WorldWideScience

Sample records for monolayer phase behavior

  1. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  2. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  3. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    Science.gov (United States)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  4. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  5. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  6. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2015-01-07

    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  7. Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jacqueline; Badia, Antonella

    2003-09-01

    Atomic force microscopy imaging of dipalmitoylphosphatidylcholine (DPPC)/dilauroylphosphatidylcholine (DLPC) monolayers deposited onto alkanethiol modified-gold surfaces by the Langmuir-Schaefer technique was used to investigate domain formation in a binary system where phase separation arises from a difference in the alkyl chain lengths of the lipids. We have established how the condensed domain structure (shape and size) in DPPC/DLPC monolayers depends on the surface pressure and lipid composition. The mixed monolayers exhibit a positive deviation from an ideal mixing behavior at surface pressures of {<=}32 mN/m. Lateral compression to pressures greater than the liquid-expanded-to-liquid-condensed (LE-to-LC) phase transition pressure of the mixed monolayer ({approx}8-16 mN/m) induces extensive separation into condensed DPPC-rich domains and a fluid DLPC matrix. The condensed structures observed at a few milliNeutons per meter above the LE-to-LC transition pressure resemble those reported for pure DPPC monolayers in the LE/LC co-existence region. At a bilayer equivalence pressure of 32 mN/m and 20 deg. C, condensed domains exist between x{sub DPPC} {approx}0.25 and {approx}0.80, analogous to aqueous DPPC/DLPC dispersions. Compression from 32 to 40 mN/m results in either a striking distortion of the DPPC domain shape or a break-up of the microscopic DPPC domains into a network of nanoscopic islands (at higher DPPC mol fractions), possibly reflecting a critical mixing behavior. The results of this study provide a fundamental framework for understanding and controlling the formation of lateral domain structures in mixed phospholipid monolayers.

  8. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-01-01

    -limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research

  9. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  10. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The effect of gauche molecular conformations on the phase diagram of a Langmuir monolayer

    NARCIS (Netherlands)

    Zangi, R; Rice, SA

    2003-01-01

    Experimental and simulation studies have shown that the gauche conformational degrees of freedom of long-chain amphiphile molecules assembled in a dense Langmuir monolayer play an important role in determining the structures of the several phases that the monolayer supports. Nevertheless, for

  12. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  13. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  14. Displacive phase transition at the 5/3 monolayer of Pb on Ge(001)

    International Nuclear Information System (INIS)

    Cvetko, D.; Ratto, F.; Cossaro, A.; Floreano, L.; Bavdek, G.; Morgante, A.

    2005-01-01

    At a coverage of 5/3 monolayer (ML), Pb adsorbed on Ge(001) forms a ground phase displaying a ((2 1/0 6)) symmetry. This phase undergoes two reversible phase transitions ((2 1/0 6))↔((2 1/0 3))↔(2x1) at the critical temperatures T c 1 ∼178 K and T c 2 ∼375 K, respectively. We investigated the behavior of the relevant order parameters at the critical temperatures by means of He and in-plane x-ray diffraction (HAS and XRD, respectively). Both phase transitions at the critical temperature put in evidence a clear order-disorder behavior, in agreement with the universality class expected for the corresponding symmetry group transformation. The low-temperature transition yields the critical exponent of the two-dimensional (2-D) Ising universality class, whereas the three-state Potts' critical exponents are found for the high-temperature transition. By out-of-plane XRD measurements, the low-temperature phase transition is observed to be accompanied by a static surface distortion at room temperature. A complementary HAS study of the temperature evolution of the surface charge corrugation reveals that the complete ((2 1/0 6))↔((2 1/0 3)) transition is of the displacive type. On the contrary, the high-temperature phase transition does not show any change of the surface corrugation up to its irreversible decomposition, thus pointing to a pure order-disorder character

  15. Displacive phase transition at the 5/3 monolayer of Pb on Ge(001)

    Science.gov (United States)

    Cvetko, D.; Ratto, F.; Cossaro, A.; Bavdek, G.; Morgante, A.; Floreano, L.

    2005-07-01

    At a coverage of 5/3 monolayer (ML), Pb adsorbed on Ge(001) forms a ground phase displaying a ((21)/(06)) symmetry. This phase undergoes two reversible phase transitions ((21)/(06))↔((21)/(03))↔(2×1) at the critical temperatures Tc1˜178K and Tc2˜375K , respectively. We investigated the behavior of the relevant order parameters at the critical temperatures by means of He and in-plane x-ray diffraction (HAS and XRD, respectively). Both phase transitions at the critical temperature put in evidence a clear order-disorder behavior, in agreement with the universality class expected for the corresponding symmetry group transformation. The low-temperature transition yields the critical exponent of the two-dimensional (2-D) Ising universality class, whereas the three-state Potts’ critical exponents are found for the high-temperature transition. By out-of-plane XRD measurements, the low-temperature phase transition is observed to be accompanied by a static surface distortion at room temperature. A complementary HAS study of the temperature evolution of the surface charge corrugation reveals that the complete ((21)/(06))↔((21)/(03)) transition is of the displacive type. On the contrary, the high-temperature phase transition does not show any change of the surface corrugation up to its irreversible decomposition, thus pointing to a pure order-disorder character.

  16. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  17. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  18. Quantifying cell behaviors in negative-pressure induced monolayer cell movement

    Directory of Open Access Journals (Sweden)

    Shu-Er Chow

    2016-02-01

    Conclusion: A quick membrane ruffling formation, an early cell–substratum separation, and an ensuing decrease in the cellular interaction occur in cells at NP. These specific monolayer cell behaviors at NP have been quantified and possibly accelerate wound healing.

  19. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  20. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    Science.gov (United States)

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  1. Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence

    Science.gov (United States)

    Rufeil-Fiori, Elena; Banchio, Adolfo J.

    Lipid monolayers with phase coexistence are a frequently used model for lipid membranes. In these systems, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normal distributed size domains. It was found that polydispersity strongly affects the value of the interaction strength obtained, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.

  2. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  3. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  4. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L_α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  5. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  6. The structure of a lipid-water lamellar phase containing two types of lipid monolayers

    International Nuclear Information System (INIS)

    Ranck, J.L.; Luzzati, V.; Zaccai, G.

    1980-01-01

    One lamellar phase, observed in the mitochondrial lipids-water system at low temperature (ca 253 K) and at low water content (ca 15%), contains four lipid monolayers in its unit cell, two of type α and two of type β. Previous X-ray scattering studies of this phase led to an ambiguity: the phase could contain either two homogeneous bilayers, one α and one β, or two mixed bilayers, each formed by an α and a β monolayer. A solution to this problem was sought in a neutron scattering study as a function of the D 2 O/H 2 O ratio. Because of limited resolution, straightforward analysis of the neutron scattering data leads also to ambiguous results. Using a more sophisticated analysis based upon the zeroth- and second-order moments of the Patterson peaks relevant to the exchangeable components, it is shown that the weight of the evidence is in favour of a structure containing mixed bilayers. (Auth.)

  7. Conformal and highly luminescent monolayers of Alq3 prepared by gas-phase molecular layer deposition.

    Science.gov (United States)

    Räupke, André; Albrecht, Fabian; Maibach, Julia; Behrendt, Andreas; Polywka, Andreas; Heiderhoff, Ralf; Helzel, Jonatan; Rabe, Torsten; Johannes, Hans-Hermann; Kowalsky, Wolfgang; Mankel, Eric; Mayer, Thomas; Görrn, Patrick; Riedl, Thomas

    2014-01-22

    The gas-phase molecular layer deposition (MLD) of conformal and highly luminescent monolayers of tris(8-hydroxyquinolinato)aluminum (Alq3) is reported. The controlled formation of Alq3 monolayers is achieved for the first time by functionalization of the substrate with amino groups, which serve as initial docking sites for trimethyl aluminum (TMA) molecules binding datively to the amine. Thereby, upon exposure to 8-hydroxyquinoline (8-HQ), the self-limiting formation of highly luminescent Alq3 monolayers is afforded. The growth process and monolayer formation were studied and verified by in situ quartz crystal monitoring, optical emission and absorption spectroscopy, and X-ray photoelectron spectroscopy. The nature of the MLD process provides an avenue to coat arbitrarily shaped 3D surfaces and porous structures with high surface areas, as demonstrated in this work for silica aerogels. The concept presented here paves the way to highly sensitive luminescent sensors and dye-sensitized metal oxides for future applications (e.g., in photocatalysis and solar cells).

  8. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  9. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2016-10-01

    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  10. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  11. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    Science.gov (United States)

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  12. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  13. Phases of phosphatidyl ethanolamine monolayers studied by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Helm, C.A.; Tippmann-Krayer, P.; Möhwald, H.

    1991-01-01

    For the first time, phospholid monolayers at the air/water interface have been studied by x-ray diffraction and reflection all along the isotherm from the laterally isotropic fluid (the so-called LE phase) to the ordered phases. The model used to analyze the data, and the accuracy of the parameters...... deduced, were tested by comparing the results obtained with two lipids having the same head group but different chain lengths. Compression of the fluid phase leads predominantly to a change of thickness of the hydrophobic moiety, much less of its density, with the head group extension remaining constant....... The main transition involves a considerable increase (approximately 10%) of the electron density in the hydrophobic region, a dehydration of the head group and a positional ordering of the aliphatic tails, albeit with low coherence lengths (approximately 10 spacings). On further compression of the film...

  14. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  15. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  16. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    Science.gov (United States)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  17. Phase transitions in an Ising model for monolayers of coadsorbed atoms

    International Nuclear Information System (INIS)

    Lee, H.H.; Landau, D.P.

    1979-01-01

    A Monte Carlo method is used to study a simple S=1 Ising (lattice-gas) model appropriate for monolayers composed of two kinds of atoms on cubic metal substrates H = K/sub nn/ Σ/sub nn/ S 2 /sub i/zS 2 /sub j/z + J/sub nnn/ Σ/sub nnn/ S/sub i/zS/sub j/z + Δ Σ/sub i/ S 2 /sub i/z (where nn denotes nearest-neighbor and nnn next-nearest-neighbor pairs). The phase diagram is determined over a wide range of Δ and T for K/sub nn//J/sub nnn/=1/4. For small (or negative) Δ we find an antiferromagnetic 2 x 1 ordered phase separated from the disordered state by a line of second-order phase transitions. The 2 x 1 phase is separated by a line of first-order transitions from a c (2 x 2) phase which appears for larger Δ. The 2 x 1 and c (2 x 2) phases become simultaneously critical at a bicritical point and the phase boundary of the c (2 x 2) → disordered transition shows a tricritical point

  18. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation

    International Nuclear Information System (INIS)

    Słyk, Edyta; Rżysko, Wojciech; Bryk, Paweł

    2015-01-01

    We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment–segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas—disordered liquid phase transition is suppressed and only the order–disorder transition remains stable. The resulting phase diagram is of the swan neck type. (paper)

  19. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... undergoes two phase transitions occurring at 38.3 and 39.8 Angstrom(2)/molecule. Simulation indicates that the first transition involves a reorientation of the headgroups while simulation and XRD show that in the second transition the order parameter is the tilt angle of the alkyl chains. A methodology......; At the lowest pressure the tilt angle reaches approximate to 14 degrees in a direction close to a nearest neighbor direction. Both arrangements of the alkyl chains are confirmed by XRD. For higher order and fractional order Bragg peaks, simulations predict higher intensities than observed with XRD. This may...

  20. Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface

    Science.gov (United States)

    Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian

    2002-01-01

    Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.

  1. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior.

    Science.gov (United States)

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N

    2016-09-09

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  2. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  3. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1994-01-01

    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  4. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface

    International Nuclear Information System (INIS)

    El Abed, A.; Faure, M-C.; Pouzet, E.; Abillon, O.

    2002-01-01

    We show the spontaneous formation of an antiparallel monolayer of diblock semifluorinated n-alkane molecules spread at the air-water interface. We used simultaneous measurements of surface pressure and surface potential versus molecular area and performed grazing x-ray reflectivity experiments to characterize the studied monolayer, which is obtained at almost zero surface pressure and precedes the formation of a bilayer at higher surface pressure. Its thickness, equal to 2.7 nm, was found to be independent of the molecular area. This behavior may be explained by van der Waals and electrostatic interactions

  5. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of the alveolae monolayer and at the same time allows reduction of the interfacial tension to ~0mN/m....

  6. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    Science.gov (United States)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  7. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  8. ATR-IR spectroscopy for the detection of induced-phase transition in Langmuir-Blodgett monolayer film

    International Nuclear Information System (INIS)

    Widayati, Suci

    1996-01-01

    The rate at which a solid substrate is transferred through the Air/Water interface in the Langmuir-Blodgett process of preparing monomolecular films influences the final structure of the transferred film. This phenomenon has been observed from the attenuated total reflectance infra-red (ATR-IR) spectra of fatty acid monolayer transferred onto germanium substrate. This transfer-induced effect is most evidence when the monolayer is transferred from an expanded region of the surface-pressure-molecular area isotherm, but has limited influence on the hydrocarbon chain conformation of film molecules transferred in the condensed phases at high surface pressure. Such a conformational ordering may due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous sub phase. In addition, these results suggest that the structure of the amphiphilic molecules may modulate the extent and nature of the dipping-speed-induced structural changes taking place in the monomolecular L-B film. In order to use monomolecular L-B films to accurately characterize the structure, orientation and phase properties of monolayers at the Air/Water interface, the L-B transfer must be performed at transfer speeds that minimize this structural phase transition

  9. Headgroup effects of template monolayers on the adsorption behavior and conformation of glucose oxidase adsorbed at air/liquid interfaces.

    Science.gov (United States)

    Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang

    2011-06-21

    Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society

  10. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    DEFF Research Database (Denmark)

    Diama, A.; Matthies, B.; Herwig, K. W.

    2009-01-01

    measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows...... show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously...

  11. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  13. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  14. Synchrotron X-ray diffraction studies of phase transitions in physisorbed monolayers of rare gases on graphite

    International Nuclear Information System (INIS)

    Bohr, J.

    1984-01-01

    This study is an investigation of phase transition in monoatomic layers adsorbed on graphite. Such effects can be considered physical realizations of two-dimensional systems. The experimental technique used is synchrotron X-ray diffraction. Systems which have been investigated include the commensurate-incommensurate phase transition in krypton monolayer. By adjusting the spreading pressure in the krypton layer by means of a coadsorbent deuterium gas it has been unambiguously demonstrated that at low temperatures the phase transition is of first order. A melting study of incommensurate argon monolayers demonstrates an experimental verification of the possibility for having a continuous melting transition in two-dimensions. Mixtures of two-components have been investigated for their phases. No (chemical) order-disorder transition is seen. A discussion is given on this lack of a chemical order. This lack is utilized to study the commensurate-incommensurate phase transition driven by average particle size. Finally, a special low-temperature phase is identified in a xenon monlayer which is diluted with freon. (Auth.)

  15. Self-assembled monolayers and chemical derivatization of Ba0.5Sr0.5TiO3 thin films: Applications in phase shifter devices

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Van Keuls, Fred W.; Miranda, Felix A.; Cabrera, Carlos R.

    2005-01-01

    Thin films of barium strontium titanate (Ba 1-x Sr x TiO 3 (BSTO)) have been used in coupled microstrip phase shifters (CMPS) for possible insertion in satellite and wireless communication platforms primarily because of their high dielectric constant, low loss, large tunability, and good structural stability. In an attempt to improve the figure of merit K (phase shift deg /dB of loss) of phase shifters, modification of the metal/BSTO interface of these devices has been done through surface modification of the BSTO layer using a self-assembled monolayer approach. The impact of this nanotechnology promises to reduce RF losses by improving the quality of the metal/BSTO interface. In this study, compounds such as 3-mercaptopropyltrimethoxysilane (MPS), 16-mercaptohexadecanois acid (MHDA) and 3-mercaptopropionic acid (MPA) were used to form the self-assembled monolayers on the BSTO surface. As a result of the previous modification, chemical derivatization of the self-assembled monolayers was done in order to increase the chain length. Chemical derivatization was done using 3-aminopropyltrimethoxysilane (APS) and 16-mercaptohexadecanoic acid. Surface chemical analysis was done to reveal the composition of the derivatization via X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FT-IR). Low and high frequencies measurements of phase shifters were done in order measure the performance of these devices for insertion in antennas. X-ray photoelectron spectroscopy characterization of modified BSTO thin films with MPS showed a binding energy peak at 162.9 eV, indicative of a possible S-O interaction: sulfur of the mercapto compound, MPS, used to modify the surface with the oxygen site of the BSTO thin film. This interaction is at higher binding energies compared with the thiolate interaction. This behavior is observed with the other mercapto compounds such as: MHDA and MPA. An FT-IR analysis present a band at 780 cm -1 , which is characteristic of an O

  16. Phase behaviour in binary mixed Langmuir-Blodgett monolayers of triglycerides

    NARCIS (Netherlands)

    Zdravkova, A.N.; van der Eerden, J.P.J.M.

    2007-01-01

    Binary mixed monolayers of the triglycerides (TAGs)-tripalmitin (PPP), tristearin (SSS) and triarachidin (AAA) at the air–water interface are investigated with the Langmuir method. Langmuir–Blodgett (LB) layers obtained by deposition on mica are investigated by Atomic Force Microscopy. Combining

  17. Multiphase, multicomponent phase behavior prediction

    Science.gov (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  18. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  19. Vanadium oxide monolayer catalysts : The vapor-phase oxidation of methanol

    NARCIS (Netherlands)

    Roozeboom, Fred; Cordingley, Peter D.; Gellings, P.J.

    1981-01-01

    The oxidation of methanol over vanadium oxide, unsupported and applied as a monolayer on γ-Al2O3, CeO2, TiO2, and ZrO2, was studied between 100 and 400 °C in a continuous-flow reactor. At temperatures from 150 to about 250 °C two main reactions take place, (a) dehydration of methanol to dimethyl

  20. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  1. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  2. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Ken-ichi [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Kato, Teiji [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Brezesinski, Gerald [Max-Planck Instutite of Colloids and Interfaces, Research Campus Golm, D-14476 Potsdam (Germany)

    2007-10-15

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C.

  3. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    International Nuclear Information System (INIS)

    Iimura, Ken-ichi; Kato, Teiji; Brezesinski, Gerald

    2007-01-01

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C

  4. Chiral Spin Texture in the Charge-Density-Wave Phase of the Correlated Metallic Pb /Si (111 ) Monolayer

    Science.gov (United States)

    Tresca, C.; Brun, C.; Bilgeri, T.; Menard, G.; Cherkez, V.; Federicci, R.; Longo, D.; Debontridder, F.; D'angelo, M.; Roditchev, D.; Profeta, G.; Calandra, M.; Cren, T.

    2018-05-01

    We investigate the 1 /3 monolayer α -Pb /Si (111 ) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature √{3 }×√{3 } and low-temperature 3 ×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 ×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.

  5. Simulation studies of pore and domain formation in a phospholipid monolayer

    NARCIS (Netherlands)

    Knecht, Volker; Muller, M; Bonn, M; Marrink, SJ; Mark, AE

    2005-01-01

    Despite extensive study the phase behavior of phospholipid monolayers at an air-water interface is still not fully understood. In particular recent vibrational sum-frequency generation (VSFG) spectra of DPPC monolayers as a function of area density show a sharp transition in the order of the lipid

  6. Suppression of phase separation in $(AlAs)_{2ML} (InAs)_{2ML}$ superlattices using $Al_{0.48}In_{0.52}$ As monolayer insertions

    CERN Document Server

    Lee, S R; Follstaedt, D M

    2001-01-01

    Al/sub 0.48/In/sub 0.52/As monolayers (ML) are inserted at the binary-compound interfaces of (AlAs)/sub 2/ /sub ML/(InAs)/sub 2/ /sub ML/ short-period superlattices (SPSs) during growth on (001) In P. The insertion of Al/sub 0.48/In/sub 0.52/As interlayers greater than 2 ML thick tends to suppress the phase separation that normally occurs during molecular beam epitaxy of the SPS. The degree of suppression is a sensitive function of both the monolayer-scale thickness, and the intraperiod growth sequence, of the interlayers in the SPS. Given this sensitivity to monolayer-scale variations in the surface-region composition, we propose that cyclical phase transition of the reconstructed surface initiates SPS decomposition. (21 refs).

  7. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    Science.gov (United States)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  8. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shen, Jiancang; Pan, Lijia; Shi, Yi, E-mail: yshi@nju.edu.cn [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210093 (China)

    2015-01-26

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  9. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  10. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Chang, Win-Jin, E-mail: changwj@mail.ksu.edu.tw [Department of Mechanical Engineering Kun Shan University, Tainan 710, Taiwan (China); Fan, Yu-Cheng [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Weng, Cheng-I [Department of Mechanical Engineering National Cheng Kung University, Tainan, 710, Taiwan (China)

    2009-08-15

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  11. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Chang, Win-Jin; Fan, Yu-Cheng; Weng, Cheng-I

    2009-01-01

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  12. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo; Wang, Qixing; Li, Ming-yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-01-01

    interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest

  13. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  14. Solution-processable septithiophene monolayer transistor

    NARCIS (Netherlands)

    Defaux, M.; Gholamrezaie, F.; Wang, J.; Kreyes, A.; Ziener, U.; Anokhin, D.V.; Ivanov, D.A.; Moser, A.; Neuhold, A.; Salzmann, I.; Resel, R.; Leeuw, de D.M.; Meskers, S.C.J.; Moeller, M.; Mourran, A.

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  15. Solution-Processable Septithiophene Monolayer Transistor

    NARCIS (Netherlands)

    Defaux, Matthieu; Gholamrezaie, Fatemeh; Wang, Jingbo; Kreyes, Andreas; Ziener, Ulrich; Anokhin, Denis V.; Ivanov, Dimitri A.; Moser, Armin; Neuhold, Alfred; Salzmann, Ingo; Resel, Roland; de Leeuw, Dago M.; Meskers, Stefan C. J.; Moeller, Martin; Mourran, Ahmed

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  16. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  17. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides

    Science.gov (United States)

    Lu, Haichang; Guo, Yuzheng; Robertson, John

    2016-08-01

    The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.

  18. Traders' behavioral coupling and market phase transition

    Science.gov (United States)

    Ma, Rong; Zhang, Yin; Li, Honggang

    2017-11-01

    Traditional economic theory is based on the assumption that traders are completely independent and rational; however, trading behavior in the real market is often coupled by various factors. This paper discusses behavioral coupling based on the stock index in the stock market, focusing on the convergence of traders' behavior, its effect on the correlation of stock returns and market volatility. We find that the behavioral consensus in the stock market, the correlation degree of stock returns, and the market volatility all exhibit significant phase transitions with stronger coupling.

  19. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.

    Science.gov (United States)

    Wang, Guorui; Dai, Zhaohe; Liu, Luqi; Hu, Hai; Dai, Qing; Zhang, Zhong

    2016-08-31

    The van der Waals (vdW) force dominated interface between graphene and polymer matrix creates weak points in the mechanical sense. Chemical functionalization was expected to be an effective approach in transfer of the outstanding performance of graphene across multiple length scales up to the macroscopic level, due to possible improvements in the interfacial adhesion. However, published works showed the contradiction that improvements, insensitivity, or even worsening of macro-mechanical performance have all been reported in graphene-based polymer nanocomposites. Particularly central cause of such discrepancy is the variations in graphene/polymer interfacial chemistry, which is critical in nanocomposites with vast interfacial area. Herein, O3/H2O gaseous mixture was utilized to oxidize monolayer graphene sheet with controlled functionalization degrees. Hydrogen bonds (H bonds) are expected to form between oxidized graphene sheet/poly(methyl methacrylate) (PMMA) at the interface. On the basis of in situ tensile-micro Raman spectroscopy, the impacts of bonding types (vdW and H-bonds) on both key interfacial parameters (such as interfacial shear strength and critical length) and failure modes of graphene/PMMA nanocomposite were clarified for the first time at the microscopic level. Our results show that owing to improved interfacial interaction via H bonds, the interface tends to be stiffening and strengthening. Moreover, the mechanical properties of the functionalized graphene/PMMA interface will be set by the competition between the enhanced interfacial adhesion and the degraded elastic modulus of graphene, which was caused by structural defects in the graphene sheet during the functionalization process and could lead to catastrophic failure of graphene sheets in our experimental observation. Our results will be helpful to design various nanofiller-based nanocomposites with high mechanical performance.

  20. Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior

    International Nuclear Information System (INIS)

    Yan, Hongji; Yin, Yanbin; Li, Yu; Tian, Weiming; Zhang, Song; Nie, Yongzhan; He, Jin; Wang, Xiumei; Cui, Fuzhai; Chen, Xiongbiao

    2013-01-01

    The interactions between cancer cells and the extracellular matrix (ECM) are important with respect to a number of cell behavoirs, yet remain unclear. In this study, self-assembled monolayers with different terminal chemical groups (hydroxyl (-OH), carboxyl (-COOH), animo (-NH 2 ), mercapto (-SH), and methyl (-CH 3 )) were employed as substrates for the culture of MCF-7 cells to examine effects on cell behavior. Cell spreading was investigated by scanning electron microscopy, tallin expression by immunofluorescence, proliferation rate by counting cell numbers, cell cycle by flow cytometry, metabolism by high-performance liquid chromatography and cell migration by live cell imaging. Annexin V-FITC (fluorescein isothiocyanate) and JC-1 assays were performed to determine cell apoptosis and mitochondrial membrane potential, respectively. Our results demonstrate the varied behaviors of MCF-7 cells in response to different chemical groups. Specifically, NH 2 and COOH terminal functional groups promote proliferation, the production of lactic acid and mobility of MCF-7 cells; SH and OH terminal groups enhance the expression and distribution of tallin but result in weak cell proliferation, metabolism, spreading and mobility. These results are meaningful for uncovering the interactions between the ECM and cancer cells; they are potentially useful for designing novel cancer treatment strategies. (paper)

  1. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains

    International Nuclear Information System (INIS)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-01-01

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS 2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS 2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS 2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS 2 single crystals. The thickness of triangle and polygon shape MoS 2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS 2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS 2 -based devices.

  2. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Science.gov (United States)

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  3. An in situ study of the adsorption behavior of functionalized particles on selfassembled monolayers via different chemical interactions

    NARCIS (Netherlands)

    Ling, X.Y.; Malaquin, Laurent; Reinhoudt, David; Wolf, Heiko; Huskens, Jurriaan

    2007-01-01

    The formation of particle monolayers by convective assembly was studied in situ with three different kinds of particle-surface interactions: adsorption onto native surfaces, with additional electrostatic interactions, and with supramolecular host-guest interactions. In the first case

  4. Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study

    International Nuclear Information System (INIS)

    George, Christopher B.; Szleifer, Igal; Ratner, Mark A.

    2010-01-01

    Graphical abstract: Electron hopping between electroactive sites in a monolayer composed of redox-active and redox-passive molecules. - Abstract: Using Monte Carlo simulations, we study lateral electronic diffusion in dense monolayers composed of a mixture of redox-active and redox-passive chains tethered to a surface. Two charge transport mechanisms are considered: the physical diffusion of electroactive chains and electron hopping between redox-active sites. Results indicate that by varying the monolayer density, the mole fraction of electroactive chains, and the electron hopping range, the dominant charge transport mechanism can be changed. For high density monolayers in a semi-crystalline phase, electron diffusion proceeds via electron hopping almost exclusively, leading to static percolation behavior. In fluid monolayers, the diffusion of chains may contribute more to the overall electronic diffusion, reducing the observed static percolation effects.

  5. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, Priyanka; Sellmyer, D. J.; Skomski, Ralph [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sharma, Vinit [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Yu, Hongbin [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-07-20

    The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX{sub 2}; X = S, Se, and Te) are investigated using density-functional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX{sub 2} monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications.

  6. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  7. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  8. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    Science.gov (United States)

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  9. Computer simulation of monolayer growth kinetics of Fe2B phase during the paste-boriding process: Influence of the paste thickness

    International Nuclear Information System (INIS)

    Keddam, M.

    2006-01-01

    This paper deals with the effect of boron paste thickness on the study of the monolayer growth kinetics of Fe 2 B phase forming on AISI 1045 steel by the paste-boriding process. A mathematical diffusion model based on the Fick's phenomenological equations was applied in order to estimate the growth rate constant at (Fe 2 B/γ-Fe) interface, the layer thickness of iron boride as well as the associated mass gain depending on the boriding parameters such as time, temperature and surface boron concentration related to the boron paste thickness. The simulation results are found to be in a fairly good agreement with the experimental data derived from the literature

  10. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  11. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T

    2002-01-01

    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  12. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation

    NARCIS (Netherlands)

    Marechal, M.A.T.

    2009-01-01

    This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of

  13. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    International Nuclear Information System (INIS)

    Zhang Lei; Hao Changchun; Feng Ying; Gao Feng; Lu Xiaolong; Li Junhua; Sun Runguang

    2016-01-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure–area ( π – A ) and pressure–time ( π – T ) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. (special topic)

  14. Individualized Behavioral Health Monitoring Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Given the extended duration of future missions and the isolated, extreme and confined environments, there is the possibility that behavioral conditions and mental...

  15. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  16. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai

    2013-01-01

    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  17. Modelling and theories of alloy phase behavior

    International Nuclear Information System (INIS)

    Watson, R.E.; Davenport, J.W.; Weinert, M.; Bennett, L.H.

    1987-01-01

    Many trends in alloy phase formation are readily understood in terms of physically plausible atomic parameters. This has led to the introduction of structural maps where two (or more) such atomic parameters are employed as the coordinates and well-defined regions are observed to be associated with particular crystalline phases. These coordinates sometimes involve the difference in atomic parameters and sometimes involve an average. An alternative approach to the emphasis on atomic parameters has been the consideration of how atoms are packed in some crystal structure and how this controls what the constituent atoms may be. Recently this has led to the utilization of Wigner-Seitz (sometimes called Voronoi or Dirichlet) constructs of the atomic cells in a crystal structure and to the observation that sometimes two crystals which are nominally considered to have the same crystal structure according to normal crystallographic designation should be considered to be different. The Wigner-Seitz cell constructs have also offered a framework for understanding trends in the magnetic and chemical properties of particular phases as well as making coordination between crystalline and glassy structures. Neither of the above approaches provides numerical estimates of quantities of thermodynamic interest such as heats of formation. Such heats are being calculated. 42 refs., 15 figs

  18. Light phase testing of social behaviors: not a problem

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2008-12-01

    Full Text Available The rich repertoire of mouse social behaviors makes it possible to use mouse models to study neurodevelopmental disorders characterized by social deficits. The fact that mice are naturally nocturnal animals raises a critical question of whether behavioral experiments should be strictly conducted in the dark phase and whether light phase testing is a major methodologically mistake. Although mouse social tasks have been performed in both phases in different laboratories, there seems to be no general consensus on whether testing phase is a critical factor or not. A recent study from our group showed remarkably similar social scores obtained from inbred mice tested in the light and the dark phase, providing evidence that light phase testing could yield reliable results as robust as dark phase testing for the sociability test. Here we offer a comprehensive review on mouse social behaviors measured in light and dark phases and explain why it is reasonable to test laboratory mice in experimental social tasks in the light phase.

  19. Phase behavior of the 38-atom Lennard-Jones cluster

    International Nuclear Information System (INIS)

    Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.

    2014-01-01

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ 38 ). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space, we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ 38 cluster

  20. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS{sub 2} domains

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Song; Yang, Bingchu, E-mail: bingchuyang@csu.edu.cn [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Gao, Yongli [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14534 (United States)

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS{sub 2} domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS{sub 2} domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS{sub 2} crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS{sub 2} single crystals. The thickness of triangle and polygon shape MoS{sub 2} crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS{sub 2} crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS{sub 2}-based devices.

  1. Unexpectedly normal phase behavior of single homopolymer chains

    International Nuclear Information System (INIS)

    Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

    2007-01-01

    Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

  2. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  3. A trough for improved SFG spectroscopy of lipid monolayers

    Science.gov (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  4. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  5. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  6. Tip-Loading, Force-Dependent Tunneling Behavior in Alkanethiol Self-Assembled Monolayers Studied Through Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyun Wook

    2013-01-01

    The force-dependent tunneling transport in metal/alkanethiol/metal junctions was examined using CAFM. Tunneling current and current density through alkanethiol SAMs increased with increasing tip-loading force in CAFM, which suggests that a potential change in geometry of the molecules under the tip loads influences the transport properties of alkanethiol SAMs. Enhanced intermolecular tunneling transport in the tilted molecular configuration under tip-loading effect is likely responsible for such an increase in tunneling current density. We also demonstrated that through-bond tunneling is a more efficient pathway in alkanethiol SAMs than are intermolecular chain-to-chain pathways, by demonstrating a dependence of current density on the associated tunneling distances. We report a tip-loading, force-dependent tunneling behavior in alkanethiol SAMs using CAFM. A variable tip-loading force applies to alkanethiol SAMs with a standard AFM feedback, and current(I)-voltage(V) characteristics are simultaneously measured while varying the loading forces. In particular, we observe how a tip-loading force in CAFM influences the transport properties of alkanethiol SAMs

  7. Phase behavior of random copolymers in quenched random media

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Shakhnovich, E.I.

    1995-01-01

    In this paper, we consider the behavior of random heteropolymers in a quenched disordered medium. We develop a field theory and obtain a mean-field solution that allows for replica symmetry breaking. The presence of an external disorder leads to the formation of compact states; a homopolymeric effect. We compute the phase diagram for two classes of problems. First, we consider the situation wherein the bare heteropolymer prefers like segments to segregate, and second, we examine cases where the bare heteropolymer prefers unlike segments to mix. For the first class of systems, we find a phase diagram characterized by a replica symmetry broken phase that exists below a particular temperature. This temperature grows with the strength of the external disorder. In the second class of situations, the phase diagram is much richer. Here we find two replica symmetry broken phases with different patterns separated by a reentrant phase. The reentrant phase and one of the two replica symmetry broken phases are induced by interactions with the external disorder. The dependence of the location of the phase boundaries on the strength of the external disorder are elucidated. We discuss our results from a physical standpoint, and note the testable experimental consequences of our findings. copyright 1995 American Institute of Physics

  8. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.

    2006-01-01

    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...

  9. Phase Transition Behavior in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  10. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  12. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  13. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  14. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  15. A Study by Contact Angle of the Acid-Base Behavior of Monolayers Containing W-Mercaptocarboxylic Acids Absorbed on Gold: An Example of Reactive Spreading

    Science.gov (United States)

    1989-11-01

    1966,22, 138-143. 27 Joos, P. Bull. Soc. Chim. Belges 1971, 80, 277-281. 28 Patil, G. S.; Matthews, R. H.; Cornwell , D. G. In Monolayers; Goddard, E...Commanding Officer 1 Chief of Naval Research Naval Weapons Support Center Special Assistant Attn: Dr. Bernard E. Douda for Marine Corps Matters Crane

  16. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, P.J; Schouten, A.J.

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures.

  17. 17th International Conference on Petroleum Phase Behavior and Fouling

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Yan, Wei; Andersen, Simon

    2017-01-01

    This special section of Energy & Fuels contains contributedpapers from the 17th International Conference on PetroleumPhase Behavior and Fouling (Petrophase 2016). Petrophase 2016 was organized by the Technical University of Denmark and Schlumberger and took place in Elsinore (Helsingør) Denmark...... from June 19th to 23rd at the Beach Hotel Marienlyst. Petrophase is an international conference aimed at researchers in industry and academia dedicated to the study of the properties and chemistry of petroleum fluids and their effect on producing, processing, and refining in the upstream, midstream......, and downstream industries. The conference started in 1999 as “The International Conference on Petroleum Phase Behavior & Fouling” and has since evolved into an annual event taking place in countries all around the world. Petrophase has been fortunate to have enjoyed financial and organizational support from many...

  18. Lipid dip-pen nanolithography on self-assembled monolayers

    International Nuclear Information System (INIS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-01-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (∼10 –1 μm 3 s −1 ), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ∼20 times slower, nonlinear, and the obtained stable dots of ∼1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats. (paper)

  19. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  20. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  1. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  2. Decoupling of crystalline and conformational degrees of freedom in lipid monolayers

    DEFF Research Database (Denmark)

    Ipsen, John Hjorth; Mouritsen, Ole G.; Zuckermann, Martin J.

    1989-01-01

    of variables which describe the orientations of crystalline domains in the solid. The phase behavior of the model as a function of temperature and lateral pressure is explored using mean-field theory and computer-simulation techniques. Attention is paid to the particular interplay between the two types......-formation processes observed along the isotherms in the phase diagram spanned by lateral pressure and area. A description is given of the kinetics of the nonequilibrium phase transitions and the concomitant heterogeneous microstructure of the monolayer. This leads to an explanation of the peculiarities...

  3. A cluster phase analysis for collective behavior in team sports.

    Science.gov (United States)

    López-Felip, Maurici A; Davis, Tehran J; Frank, Till D; Dixon, James A

    2018-06-01

    Collective behavior can be defined as the ability of humans to coordinate with others through a complex environment. Sports offer exquisite examples of this dynamic interplay, requiring decision making and other perceptual-cognitive skills to adjust individual decisions to the team self-organization and vice versa. Considering players of a team as periodic phase oscillators, synchrony analyses can be used to model the coordination of a team. Nonetheless, a main limitation of current models is that collective behavior is context independent. In other words, players on a team can be highly synchronized without this corresponding to a meaningful coordination dynamics relevant to the context of the game. Considering these issues, the aim of this study was to develop a method of analysis sensitive to the context for evidence-based measures of collective behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Fullerene monolayer formation by spray coating

    NARCIS (Netherlands)

    Cervenka, J.; Flipse, C.F.J.

    2010-01-01

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method

  5. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  6. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  7. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  8. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  9. Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate

    International Nuclear Information System (INIS)

    Matsukawa, Hiroshi; Haraguchi, Kazuhiro; Ozaki, Shinsuke

    2007-01-01

    Frictional behaviors of flake and adsorbed monolayer on substrate can be observed by Frictional force microscope and Quartz crystal microbalance experiments and are typical problems in nano-friction. Computer simulations had been played important roles in understanding those behaviors, but in most of them the driving direction coincides with one of the crystal axes of the substrate. Here we report our numerical results of direction dependence of friction of flake and adsorbed monolayer. We found a new kind of dynamical phase transition in which flake and adsorbed monlayer change their structure relative to the substrate and make incommensurae structure to reduce kinetic frictional force after certain transition time. When the driving velocity is decreased the transition time tends to diverge at certain critical velocity for the flake. For the adsorbed monlayer the transition time tends to diverge at certain critical magnitudes of the external force or the interaction strength between adsorbates when they are decreased

  10. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  11. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Venema, P.; Bot, A.; Flöter, E.; Adel, den R.; Linden, van der E.

    2015-01-01

    The phase behavior of binary mixtures of ¿-oryzanol and ß-sitosterol and ternary mixtures of ¿-oryzanol and ß-sitosterol in sunflower oil was studied. Binary mixtures of ¿-oryzanol and ß-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was

  12. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.

    1996-01-01

    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  13. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  14. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  15. Controllable optical bistability and multistability in a graphene monolayer system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@126.com [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Sun, Zhaoyu [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Ding, Chunling [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Yu, Rong [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-02-15

    We theoretically investigate the behavior of optical bistability (OB) and optical multistability (OM) in a graphene monolayer system driven by an elliptically polarized control field and a right-hand circularly polarized probe field. Our numerical results show that it is easy to realize the transition from OB to OM or vice versa by adjusting the frequency detunings of the probe field and the control field, as well as the polarization-dependent phase difference between the two components of the control laser field. The influences of the intensity of the control field and the cooperation parameter on the OB behavior are also discussed in detail. These results may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  16. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  17. Phase behavior and radiation effects in high level waste class

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.

    1977-02-01

    Results are presented that demonstrate that detailed and reproducible data can be obtained for complex waste glasses. For the major glass composition examined, thermal treatment was shown to cause formation of several crystalline phases which contribute to an increased leachability. Although not discussed in detail here, Zn 2 SiO 4 formation results in microcracking due to a thermal expansion mismatch with the glass matrix, and SrMoO 4 has a higher leachability than the glass matrix. The temperature dependence describing equilibrium concentrations of these two phases and a qualitative understanding of ingrowth kinetics have been established, hence conditions necessary to eliminate their formation during processing and early storage, are known. Radiation damage effects, when extrapolated to long times, suggest energy storage of approximately 50 cal/gram and either positive or negative density changes occur (depending on the glass composition) in the 1 percent range. No radiation damage-related changes of serious concern have been found for homogeneous glasses by 244 Cm doping experiments now approaching a simulated damage time of approximately 10 3 years (for UO 2 fuel wastes). More work is needed concerning heterogeneous damage which will occur in devitrified glasses. As a final point, the complications with respect to understanding behavior of polyphase systems with respect to either radiation damage or leaching behavior, are self evident. Homogeneous glasses with improved leach resistance, and thermal and radiation stability are clear objectives for future glass development

  18. Photophysical behavior in spread monolayers. Dansyl fluorescence as a probe for polarity at the air-water interface. [N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, F.; Thistlethwaite, P.; Urquhart, R.; Patterson, L.K.

    1987-09-24

    The emission spectrum of N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine (dansyldihexadecylamine) in monolayers at the air-water interface has been studied. In some cases sudden shifts in the dansyl emission can be correlated with particular features of the surface pressure-area isotherms. These spectral shifts can be explained in terms of a change in the conformation of the head group on the surface and with aggregation of the dansyldihexadecylamine. In other cases the dansyl emission shows a blue shift with increasing compression that can be associated with reduced head-group hydration.

  19. Morphology of compressed dipalmitoyl phosphatidylcholine monolayers investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Yang, Y.-P.; Tsay, R.-Y.

    2007-01-01

    The effectiveness of a substitute of natural lung surfactants on replacement therapy strongly depends on the stability of the monolayer of those substitute molecules. An atomic force microscope is utilized to investigate the microstructure of the films of the major components of natural lung surfactants, dipalmitoyl phosphatidylcholine-DPPC, which are transferred to mica substrates by the Langmuir-Blodgett film technique. A concave deformation structure was first observed for DPPC in solid phase. The depth of the concave domain was about 6 nm and was remarkably uniform. For a collapsed DPPC monolayer, the surface film consists of a granular convex multilayer structure and a disc-like concave structure. Dynamic cyclic compression-expansion experiments indicate that the formation of the concave domain is a reversible process while the process for convex multilayer formation is irreversible. This gives direct evidence that convex grain is the collapsed structure of DPPC monolayer and the concave shallow disc corresponds to the elastic deformation of a DPPC solid film. Results of atomic force microscopy indicate that the nucleation and growth model instead of the fracture model can better describe the collapse behavior of a DPPC monolayer

  20. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer.

    Science.gov (United States)

    Li, Siyang; Du, Lin; Tsona, Narcisse T; Wang, Wenxing

    2018-04-01

    Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe 3+ , Pb 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Cr 3+ , Cd 2+ , and Co 2+ , with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn 2+ and Fe 3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn 2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe 3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  2. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  3. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  5. Phase behavior of (CO2 + methanol + lauric acid) system

    International Nuclear Information System (INIS)

    Ferreira, Franciele M.; Ramos, Luiz P.; Ndiaye, Papa M.; Corazza, Marcos L.

    2011-01-01

    Highlights: → We measured SVL, LLE and VLE for the binary system {lauric acid + methanol + CO 2 }. → Bubble point and dew point were measured at high pressures. → The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule. - Abstract: In this study the phase equilibrium behaviors of the binary system (CO 2 + lauric acid) and the ternary system (CO 2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO 2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO 2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO 2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.

  6. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  7. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  8. Thermodynamic and real-space structural evidence of a 2D critical point in phospholipid monolayers

    DEFF Research Database (Denmark)

    Nielsen, Lars K.; Bjørnholm, Thomas; Mouritsen, Ole G.

    2007-01-01

    The two-dimensional phase diagram of phospholipid monolayers at air-water interfaces has been constructed from Langmuir compression isotherms. The coexistence region between the solid and fluid phases of the monolayer ends at the critical temperature of the transition. The small-scale lateral...... structure of the monolayers has been imaged by atomic force microscopy in the nm to mu m range at distinct points in the phase diagram. The lateral structure is immobilized by transferring the monolayer from an air-water interface to a solid mica support using Langmuir-Blodgett techniques. A transfer...

  9. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  10. Atomic defects and doping of monolayer NbSe2

    OpenAIRE

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J.P.; Lawlor, Sean; Sanchez, Ana M.; Sloan, Jeremy; Gorbachev, Roman; Grigorieva, Irina; Krasheninnikov, Arkady V.; Haigh, Sarah

    2017-01-01

    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reve...

  11. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers.

    Science.gov (United States)

    Arseneault, Marjolaine; Bédard, Sarah; Boulet-Audet, Maxime; Pézolet, Michel

    2010-03-02

    Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.

  12. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  13. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  14. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    International Nuclear Information System (INIS)

    Muraca, D.; Sanchez, F.H.; Pampillo, L.G.; Saccone, F.D.

    2010-01-01

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  15. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    Science.gov (United States)

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  16. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  17. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  18. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  19. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  20. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    Science.gov (United States)

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  1. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  2. Molecular dynamics and energy landscape of decanethiolates in self-assembled monolayers on Au(111) by STM

    NARCIS (Netherlands)

    Sotthewes, Kai; Wu, Hairong; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.

    2013-01-01

    The energetics and dynamics of the various phases of decanethiolate self-assembled monolayers on Au(111) surfaces were studied with scanning tunneling microscopy. We have observed five different phases of the decanethiolate monolayer on Au(111): four ordered phases (β, δ, χ*, and ) and one

  3. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  4. Association of menstrual phase with smoking behavior, mood and menstrual phase-associated symptoms among young Japanese women smokers.

    Science.gov (United States)

    Sakai, Hiroko; Ohashi, Kazutomo

    2013-03-02

    Previous studies of the relationship between the menstrual phases and smoking behavior have been problematic, so the association of menstrual phases with smoking behavior and correlations among smoking, psychological and physical conditions in each phase of the menstrual cycle are unclear. To accurately examine the association between menstrual phases and the amount of smoking (number of cigarettes smoked and breath CO concentration), craving of smoking on visual analogue scale (VAS), depression in the Center for Epidemiologic Studies Depression (CES-D) Scale, and menstrual phase-associated symptoms in the Menstrual Distress Questionnaire (MDQ), we improved various methodological issues, specifically, 1) Ovulation was confirmed by measuring the basal body temperature and identifying a urinary luteinizing hormone (LH) surge in two cycles; 2) The menstrual, follicular, and luteal phases were clearly defined for subjects with different menstrual cycles; 3) The breath CO concentration was measured every day. A notice was posted on public bulletin boards to recruit research subjects and twenty-nine young Japanese women smokers aged 19 to 25 years old were analyzed. The number of cigarettes smoked was greater and the CO concentration was higher in the luteal phase than in the follicular phase. The levels of craving for smoking (VAS), depressiveness (CES-D), and menstrual phase-associated symptoms (MDQ) in the menstrual and luteal phases were higher than those in the follicular phase. The mean score for CES-D was 16 points (the cut-off value in screening for depression) or higher in the menstrual (16.9 ± 8.2) and luteal phases (17.2 ± 8.4).The number of cigarettes smoked and CO concentration were significantly correlated with the levels of craving for smoking, depressiveness, and menstrual phase-associated symptoms in all phases except for MDQ scores in follicular phase. The amount of smoking in the luteal phase was most strongly correlated with these symptoms

  5. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  6. Critical behavior at the deconfinement phase phase transition of SU(2) lattice gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Christensen, J.; Damgaard, P.H.

    1991-01-01

    The finite-temperature deconfinement phase transition of SU(2) lattice gauge theory in (2+1) dimensions is studied by Monte Carlo methods. Comparison is made with the expected form of correlation functions on both sides of the critical point. The critical behavior is compared with expectations based on universality arguments. Attempts are made to extract unbiased values of critical exponents on several lattices sizes. The behavior of Polyakov loops in higher representations of the gauge group is studied close to the phase transition. (orig.)

  7. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  8. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  9. Studies of the structure and properties of organic monolayers, multilayers and superlattices

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-01-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this progress report, we describe our x-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension. 20 refs., 11 figs

  10. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  11. Synthesis and phase behavior of end-functionalized associating polymers

    Science.gov (United States)

    Wrue, Michelle H.

    We have explored polymer blend phase behavior in the presence of multiple hydrogen bonding end-groups. This work details the synthesis of functionalized polymers and their subsequent use in miscibility studies. The synthesis of end-functionalized hydrogen bonding polymers and the investigation of their physical properties and miscibility is presented. Mono-functional and telechelic ureidopyrimidinone (UPy) functionalized polymers were prepared by two main routes: post-polymerization functionalization (of commercially available or synthesized polymers); and polymerization of monomers using a functionalized initiator. UPy-functionalized polymers were prepared with a variety of polymer backbones including poly(ethylene oxide)s; poly(butadiene)s, poly(dimethyl siloxanxe)s; poly(styrene)s and poly(methyl methacrylate)s. The most successful route to polymers with UPy end-groups was atom transfer radical polymerization (ATRP) using a UPy-functionalized initiator, followed by atom transfer radical coupling (ATRC). The incorporation of ureidopyrimidinone end-groups was shown to affect the physical properties of the polymer backbone. Parent polymers that were liquids became viscous liquids or waxy solids upon UPy-functionalization of chain end. UPy-functionalization of a hydroxyl-terminated polybutadiene (HO-PB-OH) resulted in a waxy solid while the HO-PB-OH precursor was a viscous liquid. The thermal properties of functionalized polymers also differed from those of the unfunctionalized parent polymers. Hot-stage optical microscopy revealed that UPy-functionalized PEO displayed a depressed melting point relative to the analogous unfunctionalized precursor. Differential scanning calorimetry was also used to investigate the synthesized UPy-polymers. UPy-functionalized polystyrenes and poly(methyl methacrylate)s showed an increased T g compared to the equivalent homopolymer standards. This increased Tg was determined to be dependent upon the fraction of UPy groups present and

  12. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter

    2007-01-01

    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  13. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: Use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Ying [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Huimin [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-06

    Graphical abstract: -- Highlights: •The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles functionalized with SAMs were successfully constructed. •The SAMs could be transformed from one kind to another via thiol exchange process. •The developed nanomaterials could be applied in mode switching MSPE. -- Abstract: The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe{sub 3}O{sub 4}@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au–S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25–1600 μg L{sup −1} for diphenols and 1.56–100 μg L{sup −1} for PAHs) with good linearity (r{sup 2} ≥ 0.989) and low detection limits (0.34–16.67 μg L{sup −1} for diphenols and 0.26–0.52 μg L{sup −1} for PAHs) were achieved. The advantage of the developed method is that the Fe{sub 3}O

  14. Plasma resistance behavior during the linear decay phase of RFPs in ETA BETA II

    International Nuclear Information System (INIS)

    Nalesso, G.F.

    1982-01-01

    In the aided-reversal mode RFP discharges produced in ETA BETA II, the plasma current is characterized by a linear decay phase, which follows an approximately exponential phase. During the same period the measured toroidal voltage is negative and initially increasing in absolute value (exponential phase) and then decreasing to almost zero during the linear phase before the current termination. The same behavior of the current has been observed in the quiescent phase in Zeta where a negative toroidal electric field was also observed. In this note we present a model that can explain the linear decay phase and fits with the experimental parameters and allows us to estimate the plasma resistance behavior during the linear phase of slow reversed field pinch discharges

  15. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.; Johns, R. T.

    2017-01-01

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh's equation and is coupled to phase behavior

  17. Au(111) and Pt(111) surface phase behavior

    DEFF Research Database (Denmark)

    Sandy, A.R.; Mochrie, S.G.J.; Zehner, D.M.

    1993-01-01

    We describe our recent X-ray scattering studies of the structure and phases of the clean Au(111) and Pt(111) surfaces. Below 0.65 of their respective bulk melting temperatures, the Au(111) surface has a well-ordered chevron reconstruction and the Pt(111) surface is unreconstructed. Above these te......We describe our recent X-ray scattering studies of the structure and phases of the clean Au(111) and Pt(111) surfaces. Below 0.65 of their respective bulk melting temperatures, the Au(111) surface has a well-ordered chevron reconstruction and the Pt(111) surface is unreconstructed. Above...

  18. Two-component thermosensitive hydrogels : Phase separation affecting rheological behavior

    NARCIS (Netherlands)

    Abbadessa, Anna; Landín, Mariana; Oude Blenke, Erik; Hennink, Wim E.; Vermonden, Tina

    2017-01-01

    Extracellular matrices are mainly composed of a mixture of different biopolymers and therefore the use of two or more building blocks for the development of tissue-mimicking hydrogels is nowadays an attractive strategy in tissue-engineering. Multi-component hydrogel systems may undergo phase

  19. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  20. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  1. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  2. Universality in the phase behavior of soft matter: a law of corresponding states.

    Science.gov (United States)

    Malescio, G

    2006-10-01

    We show that the phase diagram of substances whose molecular structure changes upon varying the thermodynamic parameters can be mapped, through state-dependent scaling, onto the phase diagram of systems of molecules having fixed structure. This makes it possible to identify broad universality classes in the complex phase scenario exhibited by soft matter, and enlightens a surprisingly close connection between puzzling phase phenomena and familiar behaviors. The analysis presented provides a straightforward way for deriving the phase diagram of soft substances from that of simpler reference systems. This method is applied here to study the phase behavior exhibited by two significative examples of soft matter with temperature-dependent molecular structure: thermally responsive colloids and polymeric systems. A region of inverse melting, i.e., melting upon isobaric cooling, is predicted at relatively low pressure and temperature in polymeric systems.

  3. Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail

    NARCIS (Netherlands)

    Knecht, Volker; Mark, Alan E.; Marrink, Siewert-Jan

    2006-01-01

    Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar

  4. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  5. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  6. Epilepsy-induced behavioral changes during the ictal phase.

    Science.gov (United States)

    Mula, Marco

    2014-01-01

    In epilepsy, experiential phenomena and behavioral manifestations may pose a number of problems in terms of differential diagnosis. From a clinical point of view, ictal psychiatric symptoms represent partial seizures, mainly partial ones. In the majority of cases, they are very brief (lasting from a few seconds to a few minutes), stereotyped, out of context, and frequently associated with subtle or overt automatisms and postictal confusion of variable duration. In some cases, such symptoms are followed by alteration of consciousness as the ictus evolves to a complex partial seizure or a generalized tonic-clonic seizure. This paper reviews clinically relevant behavioral patterns during seizures discussing clinical phenomenology and relevance in terms of lateralizing value. © 2013.

  7. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  8. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  9. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  10. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  11. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    Science.gov (United States)

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  12. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  13. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  14. (Liquid + liquid) phase behavior for systems containing (aromatic + TBA + methylcyclohexane)

    International Nuclear Information System (INIS)

    Ghanadzadeh, H.; Ghanadzadeh, A.

    2004-01-01

    The determination region of solubility of TBA (tert-butanol) with representative compounds of the gasoline was investigated experimentally at temperature of 298.2 K. Type 1 (liquid + liquid) phase diagrams were obtained for (methylcyclohexane + TBA + aromatic compounds). These results were correlated simultaneously by the UNIQUAC model. The values of the interaction parameters between each pair of components in the systems were obtained for the UNIQUAC model using the experimental result. The root mean square deviation (RMSD) between the observed and calculated mole percents was 1.88 for (methylcyclohexane + TBA + benzene), 2.45 for (methylcyclohexane + TBA + toluene) and 2.86 for (methylcyclohexane + TBA + ethylbenzene). The mutual solubility of methylcyclohexane and aromatic compounds (e.g., benzene toluene and ethylbenzene (BTE)) was also investigated by the addition of TBA at temperature of 298.2 K

  15. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.; Mandal, Pritam; Malcolm, Dominic W.; Mann, Elizabeth; Chaieb, Saharoui

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal

  16. Phase behavior of multicomponent membranes: Experimental and computational techniques

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Kumar, P.B. Sunil

    2009-01-01

    Recent developments in biology seems to indicate that the Fluid Mosaic model of membrane proposed by Singer and Nicolson, with lipid bilayer functioning only as medium to support protein machinery, may be too simple to be realistic. Many protein functions are now known to depend on the compositio....... This review includes basic foundations on membrane model systems and experimental approaches applied in the membrane research area, stressing on recent advances in the experimental and computational techniques....... membranes. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating liquid ordered-liquid disordered coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior...

  17. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  18. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  19. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  20. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    Science.gov (United States)

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  1. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  2. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  3. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  4. Reversed-phase thin-layer chromatography behavior of aldopentose derivatives

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available Quantitative structure-retention relationships (QSRR have been used to study the chromatographic behavior of some aldopentose. The behavior of aldopentose derivatives was investigated by means of the reversed-phase thin-layer chromatography (RP TLC on the silica gel impregnated with paraffin oil stationary phases. Binary mixtures of methanol-water, acetone-water and dioxane-water were used as mobile phases. Retention factors, RM0, corresponding to zero percent organic modifier in the aqueous mobile phase was determined. Lipophilicity C0 was calculated as the ratio of the intercept and slope values. There was satisfactory correlation between them and log P values calculated using different theoretical procedures. Some of these correlations offer very good predicting models, which are important for a better understanding of the relationships between chemical structure and retention. The study showed that the hydrophobic parameters RM0 and C0 can be used as a measures of lipophilicity of investigated compounds.

  5. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  6. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    Science.gov (United States)

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  7. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  8. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    Science.gov (United States)

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  9. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  10. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    Science.gov (United States)

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present

  11. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  12. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  13. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  14. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  15. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    Science.gov (United States)

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  16. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  17. Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poursoroush, Asma; Sperotto, Maria Maddalena; Laradji, Mohamed

    2017-01-01

    Solid-supported lipid bilayers are utilized by experimental scientists as models for biological membranes because of their stability. However, compared to free standing bilayers, their close proximity to the substrate may affect their phase behavior. As this is still poorly understood, and few co...

  18. The phase behavior of polydisperse multiblock copolymer melts : (a theoretical study)

    NARCIS (Netherlands)

    Angerman, Hindrik Jan

    1998-01-01

    Summary The main theme of this thesis is the influence of polydispersity on the phase behavior of copolymer melts. With “polydispersity” we do not only refer to polydispersity in overall chain length, but also to polydispersity in the composition and the monomer sequence of the chains. Study of the

  19. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  20. The strength evaluation and σ-phase aging behavior of cast stainless steel

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul; Lee, Woo Ho; Jang, Sun Sik

    1999-01-01

    σ-phase of cast stainless steel(CF8M) was artificially precipitated by means of thermal aging at 700 deg C with various holding time (0.33, 5, 15, 50 and 150 hrs) to evaluate the behavior of thermal aging status of strength change. The structure observation, hardness test, tensile test, impact test and fatigue crack growth rates test for as-received and degraded material were also performed to evaluate static strength, toughness and fatigue crack growth behavior corresponding to the aging condition of CF8M. The results showed that the area fraction of σ-phase and hardness value increased with thermal aging time. But, for the impact values, upper shelf energy decreased and fatigue crack growth rates increased with σ-phase aging progressed than that of virgin material

  1. Continuous phase transition and critical behaviors of 3D black hole with torsion

    International Nuclear Information System (INIS)

    Ma, Meng-Sen; Liu, Fang; Zhao, Ren

    2014-01-01

    We study the phase transition and the critical behavior of the BTZ black hole with torsion obtained in (1 + 2)-dimensional Poincaré gauge theory. According to Ehrenfest’s classification, when the parameters in the theory are arranged properly, the BTZ black hole with torsion may possess the second-order phase transition which is also a smaller mass/larger mass black hole phase transition. Nevertheless, the critical behavior is different from the one in the van der Waals liquid/gas system. We also calculated the critical exponents of the relevant thermodynamic quantities, which are the same as the ones obtained in the Hořava-Lifshitz black hole and the Born–Infeld black hole. (paper)

  2. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  3. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    International Nuclear Information System (INIS)

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-01-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm±0.4 mm exists below which ignition by CO 2 laser is not possible at the tested irradiances of 29 W/cm 2 and 38 W/cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials

  4. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  5. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    Science.gov (United States)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  6. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    Science.gov (United States)

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of

  7. Precipitation kinetics and mechanical behavior in a solution treated and aged dual phase stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Badji, R., E-mail: riadbadji1@yahoo.fr [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Kherrouba, N.; Mehdi, B.; Cheniti, B. [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Bouabdallah, M. [LGSDS – ENP, 10, Avenue Hassan Badi, 16200 El Harrah, Alger (Algeria); Kahloun, C.; Bacroix, B. [LSPM – CNRS, Université Paris 13, 93430 Villetaneuse (France)

    2014-12-15

    The precipitation kinetics and the mechanical behavior in a solution treated and aged dual phase stainless steel (DSS) are investigated. X-ray diffraction, transmission and scanning electron microscopy techniques are used to characterize the microstructure and to identify its constituents. The precipitation kinetics analysis shows that the ferrite to σ phase transformation follows the modified Johnson Mehl Avrami (JMA) model containing an impingement parameter c that is adjusted to 0.3. Activation energies calculation leads to conclude that interface reaction is the main mechanism that controls the σ phase formation. Detailed analysis of the extent of the different tensile deformation domains reveals the significant contribution of both σ phase particles and dislocation accumulation to the strain hardening of the material. - Highlights: • The precipitation kinetics of the σ phase is affected by both soft and hard impingement phenomena. • Interface reaction is found to be the main mechanism that controls the ferrite to σ phase transformation. • Both σ phase particles and dislocation accumulation contribute to the strain hardening of the dual phase steel studied.

  8. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    Science.gov (United States)

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  9. Nonlinear dynamics in experimental devices with compressed/expanded surfactant monolayers

    International Nuclear Information System (INIS)

    Higuera, M; Perales, J M; Vega, J M

    2014-01-01

    A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin. (paper)

  10. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  11. Theory of lithium islands and monolayers: Electronic structure and stability

    International Nuclear Information System (INIS)

    Quassowski, S.; Hermann, K.

    1995-01-01

    Systematic calculations on planar clusters and monolayers of lithium are performed to study geometries and stabilities of the clusters as well as their convergence behavior with increasing cluster size. The calculations are based on ab initio methods using density-functional theory within the local-spin-density approximation for exchange and correlation. The optimized nearest-neighbor distances d NN of the Li n clusters, n=1,...,25, of both hexagonal and square geometry increase with cluster size, converging quite rapidly towards the monolayer results. Further, the cluster cohesive energies E c increase with cluster size and converge towards the respective monolayer values that form upper bounds. Clusters of hexagonal geometry are found to be more stable than square clusters of comparable size, consistent with the monolayer results. The size dependence of the cluster cohesive energies can be described approximately by a coordination model based on the concept of pairwise additive nearest-neighbor binding. This indicates that the average binding in the Li n clusters and their relative stabilities can be explained by simple geometric effects which derive from the nearest-neighbor coordination

  12. Overcrowding drives the unjamming transition of gap-free monolayers

    Science.gov (United States)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  13. XRD and SEM study on the phase separation and crystallization behavior for an amorphous Cu+ conductor

    International Nuclear Information System (INIS)

    Yang Yuan; Hou Jianguo; Yu Wenhai

    1990-01-01

    The X-ray diffraction (XRD) and scanning electron microscopy (SEM) study was carried out for an amorphous Cu + conductor 0.4 CuI-0.3 Cu 2 O-0.3 P 2 O 5 with the simultaneous conductivity measurement in the isothermal heat treament process. The results indicated that the initial amorphous material was phase-separated. In the course of time the separated amorphous phase disappeared, the crystalline γ-CuI and Cu 2 P 2 O 7 formed in sequence and grew up gradually. The correlation of the phase separation and crystallization behavior with the conductivity anomaly confirmed again the interface effect between different phases in amorphous fast ionic conductors and its universality

  14. Effects of sodium β-sitosteryl sulfate on the phase behavior of dipalmitoylphosphatidylcholine.

    Science.gov (United States)

    Kafle, Ananda; Misono, Takeshi; Bhadani, Avinash; Sakai, Kenichi; Kaise, Chihiro; Kaneko, Teruhisa; Sakai, Hideki

    2018-01-01

    We have studied the phase behavior of dipalmitoylphosphatidylcholine (DPPC) containing sodium β-sitosteryl sulfate (PSO 4 ). PSO 4 was found to lower the phase transition temperature of DPPC to a higher degree than cholesterol or β-sitosterol. It also gave rise to the formation of a modulated (ripple) phase (P β ) at low to moderate concentrations. At concentrations greater than 25 mol%, it completely changed the membrane into a fluid phase. This shows that PSO 4 is capable of disordering the hydrocarbon chains of PC efficiently. The characteristics of PSO 4 for fluidizing the membrane can be useful for the pharmaceutical and cosmetics industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  16. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  17. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  18. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  19. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  20. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    Science.gov (United States)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  1. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  2. Polymorphic Behavior and Phase Transition of Poly(1-Butene and Its Copolymers

    Directory of Open Access Journals (Sweden)

    Rui Xin

    2018-05-01

    Full Text Available The properties of semicrystalline polymeric materials depend remarkably on their structures, especially for those exhibiting a polymorphic behavior. This offers an efficient way to tailor their properties through crystal engineering. For control of the crystal structure, and therefore the physical and mechanical properties, a full understanding of the polymorph selection of polymers under varied conditions is essential. This has stimulated a mass of research work on the polymorphic crystallization and related phase transformation. Considering that the isotactic poly(1-butene (iPBu exhibits pronounced polymorphs and complicated transition between different phases, the study on its crystallization and phase transformation has attracted considerable attention during the past decades. This review provides the context of the recent progresses made on the crystallization and phase transition behavior of iPBu. We first review the crystal structures of known crystal forms and then their formation conditions and influencing factors. In addition, the inevitable form II to form I spontaneous transition mechanism and the transformation kinetics is reviewed based on the existing research works, aiming for it to be useful for its processing in different phases and the further technical development of new methods for accelerating or even bypass its form II to form I transformation.

  3. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    Science.gov (United States)

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  4. 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2014-08-30

    Highlights: • 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1) surface were grown by supersonic molecular beam deposition. • Two different lying down monolayer phases were observed depending on the substrate temperature. • High temperature monolayer phase has a diffraction pattern similar to that of mercaptoundecanol SAMs. • Desorption from several different chemisorbed and physisorbed states were observed. - Abstract: Here, we report a helium atom diffraction study of 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) self-assembled monolayers (SAMs) produced by supersonic molecular beam deposition (SMBD). Two different lying down monolayer phases were observed depending on the substrate temperature. At low temperatures a poorly ordered phase was observed, while the diffraction patterns of the film grown at high temperatures were similar to that of mercaptoundecanol (MUD) SAMs reported previously in the literature. The transition from the low temperature phase to the high temperature phase is due to S-S bond cleavage at the surface. Desorption from several different chemisorbed and physisorbed states were observed with energies in the same range as observed for MUD and octadecanelthiol (ODT) SAMs.

  5. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  6. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  7. The phase behavior of polydisperse multiblock copolymer melts: (a theoretical study)

    OpenAIRE

    Angerman, Hindrik Jan

    1998-01-01

    Summary The main theme of this thesis is the influence of polydispersity on the phase behavior of copolymer melts. With “polydispersity” we do not only refer to polydispersity in overall chain length, but also to polydispersity in the composition and the monomer sequence of the chains. Study of the influence of polydispersity is important because synthesizing purely monodisperse copolymers is very difficult, and for most polymerization techniques the occurrence of a certain degree of polydisp...

  8. Scaling behavior in first-order quark-hadron phase transition

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1994-01-01

    It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition the normalized factorial moments exhibit scaling behavior. The scaling exponent ν depends on only one effective parameter g, which characterizes the strength of the transition. For a strong first-order transition, we find ν=1.45. For weak transition it is 1.30 in agreement with the earlier result on second-order transition

  9. Effect of three-body forces on the phase behavior of charged colloids

    International Nuclear Information System (INIS)

    Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.

    2000-01-01

    Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics

  10. Phase change heat transfer and bubble behavior observed on twisted wire heater geometries in microgravity

    International Nuclear Information System (INIS)

    Munro, Troy R.; Koeln, Justin P.; Fassmann, Andrew W.; Barnett, Robert J.; Ban, Heng

    2014-01-01

    Highlights: • Subcooled water boiled in microgravity on twists of thin wires. • Wire twisting creates heat transfer enhancements because of high local temperatures. • A preliminary version of a new bubble dynamics method is discussed. • A critical distance that fluid must be superheated for boiling onset is presented. - Abstract: Phase change is an effective method of transferring heat, yet its application in microgravity thermal management systems requires greater understanding of bubble behavior. To further this knowledge base, a microgravity boiling experiment was performed (floating) onboard an aircraft flying in a parabolic trajectory to study the effect of surface geometry and heat flux on phase change heat transfer in a pool of subcooled water. A special emphasis was the investigation of heat transfer enhancement caused by modifying the surface geometry through the use of a twist of three wires and a twist of four wires. A new method for bubble behavior analysis was developed to quantify bubble growth characteristics, which allows a quantitative comparison of bubble dynamics between different data sets. It was found that the surface geometry of the three-wire twist enhanced heat transfer by reducing the heat flux needed for bubble incipience and the average wire temperature in microgravity. Simulation results indicated that increased local superheating in wire crevices may be responsible for the change of bubble behavior seen as the wire geometry configuration was varied. The convective heat transfer rate, in comparison to ground experiments, was lower for microgravity at low heating rates, and higher at high heating rates. This study provides insights into the role of surface geometry on superheating behavior and presents an initial version of a new bubble behavior analysis method. Further research on these topics could lead to new designs of heater surface geometries using phase change heat transfer in microgravity applications

  11. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials

    Science.gov (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui

    2017-06-01

    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  12. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  13. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  14. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    Science.gov (United States)

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  15. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  16. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  17. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.

    2011-01-01

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  18. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  19. Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; Iraoui, S.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); Ibn Zohr University, LMTI, Physics Department, Faculty of Sciences, Agadir (Morocco)

    2016-12-15

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of Liu et al. (JHEP 1409:179, 2014) to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension d in the isobaric process. As to the isothermal case, we find that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first-order phase transition, but fail to disclose the signature of the second-order phase transition. (orig.)

  20. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  1. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  2. Ultralow lattice thermal conductivity in monolayer C3N as compared to graphene

    KAUST Repository

    Sarath Kumar, S. R.

    2017-09-21

    Using density functional theory and the Boltzmann transport equation for phonons, we demonstrate that the thermal conductivity is massively reduced in monolayer CN as compared to isostructural graphene. We show that larger phase space for three-phonon scattering processes is available in monolayer CN, which results in much shorter phonon life-times. Although both materials are characterized by sp hybridisation, anharmonicity effects are found to be enhanced for the C-N and C-C bonds in monolayer CN, reflected by a Grüneisen parameter of -8.5 as compared to -2.2 in graphene. The combination of these properties with the fact that monolayer CN is organic, non-toxic, and built of earth abundant elements gives rise to great potential in thermoelectric applications.

  3. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y., E-mail: yamada@bk.tsukuba.ac.jp; Sasaki, M. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  4. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  5. Atomic Defects and Doping of Monolayer NbSe2.

    Science.gov (United States)

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J P; Lawlor, Sean; Sanchez, Ana M; Sloan, Jeremy; Gorbachev, Roman V; Grigorieva, Irina V; Krasheninnikov, Arkady V; Haigh, Sarah J

    2017-03-28

    We have investigated the structure of atomic defects within monolayer NbSe 2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe 2 lattice stabilizing Se divacancies. We further observe evidence of Pt substitution into both Se and Nb vacancy sites. This knowledge of the character and relative frequency of different atomic defects provides the potential to better understand and control the unusual electronic and magnetic properties of this exciting two-dimensional material.

  6. Point defect weakened thermal contraction in monolayer graphene.

    Science.gov (United States)

    Zha, Xian-Hu; Zhang, Rui-Qin; Lin, Zijing

    2014-08-14

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitude and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.

  7. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  8. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  9. Conduction quantization in monolayer MoS2

    Science.gov (United States)

    Li, T. S.

    2016-10-01

    We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.

  10. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  11. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases

    Science.gov (United States)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang

    2014-01-01

    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  12. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  13. Co-operation and Phase Behavior under the Mixed Updating Rules

    International Nuclear Information System (INIS)

    Zhang Wen; Li Yao-Sheng; Xu Chen

    2015-01-01

    We present a model by considering two updating rules when the agents play prisoner's dilemma on a square lattice. Agents can update their strategies by referencing one of his neighbors of higher payoffs under the imitation updating rule or directly replaced by one of his neighbors according to the death-birth updating rule. The frequency of co-operation is related to the probability q of occurrence of the imitation updating or the death-birth updating and the game parameter b. The death-birth updating rule favors the co-operation while the imitation updating rule favors the defection on the lattice, although both rules suppress the co-operation in the well-mixed population. Therefore a totally co-operative state may emerge when the death-birth updating is involved in the evolution when b is relatively small. We also obtain a phase diagram on the q-b plane. There are three phases on the plane with two pure phases of a totally co-operative state and a totally defective state and a mixing phase of mixed strategies. Based on the pair approximation, we theoretically analyze the phase behavior and obtain a quantitative agreement with the simulation results. (paper)

  14. Dynamics of decanethiol self-assembled monolayers on Au(111) studied by Scanning tunnelling microscopy

    NARCIS (Netherlands)

    Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.

    2013-01-01

    We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and ) and a disordered phase (ε) were observed. Current–time traces with the feedback loop disabled

  15. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons

    2013-01-01

    to predict the phase behavior of the multicomponent systems. It was shown that CPA is capable of predicting the phase behavior of such complex systems containing polar and associating components at high temperatures and pressures with reasonable accuracy considering the non-ideality of such mixtures......-Plus-Association (CPA) equation of state was applied to model the phase behavior of the experimentally studied systems. In this regard, the CPA binary interaction parameters were estimated based on experimental data for the corresponding binary systems available in the literature, and subsequently the model was applied...

  16. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  17. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  18. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  19. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  20. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    Science.gov (United States)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled

  1. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  2. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Charles E. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zwanikken, Jos W.; Olvera de la Cruz, Monica [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  3. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    International Nuclear Information System (INIS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-01-01

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers

  4. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  5. Retention behavior of resorcinarene-based cavitands on C8 and C18 stationary phases.

    Science.gov (United States)

    Bartó, Endre; Prauda, Ibolya; Kilár, Ferenc; Kiss, Ibolya; Felinger, Attila

    2015-09-01

    The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene-based cavitands are cavity-shaped cyclic oligomers that can create host-guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high-performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18 ) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phase behavior of the modified-Yukawa fluid and its sticky limit.

    Science.gov (United States)

    Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón

    2013-11-14

    Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.

  7. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  8. Phase Behavior Modeling of Asphaltene Precipitation for Heavy Crudes: A Promising Tool Along with Experimental Data

    Science.gov (United States)

    Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.

    2012-12-01

    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an

  9. High-pressure phase behavior of propyl lactate and butyl lactate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Cho, Dong Woo; Shin, Jungin; Shin, Moon Sam; Bae, Won; Kim, Hwayong

    2012-01-01

    Highlights: ► The phase behavior of propyl lactate and butyl lactate in scCO 2 was measured. ► Experimental data were correlated by the PR-EOS. ► The critical constants were estimated by the three group contribution methods. ► Acentric factor was estimated by the Lee–Kesler method. ► The Nannoolal–Rarey and Lee–Kesler method shows the best correlation results. - Abstract: Lactate esters synthesized with lactic acid and ester are used as solvents and reactants in various industries, including agricultural chemistry, pharmaceuticals, electronics, and fine chemicals. Among lactate esters, high purity propyl lactate and butyl lactate are used to produce fine chemicals and in the synthesis of chiral intermediates for use in pesticides and drugs. However, distillation for the removal of propyl lactate and butyl lactate alters or degenerates products due the high boiling points of these two lactate esters. This problem can be solved by supercritical fluid extraction (SCFE) at lower temperatures. SCFE process requires high-pressure phase behavior data on CO 2 and lactates for its design and operation. In this study, high-pressure phase behavior of propyl lactate and butyl lactate in CO 2 was measured from (323.2 to 363.2) K using a variable-volume view cell apparatus. Experimental data were well correlated by the Peng–Robinson equation of state using the van der Waals one-fluid mixing rules. The critical constants were estimated by the Joback method, the Constantinou–Gani method, and the Nannoolal–Rarey method. Acentric factor was estimated by the Lee–Kesler method.

  10. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  11. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Yoshida, Hiroyuki; Abe, Yutaka

    2016-01-01

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  12. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  13. Microstructure, Corrosion and Magnetic Behavior of an Aged Dual-Phase Stainless Steel

    Science.gov (United States)

    Ziouche, A.; Haddad, A.; Badji, R.; Zergoug, M.; Zoubiri, N.; Bedjaoui, W.; Abaidia, S.

    2018-03-01

    In the present work, the effect of the precipitation phenomena on corrosion and magnetic behavior of an aged dual-phase stainless steel was investigated. Aging treatment caused the precipitation of the σ phase, chromium carbides and secondary austenite, which was accompanied by the shifting of the δ/γ interfaces inside the δ ferrite grains. Aging between 700 and 850 °C strongly deteriorated the pitting corrosion resistance of the studied material. Magnetic investigation of the aged material using the vibration sample magnetic technique revealed the sensitivity of the intrinsic magnetic properties to the smallest microstructural change. This was confirmed by the Eddy current technique that led also to the evaluation of the aging-induced localized corrosion.

  14. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C-14-peptides

    DEFF Research Database (Denmark)

    Pedersen, T.B.; Kaasgaard, Thomas; Jensen, M.O.

    2005-01-01

    The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated...... peptide, which is a synthetic decapeptide N-terminally linked to a C-14 acyl chain (C-14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C-14-peptide on the lipid bilayer...... gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C-14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10...

  15. Phase behavior of UCST blends: Effects of pristine nanoclay as an effective or ineffective compatibilizer

    Directory of Open Access Journals (Sweden)

    F. Hemmati

    2013-12-01

    Full Text Available The effects of unmodified nanoclay (natural montmorillonite on the miscibility, phase behavior and phase separation kinetics of polyethylene (PE/ethylene vinyl acetate copolymer (EVA blends have been investigated. Depending on the blend composition, it was observed that the intercalated pristine nanoclay influences the biphasic morphology either as an effective compatibilizer or just as an ineffectual modifier. In spite of the presence of micrometer-sized agglomerated tactoids, natural nanoclay can play a thermodynamic role in reducing the interfacial tension of polymer components. The addition of clay nanoparticles was found to change the phase diagram slightly and diminishes the composition dependency of the binodal temperatures. Moreover, it was observed that a small amount of unmodified layered silicate slows down the phase separation process considerably and enhances the solubility of each polymer in the domains of its counterpart. The findings of this study verify that even poorly dispersed nanoclay with high surface tension can act as a conventional compatibilizer and change the immiscible PE/EVA blends to the partially miscible ones.

  16. Effects of elongation on the phase behavior of the Gay-Berne fluid

    Science.gov (United States)

    Brown, Julian T.; Allen, Michael P.; Martín del Río, Elvira; Miguel, Enrique De

    1998-06-01

    In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation κ. We study a range of length-to-width parameters 3moves to lower temperature until it falls below the I-SB coexistence line, around κ=3.4, where liquid-vapor coexistence proves hard to establish. The liquid-vapor critical point seems to be completely absent at κ=4.0. Another dramatic effect is the growth of a stable SA ``island'' in the phase diagram at elongations slightly above κ=3.0. The SA range extends to both higher and lower temperatures as κ is increased. Also as κ is increased, the I-N transition is seen to move to lower density (and pressure) at given temperature. The lowest temperature at which the nematic phase is stable does not vary dramatically with κ. On cooling, no SB-crystal transition can be identified in the equation of state for any of these elongations; we suggest that, on the basis of simulation evidence, SB and crystal are really the same phase for these models.

  17. PRECIPITATION BEHAVIOR OF Co PHASES IN B2-ORDERED(Ni,Co)Al COMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; A.L. Fan; M. Nemoto

    2002-01-01

    The precipitation behavior of Co phases in B2-ordered (Ni, Co)Al has been investigatedin terms of transmission electron microscopy. Fine precipitation off cc-Co occurs in(Ni, Co)Al by aging at temperature over 973K. The orientation relationship betweenthe fcc-Co precipitates and the B2-(Ni, Co)Al matrix follows the Kurdjumow-Sachs(K-S) orientation relation. But when the aging temperature is under 873K the Coprecipitates have a hcp crystal structure. The orientation relationship between thehcp-Co precipitates and the B2-(Ni, Co)Al matrix follows the Burgers orientation re-lation. (Ni, Co)Al is hardened appreciably by the fine precipitation of both the fcc-Coand hcp-Co phases. The temperature dependence of the yield strength of precipitate-containing B2-ordered (Ni, Co)Al was investigated by compression tests over the rangeof 298-1273K. The fine precipitation of Co phases enhances greatly the low and in-termediate temperature yield strength. When the deformation temperature was over873K, the strength of precipitate-containing (Ni, Co)Al is comparable to ternary dual-phase (Ni, Co)Al+Ni3Al alloy.

  18. Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles

    International Nuclear Information System (INIS)

    Mahmoudi, A.; Ghavidel, M.R. Zamanzad; Nedjad, S. Hossein; Heidarzadeh, A.; Ahmadabadi, M. Nili

    2011-01-01

    Cold rolling and annealing of homogenized Fe-Ni-Mn-Mo-Ti-Cr maraging steels resulted in the formation of submicrocrystalline Fe 2 (Mo,Ti) Laves phase particles. Optical and scanning electron microscopy, X-ray diffraction, tensile and hardness tests were used to study the microstructure, aging behavior and mechanical properties of the annealed steels. The annealed microstructures showed age hardenability during subsequent isothermal aging at 753 K. Ultrahigh fracture stress but poor tensile ductility was obtained after substantial age hardening in the specimens with 2% and 4% chromium. Increasing chromium addition up to 6% toughened the aged microstructure at the expense of the fracture stress by increasing the volume fraction of retained austenite. The Laves phase particles acted as crack nucleation sites during tensile deformation. - Highlights: → Laves phases dispersed in a BCC iron matrix by annealing of cold rolled samples. → The samples showed age hardenability during subsequent isothermal aging at 753 K. → Ultrahigh fracture stress but poor ductility was obtained after age hardening. → Increasing chromium addition toughened the aged microstructure. → Laves phase particles acting as crack nucleation sites during tensile deformation.

  19. Real-Time Visualization of the Precipitation and Phase Behavior of Octaethylporphyrin in Lipid Microparticles

    DEFF Research Database (Denmark)

    Parra, Elisa; Hervella, Pablo; Needham, David

    2017-01-01

    , as single microparticles. We employed a real-time, single-particle microscopic technique based on micropipette injection to characterize the behavior of these materials and their mixtures upon solvent loss and precipitation. A clear phase separation was observed between the triolein liquid core...... supersaturations. This type of real-time, single-particle characterization is expected to offer important information about the formulation of other hydrophobic compounds of interest, where finding the proper encapsulation environment is a key step for their retention and stability....

  20. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends

    OpenAIRE

    LIU Jing-ru; XIA Yang-yang; GAO Li-qun; YU Qiang

    2017-01-01

    The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the ...

  1. Oculomotor Behavior Metrics Change According to Circadian Phase and Time Awake

    Science.gov (United States)

    Flynn-Evans, Erin E.; Tyson, Terence L.; Cravalho, Patrick; Feick, Nathan; Stone, Leland S.

    2017-01-01

    There is a need for non-invasive, objective measures to forecast performance impairment arising from sleep loss and circadian misalignment, particularly in safety-sensitive occupations. Eye-tracking devices have been used in some operational scenarios, but such devices typically focus on eyelid closures and slow rolling eye movements and are susceptible to the intrusion of head movement artifacts. We hypothesized that an expanded suite of oculomotor behavior metrics, collected during a visual tracking task, would change according to circadian phase and time awake, and could be used as a marker of performance impairment.

  2. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  3. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-10-17

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations in InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  4. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  5. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    Science.gov (United States)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS

  6. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    Science.gov (United States)

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  7. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Science.gov (United States)

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  8. Monolayer MoS{sub 2} self-switching diodes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dirini, Feras, E-mail: alf@unimelb.edu.au; Hossain, Md Sharafat [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Victorian Research Laboratory, National ICT Australia, West Melbourne, Victoria (Australia); Hossain, Faruque M.; Skafidas, Efstratios [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Mohammed, Mahmood A. [Princess Sumaya University for Technology, Amman (Jordan); Nirmalathas, Ampalavanapillai [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Melbourne Networked Society Institute (MNSI), University of Melbourne, Victoria (Australia)

    2016-01-28

    This paper presents a new molybdenum disulphide (MoS{sub 2}) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS{sub 2} monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS{sub 2} results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  9. Conformations and orientations of a signal peptide interacting with phospholipid monolayers

    International Nuclear Information System (INIS)

    Cornell, D.G.; Dluhy, R.A.; Briggs, M.S.; McKnight, C.J.; Gierasch, L.M.

    1989-01-01

    The interaction of a chemically synthesized 25-residue signal peptide of LamB protein from Escherichia coli with phospholipids has been studied with a film balance technique. The conformation, orientation, and concentration of the peptides in lipid monolayers have been determined from polarized infrared spectroscopy, ultraviolet spectroscopy, and assay of 14 C-labeled peptide in transferred films. When the LamB signal peptide in injected into the subphase under a phosphatidylethanolamine-phosphatidylglycerol monolayer at low initial pressure, insertion of a portion of the peptide into the lipid film is evidenced by a rapid rise in film pressure. Spectroscopic results obtained on films transferred to quartz plates and Ge crystals show that the peptide is a mixture of α-helix and β-conformation where the long axis of the α-helix penetrates the monolayer plane and the β-structure which is coplanar with the film. By contrast, when peptide is injected under lipid at high initial pressure, no pressure rise is observed, and the spectroscopic results show the presence of only β-structure which is coplanar with the monolayer. The spectroscopic and radioassay results are all consistent with the picture of a peptide anchored to the monolayer through electrostatic binding with a helical portion inserted into the lipid region of the monolayer and a β-structure portion resident in the aqueous phase. The negative charges on the lipid molecules are roughly neutralized by the positive charges of the peptide

  10. Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β-α phase transformation

    International Nuclear Information System (INIS)

    Knepper, Robert; Stevens, Blake; Baker, Shefford P.

    2006-01-01

    Tantalum thin films were prepared in the metastable β phase, and their thermomechanical behaviors were investigated in situ in an ultrahigh vacuum environment. Controlled levels of oxygen were incorporated into the films either during deposition, by surface oxidation after deposition, or during thermomechanical testing. The transformation from the β phase to the stable α phase takes place in conjunction with a distinct increase in tensile stress. The thermomechanical behavior is strongly affected by the amount of oxygen to which the film is exposed and the method of exposure. Increasing oxygen content inhibits the phase transformation, requiring higher temperatures to reach completion. It is shown that the phase transformation takes place by a nucleation and growth process that is limited by growth. Changes in the activation energy for the phase transformation due to solute drag are estimated as a function of oxygen content and the mechanisms behind the stress evolution are elucidated

  11. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  12. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  13. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed.

    Science.gov (United States)

    Solís-Fuentes, Julio A; Camey-Ortíz, Guadalupe; Hernández-Medel, María del Rosario; Pérez-Mendoza, Francisco; Durán-de-Bazúa, Carmen

    2010-01-01

    In this paper, the chemical composition, the main physicochemical properties, phase behavior and thermal stability of rambutan (Nephelium lappaceum L.) seed fat were studied. These results showed that the almond-like decorticated seed represents 6.1% of the wet weight fruit and is: 1.22% ash, 7.80% protein, 11.6% crude fiber, 46% carbohydrates, and 33.4% fat (d.b.). The main fatty acids in the drupe fat were 40.3% oleic, 34.5% arachidic, 6.1% palmitic, 7.1% stearic, 6.3% gondoic, and 2.9% behenic; the refraction, saponification and iodine values were 1.468, 186, and 47.0, respectively. The phase behavior analysis showed relatively simple crystallization and melting profiles: crystallization showed three well-differentiated groups of triglycerides around maximum peaks at +30.8, +15.6 and -18.1 degrees C; the fat-melting curve had a range between -14.5 and +51.8 degrees C with a fusion enthalpy of 124.3 J/g. The thermal stability analyzed in an inert atmosphere of N(2) and in a normal oxidizing atmosphere, showed that in the latter, fat decomposition begins at 237.3 degrees C and concludes at 529 degrees C, with three stages of decomposition. According to these results, rambutan seed fat has physicochemical and thermal characteristics that may become interesting for specific applications in several segments of the food industry.

  14. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  15. Relationship transitions and change in health behavior: A four-phase, twelve-year longitudinal study.

    Science.gov (United States)

    Josefsson, Kim; Elovainio, Marko; Stenholm, Sari; Kawachi, Ichiro; Kauppi, Maarit; Aalto, Ville; Kivimäki, Mika; Vahtera, Jussi

    2018-03-19

    Extensive scientific evidence shows an association between involvement in social relationships and healthy lifestyle. Prospective studies with many participants and long follow-ups are needed to study the dynamics and change in social factors within individuals over time. Our aim was to determine whether a change in relationship status (single, married, divorced, widow, cohabiting) is followed by a change in health behavior (smoking, alcohol consumption, physical activity, and body mass index). We used data from 81,925 healthy adults participating in the prospective longitudinal Finnish Public Sector Study in the period 2000-2013. We analyzed 327,700 person-observations from four data collection phases. Missing data were multiply imputed. A within-individual methodology was used to minimize the possibility of selection effects affecting the interpretation. All four health behaviors showed associations with relationship status. The effects were very similar and in the same direction in women and men, although there were gender differences in the magnitudes of the effects. The end of a relationship was followed by a decrease in body mass index, increased odds of being a smoker, increase in physical activity, and increase in alcohol consumption (widowed men). The effects were reverse when forming a new relationship. A change in relationship status is associated with a change in health behavior. The association is not explained by socioeconomic status, subjective health status, or anxiety level. People leaving or losing a relationship are at increased risk of unhealthy behavior (smoking and alcohol consumption), but at the same time they have a lower BMI and show higher physical activity compared to the time they were in a relationship. It is not clear if the cumulative health effect of these health behavior changes is positive or negative. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Superconductivity in the graphene monolayer calculated using the Kubo formulalism

    Science.gov (United States)

    Lima, L. S.

    2018-03-01

    We have employed the massless Dirac's fermions formalism together with the Kubo's linear response theory to study the transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC electric conductivities of the system that is known to be a relativistic electron plasma. Our results show a superconductor behavior to the electron transport and consequently the spin transport for all values of T > 0 and a behavior of the AC conductivity tending to infinity in the limit ω → 0. In T = 0 our results show an insulator behavior with a transition from a superconductor state at T > 0 to an insulator state at T = 0 .

  17. Pattern Formation in Langmuir Monolayers Due to Long-Range Electrostatic Interactions

    Science.gov (United States)

    Fischer, Thomas M.; Lösche, Mathias

    A distinctive characteristic of Langmuir monolayers that bears important consequences for the physics of structure formation within membranes is the uniaxial orientation of the constituent dipolar molecules, brought about by the symmetry break which is induced by the surface of the aqueous substrate. The association of oriented molecular dipoles with the interface leads to the formation of image dipoles within the polarizeable medium - the subphase - such that the effective dipole orientation of every of the individual molecules is strictly normal to the surface, even within molecularly disordered phases. As a result, dipole-dipole repulsions play an eminently important role for the molecular interactions within the system - independent of the state of phase (while the dipole area density does of course depend on the state of phase) - and control the morphogenesis of the phase boundaries in their interplay with the one-dimensional (1D) line tension between coexisting phases. The physics of these phenomena is only now being explored and is particularly exciting for systems within a three-phase coexistence region where complete or partial wetting, as well as dewetting between the coexisting phases may be experimentally observed by applying fluorescence microscopy to the monolayer films. It is revealed that the wetting behavior depends sensitively on the details of the electrostatic interactions, in that the apparent contact angles observed at three-phase contact points depends on the sizes of the coexisting phases. This is in sharp contrast to the physics of wetting in conventional 3D systems where the contact angle is a materials property, independent of the local details. In 3D systems, this leads to Youngs equation - which has been established more than two centuries ago. We report recent progress in the understanding of this unusual and rather unexpected behavior of a quasi-2D system by reviewing recent experimental results from optical microscopy on equilibrium

  18. Characteristic behavior of bubbles and slugs in transient two-phase flow using image-processing method

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishizaki, Yasuo; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Simulation of transient two-phase flow has been performed by solving transient hydrodynamic equations. However, constitution relations used in this simulation are primarily based on steady-state experimental results. Thus it is important to understand the transient behavior of bubbles and slugs, in particular, transient behavior of the void fraction, the interfacial area and the flow pattern, to confirm the applicability of the present simulation method and to advance two-phase flow simulation further. The present study deals with measurement of transient two-phase flow. We have measured local and instantaneous void fractions using imaging techniques, and compared the experimental data with simulation results. (author)

  19. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  20. Effect of vision angle on the phase transition in flocking behavior of animal groups.

    Science.gov (United States)

    Nguyen, P The; Lee, Sang-Hee; Ngo, V Thanh

    2015-09-01

    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995)PRLTAO0031-900710.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ=ϕ/2 (ϕ is called the angle of view) of a circle centered at its position of radius R. We obtained a phase diagram in the space (φ,η_{c}) with η_{c} being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ≥0.5π. The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006)PHYADX0378-437110.1016/j.physa.2005.11.041].

  1. Effect of vision angle on the phase transition in flocking behavior of animal groups

    Science.gov (United States)

    Nguyen, P. The; Lee, Sang-Hee; Ngo, V. Thanh

    2015-09-01

    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995), 10.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ =ϕ /2 (ϕ is called the angle of view) of a circle centered at its position of radius R . We obtained a phase diagram in the space (φ ,ηc ) with ηc being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ ≥0.5 π . The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006), 10.1016/j.physa.2005.11.041].

  2. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  3. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  4. Analysis of large two phase uranium dioxide bubble behavior in water and sodium pools

    International Nuclear Information System (INIS)

    Webb, R.L.

    1984-05-01

    An understanding of the behavior of large, two-phase UO 2 bubbles is important in assessing the consequences of a hypothetical core disruptive accident in a fast reactor. The UVABUBL II computer program was written to study the dynamics and heat and mass transfer in large UO 2 bubbles, and the code was used to analyze data from the underwater and undersodium FAST experiments conducted at Oak Ridge National Laboratory in which the behavior of UO 2 bubbles under a wide variety of conditions was examined. Significant understanding of the phenomena that govern UO 2 bubble behavior in both water and sodium was obtained by matching calculations of pressure, bubble size, and bubble growth and collapse rate to the experimental data. Heat and mass transfer included radiative heat losses and coolant entrainment. Larger heat transfer rates were calculated for the water tests with significant surface vaporization occurring. Because of the high thermal conductivity of sodium, no surface vaporization was calculated for the sodium tests. Entrainment was not found to be necessary for either the water or sodium tests, but calculations that included entrainment implied that it may be occurring. 38 references

  5. Morphological changes of monolayers of two polymerizable pyridine amphiphiles upon complexation with Cu(II) ions at the air-water interface

    NARCIS (Netherlands)

    Werkman, P.J.; Schouten, A.J.; Noordegraaf, M.A.; Kimkes, P.; Sudhölter, E.J.R.

    1998-01-01

    The monolayer behavior of two amphiphilic, diacetylenic units containing pyridine Ligands at the air-water interface is studied by measuring the surface pressure-area isotherms and by Brewster angle microscopy(BAM). Both amphiphiles form stable monolayers at the air-water interface. The amphiphile

  6. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  7. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  8. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  9. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  10. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  11. Janus Monolayer Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  12. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  13. Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2

    KAUST Repository

    Gan, Liyong

    2015-12-07

    By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.

  14. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  15. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  16. Comparison of electronic structure between monolayer silicenes on Ag (111)

    Science.gov (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  17. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1989-01-01

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  18. Study of the helium cross-section of unsymmetric disulfide self-assembled monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2016-12-30

    Highlights: • Unsymmetrtic disulfide (HDD and HOD) self assembled monolayers were grown on Au(111) by supersonic molecular beam deposition. • Helium scattering cross sections for these two different unsymmetric disulfides were determined. • A common low temperature film phase was observed for the studied disulfides. - Abstract: We have investigated the formation of self-assembled monolayers (SAMs) of 11-hydroxyundecyl decyl disulfide (CH{sub 3}-(CH{sub 2}){sub 9}-S-S-(CH{sub 2}){sub 11}-OH, HDD) and 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) produced by supersonic molecular beam deposition (SMBD). The study has been carried out by means of helium diffraction at very low film coverage. In this regime helium single molecule cross sections have been estimated in a temperature range between 100 K and 450 K. The results show a different behavior above 300 K that has been interpreted as the starting of mobility with the formation of two thiolate moieties either linked by a gold adatom or distant enough to prevent cross section overlapping. Finally, helium diffraction patterns measured at 80 K for the SAMs grown at 200 K are discussed and the results support the proposed hypothesis of molecular dissociation based on the cross section data.

  19. Lateral Interactions in Monolayer Thick Mercury Films

    Science.gov (United States)

    Kime, Yolanda Jan

    An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through

  20. Artificially phase-separated binary self-assembled monolayers composed of 11-amino-1-undecanethiolate and 10-carboxy-1-decanethiolate on Au(1 1 1): A comparative study of two preparing methods

    International Nuclear Information System (INIS)

    Phong, Pham Hong; Tomono, Hyroyuki; Nishi, Naoya; Yamamoto, Masahiro; Kakiuchi, Takashi

    2008-01-01

    Two methods have been compared for preparing artificially phase-separated two-component SAMs on Au(1 1 1) composed of 11-amino-1-undecanethiolates (AUTe) and 10-carboxyl-1-decanethiolates (CDTe), which would form, thermodynamically, a homogeneously mixed binary SAMs. The first method starts with the formation of a phase-separated binary SAM of AUTe and 2-hydroxy-1-ethanethiolate (HETe) as a template of the artificially phase-separated SAM, followed by the selective desorption of HETe domains and succeeding filling of the vacancy with CDTe. The second method utilizes fluoren-9-ylmethyl N-(11-mercaptoundecyl) carbamate (FMUCe) instead of 11-amino-1-undecanethiol in preparing the template. After the filling with CDTe, the 9-fluorenylmethyloxycarbonyl (Fmoc) group is removed to obtain AUTe domains. Both methods yield artificially phase-separated binary SAMs having AUTe domains of tens nanometer across. The molecularly flat SAM surface with nanometer-scale domains of different acid-base and electrostatic properties are thus created. For preparing binary SAMs with a higher degree of phase separation, the second method is a better choice; a more clear-cut phase separation is achieved

  1. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  2. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  3. Adiabatic quantum games and phase-transition-like behavior between optimal strategies

    Science.gov (United States)

    de Ponte, M. A.; Santos, Alan C.

    2018-06-01

    In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.

  4. Solubility and phase behaviors of DGA compounds in supercritical CO2

    International Nuclear Information System (INIS)

    Li Jia; Meng Qingyang

    2010-01-01

    Solubility and phase behaviors of DGA compounds in supercritical CO 2 (Sc-CO 2 ) was investigated. The results indicated: The dissolving ability of these six DGA compounds in Sc-CO 2 is TEDGA> TBDGA>THDGA>TODGA>TDDGA >TDdDGA; The solubility of DGA in Sc-CO 2 increase with increasing density of CO 2 , pressure and δ CO 2 ; The structure of DGA compounds is the mainly factor effected on solubility of DGA compounds in Sc-CO 2 , and the effect of hydrophobicity on solubility is much smaller than that of DGA's structure. In Sc-CO 2 , TDDGA and TDdDGA can't form the available extraction system; TEDGA and TBDGA are useful for extraction of solid powder; TODGA and THDGA are both useful for extraction of solid powder and solution contained some kind of actinide metal. (authors)

  5. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  6. Thermophysical Properties and Phase Behavior of Fluids for Application in Carbon Capture and Storage Processes.

    Science.gov (United States)

    Trusler, J P Martin

    2017-06-07

    Phase behavior and thermophysical properties of mixtures of carbon dioxide with various other substances are very important for the design and operation of carbon capture and storage (CCS) processes. The available empirical data are reviewed, together with some models for the calculation of these properties. The systems considered in detail are, first, mixtures of carbon dioxide, water, and salts; second, carbon dioxide-rich nonelectrolyte mixtures; and third, mixtures of carbon dioxide with water and amines. The empirical data and the plethora of available models permit the estimation of key fluid properties required in the design and operation of CCS processes. The engineering community would benefit from the further development, and delivery in convenient form, of a small number of these models sufficient to encompass the component slate and operating conditions of CCS processes.

  7. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  8. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Etude sur la prédiction de l'inversion de phase Phase Inversion Behavior for Liquid Dispersions

    Directory of Open Access Journals (Sweden)

    Decarre S.

    2006-12-01

    Full Text Available En écoulement diphasique eau-huile dans lequel une des phases est dispersée dans l'autre, il peut se produire sous certaine condition d'écoulement une inversion de phase, la phase continue devenant dispersée. Ce phénomène, qui contrôle la nature de la phase mouillant la paroi de la conduite dans laquelle s'écoulent les phases, a des conséquences importantes sur la corrosion et sur la perte de charge. Nous présentons un modèle d'inversion, basé sur une approche thermodynamique, valable pour tous les régimes d'écoulement. Les données expérimentales utilisées pour la validation du modèle sont issues d'une étude bibliographique. En écoulement laminaire, cette approche conduit à des résultats similaires à ceux du modèle de Yeh. Pour la plupart des données disponibles, ce modèle prédit bien la fraction critique pour laquelle l'inversion de phase se produit. In two phase oil-water dispersed flow, a phase inversion may occur whereby the continuous phase becomes dispersed. This phenomenon which controls the nature of the phase in contact with the pipe has a great importance on the corrosion and on the pressure drop. A model for the phase inversion is presented, it is based on a thermodynamic approach, and it is valid for all flow regimes. Experimental data from the litterature are used to validate the model. In laminar flow, this approach gives similar results to those obtained by Yeh. For most data, the model agrees well with the experimental data.

  10. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    Science.gov (United States)

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  11. Iron Damage and Spalling Behavior below and above Shock Induced α ε Phase Transition

    International Nuclear Information System (INIS)

    Voltz, Christophe; Buy, Francois; Roy, Gilles

    2006-01-01

    The study of dynamic damage and fracture of iron has been undertaken below and above phase transition by series of time resolved experiments using both light gas launcher and powder gun. Shock wave tests were conducted by symmetrical impacts of high purity iron. To reveal the material behavior we have done shock experiments where the target is covered with a window in order to limit release amplitude and to avoid specimen fragmentation. Metallurgical analysis of soft recovered samples yields information about damage and fracture processes related to thermo-mechanical loading paths. Tests conducted without window allow studying effects of both phase change and release transition. Optical and SEM characterizations lead us to observe several modes of damage: brittle, ductile diffuse with void growth and heavily localized smooth one. These figures are related with: rarefaction shock waves or interfaces between transformed and not transformed iron. Simulations are performed with the 1D to compare experimental data with numerical results. We explain post-mortem observations by the complex shock wave structure interactions: P1 and P2 shock fronts associated with some corresponding shock release during unloading stages

  12. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand

    Institute of Scientific and Technical Information of China (English)

    Yi-ran Liu; Jian-liang Zhang; Zheng-jian Liu; Xiang-dong Xing

    2016-01-01

    The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was per-formed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3→ Fe2TiO4→ FeTiO3→ FeTi2O5→ TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol−1.

  13. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  14. Influence of humidity on the phase behavior of API/polymer formulations.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele

    2015-08-01

    Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu

    Directory of Open Access Journals (Sweden)

    LI Zhi-chao

    2017-12-01

    Full Text Available The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,MnS composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.

  16. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  17. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    2017-12-01

    Full Text Available Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te. The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  18. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX 2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX 2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX 2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS 2 and 2H-WSe 2 , which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX 2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX 2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  19. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase ...

  20. Evaluation of the stability and precipitation behavior of G phase in dual-phase stainless steels by thermodynamic calculations

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Ito, Shota; Minamoto, Satoshi

    2017-01-01

    Degradation of dual-phase stainless steel in nuclear power plants due to thermal ageing during long-term use is an important issue. This occurs mainly due to breakdown of the ferrite phase as a result of spinodal decomposition, followed by clustering or precipitation of the intermetallic G-phase compound, 'Ni 16 Si 7 Mn 6 ', which consists primarily of Ni, Si and Mn. The degradation mechanism is complicated because both radiation effects and thermal ageing simultaneously occur. However, only limited information is available concerning this phenomenon, and particularly regarding precipitation of the G phase. In the present study, thermodynamic equilibrium calculations were carried out for two types of dual-phase stainless steel (weld metal and cast steel) to evaluate the influence of the temperature and constituent elements on the stability of the G phase. The calculations were performed using the Thermo-Calc program with the thermodynamic database, FE-DATA (ver. 6). Precipitation of the G phase was investigated using the TC-PRISMA precipitation module together with the MOB2 diffusion database. It was found that for both types of steel, the G phase contains not only Ni, Si and Mn, but also small amounts of Fe and Cr. The stability of the G phase is dependent on the Ni, Mn, Cr, Si and Mo content in the original steel, and particularly on that of the latter two elements. Due to its higher Si content, the G phase was shown to be more stable in cast steel than in weld metal. (author)

  1. Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory.

    Science.gov (United States)

    Wu, Weihua; Zhao, Zihan; Shen, Bo; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2018-04-19

    Amorphous Ge8Sb92 thin films with various thicknesses were deposited by magnetron sputtering. The crystallization kinetics and optical properties of the Ge8Sb92 thin films and related scaling effects were investigated by an in situ thermally induced method and an optical technique. With a decrease in film thickness, the crystallization temperature, crystallization activation energy and data retention ability increased significantly. The changed crystallization behavior may be ascribed to the smaller grain size and larger surface-to-volume ratio as the film thickness decreased. Regardless of whether the state was amorphous or crystalline, the film resistance increased remarkably as the film thickness decreased to 3 nm. The optical band gap calculated from the reflection spectra increases distinctly with a reduction in film thickness. X-ray diffraction patterns confirm that the scaling of the Ge8Sb92 thin film can inhibit the crystallization process and reduce the grain size. The values of exponent indices that were obtained indicate that the crystallization mechanism experiences a series of changes with scaling of the film thickness. The crystallization time was estimated to determine the scaling effect on the phase change speed. The scaling effect on the electrical switching performance of a phase change memory cell was also determined. The current-voltage and resistance-voltage characteristics indicate that phase change memory cells based on a thinner Ge8Sb92 film will exhibit a higher threshold voltage, lower RESET operational voltage and greater pulse width, which implies higher thermal stability, lower power consumption and relatively lower switching velocity.

  2. Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior

    Science.gov (United States)

    Olmsted, Peter D.; Goldbart, Paul M.

    1992-10-01

    Macroscopic fluid motion can have dramatic consequences near the isotropic-nematic transition in fluids of nematogens. We explore some of these consequences using both deterministic and stochastic descriptions involving coupled hydrodynamic equations of motion for the nematic order parameter and fluid velocity fields. By analyzing the deterministic equations of motion we identify the locally stable states of homogeneous nematic order and strain rate, thus determining the homogeneous nonequilibrium steady states which the fluid may adopt. By examining inhomogeneous steady states we construct the analog of a first-order phase boundary, i.e., a line in the nonequilibrium phase diagram spanned by temperature and applied stress, at which nonequilibrium states may coexist, and which terminates in a nonequilibrium analog of a critical point. From an analysis of the nematic order-parameter discontinuity across the coexistence line, along with properties of the interface between homogeneous states, we extract the analog of classical equilibrium critical behavior near the nonequilibrium critical point. We develop a theory of fluctuations about biaxial nonequilibrium steady states by augmenting the deterministic description with noise terms, to simulate the effect of thermal fluctuations. We use this description to discuss the scattering of polarized light by order-parameter fluctuations near the nonequilibrium critical point and also in weak shear flow near the equilibrium phase transition. We find that fluids of nematogens near an appropriate temperature and strain rate exhibit the analog of critical opalescence, the intensity of which is sensitive to the polarizations of the incident and scattered light, and to the precise form of the critical mode.

  3. Double-brush Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Vorenkamp, Eltjo J.; Daumont, Christophe J. M.; ten Brinke, Gerrit; Schouten, Arend J.; Vukovic, Ivana; Loos, Katja

    2010-01-01

    The synthesis of amphiphilic diblock copolypeptides consisting of poly(alpha-L-glutamic acid) (PLGA) and poly(gamma-methyl-L-glutamate-ran-gamma-stearyl-L-glutamate) with 30 mol % of stearyl substituents (PMLGSLG) and their monolayer behavior at the air-water interface have been studied.

  4. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.

    Directory of Open Access Journals (Sweden)

    Sebastian M Cruz

    Full Text Available Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  5. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull

    Science.gov (United States)

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  6. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  7. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  8. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    Science.gov (United States)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  9. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction

    International Nuclear Information System (INIS)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-01-01

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms. (paper)

  10. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    Science.gov (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  11. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...... to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state-based approach....

  12. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  13. Phosphatidylcholine-fatty Alcohols Equilibria in Monolayers at the Air/Water Interface.

    Science.gov (United States)

    Serafin, Agnieszka; Figaszewski, Zbigniew Artur; Petelska, Aneta Dorota

    2015-08-01

    Monolayers of phosphatidylcholine (PC), tetradecanol (TD), hexadecanol (HD), octadecanol (OD) and eicosanol (E) and their binary mixtures were investigated at the air/water interface. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms. The surface tension measurements were carried out at 22 °C using a Teflon trough and a Nima 9000 tensiometer. The interactions between phosphatidylcholine and fatty alcohols (tetradecanol, hexadecanol, octadecanol, eicosanol) result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants, Gibbs free energy values and areas occupied by one molecules of PC-TD, PC-HD, PC-OD and PC-E complexes. We considered the equilibrium between the individual components and the complex and established that phosphatidylcholine and fatty alcohols formed highly stable 1:1 complexes.

  14. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  15. The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J.; Goessler, W.; Kosmus, W. [Graz Univ. (Austria). Inst. fuer Analytische Chemie

    1998-03-01

    Identification and quantification of arsenic compounds was performed with high-performance liquid chromatography (HPLC) and flame atomic absorption spectrometry (FAAS) as element-specific detector. Arsenous acid, methylarsonic acid, dimethylarsinic acid, arsenic acid, arsenobetaine, and arsenocholine were separated on two anion-exchange columns (Synchropak Q 300 and PRP-X 100) with different binary organic acids as mobile phases. The influence of chromatographic parameters, such as pH and the concentration of the mobile phase were investigated. An unusual chromatographic behavior of arsenous acid was observed when tartaric acid was used as mobile phase. (orig.)

  16. X-ray diffraction study of elastic strains for modelling γ/γ' two-phase behavior

    International Nuclear Information System (INIS)

    Durand, L.; Massaoudi, M.; Lavelle, B.

    2005-01-01

    To describe the two-phase monocrystals behavior, we used has X-rays diffraction method. Our study is based on the mechanics of the continuous media framework in elasticity. We extend to the quadratic structure the study by X-rays developed at the laboratory on cubic materials with coarse grains. We show that the two phases γ and γ' undergo a tetragonal distortion and that the strains are not constant in each phase. Our results are in agreement with a study by the finite element method developed in addition

  17. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  18. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Science.gov (United States)

    Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S.; Khan, Muhammad Saad

    2017-01-01

    The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. PMID:28379173

  19. Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Jahan, S. Millath; Jain, Anjana; Rajam, K.S.

    2007-01-01

    Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using alkaline citrate-based baths and compared with binary Ni-P coatings. Energy dispersive analysis of X-ray (EDAX) showed that binary Ni-P deposit contained 11.3 wt.% of phosphorus. Codeposition of tungsten in Ni-P matrix resulted in ternary Ni-W-P with 5 wt.% P and 7.8 wt.% of tungsten. Incorporation of tin led to ternary Ni-Sn-P deposit containing 0.4 wt.% Sn and 10.3 wt.% P. Presence of both sodium tungstate and sodium stannate in the basic bath had resulted in quaternary coating with 6.9 wt.% W, traces of Sn and 6.4 wt.% P. X-ray diffraction patterns of all the deposits revealed a single, broad peak which showed the nanocrystalline nature of the deposits. For the first time in related literature, the presence of a metastable phase Ni 12 P 5 in ternary deposits is reported in the present study. Metallographic cross-sections of all the deposits revealed the banded/lamellar structure. Scanning electron microscopy (SEM) studies of the deposits showed smooth nodules for ternary deposits, but coarse and well-defined nodules for quaternary deposits. DSC studies of phase transformation behavior of the ternary Ni-Sn-P deposit revealed a single sharp exothermic peak at 365 o C. However, ternary Ni-W-P and quaternary Ni-W-Sn-P deposits exhibited a low temperature peak at 300 o C, a split type high temperature peak at 405 and 440 o C and a very high temperature peak at 550 o C. Higher activation energy values were obtained for W-based alloy deposits. Presence of W and Sn has helped to retain high microhardness values even at higher temperatures indicating an improved thermal stability

  20. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Directory of Open Access Journals (Sweden)

    Alamin Idris

    2017-04-01

    Full Text Available The phase separation behavior of bisphenol-A-polycarbonate (PC, dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  1. Behavior Tracking Software Enhancement and Integration of a Feedback Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Horizon Performance designed a Behavior Tracking Software System to collect crew member behavior throughout a mission, giving NASA the capability to monitor...

  2. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Yang, Yuling, E-mail: yulingyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Li, Jinfeng, E-mail: lijinfengboda@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Ma, Min, E-mail: sharon6789@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Jiang, Tao, E-mail: tao.jiang906@yahoo.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China)

    2014-01-31

    Dual phase (DP) steels have been widely used in the automotive industry to reduce vehicle weight and improve car safety. In such applications welding and joining have to be involved, which would lead to a localized change of the microstructure and property, and create potential safety and reliable issues under dynamic loading. The aim of the present study is to examine the rate-dependent mechanical properties, deformation and fracture behavior of DP600 steel and its welded joint (WJ) produced by Nd:YAG laser welding over a wide range of strain rates (0.001–1133 s{sup −1}). Laser welding results in not only significant microhardness increase in the fusion zone (FZ) and inner heat-affected zone (HAZ), but also the formation of a softened zone in the outer HAZ. The yield strength (YS) of the DP600 steel increases and the ultimate tensile strength (UTS) remains almost unchanged, but the ductility decreases after welding. The DP600 base metal (BM) and WJ are of positive strain rate sensitivity and show similar stress–strain response at all studied strain rates. The enhanced ductility at strain rates ranging from 1 to 100 s{sup −1} is attributed to the retardation of the propagation of plastic strain localization due to the positive strain rate sensitivity and the thermal softening caused by deformation induced adiabatic temperature rise during dynamic tensile deformation. The tensile failure occurs in the inner HAZ of the joint and the distance of failure location from the weld centerline decreases with increasing strain rate. The mechanism for the changing failure location can be related to the different strain rate dependence of the plastic deformation behavior of the microstructures in various regions across the joint. The DP600 WJ absorbs more energy over the whole measured strain rates than that of the BM due to the higher strength at the same strain when the deformation only up to 10% is considered.

  3. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    Science.gov (United States)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  4. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2016-10-13

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  5. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    Science.gov (United States)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  6. Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite

    DEFF Research Database (Denmark)

    Hervig, K.W.; Wu, Z.; Dai, P.

    1997-01-01

    Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed...... comparison with experiment, quasielastic spectra calculated from the MD simulations were analyzed using the same models and fitting algorithms as for the neutron spectra. This combination of techniques gives a microscopic picture of the melting process in these two monolayers which is consistent with earlier...... neutron diffraction experiments. Butane melts abruptly to a liquid phase where the molecules in the trans conformation translationally diffuse while rotating about their center of mass. In the case of the hexane monolayer, the MD simulations show that the appearance of quasielastic scattering below T...

  7. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin

    2010-01-01

    The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (SE......) images in scanning electron microscope (SEM). The smaller Laves phase particle size results in higher creep strength and longer creep exposure time at the same conditions. DICTRA software was used to model the growth and coarsening behavior of Laves phase in the three P92 steels. Good agreements were...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  8. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  9. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  10. Chiral chromatography studies of chemical behavior of cinacalcet on polysaccharide chiral reversed-phase HPLC stationary phases.

    Science.gov (United States)

    Dousa, Michal; Brichác, Jirí

    2012-01-01

    A rapid HPLC method for the analytical resolution of cinacalcet enantiomers was developed. Four chiral columns (two amylose and two cellulose type) were evaluated in RP systems. Excellent enantioseparation with a resolution of more than 6 was achieved on Chiralpak AY (amylose 5-chloro-2-methylphenylcarbamate chiral stationary phase) using 10 mM triethylamine (pH 8.0)-acetonitrile (40 + 60, v/v) mobile phase. Validation of the HPLC method, including linearity, LOD, LOQ, precision, accuracy, and selectivity, was performed according to the International Conference on Harmonization guidelines. The method was successfully applied for the determination of (S)-cinacalcet in enantiopure active pharmaceutical ingredient (R)-cinacalcet.

  11. Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1995-01-01

    We have investigated the role of the substrate on the interfacial activation of Upases by an interdisciplinary study of the structure and dynamics of 1,2-sn dipalmitoylglycerol monolayers at distinct surface pressures. The diglyceride Langmuir film undergoes two phase transitions occurring at 38......, the alkyl chains pack in an hexagonal structure relaxing to a distorted-hexagonal lattice in the lowest pressure phase with the alkyl chains tilted by approx 14° in a direction close to a nearest neighbour direction....

  12. Micelle size modulation and phase behavior in MEGA-10/Triton X-100 mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Naous, M., E-mail: elzahraadz@yahoo.fr; Molina-Bolívar, J.A.; Ruiz, C. Carnero, E-mail: ccarnero@uma.es

    2014-12-20

    Highlights: • The size of micelles was studied as a function of the micellar composition, NaCl addition and temperature. • Cloud point can be modulated by changing both micellar composition and NaCl addition. • The energetic quantities at the cloud point were evaluated and discussed. - Abstract: This paper reports the effect of temperature and NaCl addition on micelle size and phase behavior in mixtures of N-decanoyl-N-methylglucamide (MEGA-10) and p-tert-octyl-phenoxy polyethylene (9.5) ether (Triton X-100 or TX100). The size of mixed micelles, as determined by dynamic light scattering (DLS), was found to increase with temperature but to be less pronounced at higher proportions of MEGA-10 in the solution. The cloud point was found to increase with an initial increase in the percentage of sugar-based surfactant in the mixture. This phase separation was sensitive to the presence of NaCl in the micellar solution, which induced a cloud point depression, thereby suggesting that the presence of electrolyte produces a marked alteration of the hydration layer of micelles. A thermodynamic analysis was performed assuming the clouding phenomenon to be a liquid–liquid phase-separation process. The resulting ΔG{sub CP}{sup 0} values were positive for all solutions. The cloud point process was exothermic in nature for the mixed micellar system, as proven by the negative value of ΔH{sub CP}{sup 0}. The process was more exothermic as the proportion of sugar-based surfactant in the mixed micelle increased (with and without NaCl in the solution). Furthermore, the negative values of ΔS{sub CP}{sup 0} indicate that the association of micelles in the clouding phenomenon is entropically unfavorable. It was observed from the enthalpy–temperature plots that the change in heat capacity is negative, thus indicating the important role played by dehydration in this thermodynamic process. This study found that the enthalpy–entropy compensation relationship holds for this

  13. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide

    International Nuclear Information System (INIS)

    Stoychev, Ivan; Peters, Felix; Kleiner, Matthias; Sadowski, Gabriele; Clerc, Sebastien; Ganachaud, Francois; Chirat, Mathieu; Lacroix-Desmazes, Patrick; Fournel, Bruno

    2012-01-01

    The phase behavior of triblock and graft-type poly(dimethylsiloxane) (PDMS)-poly(ethylene oxide) (PEO) copolymer surfactants has been investigated in compressed carbon dioxide (CO 2 ). For this purpose, cloud-point pressures have been measured in the pressure and temperature range from P=10 to 40 MPa and from T= 293 to 338 K. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) has been applied to model the experimental data in order to better understand the influence of the structure of the copolymers on the phase behavior of the system. The pure-component parameters for PDMS have been fitted originally to PDMS/n-pentane system. These parameters are successfully applied for PDMS in CO 2 by adjusting a temperature-dependent binary interaction parameter. The phase behavior of the triblock copolymers was successfully predicted by PC-SAFT. In contrast, the phase behavior of the graft copolymers was difficult to predict accurately at this stage. (authors)

  14. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  15. Phase behavior of mixtures of oppositely charged nanoparticles: Heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Lindhoud, S.; Vries, de R.J.; Stuart, M.A.C.

    2006-01-01

    We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally. As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified in such a way that its charge is nearly equal in magnitude but opposite

  16. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals: Behavioral Interview Guidelines by Job Roles

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conway, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tobey, D. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greitzer, Frank L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dalton, Angela C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pusey, Portia K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Behavioral Interview Guidelines by Job Roles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  17. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase.

    Science.gov (United States)

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2018-02-01

    Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

  18. Effects of Phytoplankton Growth Phase on Delayed Settling Behavior of Marine Snow Aggregates at Sharp Density Transitions

    Science.gov (United States)

    Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.

  19. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel.

    Science.gov (United States)

    Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M

    2018-03-01

    It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.

  20. Behavioral Monitoring and Evaluation for the Delivery of Interactive Cognitive Behavioral Therapy (B-MEDIC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crew behavioral health and performance are of high importance, especially for long duration exploration missions. Early detection of stress and effective options for...

  1. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites.

    Science.gov (United States)

    Ganesan, Venkat; Jayaraman, Arthi

    2014-01-07

    Polymer nanocomposites are a class of materials that consist of a polymer matrix filled with inorganic/organic nanoscale additives that enhance the inherent macroscopic (mechanical, optical and electronic) properties of the polymer matrix. Over the past few decades such materials have received tremendous attention from experimentalists, theoreticians, and computational scientists. These studies have revealed that the macroscopic properties of polymer nanocomposites depend strongly on the (microscopic) morphology of the constituent nanoscale additives in the polymer matrix. As a consequence, intense research efforts have been directed to understand the relationships between interactions, morphology, and the phase behavior of polymer nanocomposites. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level features of the polymer and nanoparticle additives to the resulting morphology within the composite. In this article we review recent theory and simulation studies, presenting briefly the methodological developments underlying PRISM theories, density functional theory, self-consistent field theory approaches, and atomistic and coarse-grained molecular simulations. We first discuss the studies on polymer nanocomposites with bare or un-functionalized nanoparticles as additives, followed by a review of recent work on composites containing polymer grafted or functionalized nanoparticles as additives. We conclude each section with a brief outlook on some potential future directions.

  2. Precipitatation Behavior of FeTiP Phase in High Strength IF Steel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The influence of chemical composition and annealing parameters on the behavior of FeTiP precipitation has been investigated. With increasing Ti content the yield strength and tensile strength were reduced, and the tendency of FeTiP precipitation became more remarkable. No FeTiP precipitate was observed and the best mechanical properties have been obtained in the steel sheet, of which the atom ratio of Ti to N is approximately equal to 1. In the temperature range of 700 to 800€℃ the FeTiP precipitation could appear easily. The precipitation process was suppressed when the annealing temperature was below 600€℃, and the FeTiP phase was dissolved above 900€℃. The FeTiP precipitates would inhibit the migration of grain boundaries during the recrystallization in certain extent, and weaken the density of {111} fiber texture, which resulted in the reduction of r value. The relationship between composition and processing parameters, as well as their influence on the mechanical properties is discussed.

  3. Precipitation behaviors of cubic and tetragonal Zr–rich phase in Al–(Si–)Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tong [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ceguerra, Anna; Breen, Andrew [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Liu, Xiangfa; Wu, Yuying [Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ringer, Simon, E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-07-25

    The precipitation behaviors of Zr–rich phase in binary Al–0.5Zr and ternary Al–3Si–0.5Zr alloys were investigated by high resolution transmission electron microscopy and atom probe. After the alloys were aged at 525 °C for 24 h, the precipitates in Al–0.5Zr alloy are identified as L1{sub 2}–ZrAl{sub 3}, performing a coherent relationship with the Al matrix. While in Al–3Si–0.5Zr alloy, the precipitates are Si–containing D0{sub 23}–Zr(Al,Si){sub 3}, which has an approximate 90° reversed cube–on–cube orientation relationship with Al. It is regarded that Si accelerates the precipitation of D0{sub 23}–Zr(Al,Si){sub 3}. - Highlights: • L1{sub 2}–ZrAl{sub 3} and D0{sub 23}–Zr(Al, Si){sub 3} particles precipitate in Al–Zr and Al–Si–Zr alloys. • D0{sub 23}–Zr(Al, Si){sub 3} performs an approximate 90° reversed cube–on–cube orientation relationship with Al. • Si accelerates the precipitation process of D0{sub 23}–Zr(Al,Si){sub 3}.

  4. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    International Nuclear Information System (INIS)

    Yang Tao; Chen Zheng; Zhang Jing; Wang Yongxin; Lu Yanli

    2016-01-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. (paper)

  5. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  6. Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling

    Science.gov (United States)

    Li, M. P.; Sun, Q. P.

    2018-01-01

    We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.

  7. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    Science.gov (United States)

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  9. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase.

    Science.gov (United States)

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2017-09-01

    Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.

  10. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  11. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  12. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  13. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  14. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun; Takata, Tsuyoshi; Katayama, Masao; Zhang, Fuxiang; Moriya, Yosuke; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  15. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  16. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  17. Dynamical phases of attractive particles sliding on a structured surface

    International Nuclear Information System (INIS)

    Hasnain, J; Jungblut, S; Dellago, C

    2015-01-01

    Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential. (paper)

  18. Biotransformation of hydralazine (HDZ) in monolayer cultures of rabbit hepatocytes

    International Nuclear Information System (INIS)

    McQueen, C.A.; Rosado, R.R.

    1990-01-01

    Adverse reactions to HDZ have been associated with the acetylator polymorphism; slow acetylators are more likely to develop HDZ-induced lupus erythematosus. In studying the role of this polymorphism in susceptibility to HDZ toxicity, the biotransformation of HDZ was investigated in rabbit hepatocytes. New Zealand white rabbits, like humans, are classified as rapid or slow acetylators. Heptocytes were isolated from rapid acetylator rabbits by collagenase perfusion. Monolayer cultures were initiated and exposed to 14 C-HDZ. Since HDZ is unstable at neutral pH, parallel incubations were done in the absence of cells. Metabolites in the media were determined by reverse phase HPLC. Phthalazine (P), phthalazinone (PZ), triazoloph-thalazine (TP), methyl TP (MTP) and 3-hydroxy MTP were identified. In the absence of cells, more TP was formed than MTP, probably resulting from reaction of HDZ with components in the medium. In the presence of cells, there was a three-fold increase in MTP, while the amount of TP was relatively constant. Only trace amounts of P, PZ 3-hydroxy MTP were detected. These data indicate that monolayer cultures of rapid acetylator rabbit hepatocytes were capable of metabolizing HDZ with acetylation playing a major role. These studies are being extended to cells from slow acetylator rabbits

  19. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    Science.gov (United States)

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  20. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  1. HIV Prevention among Mexican Migrants at Different Migration Phases: Exposure to Prevention Messages and Association With Testing Behaviors

    Science.gov (United States)

    Martinez-Donate, Ana P.; Rangel, M. Gudelia; Zhang, Xiao; Simon, Norma-Jean; Rhoads, Natalie; Gonzalez-Fagoaga, J. Eduardo; Gonzalez, Ahmed Asadi

    2016-01-01

    Mobile populations are at increased risk for HIV infection. Exposure to HIV prevention messages at all phases of the migration process may help decrease im/migrants’ HIV risk. We investigated levels of exposure to HIV prevention messages, factors associated with message exposure, and the association between exposure to prevention messages and HIV testing behavior among Mexican im/migrants at different phases of the migration process. We conducted a cross-sectional, probability survey of Mexican im/migrants (N=3,149) traveling through the border city of Tijuana, Mexico. The results indicate limited exposure to prevention messages (57%–75%) and suboptimal last 12-month HIV testing rates (14%–25%) across five migration phases. Compared to pre-departure levels (75%), exposure to messages decreases at all post-departure migration phases (57%–63%, pmigration continuum. PMID:26595267

  2. Structure and morphology of pentacene thin films - from sub-monolayers to application relevant multilayers

    International Nuclear Information System (INIS)

    Resel, R.; Werzer, O.; Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Smilgies, D.; Haase, A.; Stadlober, B.

    2008-01-01

    Full text: The conjugated molecule pentacene is one of the most prominent material for application in organic thin film transistors. Charge carrier mobilities of about 1 cm 2 /Vs are realized in different device geometries which are used in integrated circuits. The device performance depends on the detailed structure and morphology of the pentacene thin films. This work presents an combined atomic force microscopy / x-ray scattering study on the formation of pentacene thin films starting from sub-monolayer coverage to the first closed monolayer to finally multilayer structures as they are used in device structures. Thin films of pentacene are prepared on oxidized silicon wafer with nominal thicknesses between 0.2 nm up to 180 nm. The films are investigated ex-situ by x-ray reflectivity and grazing incidence diffraction. In the sub-monolayer regime the formation of separated islands with up-right standing molecules are observed. The islands show typically dendritic shape with a separation of 2 μm from each other. With increasing coverage the dendritic islands coalescent until the first monolayer closes. Fitting of the x-ray reflectivity reveals that an additional layer between the substrate and the up-right standing pentacene molecules is present. During the formation of the second monolayer crystalline islands are formed. The crystallites grow in lateral and vertical size with increasing film thickness. The crystal structure of pentacene within the films is a surface induced phase. The crystal structure of this metastable phase could be solved by a combined experimental and theoretical approach. At a nominal film thickness of about 40 nm the equilibrium bulk structure of pentacene appears; both phases remain existent up the thickest films investigated in this study. (author)

  3. Neighborhood crime and transit station access mode choice - phase III of neighborhood crime and travel behavior.

    Science.gov (United States)

    2015-08-01

    This report provides the findings from the third phase of a three-part study about the influences of neighborhood crimes on travel : mode choice. While previous phases found evidence that high levels of neighborhood crime discourage people from choos...

  4. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  5. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1979-01-01

    The swelling behavior of neutron irradiated stainless steels is strongly influenced by solute segregation and precipitation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the iniatiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates. (Auth.)

  6. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1978-01-01

    Swelling behavior of neutron irradiated stainless steels is influenced by solute segregation and preciptation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the initiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates

  7. Highly Surface-Active Ca(OH)2 Monolayer as a CO2 Capture Material.

    Science.gov (United States)

    Özçelik, V Ongun; Gong, Kai; White, Claire E

    2018-03-14

    Greenhouse gas emissions originating from fossil fuel combustion contribute significantly to global warming, and therefore the design of novel materials that efficiently capture CO 2 can play a crucial role in solving this challenge. Here, we show that reducing the dimensionality of bulk crystalline portlandite results in a stable monolayer material, named portlandene, that is highly effective at capturing CO 2 . On the basis of theoretical analysis comprised of ab initio quantum mechanical calculations and force-field molecular dynamics simulations, we show that this single-layer phase is robust and maintains its stability even at high temperatures. The chemical activity of portlandene is seen to further increase upon defect engineering of its surface using vacancy sites. Defect-containing portlandene is capable of separating CO and CO 2 from a syngas (CO/CO 2 /H 2 ) stream, yet is inert to water vapor. This selective behavior and the associated mechanisms have been elucidated by examining the electronic structure, local charge distribution, and bonding orbitals of portlandene. Additionally, unlike conventional CO 2 capturing technologies, the regeneration process of portlandene does not require high temperature heat treatment because it can release the captured CO 2 by application of a mild external electric field, making portlandene an ideal CO 2 capturing material for both pre- and postcombustion processes.

  8. Effects of upper plenum injection on thermo-hydrodynamic behavior under refill and reflood phases

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Abe, Yutaka; Adachi, Hiromichi; Ohnuki, Akira; Osakabe, Masahiro

    1984-12-01

    In order to investigate the thermo-hydrodynamic behavior in core under simultaneous ECC water injection into the upper plenum and the intact cold leg during the refill and reflood phases of a PWR-LOCA, Tests S1-SH3 and S1-SH4 were performed by using Slab Core Test Facility (SCTF) with the injection of saturated and 67K subcooled water into the upper plenum, respectively, under the same cold leg injection condition. The following major findings were obtained by examining these test results. (1) Although the core was cooled by the fall back water from the upper plenum into the core during the period of high injection rate into the upper plenum, the core was cooled mainly by the bottom flooding after the BOCREC (Bottom of core recovery). (2) The possible fall back flow rate estimated with a CCFL correlation rapidly decreased after the BOCREC because of the increase of steam generation rate in core. (3) Continuous fall back of subcooled water was not observed even under the condition with large upper plenum injection rate of subcooled water and with steam outflow through the lower plenum into the downcomer. The fall back was intermittently limited by the rapid increase of upward steam flow which was generated in the core due to the evaporation of the fall back water. (4) The rising of liquid level in the lower plenum was suppressed by the pressurization in core due to the evaporation of fall back water before the BOCREC and therefore the beginning of bottom reflood was delayed. Some selected data from Tests S1-SH3 and S1-SH4 are also included in this report. (author)

  9. Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis

    Science.gov (United States)

    Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V.; Grau-Crespo, Ricardo

    2018-05-01

    Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially ‘erases’ the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.

  10. Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis.

    Science.gov (United States)

    Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V; Grau-Crespo, Ricardo

    2018-05-10

    Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E 2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially 'erases' the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.

  11. High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati - Sarabi, A.; Costantini, M.; Spronsen, van J.; Witkamp, G.J.; Sheldon, R.A.; Peters, C.J.

    2005-01-01

    The phase behavior of the binary system consisting of the supercritical fluid carbon dioxide (CO2) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) was studied experimentally. A synthetic method was used to measure its phase behavior. Bubble-point pressures of the

  12. The effect of the number of condensed phases modeled on aerosol behavior during an induced steam generator tube rupture sequence

    International Nuclear Information System (INIS)

    Bixler, N.E.; Schaperow, J.H.

    1998-06-01

    VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A recently completed independent peer review of VICTORIA, while confirming the overall adequacy of the code, recommended a number of modeling improvements. One of these recommendations, to model three rather than a single condensed phase, is the focus of the work reported here. The recommendation has been implemented as an option so that either a single or three condensed phases can be treated. Both options have been employed in the study of fission product behavior during an induced steam generator tube rupture sequence. Differences in deposition patterns and mechanisms predicted using these two options are discussed

  13. An Assessment of the Effects of Hydrotherapy During the Active Phase of Labor on the Labor Process and Parenting Behavior.

    Science.gov (United States)

    Tuncay, Semra; Kaplan, Sena; Moraloglu Tekin, Ozlem

    2017-12-01

    This study was conducted to assess the effect on labor process and parenting behavior of hydrotherapy applied during the active phase of labor. This quasi-experimental study was conducted by using an equivalent comparison group ( n = 40). The participants in the experimental group whose cervical dilation was 5 cm were taken to the hydrotherapy tub. This application continued until cervical dilation reached 10 cm. The Participants Questionnaire, The Birth Follow-up Questionnaire, The Postpartum ]collection tools. The duration of the active phase and second stage of labor was extremely short in the experimental group in comparison with the equivalent comparison group ( p = .001). The Visual Analogue Scale (VAS) scores of the experimental group were lower than those of the equivalent comparison group when cervical dilation was 6 cm and 10 cm ( p = .001). The experimental group also displayed more positive parenting behavior and positive labor feeling ( p = .001).

  14. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.

    Science.gov (United States)

    Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y

    2015-11-06

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  15. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  16. Discussing the precipitation behavior of {sigma} phase using diffusion equation and thermodynamic simulation in dissimilar stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chih-Chun [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Wu, Weite, E-mail: wwu@dragon.nchu.edu.t [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China)

    2010-09-17

    Research highlights: This article concentrates the phase transformation in {delta} {yields} {sigma} in dissimilar stainless steels using the Vitek equation and thermodynamics simulation during the multi-pass welding. The phase transformation in {delta} {yields} {sigma} is very important to the properties of stainless steel composites. In this study, the diffusion behavior of Cr, Ni and Si in the {delta}, {sigma}, and {gamma} phases were discussed using the DSC analysis and diffusion equation calculation. This method has a novelty for discussing the phase transformation in {delta} {yields} {sigma} in the dissimilar stainless steel. We hope that we can give a scientific contribution for the phase transformation of the dissimilar stainless steels during the multi-pass welding. - Abstract: This study performed a precipitation examination of the {sigma} phase using the Vitek diffusion equation and thermodynamic simulation in dissimilar stainless steels during multi-pass welding. The results of the experiment demonstrate that the diffusion rates (D{sub Cr}{sup {delta}} and D{sub Ni}{sup {delta}}) of Cr and Ni are higher in {delta}-ferrite than (D{sub Cr}{sup {gamma}} and D{sub Ni}{sup {gamma}}) in the {gamma} phase and that they facilitate the precipitation of {sigma} phase in the third pass fusion zone. When the diffusion activation energy of Cr in {delta}-ferrite is equal to that of Ni in {delta}-ferrite (Q{sub dCr}{sup {delta}}=Q{sub dNi}{sup {delta}}), phase transformation of the {delta} {yields} {sigma} can be occurred.

  17. Emergence of complex chemistry on an organic monolayer.

    Science.gov (United States)

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  18. Phase change behaviors of Zn-doped Ge2Sb2Te5 films

    International Nuclear Information System (INIS)

    Wang Guoxiang; Nie Qiuhua; Shen Xiang; Fu Jing; Xu Tiefeng; Dai Shixun; Wang, R. P.; Wu Liangcai

    2012-01-01

    Zn-doped Ge 2 Sb 2 Te 5 phase-change materials have been investigated for phase change memory applications. Zn 15.16 (Ge 2 Sb 2 Te 5 ) 84.84 phase change film exhibits a higher crystallization temperature (∼258 °C), wider band gap (∼0.78 eV), better data retention of 10 years at 167.5 °C, higher crystalline resistance, and faster crystallization speed compared with the conventional Ge 2 Sb 2 Te 5 . The proper Zn atom added into Ge 2 Sb 2 Te 5 serves as a center for suppression of the face-centered-cubic (fcc) phase to hexagonal close-packed (hcp) phase transition, and fcc phase has high thermal stability partially due to the bond recombination among Zn, Sb, and Te atoms.

  19. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    Science.gov (United States)

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  20. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  1. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  2. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  3. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  4. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  5. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  6. The cognitive roles of behavioral variability: idiosyncratic acts as the foundation of identity and as transitional, preparatory, and confirmatory phases.

    Science.gov (United States)

    Eilam, David

    2015-02-01

    Behavior in obsessive compulsive disorder (OCD), in habitual daily tasks, and in sport and cultural rituals is deconstructed into elemental acts and categorized into common acts, performed by all individuals completing a similar task, and idiosyncratic acts, not performed by all individuals. Never skipped, common acts establish the pragmatic part of motor tasks. Repetitive performance of a few common acts renders rituals a rigid form, whereby common acts may serve as memes for cultural transmission. While idiosyncratic acts are not pragmatically necessary for task completion, they fulfill important cognitive roles. They form a long preparatory phase in tasks that involve high stakes, and a long confirmatory phase in OCD rituals. Idiosyncratic acts also form transitional phases between motor tasks, and are involved in establishing identity and preserving the flexibility necessary for adapting to varying circumstances. Behavioral variability, as manifested in idiosyncrasy, thus does not seem to be a noise or by-product of motor activity, but an essential cognitive component that has been preserved in the evolution of behavioral patterns, similar to the genetic variability in biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of Alcohols on the Phase Behavior and Emulsification of a Sucrose Fatty Acid Ester/Water/Edible Oil System.

    Science.gov (United States)

    Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi

    2018-02-01

    The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.

  8. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  9. Electrochemical behaviour of monolayer and bilayer graphene

    OpenAIRE

    Valota, Anna T.; Kinloch, Ian A.; Novoselov, Kostya S.; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W.; Dryfe, Robert A. W.

    2011-01-01

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as masking coating in order to expose a stable, well defined area of graphene. Both multilayer and monolayer graphene microe...

  10. Conformation, orientation and interaction in molecular monolayers

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1989-01-01

    Knowledge of the conformation and ordering of molecular monolayers is essential for a detailed understanding of a wide variety of surface and interfacial phenomena. Over the past several years, surface second harmonic generation (SHG) has proven to be a valuable and versatile probe of monolayer systems. Our group has recently extended the technique to infrared-visible sum frequency generation (SFG) which has unique capabilities for surface vibrational spectroscopy. Like second harmonic generation, SFG is highly surface specific with submonolayer sensitivity at all interfaces accessible by light. The orientation of individual groups within an adsorbate molecule can be deduced by a polarization analysis of the SFG signal from the vibrational modes of the groups. The authors have used SHG and SFG to study orientations and conformations of surfactant and liquid crystal (LC) monolayers and their interaction on a substrate. The interfacial properties of LC are of great interest to many researchers for both basic science understanding and practical application to LC devices. It is well known that the bulk alignment of a liquid crystal in a cell is strongly affected by the surface treatment of the cell walls. The reason behind it is not yet clear. The theoretical background and experimental arrangement of SHG and SFG have been described elsewhere. In the setup, a 30 psec. Nd:YAG mode-locked laser system together with nonlinear accessories generates a visible beam at .532μm and an infrared beam tunable about 3.4μm. Both beams are focused to a common spot of 300μm dia. The typical signal off the surface from a compact ordered alkyl chain monolayer is ∼500 photons per pulse, easily detected with a photomultiplier tube

  11. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    Science.gov (United States)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  12. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-02-15

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China){sub 6}]{sup 4-}, [Ru(NH{sub 3}){sub 6}]{sup 2+} and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK{sub a}pH{sub medium} reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH{sub 3}){sub 6}]{sup 2+/3+}. Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH.

  13. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    International Nuclear Information System (INIS)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-01-01

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China) 6 ] 4- , [Ru(NH 3 ) 6 ] 2+ and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK a medium and at pK a >pH medium reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH 3 ) 6 ] 2+/3+ . Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH

  14. Impact of phase stability on the corrosion behavior of the austenitic candidate materials for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Bullen, D.B.; Gdowski, G.E.; McCright, R.D.

    1987-10-01

    The Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100-250 0 C) can impact the mechanical and corrosion behavior of the metal barrier. A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ, chi, and eta) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included. 32 refs., 6 figs

  15. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  16. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  17. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  18. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  19. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  20. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  1. Phase formation and crystallization behavior of melt spun Sm-Fe-based alloys

    International Nuclear Information System (INIS)

    Shield, J.E.

    1999-01-01

    The phase formation and microstructures of Sm-Fe alloys have been investigated at Sm levels of 11 and 17 atomic percent and with alloying additions of Ti and C. At lower Sm content, virtually phase pure SmFe 7 formed, while higher Sm content resulted in the formation of SmFe 7 , SmFe 2 and amorphous phases. The addition of Ti and C resulted in greater stability and a larger volume fraction of the amorphous phase. The binary Sm-Fe alloys at both Sm levels had tremendously variable microstructures, with large discrepancies in grain size and phase distribution from region to region. The addition of Ti and C tended to result in a more homogeneous microstructure, as well as a refinement in the microstructural scale. (orig.)

  2. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  3. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    International Nuclear Information System (INIS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-01-01

    The synthesis of large-area monolayer tungsten disulphide (WS 2 ) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS 2 crystals using tungsten hexachloride (WCl 6 ) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl 6 in ethanol was drop-casted on SiO 2 /Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS 2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS 2 single crystalline monolayer can be grown using the WCl 6 precursor. Our finding shows an easier and effective approach to grow WS 2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  4. Substoichiometric cobalt oxide monolayer on Ir(100)-(1 x 1)

    International Nuclear Information System (INIS)

    Gubo, M; Ebensperger, C; Meyer, W; Hammer, L; Heinz, K

    2009-01-01

    A substoichiometric monolayer of cobalt oxide has been prepared by deposition and oxidation of slightly less than one monolayer of cobalt on the unreconstructed surface of Ir(100). The ultrathin film was investigated by scanning tunnelling microscopy (STM) and quantitative low-energy electron diffraction (LEED). The cobalt species of the film reside in or near hollow positions of the substrate with, however, unoccupied sites (vacancies) in a 3 x 3 arrangement. In the so-formed 3 x 3 supercell the oxide's oxygen species are both threefold and fourfold coordinated to cobalt, forming pyramids with a triangular and square cobalt basis, respectively. These pyramids are the building blocks of the oxide. Due to the reduced coordination as compared to the sixfold one in the bulk of rock-salt-type CoO, the Co-O bond lengths are smaller than in the latter. For the threefold coordination they compare very well with the bond length in oxygen terminated CoO(111) films investigated recently. The substoichiometric 3 x 3 oxide monolayer phase transforms to a stoichiometric c(10 x 2)-periodic oxide monolayer under oxygen exposure, in which, however, cobalt and oxygen species are in (111) orientation and so form a CoO(111) layer.

  5. Quantitative analysis of tensile deformation behavior by in-situ neutron diffraction for ferrite-martensite type dual-phase steels

    International Nuclear Information System (INIS)

    Morooka, Satoshi; Umezawa, Osamu; Harjo, Stefanus; Hasegawa, Kohei; Toji, Yuki

    2012-01-01

    The yielding and work-hardening behavior of ferrite-martensite type dual-phase (DP) alloys were clearly analyzed using the in-situ neutron diffraction technique. We successfully established a new method to estimate the stress and strain partitioning between ferrite and martensite phase during loading. Although these phases exhibit the same lattice structure with similar lattice parameters, their lattice strains on (110), (200) and (211) are obviously different from each other under an applied stress. The misfit strains between those phases were clearly accompanied with the phase-scaled internal stream (phase stress). Thus, the martensite phase yielded by higher applied stress than macro-yield stress, which resulted in high work-hardening rate of the DP steel. We also demonstrated that ferrite phase fraction influenced work-hardening behavior. (author)

  6. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in bot...

  7. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides

    KAUST Repository

    Tahir, M

    2014-10-31

    We study the thermoelectric properties of monolayers of MoS2 and other group-VI dichalcogenides under circularly polarized off-resonant light. Analytical expressions are derived for the Berry phase mediated magnetic moment, orbital magnetization, as well as thermal and Nernst conductivities. Tuning of the band gap by off-resonant light enhances the spin splitting in both the valence and conduction bands and, thus, leads to a dramatic improvement of the spin and valley thermoelectric properties.

  8. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides

    KAUST Repository

    Tahir, M; Schwingenschlö gl, Udo

    2014-01-01

    We study the thermoelectric properties of monolayers of MoS2 and other group-VI dichalcogenides under circularly polarized off-resonant light. Analytical expressions are derived for the Berry phase mediated magnetic moment, orbital magnetization, as well as thermal and Nernst conductivities. Tuning of the band gap by off-resonant light enhances the spin splitting in both the valence and conduction bands and, thus, leads to a dramatic improvement of the spin and valley thermoelectric properties.

  9. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    Science.gov (United States)

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  10. Correlations for the partition behavior of proteins in aqueous two-phase systems

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Andrews, B.A.; Asenjo, J.A.

    1996-01-01

    to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor...... of the overall protein concentration, by the ratio between the ''saturation'' equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein...

  11. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  12. Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin XIA; Chuan-yang WANG; Chen LEI; Yun-ting LAI; Yan-fen ZHAO; Lu ZHANG

    2016-01-01

    The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.

  13. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    International Nuclear Information System (INIS)

    Hubert, Olivier; Lazreg, Said

    2017-01-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  14. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said

    2017-02-15

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  15. The Phase of Aggressive Behavior, Deprivation among the Inmates Age Group of Nigerian Prisons: A Survey of Sokoto Central Prison.

    Directory of Open Access Journals (Sweden)

    Ibrahim Yusuf

    2016-08-01

    Full Text Available The article examines the phase of aggressive behavior, deprivation, among the inmate's age group of Nigerian prison. However, the study elaborated the meaning of aggressive behavior; factors contributed to aggressive behavior, theory of aggressive behavior, literature review, method of information collection and data analysis. Therefore, prison setting can instigate aggressive behaviors, especially in Nigeria, where inmates are deprived of their particular right and are treated brutality in some instances studies shows, that Nigerian prisons are not adequately organized and made do as such, inmates are exposed to all kinds of atrocity. It should be noted that a condition of privation and lack of societal well-being especially among people being in an isolated environment as in the case with most prisons in Nigeria can degenerate to frustration and aggression which in turn can result in dangerous situations such as riots/ violence in the prisons. Aggression can lead to violence that may be adaptive under certain conditions regarding natural selection. That is most obviously the case regarding attacking prey to obtain food, or in anti-predator defense. The results showed that there is significant difference between the levels of aggressiveness with respect to the classes of age groups. Recommendation will be discussed further.

  16. Effects of Phase Difference Between Axial and Contact loads on Fretting Fatigue Behavior of Titanium Alloy

    National Research Council Canada - National Science Library

    Almajali, Mohammad

    2006-01-01

    .... Most of the previous works were accomplished under a constant applied normal load and a little effort was done under a variable contact load, while none of these studies have considered the phase...

  17. Retention behavior of selected alkaloids in Reversed Phase micellar chromatographic systems

    Directory of Open Access Journals (Sweden)

    Petruczynik Anna

    2015-06-01

    Full Text Available In this work, the effects of sodium dodecyl sulfate (SDS concentrations on retention, separation selectivity, peak shapes and systems efficiency were investigated. Herein, the retention data for 11 alkaloids were determined on an RP18 silica column with mobile phases containing methanol as organic modifier, with acetate buffer at pH 3.5, and, subsequently, with the addition of sodium dodecyl sulfate (SDS. The results of this study indicate that the retention of alkaloids decreases with the increase of SDS concentration in the mobile phase. The increase of SDS concentration, however, leads to the significantly improvement of peak symmetry and the increase of theoretical plate number in all cases. The best system efficiency for most of the investigated alkaloids was obtained in a mobile phase containing 0.1 M SDS, while most symmetrical peaks were obtained through the addition of 0.3 M of SDS to the mobile phase.

  18. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  19. Behavior Tracking Software Enhancement and Integration of a Feedback Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Company is proposing to adapt a behavioral tracking program and feedback module specifically developed for the U.S. Army Special Forces for NASA human space...

  20. Strain-tunable half-metallicity in hybrid graphene-hBN monolayer superlattices

    International Nuclear Information System (INIS)

    Meng, Fanchao; Zhang, Shiqi; Lee, In-Ho; Jun, Sukky; Ciobanu, Cristian V.

    2016-01-01

    Highlights: • Armchair superlattices have a bandgap modulated by the deformed domain widths. • Strain and domain width lead to novel spin-dependent behavior for zigzag boundaries. • Limits for spin-dependent bandgap and half-metallic behavior have been charted. - Abstract: As research in 2-D materials evolves toward combinations of different materials, interesting electronic and spintronic properties are revealed and may be exploited in future devices. A way to combine materials is the formation of spatially periodic domain boundaries in an atom-thick monolayer: as shown in recent reports, when these domains are made of graphene and hexagonal boron nitride, the resulting superlattice has half-metallic properties in which one spin component is (semi)metallic and the other is semiconductor. We explore here the range of spin-dependent electronic properties that such superlattices can develop for different type of domain boundaries, domain widths, and values of tensile strain applied to the monolayer. We show evidence of an interplay between strain and domain width in determining the electronic properties: while for armchair boundaries the bandgap is the same for both spin components, superlattices with zigzag boundaries exhibit rich spin-dependent behavior, including different bandgaps for each spin component, half-metallicity, and reversal of half-metallicity. These findings can lead to new ways of controlling the spintronic properties in hybrid-domain monolayers, which may be exploited in devices based on 2-D materials.

  1. Phase diagram and tricritical behavior of an metamagnet in uniform and random fields

    International Nuclear Information System (INIS)

    Liang Yaqiu; Wei Guozhu; Xu Xiaojuan; Song Guoli

    2010-01-01

    A two-sublattice Ising metamagnet in both uniform and random fields is studied within the mean-field approach based on Bogoliubov's inequality for the Gibbs free energy. We show that the qualitative features of the phase diagrams are dependent on the parameters of the model and the uniform field values. The tricritical point and reentrant phenomenon can be observed on the phase diagram. The reentrance is due to the competition between uniform and random interactions.

  2. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  3. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    International Nuclear Information System (INIS)

    Chen, Liang-Huei; Hsu, Wen-Ping; Chan, Han-Wen; Lee, Yuh-Lang

    2014-01-01

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules

  4. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  5. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  6. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  7. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  8. Microstructural evolution and tensile behavior of Ti{sub 2}AlNb alloys based α{sub 2}-phase decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: gackmol@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zeng, Weidong, E-mail: zengwd@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Dong; Zhu, Bin; Zheng, Youping [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Liang, Xiaobo [Beijing Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-26

    The formation mechanism of the fine plate-like O-phases within α{sub 2}-phases and tensile behavior of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy at 1040 °C during heat treatment were investigated. The investigation indicated that the alloys were heat-treated in O+B2 phase region after α{sub 2}+B2 phase region isothermally forging, the equiaxed α{sub 2}-phase was not stable and decomposed into O+α{sub 2} phases. The α{sub 2} phases formed during isothermal forging process have higher concentration of Nb and begun to decompose during O+B2 phase region heat treatment. And then the α{sub 2} phases separated into Niobium-lean and Niobium-rich regions through the Niobium diffusion: α{sub 2}→α{sub 2} (Nb-lean)+O (Nb-rich). Nb-rich regions with composition similar to Ti{sub 2}AlNb transformed to the O-phase, while the Nb-lean regions remained untransformed and retained the α{sub 2}-phase. The deformation behavior and fracture mechanism of Ti–22Al–25Nb alloy at room temperature were discussed. The deformation behavior and microstructural evolution of this alloy at different temperatures and stain rates were also investigated using uniaxial tensile test.

  9. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  10. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Adhe, K.N.; Kain, V.; Madangopal, K.; Gadiyar, H.S.

    1996-01-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr 23 C 6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  11. Thermodynamic behavior of poly(3-alkyl thiophene) blends: Equilibrium cocrystal formation and phase segregation.

    Science.gov (United States)

    Pal, Susmita; Nandi, Arun K

    2005-02-24

    The equilibrium cocrystal formation of poly(3-alkyl thiophene) (P3AT) blends has been studied by isothermal cocrystallization in a differential scanning calorimeter (DSC-7). The equilibrium melting points (T(m)0) of the cocrystals are measured using the Hoffman-Weeks extrapolation procedure. The equilibrium phase diagrams are of three different types: (a) concave upward, (b) linear, and (c) linear with phase separation at higher content of lower melting component. The phase diagram nature depends on the regioregularity difference and also on the difference in the number of carbon atoms in the pendent alkyl group of the components. The origin of biphasic nature of type "c" phase diagram has been explored from the glass transition temperature (Tg) measurement using a dynamic mechanical analyzer. The biphasic compositions show two glass transition temperatures (Tg) as well as two beta transition temperatures (T beta). The T(g)s of phase-separated regions correspond to almost the component values but the T(beta)s correspond to that of a lower (T beta) component value, and the other is higher than that of the higher (T beta) component value. Possible reasons are discussed from the interchain lamella thickness in the P3AT blends and molecular modeling using molecular mechanics program.

  12. Effect of phase behavior, density, and isothermal compressibility on the constant-volume heat capacity of ethane + n-pentane mixed fluids in different phase regions

    International Nuclear Information System (INIS)

    Mu, Tiancheng; Liu, Zhimin; Han, Buxing.; Li, Zhonghao; Zhang, Jianling; Zhang, Xiaogang

    2003-01-01

    The phase behavior, density, and constant-volume molar heat capacity (C v,m ) of ethane + n-pentane binary mixtures have been measured in the supercritical region and subcritical region at T=309.45 K. In addition, the isothermal compressibility (κ T ) has been calculated using the density data determined. For a mixed fluid with a composition close to the critical composition, C v,m and κ T increase sharply as the pressure approaches the critical point (CP), the dew point (DP), or the bubble point (BP). However, C v,m is not sensitive to pressure in the entire pressure range if the composition of the mixed fluid is far from the critical composition. To tune the properties of the binary mixtures effectively by pressure, both the composition and the pressure should be close to the critical point of the mixture. The intermolecular interactions in the mixture are also discussed on the basis of the experimental results

  13. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  14. Flow assurance : complex phase behavior and complex work requires confidence and vigilance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.D. [ConocoPhillips, Major Projects, Advanced Integrated Simulation, Houston, TX (United States)

    2008-07-01

    Petroleum exploration and development projects and operations increasingly rely on flow assurance definition. Flow assurance is an integrating discipline as it follows the fluid from the reservoir to the market. Flow assurance works across complex technical and non-technical interfaces, including the reservoir, well completions, operation processes, project management, physical/organic chemistry, fluid mechanics, chemical engineering, mechanical engineering and corrosion. The phase behaviour in real fluids also has complex interfaces. The understanding and management of flow assurance of complex phase behaviour must be well communicated in order to enable proper selection, execution, and operation of development concepts designed to manage successful production within the fluid's phase behaviour. Simulation tools facilitate the translation of science into engineering. Academic, industrial, and field research is the core of these tools. The author cautioned that vigilance is required to assist and identify the right time to move innovation into the core tools.

  15. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  16. Mechanism of ion exchange in zirconium phosphates. 17. Dehydration behavior of lithium ion exchanged phases

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A; Pack, S P; Troup, J M [Ohio Univ., Athens (USA). Dept. of Chemistry

    1977-01-01

    The phases formed by the dehydration of lithium exchanged ..cap alpha..-zirconium phosphate, Zr(HP0/sub 4/).H/sub 2/0, were determined by a combination of X-ray, TGA and DTA studies. Samples containing 10, 20, 30 ..... 100% of theoretical lithium ion capacity were examined. The data are summarized in a phase diagram which however is not an equilibrium diagram because of the slowness of approach to equilibrium. The numerous phases obtained and the ease with which they rearrange indicates a high mobility for the incorporated cations. This suggested that ..cap alpha..-zirconium phosphate may behave as a solid electrolyte and indeed this was demonstrated by having it serve in that capacity in a small sodium sulfur battery.

  17. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  18. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Science.gov (United States)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  19. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dayyani, Z.; Dehghani, M.H.; Hajkhalili, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2018-02-15

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T > T{sub c}, we have no phase transition. When T = T{sub c}, the system admits a second-order phase transition, while for T = T{sub f} < T{sub c} the system experiences a first-order transition. Interestingly, for T{sub f} < T < T{sub c} we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton-electromagnetic coupling constant, α, for a certain range of pressure. (orig.)

  20. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.