defined by the volume common to two intersecting congruent spheres. We show that, while the overall similarity of their shape to that of hard oblate ellipsoids is reflected in a qualitatively similar phase diagram, differences are more pronounced in the high-density crystal phase up to the densest-known packings determined here. In contrast to those non-(Bravais)-lattice two-particle basis crystals that are the densest-known packings of hard (oblate) ellipsoids, hard convex lens-shaped particles pack more densely in two types of degenerate crystalline structures: (i) non-(Bravais)-lattice two-particle basis body-centered-orthorhombic-like crystals and (ii) (Bravais) lattice monoclinic crystals. By stacking at will, regularly or irregularly, laminae of these two crystals, infinitely degenerate, generally non-periodic in the stacking direction, dense packings can be constructed that are consistent with recent organizing principles. While deferring the assessment of which of these dense ordered structures is thermodynamically stable in the high-density crystalline solid regime, the degeneracy of their densest-known packings strongly suggests that colloidal convex lens-shaped particles could be better glass formers than colloidal spheres because of the additional rotational degrees of freedom.

  11. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey


    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  12. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu


    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  13. Effect of Vision Angle on the Phase Transition in a Flocking Behavior of Animal Groups

    CERN Document Server

    Nguyen, P The; Ngo, V Thanh


    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the last few decades. A theoretical model was proposed by T. Vicsek, et. al. [Phys. Rev. Lett. 75, 1226 (1995)] with a simple rule for updating the direction of motion of each particle. Based on the Vicsek's model (VM) [1], in this work, we consider a group of animals as particles moving freely on a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle $\\varphi=\\Phi/2$ ($\\Phi$ is called angle of view) of a circle centered at its position, of radius $R$. We obtained a phase diagram in the space ($\\varphi$, $\\eta_c$) with $\\eta_c$ being the critical noise. We show that, the phase transition exists only in the case of a wide view's angle $\\varphi \\geq 0.5\\pi$. The flocking of animals is perhaps a behavior of the species of prey only, but not the one of the predator. Our simulation results are in good ag...

  14. Phase transformation behaviors and shape memory effects of TiNiFeAl shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Xiao; Fushun Liu; Huibin Xu


    Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and -196℃ were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but decreases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.sAl1 alloys, which results from the stress-induced martensite transformation from the R-phase.

  15. Dielectric behavior and phase transition of perovskite PMN-PT films

    Energy Technology Data Exchange (ETDEWEB)

    Fan Huiqing; Chen Jin, E-mail: [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)


    The dielectric properties of perovskite relaxor ferroelectrics 0.80Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.20PbTiO{sub 3} (0.80PMN-0.20PT) thick films fabricated by electrophoretic deposition were investigated as a function of temperature and frequency. The phase transformation of 0.80PMN-0.20PT thick films has two different kinds of phase transition: one is a diffused phase transition around the temperature of dielectric permittivity maxima and the other is a first-order transition from frequency dispersion relaxor ferroelectrics to normal ferroelectrics. The frequency and temperature dependence of the dielectric permittivity maximum was also analyzed to discuss the physical meaning of the Debey, Vogel-Fulcher (V-F) and new-glass (N-G) relations. It is shown that the N-G relation is more suitable to characterize the relaxation behavior than the Debey and V-F relations.

  16. Flow Pattern and Heat Transfer Behavior of Boiling Two—Phase flow in Inclined Pipes

    Institute of Scientific and Technical Information of China (English)

    LiuDezhang; OuyangNing


    Movable Electrical Conducting Probe (MECP),a kind of simple and reliable measuring transducer,used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper when the test pipe is set at different inclination angles,several kinds of flow patterns,such as bubble,slug,churn,intermittent,and annular flows,may be observed in accordance with the locations of MECP.By means of flow pattern analysis,flow fleld numerical calculations have been carried out,and heat transfer coeffcient correlations along full-flow-path derived.The results show that heat transfer performance of boiling two-phase flow could be significanfly augmanted as expected in some flow pattern zones.The results of the investigation,measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow,as well as for turbine vane liquid-cooling design.

  17. Lupane-type pentacyclic triterpenes in Langmuir monolayers: a synchrotron radiation scattering study. (United States)

    Broniatowski, Marcin; Flasiński, Michał; Wydro, Paweł


    Lupane-type pentacyclic triterpenes (lupeol, betulin, and betulinic acid) are natural products isolated from various plant sources. The terpenes exhibit a vast spectrum of biological activity and are applied in therapies for different diseases, among which the anticancer, anti-HIV, antihypercholesteremic, and antiinflammatory are the most promising. These chemicals possess amphiphilic structure and were proved to interact strongly with biomembranes, which can be the key stage in their mechanism of action. In our studies, we applied Langmuir monolayers as versatile models of biomembranes. It turned out that the three investigated terpenes are capable of stable monolayer formation; however, these monolayers differ profoundly regarding their physicochemical characteristics. In our research, we applied the Langmuir technique (surface pressure-mean molecular area (π-A) isotherm registration) coupled with Brewster angle microscopy (BAM), but the main focus was on the synchrotron radiation scattering method, grazing incidence X-ray diffraction (GIXD), which provides information on the amphiphilic molecule ordering in the angström scale. It was proved that all the investigated terpenes form crystalline phases in their monolayers. In the case of lupeol, only the closely packed upright phase was observed, whereas for betulin and betulinic acid, the phase situation was more complex. Betulinic acid molecules can be organized in an upright phase, which is crystalline, and in a tilted phase, which is amorphous. The betulin film is a conglomerate of an upright crystalline monolayer phase, tilted amorphous monolayer phase, and a crystalline tilted bilayer. In our paper, we discuss the factors leading to the formation of the observed phases and the implications of our results to the therapeutic applications of the native lupane-type triterpenes.

  18. Conduction quantization in monolayer MoS2 (United States)

    Li, T. S.


    We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.

  19. A role of phase-resetting in coordinating large scale neural oscillations during attention and goal-directed behavior

    Directory of Open Access Journals (Sweden)

    Benjamin eVoloh


    Full Text Available Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets (1 set a neural context in terms of narrow band frequencies that uniquely characterizes the activated circuits, (2 impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances, (3 are critical for neural coding models that depend on phase, increasing the informational content of neural representations, and (4 likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior.

  20. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam


    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  1. Electronic and Magnetic Properties of Rare-Earth Metals Doped ZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan


    Full Text Available The structural, electronic, and magnetic properties of rare-earth metals doped ZnO monolayer have been investigated using the first-principles calculations. The induced spin polarization is confirmed for Ce, Eu, Gd, and Dy dopings while the induced spin polarization is negligible for Y doping. The localized f states of rare-earth atoms respond to the introduction of a magnetic moment. ZnO monolayer undergoes transition from semiconductor to metal in the presence of Y, Ce, Gd, and Dy doping. More interestingly, Eu doped ZnO monolayer exhibits half-metallic behavior. Our result demonstrates that the RE-doping is an efficient route to modify the magnetic and electronic properties in ZnO monolayer.

  2. Searching for line active molecules on biphasic lipid monolayers. (United States)

    Bischof, Andrea Alejandra; Mangiarotti, Agustín; Wilke, Natalia


    In membranes with phase coexistence, line tension appears as an important parameter for the determination of the amount of domains, as well as their size and their shape, thus defining the membrane texture. Different molecules have been proposed as "linactants" (i.e. molecules that reduce the line tension, thereby modulating the membrane texture). In this work, we explore the efficiency of different molecules as linactants in monolayers with two coexisting phases of different thicknesses. We tested the linactant ability of a molecule with chains of different saturation degrees, another molecule with different chain lengths and a bulky molecule. In this way, we show in the same system the effect of molecules with chains of different rigidities, with an intrinsic thickness mismatch and with a bulky moiety, thereby analyzing different hypotheses of how a molecule may change the line tension in a monolayer system. Both lipids with different hydrocarbon chains did not act as linactants, while only one of the bulky molecules tested decreased the line tension in the monolayer studied. We conclude that there are no universal rules for the structure of a molecule that enable us to predict that it will behave as a linactant and thus, designing linactants appears to be a difficult task and a challenge for future studies. Furthermore, in regard to the membrane texture, there was no direct influence of the line tension in the distribution of domain sizes.

  3. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization. (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A


    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  4. Thermally Induced Asymmetric Buckling of Circular Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Haw-Long Lee


    Full Text Available The asymmetric buckling behaviors of circular monolayer graphene with clamped boundary condition subjected to temperature change are analytically studied based on the nonlocal elasticity theory, including the small length effect. The axisymmetrical and asymmetric critical buckling temperatures and mode shape of different order modes are obtained. According to the analysis, the asymmetric critical buckling temperature of monolayer graphene is larger than the axisymmetric one. The axisymmetrical and asymmetric critical buckling temperatures decrease with increasing nonlocal parameter. In addition, nodal diametrical lines and nodal circles can be found from the modal shapes. In order to avoid destruction of the sensors due to buckling of the structure, they can be placed at the nodal diametrical lines or nodal circles.

  5. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)


    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  6. Thiol-yne adsorbates for stable, low-density, self-assembled monolayers on gold. (United States)

    Stevens, Christopher A; Safazadeh, Leila; Berron, Brad J


    We present a novel approach toward carboxylate-terminated, low-density monolayers on gold, which provides exceptional adsorbate stability and conformational freedom of interfacial functional groups. Adsorbates are synthesized through the thiol-yne addition of two thiol-containing head groups to an alkyne-containing tail group. The resulting monolayers have two distinct phases: a highly crystalline head phase adjacent to the gold substrate, and a reduced density tail phase, which is in contact with the environment. The ellipsometric thickness of 27 Å is consistent with the proposed structure, where a densely packed decanedithiol monolayer is capped with an 11 carbon long, second layer at 50% lateral chain density. The Fourier transform infrared peak at 1710 cm(-1) supports the presence of the carbonyl group. Further, the peaks associated with asymmetric and symmetric methylene stretching are shifted toward higher wavenumbers compared to those of well-packed self-assembled monolayers (SAMs), which shows a lower average crystallinity of the thiol-yne monolayers compared to a typical monolayer. Contact angle measurements indicate an intermediate surface energy for the thiol-yne monolayer surface, owing to the contribution of exposed methylene functionality at the surface in addition to the carbonyl terminal group. The conformational freedom at the surface was demonstrated through remodeling the thiol-yne surface under an applied potential. Changes in the receding contact angle in response to an external potential support the capacity for reorientation of the surface presenting groups. Despite the low packing at the solution interface, thiol-yne monolayers are resistant to water and ion transport (R(f) ~ 10(5)), supporting the presence of a densely structured layer at the gold surface. Further, the electrochemical stability of the thiol-yne adsorbates exceeded that of well-packed SAMs, requiring a more reductive potential to desorb the thiol-yne monolayers from the

  7. Monolayers at air-water interfaces: from origins-of-life to nanotechnology. (United States)

    Ariga, Katsuhiko; Hill, Jonathan P


    The air-water interface presents several interesting features, namely a) a molecularly flat environment, b) a boundary region between two phases with different dielectric constants, c) permits or promotes dynamic interactions within the interface region, and d) a point of interaction between hydrophobic compounds and aqueous molecules. Accordingly, Langmuir monolayers at the air-water interface have several unique characteristics and properties, which require investigation. In this review-type personal account, typical examples of molecular recognition and molecular patterning at air-water interfaces are first introduced, followed by descriptions of specific and unusual properties of monolayers on water. In addition, two examples of our own results concerning Langmuir monolayers are explained. We have selected examples from two apparently unrelated research areas, these being the origin of life and future nanotechnology, in order to emphasize the diverse scientific contribution of research on monolayers at the air-water interface. Copyright © 2011 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  8. Phase Transformation Behaviors and Effects of Terbium in Polycrystalline Ni-Mn-Ga Magnetic Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    赵增祺; 熊玮; 吴双霞; 王新林


    The phase transformation behaviors of two kinds of magnetic shape memory alloys Ni50Mn25+xGa25-x and Ni50Mn29Ga21-xTbx were studied. When the composition of Ni in these alloys was constant, increasing Mn and reducing Ga contents make martensitic transformation temperatures rise obviously. Simultaneously, thermal hysteresis of phase transformation reduce but Curie temperature unalters. When terbium was added, phase transformation temperature went up further and Curie temperature kept constant. The alloys still show strong ferromagnetism and properties of thermoelastic martensite phase transformation.

  9. Atomic Defects and Doping of Monolayer NbSe2. (United States)

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J P; Lawlor, Sean; Sanchez, Ana M; Sloan, Jeremy; Gorbachev, Roman V; Grigorieva, Irina V; Krasheninnikov, Arkady V; Haigh, Sarah J


    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe2 lattice stabilizing Se divacancies. We further observe evidence of Pt substitution into both Se and Nb vacancy sites. This knowledge of the character and relative frequency of different atomic defects provides the potential to better understand and control the unusual electronic and magnetic properties of this exciting two-dimensional material.

  10. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)


    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  11. Developing a cognitive behavioral therapy manual for delayed sleep-wake phase disorder. (United States)

    Jansson-Fröjmark, Markus; Danielsson, Katarina; Markström, Agneta; Broman, Jan-Erik


    This article reports the development of a treatment protocol, based on cognitive behavioral therapy (CBT) principles, for delayed sleep-wake phase disorder (DSWPD). The protocol consists of psycho-education, presenting a CBT model for DSWPD, case formulation, motivational interviewing, registering sleep in a diary, strategies to improve the rhythm of sleep and wakefulness, relaxation training, cognitive restructuring, strategies to cope with daytime symptoms, constructing an individualized CBT program, and learning how to deal with relapses. Qualitative data, focusing on how the patients perceived the protocol, were collected within the realm of a trial exploring the efficacy of the protocol. These findings highlighted several advantages but also disadvantages of the therapy. It is our hope that this paper might act as a platform for further clinical work and future research efforts in patients with DSWPD.

  12. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)


    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.


    Institute of Scientific and Technical Information of China (English)

    DONG Yu-hong


    The Navier-Stokes equations for the two-dimensional incompressible flow are used to investigate the effects of the Reynolds number and the Weber number on the behavior of interface between liquid-gas shear flow.In the present study, the density ratios are fixed at approximately 100-103.The interface between the two phases is resolved using the level-set approach.The Reynolds number and the Weber number, based on the gas, are selected as 400-10000 and 40-5000, respectively.In the past, simulations reappeared the amplitude of interface growth predicted by viscous Orr-Sommerfeld linear theory, verifying the applicability and accuracy of the numerical method over a wide range of density and viscosity ratios; now, the simulations show that the nonlinear development of ligament elongated structures and resulted in the subsequent breakup of the heavier fluid into drops.

  14. Predicting out-of-Equilibrium Phase Behavior in the Dynamic Self-Assembly of Colloidal Crystals (United States)

    Swan, James; Sherman, Zachary

    Crystals self-assembled from colloidal particles are useful in an array of well demonstrated applications. During fabrication however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. We show how time-dependent, pulsed interparticle interactions can avoid kinetic barriers and yield well-ordered crystalline domains for a suspension of hard, spherical colloidal particles interacting through short-range attractions. This dynamic self-assembly process is analogous to the flashing Brownian rachet. Although this is an inherently unsteady, out-of-equilibrium process, we can predict its outcome using appropriate time averages of equilibrium equations of state. The predicted phase behavior is tested and validated by examining the fluid/crystal coexistence of such dynamically self-assembling dispersions in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. We also show that our dynamic self-assembly scheme offers control and tunability over the crystal growth kinetics and can even stabilize nonequilibrium structures.

  15. Phase-field study of grain boundary tracking behavior in crack-seal microstructures

    CERN Document Server

    Ankit, Kumar; Selzer, Michael; Reichardt, Mathias


    In order to address the vein-growth problem in geology, a multi-phase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a complete understanding, we investigate the influence of various boundary conditions on crystal growth (free-growth and crack-sealing) that result in formation of vein microstructures. To begin with, we consider the anisotropy in surface energy to simulate crystals (with flat facets and sharp corners) possessing different orientations and study the resulting growth competition to deduce a consistent orientation selection rule in the free-growth regime. Next, from crack-sealing simulations, we co-relate the grain boundary tracking behavior and the relative rates of crack opening and trajectory, initial grain size and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. T...

  16. Study on the Miscibility and Phase Behavior of Polyoxymethylene with Novolak

    Institute of Scientific and Technical Information of China (English)


    The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (X) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.

  17. Thermophysical Properties and Phase Behavior of Fluids for Application in Carbon Capture and Storage Processes. (United States)

    Trusler, J P Martin


    Phase behavior and thermophysical properties of mixtures of carbon dioxide with various other substances are very important for the design and operation of carbon capture and storage (CCS) processes. The available empirical data are reviewed, together with some models for the calculation of these properties. The systems considered in detail are, first, mixtures of carbon dioxide, water, and salts; second, carbon dioxide-rich nonelectrolyte mixtures; and third, mixtures of carbon dioxide with water and amines. The empirical data and the plethora of available models permit the estimation of key fluid properties required in the design and operation of CCS processes. The engineering community would benefit from the further development, and delivery in convenient form, of a small number of these models sufficient to encompass the component slate and operating conditions of CCS processes.

  18. Behavior of the cosmic ray density during the initial phase of the Forbush effect (United States)

    Belov, A. V.; Eroshenko, E. A.; Abunina, M. A.; Abunin, A. A.; Oleneva, V. A.; Yanke, V. G.


    Variations in the cosmic ray density during the initial phase of the Forbush effect during the first hours after the arrival of the interplanetary shock wave have been studied with the use of data on variations in the cosmic ray density with a rigidity of 10 GV obtained by the global survey method by the world network of neutron monitors in 1957‒2012. It is found that behavior of this parameter after the arrival of the shock wave demonstrates high variability. A small ( 1/5 of total number), though distinct, group of Forbush effects, in which the density of the cosmic ray increases (not decreases) after the arrival of the shock wave, is defined. As a whole, the initial variation in cosmic ray density is correlated with the Forbush effect magnitude and the strength of the associated geomagnetic disturbance.

  19. Dynamics of decanethiol self-assembled monolayers on Au(111) studied by Scanning tunnelling microscopy

    NARCIS (Netherlands)

    Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.


    We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and ) and a disordered phase (ε) were observed. Current–time traces with the feedback loop disabled

  20. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter


    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are qual

  1. 表面活性素单分子膜在空气/水界面的迟滞现象%Hysteresis Behavior of Surfactin Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    杨莹; 宋昌盛; 叶汝强; 牟伯中


    Surfactin,one of the most surface-active microbial lipopeptides,can readily form an insoluble monolayer at the air/water interface.Consecutive compression-expansion cycles of surfactin with a β-hydroxyl fatty acid chain consisting of 14 carbon atoms were studied by a Langmuir film balance.A larger hysteresis loop was observed when the compression isotherm reached a plateau compared with that expanded at a lower surface pressure (20 mN· m-1).The 2nd cycle was shifted towards smaller molecular areas compared with the 1st cycle.We also studied the hysteresis cycles of the surfactin monolayer on subphase of different pH values.With a decrease in the subphase pH the hysteresis loop became smaller and the expansion isotherm curve underwent a longer pseudo plateau.Furthermore,the morphologies of the surfactin monolayers in the plateau region,which were transferred onto a mica surface,were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM).Both AFM and SEM images gave three-dimensional surface aggregates with heights ranging from tens to hundreds of nanometers.The above results suggest that the formation of three-dimensional surface aggregates at the plateau region induces a large hysteresis loop in the surfactin monolayer,which can also be attributed to the submergence of molecules into the subphase when the peptide loop in the surfactin molecule is ionized.%表面活性素是一类具有较强表面活性的微生物脂肽类化合物,能在空气/水界面形成不溶性单分子膜.利用Langmuir膜天平测定了表面活性素单分子膜的压缩-扩张循环曲线,发现单分子膜在经历了“平台区”后出现较大的迟滞环,迟滞环的形状与亚相pH有关.将“平台区”的单分子膜转移到云母表面后,用原子力显微镜(AFM)和扫描电子显微镜(SEM)均观察到高度达几十至数百纳米的表面聚集体,说明表面活性素在单分子膜的“平台区”伴随着自聚集.研究结果

  2. Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates (United States)

    Idiart, Martín I.

    A new approach is proposed for estimating the macroscopic behavior of two-phase nonlinear composites with random, particulate microstructures. The central idea is to model composites by sequentially laminated constructions of infinite rank whose macroscopic behavior can be determined exactly. The resulting estimates incorporate microstructural information up to the two-point correlation functions, and require the solution to a Hamilton-Jacobi equation with the inclusion concentration and the macroscopic fields playing the role of 'time' and 'spatial' variables, respectively. Because they are realizable, by construction, these estimates are guaranteed to be convex, to satisfy all pertinent bounds, to exhibit no duality gap, and to be exact to second order in the heterogeneity contrast. Sample results are provided for two- and three-dimensional power-law composites, and are compared with other homogenization estimates, as well as with numerical simulations available from the literature. The estimates are found to give physically sensible predictions for all the cases considered, even for extreme values of the nonlinearity and heterogeneity contrast. Interestingly, in the case of isotropic porous materials under hydrostatic loadings, the estimates agree exactly with standard Gurson-type models for viscoplastic porous media.

  3. A study of the phase transition behavior of mixed ammonium sulfate – malonic acid aerosols

    Directory of Open Access Journals (Sweden)

    C. F. Braban


    Full Text Available This is a study into the phase transitions of aerosol composed of the ternary system ammonium sulfate (AS – malonic acid (MA – water using infrared extinction spectroscopy. Twelve compositions were studied in both deliquescence and efflorescence mode experiments. The presence of a MA fraction, by dry mass, (fMA of 0.1 in an AS aerosol altered the relative humidity at which the phase transitions occur in an atmospherically significant manner. For compositions with 0.25<fMA<0.90, no distinct "deliquescence" was observed, contrary to the observed behavior in the binary systems. The crystallization of both the MA and AS components is suppressed by the presence of the other component in the aerosol. At fMA=0.9, the crystallization relative humidity of MA was lowered from RH=6% to less than 1%. Similarly, at fMA=0.4, the AS component did not crystallize. The atmospheric implications of the results are discussed.

  4. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water (United States)

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  5. Surface phase stability and surfactant behavior of InAsSb alloy surfaces. (United States)

    Anderson, Evan M.; Lundquist, Adam M.; Pearson, Chris; Millunchick, Joanna M.

    InAsSb has the narrowest bandgap of any of the conventional III-V semiconductors: low enough for long wavelength infrared applications. Such devices are sensitive to point defects, which can be detrimental to performance. To control these defects, all aspects of synthesis must be considered, especially the atomic bonding at the surface. We use an ab initio statistical mechanics approach that combines density functional theory with a cluster expansion formalism to determine the stable surface reconstructions of Sb (As) on InAs (InSb) substrates. The surface phase diagram of Sb on InAs is dominated by Sb-dimer termination α2(2x4) and β2(2x4) and c(4x4). Smaller regions of mixed Sb-As dimers appear for high Sb chemical potentials and intermediate As chemical potential. We propose that InAsSb films could be grown on (2x4), which maintain bulk-like stoichiometry, to eliminate the formation of typically observed n-type defects. Scanning tunneling microscopy and reflection high energy electron diffraction confirm the calculated phase diagram. Based on these calculations, we propose a new mechanism for the surfactant behavior of Sb in these materials. We gratefully acknowledge Chakrapani Varanasi and the support of the Department of Defense, Army Research Office via the Grant Number W911NF-12-1-0338.

  6. Influence of humidity on the phase behavior of API/polymer formulations. (United States)

    Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele


    Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions.

  7. Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy (United States)

    Zhang, Jing-ling; Guo, Qian-ying; Liu, Yong-chang; Li, Chong; Yu, Li-ming; Li, Hui-jun


    The coarsening behaviors of γ″-phase particles in Inconel 718 alloy aged at 750, 800, and 850°C were investigated by scanning electron microscopy (SEM). Detailed observations and quantitative measurements were conducted to characterize the coarsening behavior of the γ?-phase under various aging conditions. The experimental results indicate that the existence of the δ-phase retards the formation and coarsening of the γ″-phase, without influencing its final particle size or amount. Moreover, when cold rolled with a reduction of 50%, the dimensions of the γ″ particles in Inconel 718 alloy decrease with increasing aging time. Furthermore, the coarsening behavior of the γ″-phase in the Inconel 718 alloy after a normal aging treatment (sample A) and that of the primary δ-phase (sample B) follow the Lifshitz-Slyozov-Wagner (LSW) diffusion-controlled growth theory; the thus-obtained activation energies for the γ″-phase are 292 kJ·mol-1 and 302 kJ·mol-1, respectively.

  8. Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids (United States)

    Bymaster, Adam

    Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any

  9. Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers. (United States)

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M


    The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl-rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm(-1) have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ∼15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3°C to 5°C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17°C and 22°C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results

  10. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems. (United States)

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim


    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  11. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior (United States)

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J. K.; Liu, Chaoxing; Moodera, Jagadeesh S.; Chan, Moses H. W.


    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  12. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R.; Liu, Yun


    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  13. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction. (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun


    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  14. Phase behavior and molecular dynamics simulation studies of new aqueous two-phase separation systems induced by HEPES buffer. (United States)

    Taha, Mohamed; Khoiroh, Ianatul; Lee, Ming-Jer


    Here, for the first time, we show that with addition of a biological buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), into aqueous solutions of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone, the organic solvent can be excluded from water to form a new liquid phase. The phase diagrams have been determined at ambient temperature. In order to understand why and how a zwitterion solute (HEPES) induced phase separation of the investigated systems, molecular dynamics (MD) simulation studies are performed for HEPES + water + THF system. The MD simulations were conducted for the aqueous mixtures with 12 different compositions. The reliability of the simulation results of HEPES in pure water and beyond the phase separation mixtures was justified by comparing the densities obtained from MD with the experimental values. The simulation results of HEPES in pure THF and in a composition inside the phase separation region were justified qualitatively. Interestingly, all HEPES molecules entirely aggregated in pure THF. This reveals that HEPES is insoluble in pure THF, which is consistent with the experimental results. Even more interestingly, the MD simulation for the mixture with composition inside the phase separation region showed the formation of two phases. The THF molecules are squeezed out from the water network into a new liquid phase. The hydrogen bonds (HBs), HB lifetime, HB Gibbs energy (ΔG), radial distribution functions (RDFs), coordination numbers (CNs), electrostatic interactions, and the van der Waals interactions between the different species have been analyzed. Further, MD simulations for the other phase separation systems by choosing a composition inside the two liquids region for each system were also simulated. Our findings will therefore pave the way for designing new benign separation auxiliary agents.

  15. Phase diagram and critical behavior of a forest-fire model in a gradient of immunity (United States)

    Guisoni, Nara; Loscar, Ernesto S.; Albano, Ezequiel V.


    The forest-fire model with immune trees (FFMIT) is a cellular automaton early proposed by Drossel and Schwabl [Physica APHYADX0378-437110.1016/0378-4371(93)90001-K 199, 183 (1993)], in which each site of a lattice can be in three possible states: occupied by a tree, empty, or occupied by a burning tree (fire). The trees grow at empty sites with probability p, healthy trees catch fire from adjacent burning trees with probability (1-g), where g is the immunity, and a burning tree becomes an empty site spontaneously. In this paper we study the FFMIT by means of the recently proposed gradient method (GM), considering the immunity as a uniform gradient along the horizontal axis of the lattice. The GM allows the simultaneous treatment of both the active and the inactive phases of the model in the same simulation. In this way, the study of a single-valued interface gives the critical point of the active-absorbing transition, whereas the study of a multivalued interface brings the percolation threshold into the active phase. Therefore we present a complete phase diagram for the FFMIT, for all range of p, where, besides the usual active-absorbing transition of the model, we locate a transition between the active percolating and the active nonpercolating phases. The average location and the width of both interfaces, as well as the absorbing and percolating cluster densities, obey a scaling behavior that is governed by the exponent α=1/(1+ν), where ν is the suitable correlation length exponent (ν⊥ for the directed percolation transition and ν for the standard percolation transition). We also show that the GM allows us to calculate the critical exponents associated with both the order parameter of the absorbing transition and the number of particles in the multivalued interface. Besides, we show that by using the gradient method, the collapse in a single curve of cluster densities obtained for samples of different side is a very sensitive method in order to obtain the

  16. Monolayer MoS2 self-switching diodes (United States)

    Al-Dirini, Feras; Hossain, Faruque M.; Mohammed, Mahmood A.; Hossain, Md Sharafat; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios


    This paper presents a new molybdenum disulphide (MoS2) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS2 monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS2 results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  17. Monolayer MoS{sub 2} self-switching diodes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dirini, Feras, E-mail:; Hossain, Md Sharafat [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Victorian Research Laboratory, National ICT Australia, West Melbourne, Victoria (Australia); Hossain, Faruque M.; Skafidas, Efstratios [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Mohammed, Mahmood A. [Princess Sumaya University for Technology, Amman (Jordan); Nirmalathas, Ampalavanapillai [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Melbourne Networked Society Institute (MNSI), University of Melbourne, Victoria (Australia)


    This paper presents a new molybdenum disulphide (MoS{sub 2}) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS{sub 2} monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS{sub 2} results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  18. Influence of the Head Group Size on the Direction of Tilt in Langmuir Monolayers

    CERN Document Server

    Schmid, F


    A model of rods with heads of variable size, which are confined to a planar surface, is used to study the influence of the head group size on tilted phases in Langmuir monolayers. Simple free energy considerations as well as exact zero temperature calculations indicate that molecules with small head groups tilt towards next nearest neighbors, and molecules with larger head groups towards nearest neighbors. This provides a possible explanation for recent experimental results, and for details of the generic phase diagram for fatty acid monolayers.

  19. Surface dilatational viscosity of Langmuir monolayers (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir


    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  20. Unusual phase behavior in the piezoelectric perovskite system, Li(x)Na(1-x)NbO3. (United States)

    Peel, Martin D; Ashbrook, Sharon E; Lightfoot, Philip


    The system Li(x)Na(1-x)NbO3 has been studied by using a combination of X-ray and neutron powder diffraction and (23)Na solid-state NMR spectroscopy. For x = 0.05 we confirm a single polar orthorhombic phase. For 0.08 ≤ x ≤ 0.20 phase mixtures of this orthorhombic phase, together with a rhombohedral phase, isostructural with the low-temperature ferroelectric polymorph of NaNbO3, are observed. The relative fractions of these two phases are shown to be critically dependent on synthetic conditions: the rhombohedral phase is favored by higher annealing temperatures and rapid cooling. We also observe that the orthorhombic phase transforms slowly to the rhombohedral phase on standing in air at ambient temperature. For 0.25 ≤ x ≤ 0.90 two rhombohedral phases coexist, one Na-rich and the other Li-rich. In this region the phase behavior is independent of reaction conditions.

  1. Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. (United States)

    Bouwstra, Joke A; Gooris, Gert S; Dubbelaar, Frank E R; Ponec, Maja


    In a recent study the lipid phase behavior of mixtures of human ceramides, cholesterol, and free fatty acids has been examined. We observed in cholesterol: human ceramide mixtures a prominent formation of the 12.8 nm lamellar phase (referred to as the long periodicity phase). Addition of free fatty acids promoted the formation of a 5.6 nm lamellar phase (referred to as the short periodicity phase) and increased the subpopulation of lipids forming a fluid phase. In this study we focused on the role of human ceramide 1, as the presence of this ceramide appeared to be crucial for proper lipid phase behavior in mixtures prepared with ceramide isolated from pig stratum corneum. In order to do this, mixtures of cholesterol and free fatty acids were prepared with human ceramides, in which natural human ceramide 1 was replaced by either synthetic CER1-linoleate (CER1-lin), or CER1-oleate (CER1-ol), or CER1-stearate (CER1-ste). After substitution of natural human ceramide 1 by synthetic ceramide 1 the following observations were made. (i) In the presence of synthetic CER1-ste no long periodicity phase and no liquid phase could be detected. (ii) In the presence of HCER1-ol a liquid phase was more prominently formed than in the presence of HCER1-lin. (iii) In cholesterol:human ceramide mixtures in the presence of CER1-lin the long periodicity phase was more prominently present than in the presence of CER1-ol. (iv) In the presence of CER1-ste neither a long periodicity phase nor a liquid lateral packing could be detected. The results of these studies further indicate that for the formation of the long periodicity phase a certain (optimal) fraction of lipids has to form a liquid phase. When the fraction forming this liquid phase is either too low or too high, the formation of the short periodicity phase is increased at the expense of the formation of the long periodicity phase. Based on the results of this and previous studies we offer an explanation for the deviation in lipid

  2. New ice rules for nanoconfined monolayer ice from first principles

    CERN Document Server

    Corsetti, Fabiano; Artacho, Emilio


    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, using density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. From an in-depth analysis we show that the well-known ice rules for bulk ice need to be revised for the monolayer, with distinct new rules appearing for the two networks. All identified stable phases for both are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to the predictions of empirical f...

  3. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang


    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  4. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch. (United States)

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang


    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases. (United States)

    Khvostichenko, Daria S; Kondrashkina, Elena; Perry, Sarah L; Pawate, Ashtamurthy S; Brister, Keith; Kenis, Paul J A


    Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as the crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies. Here we report a microfluidic platform that facilitates investigations of the phase behavior of mesophases by reducing sample consumption 300-fold, and automating and parallelizing sample formulation. The mesophases were formulated on-chip using less than 80 nL of material per sample and their microstructure was analyzed in situ using small-angle X-ray scattering (SAXS). The 220 μm-thick X-ray compatible platform was comprised of thin polydimethylsiloxane (PDMS) layers sandwiched between cyclic olefin copolymer (COC) sheets. Uniform mesophases were prepared using an active on-chip mixing strategy coupled with periodic cooling of the sample to reduce viscosity. We validated the platform by preparing and analyzing mesophases of the lipid monoolein (MO) mixed with aqueous solutions of different concentrations of β-octylglucoside (βOG), a detergent frequently used in membrane protein crystallization. Four samples were prepared in parallel on chip, by first metering and automatically diluting βOG to obtain detergent solutions of different concentration, then metering MO, and finally mixing by actuation of pneumatic valves. Integration of detergent dilution and subsequent mixing significantly reduced the number of manual steps needed for sample preparation. Three different types of mesophases typical for MO were successfully identified in SAXS data from on-chip samples. Microstructural parameters of identical samples formulated in

  6. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Danyang, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Liu, Yang, E-mail: [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Yang, Yuling, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Li, Jinfeng, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Ma, Min, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Jiang, Tao, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China)


    Dual phase (DP) steels have been widely used in the automotive industry to reduce vehicle weight and improve car safety. In such applications welding and joining have to be involved, which would lead to a localized change of the microstructure and property, and create potential safety and reliable issues under dynamic loading. The aim of the present study is to examine the rate-dependent mechanical properties, deformation and fracture behavior of DP600 steel and its welded joint (WJ) produced by Nd:YAG laser welding over a wide range of strain rates (0.001–1133 s{sup −1}). Laser welding results in not only significant microhardness increase in the fusion zone (FZ) and inner heat-affected zone (HAZ), but also the formation of a softened zone in the outer HAZ. The yield strength (YS) of the DP600 steel increases and the ultimate tensile strength (UTS) remains almost unchanged, but the ductility decreases after welding. The DP600 base metal (BM) and WJ are of positive strain rate sensitivity and show similar stress–strain response at all studied strain rates. The enhanced ductility at strain rates ranging from 1 to 100 s{sup −1} is attributed to the retardation of the propagation of plastic strain localization due to the positive strain rate sensitivity and the thermal softening caused by deformation induced adiabatic temperature rise during dynamic tensile deformation. The tensile failure occurs in the inner HAZ of the joint and the distance of failure location from the weld centerline decreases with increasing strain rate. The mechanism for the changing failure location can be related to the different strain rate dependence of the plastic deformation behavior of the microstructures in various regions across the joint. The DP600 WJ absorbs more energy over the whole measured strain rates than that of the BM due to the higher strength at the same strain when the deformation only up to 10% is considered.

  7. Selective enrichment of TiO2 and precipitation behavior of perovskite phase in titania bearing slag

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-yu; ZHANG Lin-nan; ZHANG Li; SUI Zhi-tong; TU Gan-feng


    The effects of additive agents and growth behavior of perovskite phase as well as temperature change of slag at semi industry scale test were studied. The results show that the increase of steel slag does good to titania enrichment, however, it isn't useful for the growth and coarsening of the perovskite phase. The additive Si-Fe powder can promote titania enrichment and make perovskite phase grow up easily. While air is blown into the molten slag, the reduced components in slag are oxidized and the released heat raises the temperature of slag.

  8. Phase behavior of (CO{sub 2} + methanol + lauric acid) system

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Franciele M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ramos, Luiz P. [Department of Chemistry, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Corazza, Marcos L., E-mail: [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)


    Highlights: > We measured SVL, LLE and VLE for the binary system {l_brace}lauric acid + methanol + CO{sub 2{r_brace}}. > Bubble point and dew point were measured at high pressures. > The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule. - Abstract: In this study the phase equilibrium behaviors of the binary system (CO{sub 2} + lauric acid) and the ternary system (CO{sub 2} + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO{sub 2} + lauric acid); (0.4616 to 0.9895) for the ternary system (CO{sub 2} + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO{sub 2} + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.

  9. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Directory of Open Access Journals (Sweden)

    Alamin Idris


    Full Text Available The phase separation behavior of bisphenol-A-polycarbonate (PC, dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  10. Bicellar mixture phase behavior examined by variable-pressure deuterium NMR and ambient pressure DSC. (United States)

    Uddin, Md Nasir; Morrow, Michael R


    Variable-pressure deuterium nuclear magnetic resonance ((2)H NMR) has been used to study the pressure-temperature phase diagram of bicellar mixtures containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). Spectra were obtained for DMPC-d(54)/DHPC (3:1), DMPC-d(54)/DHPC (4.4:1), DMPC/DHPC-d(22) (3:1), and DMPC/DHPC-d(22) (4.4:1) in the range 10-68 degrees C at ambient pressure, 66 MPa, 102 MPa, and 135 MPa. Isotropic-to-nematic and nematic-to-lamellar transition temperatures were found to rise with pressure at approximately 0.15 and approximately 0.14 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (3:1) and at at approximately 0.19 and approximately 0.18 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (4.4:1). Pressure had little effect on the range of DMPC-d(54) chain orientational order through the nematic phase temperature range, but the behavior of chain orientational order at the nematic-to-lamellar transition was found to vary slightly with pressure. Comparison of differential scanning calorimetry (DSC) observations with ambient-pressure (2)H NMR observations of DMPC-d(54) in the bicellar mixtures suggests that absorption of heat persists for a few degrees above the onset of axially symmetric DMPC-d(54) reorientation.

  11. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension (United States)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.


    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  12. Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase.

    NARCIS (Netherlands)

    Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Lyons, B.P.; Ikonen, T.P.; Almasy, L.; Foreman, J.P.; Serimaa, R.; Guntner, R; Scherf, U.; Monkman, A.P.


    We report on an experimental study of the self-organization and phase behavior of hairy-rod π -conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl]—i.e., poly[2,7–(9,9–bis(2–ethylhexyl)fluorene] (PF2∕6) —as a function of molecular weight (Mn) . The results have

  13. Electrochemical Deposition Of Thiolate Monolayers On Metals (United States)

    Porter, Marc D.; Weissharr, Duane E.


    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  14. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira


    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  15. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S. (UMM)


    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  16. Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group. (United States)

    Li, Qintang; Wang, Xudong; Yue, Xiu; Chen, Xiao


    The hydroxyl group in the spacer of a cationic Gemini surfactant (12-3OH-12) caused dramatic changes of the phase behaviors in a protic ionic liquid (EAN). Here, the effects of the hydroxyl group on micellization and lyotropic liquid crystal formation were investigated through the surface tension, small-angle X-ray scattering, polarized optical microscopy, and rheological measurements. With the hydroxyl group in the spacer, the critical micellization concentration of 12-3OH-12 was found to be lower than that of the homologue without hydroxyl (12-3-12) and the 12-3OH-12 molecules packed more densely at the air/EAN interface. It was then interesting to observe a coexistence of two separated phases at wide concentration and temperature ranges in this 12-3OH-12/EAN system. Such a micellar phase separation was rarely observed in the ionic surfactant binary system. With the increase of surfactant concentration, the reverse hexagonal and bicontinuous cubic phases appeared in sequence, whereas only a reverse hexagonal phase was found in 12-3-12/EAN system. But, the hexagonal phases formed with 12-3OH-12 exhibited lower viscoelasticity and thermostability than those observed in 12-3-12/EAN system. Such unique changes in phase behaviors of 12-3OH-12 were ascribed to their enhanced solvophilic interactions of 12-3OH-12 and relatively weak solvophobic interactions in EAN.

  17. Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior (United States)

    Calvo, F.; Spiegelmann, F.


    The thermodynamics of sodium clusters is investigated by means of a classical empirical potential and a simple quantal tight-binding model. Neutral and singly charged clusters of sizes ranging from 8 to 147 atoms are considered. A very particular attention is paid to the optimization and sampling problems. We determine the lowest-energy structures (global minima) with the "basin-hopping" technique, and the finite-temperature simulations are improved by using the "q-jumping" method and put together with the multiple histogram method. The clusters geometries may be very different on the model used, but also on the ionic charge, up to the size of about 40 atoms. The thermodynamical analysis is performed near the solid-liquid transition by calculating the complete calorific curves (heat capacities) as well as some microscopic parameters to probe the dynamics on the energy landscapes, including the spectra of isomers found by periodic quenching, isomerization indexes and the Lindemann parameter δ. Up to the largest sizes, we find that the heat capacity generally displays several features within the two models, although structural differences in the lowest-energy isomers usually induce different calorific curves. These premelting phenomena are characteristic of isomerizations taking place in a limited part of the configuration space. The thermodynamics appears to be directly related to the lowest-energy structure, and melting by steps is favored by the presence of defects on its surface. We estimate the melting temperatures Tmelt(n) and latent heats of melting L(n), and we observe two very different behaviors of their variations with the size n. Below about 75 atoms, both Tmelt and L exhibit strong non-monotonic variations typical of geometric size effects. This "microscopic" behavior is caused by the dominating premelting effects, and is replaced by a more "macroscopic" behavior for sizes larger than about 93 atoms. The premelting phenomena become there less important

  18. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin;


    ) images in scanning electron microscope (SEM). The smaller Laves phase particle size results in higher creep strength and longer creep exposure time at the same conditions. DICTRA software was used to model the growth and coarsening behavior of Laves phase in the three P92 steels. Good agreements were......The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (SE...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  19. A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation (United States)

    Li, Zheng; Wang, Hong; Yang, Danping


    We present a space-time fractional Allen-Cahn phase-field model that describes the transport of the fluid mixture of two immiscible fluid phases. The space and time fractional order parameters control the sharpness and the decay behavior of the interface via a seamless transition of the parameters. Although they are shown to provide more accurate description of anomalous diffusion processes and sharper interfaces than traditional integer-order phase-field models do, fractional models yield numerical methods with dense stiffness matrices. Consequently, the resulting numerical schemes have significantly increased computational work and memory requirement. We develop a lossless fast numerical method for the accurate and efficient numerical simulation of the space-time fractional phase-field model. Numerical experiments shows the utility of the fractional phase-field model and the corresponding fast numerical method.

  20. An "unreasonable effectiveness" of Hilbert transform for the transition phase behavior in an Aharonov-Bohm two-path interferometer (United States)

    Englman, R.


    The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.

  1. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems. (United States)

    Rodríguez, Carlos; Acharya, Durga P; Hinata, Shigeki; Ishitobi, Masahiko; Kunieda, Hironobu


    The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.

  2. Phase Behavior of BaLn2Mn2O7 (Ln=Rare Earth) with a Layered Perovskite Structure

    Institute of Scientific and Technical Information of China (English)

    Naoki Kamegashira; Jian Meng; Takeshi Mikami; Hirohisa Satoh; Noriyoshi Kakuta; Kouji Fujita


    Many phases appear in BaLn2Mn2O7 family (Ln=rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K2NiF4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb2Mn2O7, was refined including the data of high temperature X-ray diffractometry.

  3. pH-dependent phase behavior of carbohydrate-based gemini surfactants. Effect of the length of the hydrophobic spacer

    NARCIS (Netherlands)

    Klijn, Jaap E.; Stuart, Marc C. A.; Scarzello, Marco; Wagenaar, Anno; Engberts, Jan B. F. N.


    The phase behavior of a series of carbohydrate-based gemini surfactants with varying spacer lengths was studied using static and dynamic light scattering between pH 2 and 12. Cryo-electron microscopy pictures provide evidence for the different morphologies present in solution. The spacer length of

  4. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser. (United States)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo


    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  5. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons


    This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic-Plus-Associati...

  6. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk


    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  7. Effect of Peptization on Densification and Phase-Transformation Behavior of Sol–Gel-Derived Nanostructured Titania

    NARCIS (Netherlands)

    Kumar, Krishnankutty-Nair P.; Kumar, Jalajakumari; Keizer, Klaas


    Porosity reduction, packing, pore-size distribution, and anatase to rutile phase transformation behavior of nanostructured titania ceramics prepared from both peptized and unpeptized sols were studied and compared using XRD, DSC, and nitrogen-gas physisorption techniques. Precursor gels prepared fro

  8. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser (United States)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo


    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  9. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals: Behavioral Interview Guidelines by Job Roles

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conway, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tobey, D. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greitzer, Frank L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dalton, Angela C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pusey, Portia K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Behavioral Interview Guidelines by Job Roles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  10. [Phase transition behavior and thermodynamic analysis of hydrotalcite flame-retardant]. (United States)

    Zhang, Zhi-qing; Liao, Meng-chen; Zeng, Hong-yan; Xu, Sheng; Xu, Li-hua; Zhu, Pei-han; Yang, Yong-jie


    The hydrotalcite with the properties of flame-retardant, eliminating smoke, filling and thermostability is a new kind of inorganic flame retardant. In the work, the MgAl hydrotalcite as flame retardant with Mg/Al molar ratio of 4 (MgAl-LDH) was prepared by using urea as the precipitating agent. The thermolysis behavior of the MgAl-LDH flame retardant was investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-differential scanning calorimetry (TG-DSC) as well as self deconvolution and curve-fitting analyses. Thermal phase transition of the MgAl-LDH was clarified, especially the characteristics of the hydroxyl groups (-OH) in the brucite-like layers and the changes in coordinate of the carbonate (CO3(2-)) from the interlayers. Based on thermodynamic data, thermal decomposition process was discussed. By.XRD analysis; it was found that the phase change took place when the decomposition temperature increased. The MgAl-LDH was decarbonated basically to MgAl mixed metal oxides (Mg-Al-O) at 500 °C, and impurity MgAl204 phase formed at 600 °C. According to the analyses of FT-IR, TG-DSC and curve-fitting technique, the hydroxyl groups (-OH) in the brucite-like layers possessed three the ligands such as [Al-OH-Al], [Al-OH-Mg] and [Mg-OH-Mg] modes. Dehydroxylation of the brucite-like layers based on the binding forces, where the [Mg-OH-Mg] among the three modes was the most difficult to be re- moved during the pyrolysis process. In the same way, the CO3(2-) ligands also possessed three modes such as H2O-bridged CO3(2-), monodentate and bidentate coordination modes. Based on the thermodynamic analysis, the thermodynamic properties of the hydrotalcite as flame retardant were evaluated, and the expressions of the Gibbs free energy, (ΔrGθT), as a function of temperature, were derived for the Mg8Al2 (OH)20CO3 crystal. Thermodynamic analysis showed that the removal of -OH from the brucite-like layers was spontaneous process

  11. Micelle size modulation and phase behavior in MEGA-10/Triton X-100 mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Naous, M., E-mail:; Molina-Bolívar, J.A.; Ruiz, C. Carnero, E-mail:


    Highlights: • The size of micelles was studied as a function of the micellar composition, NaCl addition and temperature. • Cloud point can be modulated by changing both micellar composition and NaCl addition. • The energetic quantities at the cloud point were evaluated and discussed. - Abstract: This paper reports the effect of temperature and NaCl addition on micelle size and phase behavior in mixtures of N-decanoyl-N-methylglucamide (MEGA-10) and p-tert-octyl-phenoxy polyethylene (9.5) ether (Triton X-100 or TX100). The size of mixed micelles, as determined by dynamic light scattering (DLS), was found to increase with temperature but to be less pronounced at higher proportions of MEGA-10 in the solution. The cloud point was found to increase with an initial increase in the percentage of sugar-based surfactant in the mixture. This phase separation was sensitive to the presence of NaCl in the micellar solution, which induced a cloud point depression, thereby suggesting that the presence of electrolyte produces a marked alteration of the hydration layer of micelles. A thermodynamic analysis was performed assuming the clouding phenomenon to be a liquid–liquid phase-separation process. The resulting ΔG{sub CP}{sup 0} values were positive for all solutions. The cloud point process was exothermic in nature for the mixed micellar system, as proven by the negative value of ΔH{sub CP}{sup 0}. The process was more exothermic as the proportion of sugar-based surfactant in the mixed micelle increased (with and without NaCl in the solution). Furthermore, the negative values of ΔS{sub CP}{sup 0} indicate that the association of micelles in the clouding phenomenon is entropically unfavorable. It was observed from the enthalpy–temperature plots that the change in heat capacity is negative, thus indicating the important role played by dehydration in this thermodynamic process. This study found that the enthalpy–entropy compensation relationship holds for this

  12. Precipitation behavior of Z phase after long-term creep in high chromium ferritic heat resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, K.; Kushima, H.; Kimura, K. [National Institute for Materials Science, Tsukuba (Japan). Materials Reliability Center


    The precipitation behavior of the Z phase was investigated after long-term creep exposure in ASME-T91, T92, T122 without {delta}-ferrite, and T122 with {delta}-ferrite through elemental mapping using EF-TEM. The Z phase was identified by comparing the Cr map with the V map. Most of the Z phase was observed around prior austenite grain boundaries and/or packet boundaries in all of the steels examined. In T122 with {delta}-ferrite, the Z phase also precipitates around the {delta}-ferrite. In particular, the number of MX carbonitrides was very small in T122 with a large amount of the Z phase. The main metallic composition of the Z phase in T91 was the same as that in T92. In T122, the Z phase contained a lower Nb content. The main metallic composition of the Z phase around the {delta}-ferrite was the same as that in the other areas. There was no large difference in the size distribution of the Z phase among the steels. The mean diameter of the Z phases for T122 with {delta}-ferrite was relatively large in spite of a shorter creep exposure in contrast with T91 and T92. The number density of the Z phases increased with increasing creep exposure time except in the case of T91. The order of the number density was T122 with {delta}-ferrite, T91, T122 without {delta}-ferrite, and T92. In crept samples, the amount of Z phase in the gauge portion was higher than that in the grip portion, meaning that stress and/or strain promotes the formation of a Z phase during creep exposure. (orig.)

  13. CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust.

    Directory of Open Access Journals (Sweden)

    Wei Guo

    Full Text Available Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleotide microarray analysis. Data analysis revealed that several gene categories relevant to peripheral olfactory perception are strongly regulated in a total of 1,444 differentially expressed genes during both time courses. Among these candidate genes, several CSP (chemosensory protein genes and one takeout gene, LmigTO1, showed higher expression in gregarious and solitarious locusts, respectively, and displayed opposite expression trends during solitarization and gregarization. qRT-PCR experiments revealed that most CSP members and LmigTO1 exhibited antenna-rich expressions. RNA interference combined with olfactory behavioral experiments confirmed that the CSP gene family and one takeout gene, LmigTO1, are involved in the shift from repulsion to attraction between individuals during gregarization and in the reverse transition during solitarization. These findings suggest that the response to locust-emitted olfactory cues regulated by CSP and takeout genes is involved in the behavioral phase change in the migratory locust and provide a previously undescribed molecular mechanism linked to the formation of locust aggregations.

  14. Dissipative particle dynamics simulation of the phase behavior of T-shaped ternary amphiphiles possessing rodlike mesogens. (United States)

    Liu, Xiaohan; Yang, Keda; Guo, Hongxia


    We employed dissipative particle dynamics simulations to explore the phase behavior of T-shaped ternary amphiphiles composed of rodlike cores connected by two incompatible end chains and side grafted segments. By fine-tuning the number of terminal and lateral beads, three phase diagrams for the model systems with different terminal chain lengths are constructed in terms of temperature and lateral chain length, which have some common features and mostly compare favorably with experimental studies with the exception a couple of new phases. It is worthwhile to highlight that the mixed cylindrical phase and the perforated layer phase, as the experimentally observed mesophases exclusive for facial amphiphilies, are found in simulations for the first time. Also, a novel gyroid structure is observed in series of T-shaped ternary amphiphiles for the first time. Furthermore, by evaluating the effective volume fraction of lateral chains, the phase sequence spanning from conventional smectic layer phase via perforated layer structures and polygonal cylindrical arrays to novel lamellar mesophase is established, which is not just qualitatively consistent with the related experimental findings but even the stability windows of some mesophases quantitatively correspond well to experimental results. The success of reproducing the in-plane ordering of rods in the lamellar phase as well as the generic phase diagram of such T-shaped ternary amphiphiles in great detail implies that our genetic model qualitatively captures many of the characteristics of the phase behavior of real T-shaped molecules and could serve as a satisfactory basis for further exploration of self-organization in other related soft matter systems.

  15. High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions (United States)

    Pilehva, F.; Zarei-Hanzaki, A.; Moemeni, S.; Khalesian, A. R.


    The present study aimed to characterizing the microstructure evolution of a Ti-6Al-7Nb biomedical type titanium alloy during hot working through hot compression tests. The hot deformation cycles were conducted under the strain rate of 0.0025, 0.025, and 0.25 s-1 in the temperature range of 850-1150 °C where both dual-phase (α + β) and single-phase (β) regions could be accessible. The flow stress behavior of the material for the entire deformation regime was interpreted via microstructural observations. The results indicated that in the single-phase β region (1050-1150 °C), the dynamically recrystallized (DRX) grains were formed at the deformed and elongated beta grain boundaries as a necklace-like structure. The variations in the dynamically recrystallized grain size were determined to follow the Zener-Hollomon relationship where DRX grain size was decreased by reducing the temperature and increasing the strain rate. The alloy deformation characteristics in α + β region were somewhat different. During deformation in the upper α + β temperature range (e.g., 1000 °C), the β phase would accommodate most of the deformation, while α regions remained undeformed. In the lower α + β temperature range (e.g., 850-950 °C), the kinking/bending of α lamellae as well as the subsequent globularization of α layers were postulated to be responsible for the observed flow softening behavior.

  16. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane. (United States)

    Wang, Haihua; Shen, Yiding; Fei, Guiqiang; Li, Xiaorui; Liang, Yong


    A series of cationic waterborne polyurethane dispersions (SiPU) modified with hydroxysilane (HPMS) were successfully synthesized based on poly(oxytetramethylene) glycols (PTMG) and isophorone isocyanate (IPDI), and the films were obtained by casting the dispersions on tetrafluoroethylene (TFE) plates. Effects of HPMS content on micromorphology, particle size of the dispersions were studied, as well as thermal properties, phase behavior and surface structure of the films. The particles had the morphology of a solid sphere, with particle size varying from 17.1 nm to 114.4 nm corresponding to the increase of HPMS concentration, which can be attributed to the increase of interfacial tension. XPS spectra indicated the surface migration of Si element in the process of film forming, and the SiPU surface was mainly composed of soft segments. DSC analysis, together with TG-DTG-DTA results demonstrated the HPMS soft segment merged with the transition region of PU matrix, forming part of polyurethane backbone, but an improved microphase separation was observed when HPMS concentration greater than 15%. It was also found that incorporation of flexible HPMS prevented the degradation of polyurethane backbone, resulting in the increase of thermal stability in ultimate copolymer.

  17. The corrosion behavior of nano-meter embedded phase in Ti implanted H13 steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 邓志威; 马芙蓉; 王晓妍; 梁宏; 周固; 赵渭江; 薛建明


    On the SEM micrographs of Ti implanted H13 steel, a tree-branch-like structure can be observed. Further investigation with TEM shows that the newly tormed composition is a formation of nann-meter FeTi2 phase in Ti implanted layer. The layer with a relatively high corrosion resistance has been formed in Ti implanted H13 steel with this structure.The results of electrochemical measurement show that the corrosion current density decreases obviously with an increase of ion dose. The corrosion current density in Ti implanted steel with a dose of 1.3×1018/cm2 is 8-20 times less than that of Ti implanted steel with a dose of 6×1017/cm2. The corrosion behavior of Ti implanted steel with a dose of 6×1017/cm2 could be further improved as the sample was annealed at 500℃ for 20 min and the corrosion current density decreases by 48-80 times compared to that of non-implanted samples. The corrosion trace was not observed on the annealing sample by SEM, after multi-sweep cyclic voltammetry of 40 cycles

  18. pH-Dependent depletion induced phase behavior of silica nanoparticles (United States)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.


    The addition of non-adsorbing macromolecules to a colloidal suspension is known to induce the depletion attraction between the particles whose strength and range depends on concentration and size of the macromolecules, respectively and also influenced by charge on the macromolecules. In this work we have studied the phase behavior of colloidal silica nanoparticles in presence of bovine serum albumin (BSA) protein at different pH. Both the nanoparticles and BSA carry similar charges (negative), within the measured pH range, concomitantly the electrostatic repulsion prevents the adsorption of BSA on the nanoparticles. The nonadsorption of BSA induces the depletion attraction which leads the aggregation of the nanoparticles above a critical protein concentration (CPC). The CPC decreases with pH approaching towards the isoelectric points of BSA. This decrease in CPC is attributed to decrease in BSA-BSA repulsion which enhances the depletion attraction between the nanoparticles. The morphology of the aggregates, irrespective of the pH, is found to be mass fractal.

  19. Structure, scattering patterns and phase behavior of polymer nanocomposites with nonspherical fillers

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lisa M [ORNL; Schweizer, Kenneth S [ORNL


    Polymer nanocomposites made with carbon nanotubes, clay platelets, laponite disks and other novel nonspherical fillers have been the focus of many recent experiments. However, the effects of nanoparticle shape on statistical structure, polymer-mediated effective interactions, scattering patterns, and phase diagrams are not well understood. We extend and apply the polymer reference interaction site model liquid state theory to study the equilibrium properties of pseudo one-, two- and threedimensional particles (rod, disk, cube) of modest steric anisotropy and fixed space-filling volume in a dense adsorbing homopolymer melt up to relatively high volume fractions. The second virial coefficient, nanoparticle potential-of-mean force, osmotic compressibilities, and isotropic spinodal demixing boundaries have been determined. The entropic depletion attraction between nanoparticles is dominant for weakly adsorbing polymer, while strongly adsorbing chains induce a bridging attraction. Intermediate interfacial cohesion results in the formation of a steric stabilizing adsorbed polymer layer around each nanoparticle, which can partially damp inter-filler collective order on various length scales and increase order on an averaged length scale. The details of depletion, stabilization, or bridging behavior are shape-dependent and often, but not always, trends are monotonic with increasing filler dimensionality. Distinctive nanoparticle shape-dependent low angle features are predicted for the collective polymer structure factor associated with competing macrophase fluctuations and microphase-like ordering. The influence of nonzero mixture compressibility on the scattering profiles is established.


    Institute of Scientific and Technical Information of China (English)

    YiWu; Xian-yuan Liang; Rui-fen Chen; Yong-gang Shangguan; Qiang Zheng


    The influences of shearing conducted by a Brabender rheometer on phase morphology,thermal and rheological behavior of a commercial impact polypropylene copolymer (IPC) were studied.The crystallization and melting traces show that short-time annealing at 210℃ is unable to completely erase the influence of shearing on the samples.When the samples which were treated at a rotation speed of 80 r/min crystallize at a cooling rate of 10 K/min,their Tcs and corresponding Tms obviously rise with the increase of shearing time.Furthermore,the POM results reveal that the shearing can lead to the formation of shish-kebab and the shish-kebab amount is proportional to shearing time.The rheological measurement results show that the treated samples exhibit different G'~ω dependences.The ‘second plateau’ appears when the sample is treated at a rotation speed of 60 r/min or 80 r/min for 10 min,and linear G'~ω dependence is observed at other rotation speeds.In addition,it is found that the appearance of the ‘second plateau’ depends on the sheafing time when the rotation speed is fixed.According to SEM observations,it is proposed that the ‘second plateau’ of IPC samples should be ascribed to the aggregation of dispersion particles.


    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-lei; HE Li-min; LUO Xiao-ming; BAI Hai-tao; WEI Yan-hai


    The combined T junctions used for the oil-water separation have the advantages of compactness in structure,consistency in effects and economy in cost.The mixture k-ε turbulence model and the Eulerian multi-fluid model are used to simulate the flow and phase distribution in the combined T junctions.The effects of structural parameters such as the branched pipe interval and height on the flow distribution and the separation behaviors are studied.The results show that the combined T junctions under fixed inlet and outlet boundary conditions form a single hydraulic equilibrium system in which the fluid energy distributes freely till a balance is achieved.The split-flow promotes the separation of the immiscible oil and the water.The separation efficiency increases with the increase of the branched pipe interval and changes slightly with the increase of the branched pipe height.The structural change of the combined T junctions may change the flow direction in the branched pipes.Simulation results can provide some guidance for the design of the combined T junctions as one kind of oil-water separator.

  2. High temperature oxidation behaviors of Ti-Cr alloys with Laves phase TiCr2

    Institute of Scientific and Technical Information of China (English)

    肖平安; 曲选辉; 雷长明; 祝宝军; 秦明礼; 敖晖; 黄培云


    The high temperature oxidation behaviors of Ti-Cr alloys containing 18%~35%Cr with Laves phase TiCr2 were investigated at 650~780 ℃ for exposure up to 104 h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21%Cr are higher than those measured for pure titanium, but for the alloys with more than 26%Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti-Cr alloys, and the mass gain is doubled with a temperature change from 650 ℃ to 700 ℃ or from 700 ℃ to 780 ℃, for the same exposure duration. TiCr2 shows no negative influence on the high temperature oxidation resistance of the alloys.

  3. Quantitative study on experimentally observed poroelastic behavior of Berea sandstone in two-phase fluid system (United States)

    Goto, Hiroki; Aichi, Masaatsu; Tokunaga, Tomochika; Yamamoto, Hajime; Ogawa, Toyokazu; Aoki, Tomoyuki


    Coupled two-phase fluid flow and poroelastic deformation of Berea sandstone is studied through laboratory experiment and numerical simulation. In the experiment, compressed air was infiltrated from the bottom of a water-saturated cylindrical Berea sandstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample showed sudden extension and monotonic and gradual extension afterward. Numerical simulation based on thermodynamically consistent constitutive equations was conducted in order to quantitatively analyze the experimental results. In a simulation assuming isotropy of material properties, the volumetric discharge rate of water at the outlet and one of the axial, circumferential, and volumetric strains at half the height of the sample were reproduced well by each parameter set, while the other two strains were not. When introducing transverse isotropy, all the experimental data were reproduced well. In addition, the effect of saturation dependency of Bishop's effective stress coefficient on the deformation behavior of porous media was discussed, and it was found that strains, both axial and circumferential, are sensitive to the coefficient.

  4. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface. (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco


    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  5. Orientation-dependent phase separation of GaAsSb epilayers grown by gas-source molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Ren; Chou, Li-Chang; Yang, Ying-Jay [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lin, Hao-Hsiung, E-mail: [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China)


    This work describes a regular solution model that considers the free energy of the surface monolayer to explain the orientation-dependent phase separation in GaAsSb. In the proposed model, only the interaction between the second nearest-neighboring atoms sitting on the same monolayer contributes to the interaction parameter. Consequently, the parameter reduces to {Omega}/2 and {Omega}/3 for (111)B GaAsSb and (100) GaAsSb, where {Omega} denotes the parameter of bulk GaAsSb. By including the strain effect, the proposed model thoroughly elucidates the immiscibility behavior of (111)B GaAsSb and (100) GaAsSb. - Highlights: Black-Right-Pointing-Pointer (111)B GaAsSb exhibits severe phase separation than (100) GaAsSb. Black-Right-Pointing-Pointer We propose a model to calculate the monolayer free energy of different planes. Black-Right-Pointing-Pointer Monolayer model suggests that (111)B GaAsSb has larger interaction parameter. Black-Right-Pointing-Pointer Monolayer model including strain well explains the immiscibility of GaAsSb.

  6. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.


    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  7. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jixin [Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697-3975 (United States)


    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells. (author)

  8. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts (United States)

    Chen, Jixin

    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.

  9. Scaling behavior of chiral phase transition in two-flavor QCD with improved Wilson quarks at finite density

    CERN Document Server

    Ejiri, S; Aoki, S; Kanaya, K; Ohno, H; Saito, H; Hatsuda, T; Maezawa, Y; Umeda, T


    We study scaling behavior of a chiral order parameter performing a simulation of two-flavor QCD with improved Wilson quarks. It has been shown that the scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Calculating derivatives of the chiral order parameter with respect to the chemical potential in two-flavor QCD, the scaling property of chiral phase transition is discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chirl phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  10. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach. (United States)

    Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J


    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility

  11. Method to synthesize metal chalcogenide monolayer nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.


    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  12. Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems. (United States)

    Mangiarotti, Agustín; Caruso, Benjamín; Wilke, Natalia


    For the biophysical study of membranes, a variety of model systems have been used to measure the different parameters and to extract general principles concerning processes that may occur in cellular membranes. However, there are very few reports in which the results obtained with the different models have been compared. In this investigation, we quantitatively compared the phase coexistence in Langmuir monolayers, freestanding bilayers and supported films composed of a lipid mixture of DLPC and DPPC. Two-phase segregation was observed in most of the systems for a wide range of lipid proportions using fluorescence microscopy. The lipid composition of the coexisting phases was determined and the distribution coefficient of the fluorescent probe in each phase was quantified, in order to explore their thermodynamic properties. The comparison between systems was carried out at 30mN/m, since it is accepted that at this or higher lateral pressures, the mean molecular area in bilayers is equivalent to that observed in monolayers. Our study showed that while Langmuir monolayers and giant unilamellar vesicles had a similar phase behavior, supported films showed a different composition of the phases with the distribution coefficient of the fluorescent probe being close to unity. Our results suggest that, in supported membranes, the presence of the rigid substrate may have led to a stiffening of the liquid-expanded phase due to a loss in the degrees of freedom of the lipids as a consequence of the proximity of the solid material.

  13. Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2

    KAUST Repository

    Gan, Liyong


    By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.

  14. Structural study of monolayer cobalt phthalocyanine adsorbed on graphite

    CERN Document Server

    Scheffler, M; Baumann, D; Schlegel, R; Hänke, T; Toader, M; Büchner, B; Hietschold, M; Hess, C


    We present microscopic investigations on the two-dimensional arrangement of cobalt phthalocyanine molecules on a graphite (HOPG) substrate in the low coverage regime. The initial growth and ordering of molecular layers is revealed in high resolution scanning tunneling microscopy (STM). On low coverages single molecules orient mostly along one of the substrate lattice directions, while they form chains at slightly higher coverage. Structures with two different unit cells can be found from the first monolayer on. A theoretical model based on potential energy calculations is presented, which relates the two phases to the driving ordering forces.

  15. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.


    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  16. Fracture Characteristics of Monolayer CVD-Graphene


    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo


    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. ...

  17. Critical behavior of a two-dimensional complex fluid: Macroscopic and mesoscopic views (United States)

    Choudhuri, Madhumita; Datta, Alokmay


    Liquid disordered (Ld) to liquid ordered (Lo) phase transition in myristic acid [MyA, CH3(CH2) 12COOH ] Langmuir monolayers was studied macroscopically as well as mesoscopically to locate the critical point. Macroscopically, isotherms of the monolayer were obtained across the 20 ∘C-38 ∘Ctemperature (T ) range and the critical point was estimated, primarily from the vanishing of the order parameter, at ≈38 ∘C. Mesoscopically, domain morphology in the Ld-Lo coexistence regime was imaged using the technique of Brewster angle microscopy (BAM) as a function of T and the corresponding power spectral density function (PSDF) obtained. Monolayer morphology passed from stable circular domains and a sharp peak in PSDF to stable dendritic domains and a divergence of the correlation length as the critical point was approached from below. The critical point was found to be consistent at ≈38 ∘Cfrom both isotherm and BAM results. In the critical regime the scaling behavior of the transition followed the two-dimensional Ising model. Additionally, we obtained a precritical regime, over a temperature range of ≈8 ∘C below Tc, characterized by fluctuations in the order parameter at the macroscopic scale and at the mesoscopic scale characterized by unstable domains of fingering or dendritic morphology as well as proliferation of a large number of small sized domains, multiple peaks in the power spectra, and a corresponding fluctuation in the peak q values with T . Further, while comparing temperature studies on an ensemble of MyA monolayers with those on a single monolayer, the system was found to be not strictly ergodic in that the ensemble development did not strictly match with the time development in the system. In particular, the critical temperature was found to be lowered in the latter. These results clearly show that the critical behavior in fatty acid monolayer phase transitions have features of both complex and nonequilibrium systems.

  18. 2D "soap"-assembly of nanoparticles via colloid-induced condensation of mixed Langmuir monolayers of fatty surfactants. (United States)

    Babenko, Denis I; Ezhov, Alexander A; Turygin, Dmitry S; Ivanov, Vladimir A; Ivanov, Vladimir K; Arslanov, Vladimir V; Kalinina, Maria A


    We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.

  19. Monolayer spontaneous curvature of raft-forming membrane lipids (United States)

    Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael; Pabst, Georg

    Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontanous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 are closer to zero. Interestingly, a significant positive J0 value (+0.1 1/nm) was retrieved for DPPC at 25 {\\deg}C. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 \\degC, resulting in a quite narrow distribution of -1 to -3 * 10^-3 1/nm{\\deg}C for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered / liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.

  20. Mass spectrometric analysis of monolayer protected nanoparticles (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  1. Phase behavior and thermodynamic modeling of ices - implications for the geophysics of icy satellites. (Invited) (United States)

    Choukroun, M.


    pure water, and of more complex chemical systems relevant to icy moons (sulfate salts, ammonia, volatiles). This presentation will review phases of interest, their physical properties, and their influence on the geophysical behavior of icy satellites. Then the focus will shift toward thermodynamic tools (equations of state, thermodynamic models), which can provide the inputs required by geophysical models. The specific case of the modeling of the water and water-ammonia phase diagrams will be presented,8,9 along with its planetary implications, and anticipated developments to address the chemical complexity of icy satellites. The author acknowledges support from a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References : 1Greeley et al., Icarus, 1998. 2McCord et al., J. Geophys. Res., 1999. 3Porco et al., Science, 2006. 4Waite et al., Nature, 2009. 5Toon et al., Icarus 1988. 6Sohl et al., Icarus 2002. 7Tobie et al., Icarus, 2005. 8Choukroun and Grasset, J. Chem. Phys, 2007. 9Choukroun and Grasset, J. Chem. Phys., in press.

  2. Effect of salts on the phase behavior and the stability of nanoemulsions with rapeseed oil and an extended surfactant. (United States)

    Klaus, Angelika; Tiddy, Gordon J T; Solans, Conxita; Harrar, Agnes; Touraud, Didier; Kunz, Werner


    For many decades, the solubilization of long-chain triglycerides in water has been a challenge. A new class of amphiphiles has been created to overcome this solubilization problem. The so-called "extended" surfactants contain a hydrophilic-lipophilic linker to reduce the contrast between the surfactant-water and surfactant-oil interfaces. In the present contribution, the effects of different anions and cations on the phase behavior of a mixture containing an extended surfactant (X-AES), a hydrotrope (sodium xylene sulfonate, SXS), water, and rapeseed oil were determined as a function of temperature. Nanoemulsions were obtained and characterized by conductivity measurements, light scattering, and optical microscopy. All salting-out salts show a transition from a clear region (O/W nanoemulsion), to a lamellar liquid crystalline phase region, a clear phase (bicontinuous L(3)), and again to a lamellar liquid crystalline phase region with increasing temperature. For the phase diagrams with NaSCN and Na(2)SO(4), only one clear region (O/W nanoemulsion) was observed, which turns into a lamellar phase region at elevated temperatures. Furthermore, the stability of the nanoemulsions was investigated by time-dependent measurements: the visual observation of phase separation, droplet size by dynamic light scattering (DLS), and optical microscopy. The mechanism of the different phase transitions is also discussed.

  3. Microscopic phase-field simulation for coarsening behavior of L12 and DO22 phases of Ni75CrxAl25-x alloy

    Institute of Scientific and Technical Information of China (English)

    LU Yan-li; CHEN Zheng; ZHANG Jing


    Based on the microscopic phase-field dynamic model and the microetasticity theory, the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated. The results show that the initial irregular shaped, randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round comer, regularly aligned along directions [100] and [001], and highly preferential selected microstructure is formed during the later stage of precipitation. The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics, and there is no linear relationship between the cube of the average size of precipitates and the aging time, which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner. The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system. In the concurrent system of L12 and DO22 phases, there are two types of coarsening modes: the migration of antiphase domain boundaries and the interphase Ostwald ripening.

  4. Phase behavior and properties of salt-free cationic/anionic surfactant mixtures of oleic acid and stearic acid

    Institute of Scientific and Technical Information of China (English)

    ZHAO DianYing; LI HongGuang; SONG AiXin; HAO JingCheng


    Cationic base surfactant,tetradecyltrimethylammonium hydroxide (TTAOH),can be obtained through anion exchange from tetradecyltrimethylammonium bromide (TTABr).Salt-free cationic and anionic (catanionic) surfactant mixtures were studied by mixing TTAOH with oleic acid (OA) or stearic acid (SA) in water.The phase behavior of TTAOH/OA/H_2O is compared with that of TTAOH/SA/H_2O.It was found that the phase behavior of TTAOH/OA/H_2O and TTAOH/SA/H_2O system differs from each other due to the existence of the unsaturated double carbon bond (C=C) in OA.At fixed total surfactant concentration (25 mg/mL) of TTAOHIONH_2O system at 25℃,one can observe an isotropic L_1 phase,and a L_1/L_α two-phase region with increasing OA content.The volume of top turbid L.phase increases while the bottom phase changes gradually from transparently clear to a bit turbid until a single L_α-phase is reached.Finally at high OA concentration,excess OA is separated from the bulk aqueous solutions.TTAOH/SA/H_2O system usually forms white precipitating at 25℃ due to the high chain melting temperature of SA.When heated to 60℃,however,the state of samples changes.At fixed total surfactant concentration of 25 mg/mL,an isotropic L1 phase and a milk-white or bluish La-phase are observed with increasing SA concentration.Transparent thin layers which are strongly birefringent form at the tops of some samples within the L_α-phase region.Finally,at high SA concentration,excess SA is separated from the bulk aqueous solutions.In addition to phase behavior study,we also measured the conductivity of TTAOH/OA/H_2O system at 25℃ and TTAOH/SA/H_2O system at 60℃,respectively.Surface tension and rheological measurements were also performed on typical samples.

  5. Restudy of the unusual phase behavior of the mesogen-jacketed liquid crystal polymers

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yongfeng; FAN; Xinghe; CHEN; Xiaofang; WAN; Xinhua


    A series of poly{2,5-bis[(4-butoxyphenyl)-oxycarbonyl]styrenes} (PBPCS) with low molecular weight distribution was synthesized by atom transfer radical polymerization (ATRP). The mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and rheometer. PBPCS showed the phase transition from isotropic into liquid crystal (LC) phase, and the LC phase formed at high temperature and disappeared in the subsequent cooling procedure. Using the WAXD fiber pattern, the phase structure of the PBPCS at higher temperature showed hexagonal columnar nematic phase. Experimental results demonstrated that the driving force of the entropy is an important factor during the unusual LC phase formation of PBPCS.

  6. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. (United States)

    Janůšová, Barbora; Zbytovská, Jarmila; Lorenc, Petr; Vavrysová, Helena; Palát, Karel; Hrabálek, Alexandr; Vávrová, Kateřina


    Stratum corneum ceramides play an essential role in the barrier properties of skin. However, their structure-activity relationships are poorly understood. We investigated the effects of acyl chain length in the non-hydroxy acyl sphingosine type (NS) ceramides on the skin permeability and their thermotropic phase behavior. Neither the long- to medium-chain ceramides (8-24 C) nor free sphingosine produced any changes of the skin barrier function. In contrast, the short-chain ceramides decreased skin electrical impedance and increased skin permeability for two marker drugs, theophylline and indomethacin, with maxima in the 4-6C acyl ceramides. The thermotropic phase behavior of pure ceramides and model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesterol sulfate was studied by differential scanning calorimetry and infrared spectroscopy. Differences in thermotropic phase behavior of these lipids were found: those ceramides that had the greatest impact on the skin barrier properties displayed the lowest phase transitions and formed the least dense model stratum corneum lipid membranes at 32°C. In conclusion, the long hydrophobic chains in the NS-type ceramides are essential for maintaining the skin barrier function. However, this ability is not shared by their short-chain counterparts despite their having the same polar head structure and hydrogen bonding ability. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations (United States)

    Nagao, Raphael; Zou, Wei; Kurths, Jürgen; Kiss, István Z.


    The dynamical behavior of delay-coupled networks of electrochemical reactions is investigated to explore the formation of amplitude death (AD) and the synchronization states in a parameter region around the amplitude death region. It is shown that difference coupling with odd and even numbered ring and random networks can produce the AD phenomenon. Furthermore, this AD can be restored by changing the coupling type from difference to direct coupling. The restored oscillations tend to create synchronization patterns in which neighboring elements are in nearly anti-phase configuration. The ring networks produce frozen and rotating phase waves, while the random network exhibits a complex synchronization pattern with interwoven frozen and propagating phase waves. The experimental results are interpreted with a coupled Stuart-Landau oscillator model. The experimental and theoretical results reveal that AD behavior is a robust feature of delayed coupled networks of chemical units; if an oscillatory behavior is required again, even a small amount of direct coupling could be sufficient to restore the oscillations. The restored nearly anti-phase oscillatory patterns, which, to a certain extent, reflect the symmetry of the network, represent an effective means to overcome the AD phenomenon.


    NARCIS (Netherlands)



    Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord

  9. Nonlinear optical properties of Langmuir-Blodgett monolayers : Local-field effects

    NARCIS (Netherlands)

    Cnossen, Gerard; Drabe, Karel E.; Wiersma, Douwe A.


    Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord

  10. Effect of Protonation on the Solution and Phase Behavior of Aqueous Sodium Myristate. (United States)

    Wen; Franses


    Aqueous sodium myristate solutions have been shown to have unusually low dynamic tensions (1-10 mN/m) under pulsating area conditions. These solutions have no sharp solubility limit, evidently because they are protonated (or "hydrolyzed") to form the much less soluble myristic acid and acid soaps. With no added electrolytes, the protonation fraction is 1% or less. The apparent protonation equilibrium "constant" increases with increasing concentration, indicating strong solution nonidealities, in addition to micellization. This protonation seems to affect the solution and phase behavior of aqueous sodium myristate strongly, as evidenced by the effect of added NaOH. Ion-selective electrodes (for Na(+) and H(+)) and conductimetry indicate that at 25 degrees C dissolved surfactant concentrations keep increasing well after dispersed particles are observed (2 mM). A cmc of about 4.5 mM, micelles of aggregation number n=70 and counterion binding parameter beta=0.7 are inferred from these techniques. The cmc of sodium myristate increases slightly with temperature from 25 to 45 degrees C. FTIR analysis of the filtered particles indicates that the dispersed particles are mainly acid soaps for concentrations less than 6 mM. With 10 mM NaOH, the particles observed above 2 mM consist mostly of sodium myristate. From both conductivity and IR data, the solubility of sodium myristate in water at 25 degrees C is estimated to be about 6 mM, and as expected, it increases with increasing temperature and decreases with increasing sodium ion concentration. Copyright 2000 Academic Press.

  11. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids

    NARCIS (Netherlands)

    Oyarzun, B.A.; Van Westen, T.; Vlugt, T.J.H.


    he liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10,

  12. Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.;


    We have investigated the role of the substrate on the interfacial activation of Upases by an interdisciplinary study of the structure and dynamics of 1,2-sn dipalmitoylglycerol monolayers at distinct surface pressures. The diglyceride Langmuir film undergoes two phase transitions occurring at 38....

  13. Fluidization of a dipalmitoyl phosphatidylcholine monolayer by fluorocarbon gases: potential use in lung surfactant therapy. (United States)

    Gerber, Frédéric; Krafft, Marie Pierre; Vandamme, Thierry F; Goldmann, Michel; Fontaine, Philippe


    Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.

  14. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment (United States)

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon


    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  15. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner;


    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...

  16. Observing Altshuler--Aronov--Spivak Oscillation in a Hexagonal Antidot Array of Monolayer Graphene (United States)

    Yagi, Ryuta; Shimomura, Midori; Tahara, Fumiya; Kobara, Hiroaki; Fukada, Seiya


    We show that hexagonal antidot lattices of monolayer graphene exhibited the Altshuler--Aronov--Spivak (AAS) effect in low field magnetoresistance. In higher magnetic fields, Aharonov--Bohm-type oscillations were visible. The phase of AAS oscillation indicated that the chirality effect of graphene is suppressed because of inter-valley scattering due to boundary scatterings.

  17. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite. (United States)

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong