WorldWideScience

Sample records for monolayer culture radiobiological

  1. Radiobiology

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    This text-book (electronic book - multi-media CD-ROM) constitutes a course-book - author's collection of lectures. It consists of 13 lectures in which the reader acquaints with the basis of radiobiology: Introduction to radiobiology; Physical fundamentals of radiobiology; Radiation of cells; Modification of radiation damage of cells; Reparation of radiation damage of cells; Radiation syndromes and their modification; Radiation injury; Radiation damage of tissues; Effect of radiation on embryo and fetus; Biological effects of incorporated radionuclides; Therapy of acute irradiation sickness; Delayed consequences of irradiation; Radiation oncology and radiotherapy. This course-book may be interesting for students, post-graduate students of chemistry, biology, physics, medicine as well as for teachers, scientific workers and physicians. (author)

  2. Radiobiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The effects of metridazole and nitroimidazole on the survival time of cultured hamster cells following exposure to various doses and dose rates of 60 Co γ radiation or neutrons were studied. Both were found to increase the radiosensitivity of the cells. Data are included on the modifying effects of neutron spectra, energy levels, LET, OER, dose, and dose fractionation schedules on the γ and neutron sensitivity of cultured hamster cells. Studies on the sensitivity of cultured hamster cells and normal liver and hepatoma cells to hyperthermia and hypoxia, with and without the added effects of x irradiation showed that heat treatment at 43 0 C enhanced the radiosensitivity of the cells, with hypoxic cells being the most sensitive. A system was developed for the study of radioinduced carcinogenesis in cultured hamster embryo cells. Preliminary data are presented on the dose response relationships for transformation following exposure to x radiation or neutrons. (U.S.)

  3. Comparative study on fast neutrons radiobiological effect on Chinese hamster cells in culture depending on regime of irradiation

    International Nuclear Information System (INIS)

    Elisova, T.V.; Feoktistova, T.P.; Stavrakova, N.M.

    1988-01-01

    Comparative study of regularities of fast neutron radiobiological effect on Chinese hamster cells in culture under pulse and statistic irradiation regimes that was estimated by reproductive death of cells and induced frequency of resistence mutations to 6-tioguanine is carried out. It is stated that with the dose rate increase approximately by 6 orders radiobiological efficiency of fast neutrons decreases. It is suggested that one of the causes of decreasing pulse irradiation efficiency are processes on radiation-chemical level. 9 refs.; 3 figs

  4. Interferon induction in bovine and feline monolayer cultures by four bluetongue virus serotypes.

    OpenAIRE

    Fulton, R W; Pearson, N J

    1982-01-01

    The interferon inducing ability of bluetongue viruses was studied in bovine and feline monolayer cultures inoculated with each of four bluetongue virus serotypes. Interferon was assayed by a plaque reduction method in monolayer cultures with vesicular stomatitis virus as challenge virus. Interferon was produced by bovine turbinate, Georgia bovine kidney, and Crandell feline kidney monolayer cultures in response to bluetongue virus serotypes 10, 11, 13 and 17. The antiviral substances produced...

  5. Biotransformation of hydralazine (HDZ) in monolayer cultures of rabbit hepatocytes

    International Nuclear Information System (INIS)

    McQueen, C.A.; Rosado, R.R.

    1990-01-01

    Adverse reactions to HDZ have been associated with the acetylator polymorphism; slow acetylators are more likely to develop HDZ-induced lupus erythematosus. In studying the role of this polymorphism in susceptibility to HDZ toxicity, the biotransformation of HDZ was investigated in rabbit hepatocytes. New Zealand white rabbits, like humans, are classified as rapid or slow acetylators. Heptocytes were isolated from rapid acetylator rabbits by collagenase perfusion. Monolayer cultures were initiated and exposed to 14 C-HDZ. Since HDZ is unstable at neutral pH, parallel incubations were done in the absence of cells. Metabolites in the media were determined by reverse phase HPLC. Phthalazine (P), phthalazinone (PZ), triazoloph-thalazine (TP), methyl TP (MTP) and 3-hydroxy MTP were identified. In the absence of cells, more TP was formed than MTP, probably resulting from reaction of HDZ with components in the medium. In the presence of cells, there was a three-fold increase in MTP, while the amount of TP was relatively constant. Only trace amounts of P, PZ 3-hydroxy MTP were detected. These data indicate that monolayer cultures of rapid acetylator rabbit hepatocytes were capable of metabolizing HDZ with acetylation playing a major role. These studies are being extended to cells from slow acetylator rabbits

  6. Applied radiobiology

    International Nuclear Information System (INIS)

    Sutton, M.L.; Hendry, J.H.

    1985-01-01

    The experience of courses in radiobiology suggests a very widespread failure to relate the phenomena of ''classical'' radiobiology to what is observed, or ought to be observed, in the clinic. This chapter describes the changes that occur in normal and malignant tissues during and after therapeutic irradiation as exemplified by treatments at the Christie Hospital. It is in no way intended as a substitute for the more comprehensive introductions to radiobiology which are to be found elsewhere. This chapter is intended to be interpretive with respect to current Christie Hospital clinical practice. For example, in the past, the authors chose not to participate in the evaluation of certain alleged advances in radiotherapy (most notably the use of the hyperbaric oxygen tank) though for some years a neutron generator was in clinical use at the Christie Hospital. Some of the radiobiological considerations behind these decisions are also discussed

  7. Clonal differences in generation times of GPK epithelial cells in monolayer culture.

    Science.gov (United States)

    Riley, P A; Hola, M

    1980-01-01

    Pedigrees of cells in eight clones of guinea pig keratocyte (GPK) cells in monolayer culture were analyzed from a time-lapse film. The generation times and the position in the field of observation were recorded up to the sixth generation when the cultures were still subconfluent. Statistical analysis of the results indicates that the position in the culture has less significance than the clonal origin of the cell in determining the interval between successive mitoses.

  8. In vitro irradiation system for radiobiological experiments

    International Nuclear Information System (INIS)

    Tesei, Anna; Zoli, Wainer; D’Errico, Vincenzo; Romeo, Antonino; Parisi, Elisabetta; Polico, Rolando; Sarnelli, Anna; Arienti, Chiara; Menghi, Enrico; Medri, Laura; Gabucci, Elisa; Pignatta, Sara; Falconi, Mirella; Silvestrini, Rosella

    2013-01-01

    Although two-dimensional (2-D) monolayer cell cultures provide important information on basic tumor biology and radiobiology, they are not representative of the complexity of three-dimensional (3-D) solid tumors. In particular, new models reproducing clinical conditions as closely as possible are needed for radiobiological studies to provide information that can be translated from bench to bedside. We developed a novel system for the irradiation, under sterile conditions, of 3-D tumor spheroids, the in vitro model considered as a bridge between the complex architectural organization of in vivo tumors and the very simple one of in vitro monolayer cell cultures. The system exploits the same equipment as that used for patient treatments, without the need for dedicated and highly expensive instruments. To mimic the passage of radiation beams through human tissues before they reach the target tumor mass, 96-multiwell plates containing the multicellular tumor spheroids (MCTS) are inserted into a custom-built phantom made of plexiglass, the material most similar to water, the main component of human tissue. The system was used to irradiate CAEP- and A549-derived MCTS, pre-treated or not with 20 μM cisplatin, with a dose of 20 Gy delivered in one session. We also tested the same treatment schemes on monolayer CAEP and A549 cells. Our preliminary results indicated a significant increment in radiotoxicity 20 days after the end of irradiation in the CAEP spheroids pre-treated with cisplatin compared to those treated with cisplatin or irradiation alone. Conversely, the effect of the radio- chemotherapy combination in A549-derived MCTS was similar to that induced by cisplatin or irradiation alone. Finally, the 20 Gy dose did not affect cell survival in monolayer CAEP and A549 cells, whereas cisplatin or cisplatin plus radiation caused 100% cell death, regardless of the type of cell line used. We set up a system for the irradiation, under sterile conditions, of tumor cells

  9. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  10. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Science.gov (United States)

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.

  11. Proteomic Characterization of Primary Mouse Hepatocytes in Collagen Monolayer and Sandwich Culture.

    Science.gov (United States)

    Orsini, Malina; Sperber, Saskia; Noor, Fozia; Hoffmann, Esther; Weber, Susanne N; Hall, Rabea A; Lammert, Frank; Heinzle, Elmar

    2018-01-01

    Dedifferentiation of primary hepatocytes in vitro makes their application in long-term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long-term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up-regulated to deal with this, whereas in the ML culture a down-regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down-regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down-regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 119: 447-454, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  13. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells.

    Science.gov (United States)

    Gebhard, Christiane; Miller, Ingrid; Hummel, Karin; Neschi Née Ondrovics, Martina; Schlosser, Sarah; Walter, Ingrid

    2018-04-15

    Osteosarcoma is an aggressive bone tumor with high metastasis rate in the lungs and affects both humans and dogs in a similar way. Three-dimensional tumor cell cultures mimic the in vivo situation of micro-tumors and metastases and are therefore better experimental in vitro models than the often applied two-dimensional monolayer cultures. The aim of the present study was to perform comparative proteomics of standard monolayer cultures of canine osteosarcoma cells (D17) and three-dimensional spheroid cultures, to better characterize the 3D model before starting with experiments like migration assays. Using DIGE in combination with MALDI-TOF/TOF we found 27 unique canine proteins differently represented between these two culture systems, most of them being part of a functional network including mainly chaperones, structural proteins, stress-related proteins, proteins of the glycolysis/gluconeogenesis pathway and oxidoreductases. In monolayer cells, a noticeable shift to more acidic pI values was noticed for several proteins of medium to high abundance; two proteins (protein disulfide isomerase A3, stress-induced-phosphoprotein 1) showed an increase of phosphorylated protein species. Protein distribution within the cells, as detected by immunohistochemistry, displayed a switch of stress-induced-phosphoprotein 1 from the cytoplasm (in monolayer cultures) to the nucleus (in spheroid cultures). Additionally, Western blot testing revealed upregulated concentrations of metastasin (S100A4), triosephosphate isomerase 1 and septin 2 in spheroid cultures, in contrast to decreased concentrations of CCT2, a subunit of the T-complex. Results indicate regulation of stress proteins in the process of three-dimensional organization characterized by a hypoxic and nutrient-deficient environment comparable to tumor micro-metastases. Osteosarcoma is an aggressive bone tumor that early spreads to the lungs. Three-dimensional tumor cell cultures represent the avascular stage of micro

  14. Biogenesis of corticosteroids in monolayer cultures of human foetal adrenal cells

    International Nuclear Information System (INIS)

    Goodyer, C.G.; Torday, J.S.; St George Hall, C.; Smith, B.T.; Giroud, C.J.P.

    1976-01-01

    Human foetal adrenal cells were grown in monolayer culture and their steroidogenic capacity observed for up to a month. The cells produced a complex array of steroids and some of their ester sulphates from endogenous as well as from [ 14 C] and[ 3 H] precursors. ACTH stimulated corticoidogenesis, particularly cortisol secretion, and markedly enhanced the incorporation of progesterone and pregnenolone into cortisol. Following incubation with the same precursors, large amounts of radioactivity remained water soluble. From the butanol extractable material of this fraction, dehydroepiandrosterone sulphate was characterized as the main metabolite of pregnenolone and corticosterone and 11-deoxycorticosterone sulphates as the main metabolites of progesterone. With time in culture there was a decrease in steroidogenesis as well as a steady decline in responsiveness to ACTH, mainly manifested by cortisol secretion. The medium from homologous foetal pituitary cultures stimulated cortisol production by the human adrenal cell monolayer. (author)

  15. Ultrastructural and radiobiological characterization of stromal cells in continuous, long-term marrow culture

    International Nuclear Information System (INIS)

    Tavassoli, M.

    1982-01-01

    Hemopoietic stromal cells were studied in continuous, long-term marrow culture. A correlative study was carried out involving cytochemistry as well as scanning (SEM), and transmission electron microscopy (TEM) with sections cut either perpendicular or parallel to the substratum. Only two stromal cell types were identified: epithelioid cells and macrophages. The appearance of these cells, however, varied according to their topography in the culture and the method of observation; a finding that may explain the multiplicity of the cell types reported in these cultures. The two cell types displayed considerable interconnections and interactions which may be essential in their support function for the proliferation and maintenance of hemopoietic stem cells. They also demonstrated numerous coated pits and vesicles suggestive of extensive receptor-mediated endocytosis. Stromal cells, generally thought to be relatively radioresistant, demonstrated hitherto unrecognized radiosensitivity in culture. Doses of radiation as low as 500 rads interfered with their support function for the maintenance of the hemopoietic stem cell

  16. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion.

    Science.gov (United States)

    Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2018-05-01

    In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.

  17. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  18. Radiobiological application of atomic force microscopy. Analysis on human chromosomes in culture medium

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Kinjo, Yasuhito

    1995-01-01

    We have proposed a 'Heterogeneous Chromatin Target Model' on the regulating mechanisms involved in chromosome mutation due to ionizing radiations. The heterogeneity of chromatin is derived from the highly condensed organization of chromatin segments that consist of hypersensitive and fragile sites in the fluctuating assembly of nucleosome clusters (superbeads). The above consideration is going to be subjected to a new experimental approach applying the atomic force microscope (AFM), one of the most promising members of a family of scanning probe microscope (SPM). The AFM can be operated in liquid as well as in air. A living specimen can be examined without any preparative procedures (for instance, fixation, staining, vecuum evaporation and so on). Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. In the present report, the mitotic metaphase chromosomes released from living cells (human lymphocytes RPMI) were spread on the clean surface of distilled water filled in a trough. The spread surface film, in which the chromosomes were embedded, was picked up and adhered tightly on a specimen substrate made of silicon. The whole-mounted chromosome were submerged in a solution of culture medium and observed within a liquid immersion cell for AFM. We used an AFM system, SPA-300 made by Seiko Instruments. The particulate chromatin segments of nucleosome clusters (superbeads) were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (author)

  19. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  20. Kadar dan Daya Luteolitik PGF2? Produksi Sel Monolayer Vesikula Seminalis dan Endometrium Sapi Bali (PROSTAGLANDIN F2? CONCENTRATIONS OF BALI CATTLE ENDOMETRIAL AND SEMINAL VESICLE MONOLAYER CELLS CULTURE PRODUCTS AND ITS IN VITRO TEST ON LUTEAL MONOLAYER

    Directory of Open Access Journals (Sweden)

    Tjok Gde Oka Pemayun

    2012-03-01

    Full Text Available The aims of this research were to determine PGF2? concentration the produced by bali cattlesendometrial and seminal vesicle monolayer cell culture and in vitro luteolytic ability on luteal monolayercell culture. The endometrial and seminal vesicle epithelial cell of bali cattle were cultured in tissueculture medium (TCM 199 growth medium supplemented with 10% fetal calf serum and 10% EstrusMare Serum. The cells were cultured at 1.9 x 106 density per ml medium. Then Followed by incubation at38.50 C in 5% CO2 atmosphere for 12 days. The level of PGF2? in the cell culture medium were assayed byRadioimmnuassay (RIA technique. The luteal cells were cultured in 9 days incubation and divided into 2groups. Group I were added with 10% of cell culture product and group II were added with 1,25 mgdinoprost/ml. The level of progesterone produced by luteal cell culture was measured at day 9th and 11thincubation. The result showed concentration of PGF2? cell product of seminal vesicle cell culture wassignificantly higher (P < 0.05 compared to endometrial cell culture. There was no significant difference(P>0.05 in luteolytic ability between PGF2? cell culture product and dinoprost. In conclusion, the PGF2?could be produced by monolayer cell culture of bali cattle is endometrial and seminal vesicle epithelialcells more over they have similar ability with dinoprost in luteolytic ability.

  1. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  2. Cancer radiobiology

    International Nuclear Information System (INIS)

    Almahi, W.A.A.

    2006-03-01

    The work i have done in this dissertation, was mainly aimed at the literature review of radiotherapy radiobiology discussing the cure of tumours with ionizing radiation, from both the biological and physical point of view. The first chapter an introduction about the radiotherapy and includes: definition, working dose, benefit of radiotherapy, risk of radiotherapy, external and internal radiotherapy and treatment planing. In chapter two the theories of radiobiology and main effects caused by the radiation in the interaction with the biological matter were explained, the damages caused by the use of low and high LET (linear energy transfer) particles to mammalian cells were discussed. And discuss a therapeutic advantage may be gained by one of four hypothetical mechanism: repair the damage of DAN, so when sublethal injury can be repaired if no further hits are sustained. Also the reoxygenation of tumor is important for its effects on stabilization of free radicals produced by ionizing radiation. Hypoxic cells generally require an increased dose of radiation for lethal effect, redistribution, within the cell cycle depends on location of cells and their radiosensitivity also cells undergoing DNA synthesis, the S phase, are much more radioresistant than cells in other phase of the cell cycle, and repopulation of tumor cells is indicator of the surviving cells respond by increased regeneration or repopulation. Repopulation is a greater problem with rapidly proliferating tumors than slower growing neoplasms. These mechanisms are known as the classical four R's of radiation biology. One of the important applications of radiobiology is the radiotherapy and cancer treatment, experimental and theoretical studies in radiation biology contribute to the development of radiotherapy, in this dissertation we discussed the dose response relation so as the size of the tumor increases, and the dose needed for local control like wise increases, the risk of injury to normal tissue

  3. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  4. Reversible alterations in cultured pulmonary artery endothelial cell monolayer morphology and albumin permeability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Friedman, M.; Ryan, U.S.; Davenport, W.C.; Chaney, E.L.; Strickland, D.L.; Kwock, L.

    1986-01-01

    The effects of ionizing irradiation (0, 600, 1500, or 3000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60 Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125 I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125 I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1500 or 3000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components

  5. CRC handbook of radiobiology

    International Nuclear Information System (INIS)

    Prasad, K.N.

    1984-01-01

    The author presents Development of Radiobiology. A Review. Basic Cell Biology. Physics of Radiation Biology. Cellular Radiation Damage. Modifications of Cellular Radiation Damage. Repair of Radiation Damage. Molecular Radiation Biology. Radiation Syndromes and their Modifications. Radiation Damage of Skin and Mucous Membrane. Radiation Damage of Nervous Tissue. Radiation Damage of Reproductive Organs. Radiation Damage of Other Organ Systems. Radiation Immunology. Background, Medical and Commercial Sources. Radiation Injuries to Human Fetuses. Radiation-Induced Genetic Damage. Radiation Carcinogenesis: Tissue Culture Model. Radiation Carcinogenesis: Animal Model. Radiation Carcinogenesis: Human Model. Radiation Carcinogenesis: Secondary Neoplasms. After Therapy of Tumors. Other Late Effects: Aging, Cataract, Aplastic Anemia. Maximum Permissible Dose (MPD). Radiation Response of Human Tumor. Radioisotopes in Biology and Medicine

  6. Cultured fibroblast monolayers secrete a protein that alters the cellular binding of somatomedin-C/insulinlike growth factor I

    International Nuclear Information System (INIS)

    Clemmons, D.R.; Elgin, R.G.; Han, V.K.; Casella, S.J.; D'Ercole, A.J.; Van Wyk, J.J.

    1986-01-01

    We studied somatomedin-C/insulinlike growth factor (Sm-C/IGF-I) binding to human fibroblasts in both adherent monolayers and in suspension cultures. The addition of Sm-C/IGF-I in concentrations between 0.5 and 10 ng/ml to monolayers cultures resulted in a paradoxical increase in 125 I-Sm-C/IGF-I binding and concentrations between 25 and 300 ng/ml were required to displace the labeled peptide. The addition of unlabeled insulin resulted in no displacement of labeled Sm-C/IGF-I from the adherent cells. When fibroblast suspensions were used Sm-C/IGF-I concentrations between 1 and 10 ng/ml caused displacement, the paradoxical increase in 125 I-Sm-C/IGF-I binding was not detected, and insulin displaced 60% of the labeled peptide. Affinity cross-linking to fibroblast monolayers revealed a 43,000-mol wt 125 I-Sm-C-binding-protein complex that was not detected after cross-linking to suspended cells. The 43,000-mol wt complex was not detected after cross-linking to smooth muscle cell monolayers, and binding studies showed that 125 I-Sm-C/IGF-I was displaced greater than 90% by Sm-C/IGF-I using concentrations between 0.5 and 10 ng/ml. Because fibroblast-conditioned medium contains the 43,000-mol wt complex, smooth muscle cells were incubated with conditioned medium for 24 h prior to initiation of the binding studies. 125 I-Sm-C/IGF-I-binding increased 1.6-fold compared to control cultures and after cross-linking the 43,000-mol wt complex could be detected on the smooth muscle cell surface. Human fibroblast monolayers secrete a protein that binds 125 I-Sm-C/IGF-I which can be transferred to the smooth muscle cell surface and alters 125I-Sm-C/IGF-I binding

  7. Basic Radiobiology. Chapter 2

    Energy Technology Data Exchange (ETDEWEB)

    Dale, R. G. [Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London (United Kingdom); Wondergem, J. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria)

    2014-12-15

    Radiobiology is the study (both qualitative and quantitative) of the actions of ionizing radiations on living matter. Since radiation has the ability to cause changes in cells which may later cause them to become malignant, or bring about other detrimental functional changes in irradiated tissues and organs, consideration of the associated radiobiology is important in all diagnostic applications of radiation. Additionally, since radiation can lead directly to cell death, consideration of the radiobiological aspects of cell killing is essential in all types of radiation therapy.

  8. Evaluation of radiobiological effects in 3 distinct biological models

    International Nuclear Information System (INIS)

    Lemos, J.; Costa, P.; Cunha, L.; Metello, L.F.; Carvalho, A.P.; Vasconcelos, V.; Genesio, P.; Ponte, F.; Costa, P.S.; Crespo, P.

    2015-01-01

    Full text of publication follows. The present work aims at sharing the process of development of advanced biological models to study radiobiological effects. Recognizing several known limitations and difficulties of the current monolayer cellular models, as well as the increasing difficulties to use advanced biological models, our group has been developing advanced biological alternative models, namely three-dimensional cell cultures and a less explored animal model (the Zebra fish - Danio rerio - which allows the access to inter-generational data, while characterized by a great genetic homology towards the humans). These 3 models (monolayer cellular model, three-dimensional cell cultures and zebra fish) were externally irradiated with 100 mGy, 500 mGy or 1 Gy. The consequences of that irradiation were studied using cellular and molecular tests. Our previous experimental studies with 100 mGy external gamma irradiation of HepG2 monolayer cells showed a slight increase in the proliferation rate 24 h, 48 h and 72 h post irradiation. These results also pointed into the presence of certain bystander effects 72 h post irradiation, constituting the starting point for the need of a more accurate analysis realized with this work. At this stage, we continue focused on the acute biological effects. Obtained results, namely MTT and clonogenic assays for evaluating cellular metabolic activity and proliferation in the in vitro models, as well as proteomics for the evaluation of in vivo effects will be presented, discussed and explained. Several hypotheses will be presented and defended based on the facts previously demonstrated. This work aims at sharing the actual state and the results already available from this medium-term project, building the proof of the added value on applying these advanced models, while demonstrating the strongest and weakest points from all of them (so allowing the comparison between them and to base the subsequent choice for research groups starting

  9. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  10. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    Science.gov (United States)

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.

  11. Soft x rays for radiobiological studies

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Iida, Shozo; Shimba, Hachiro; Awa, A.A.; Hamilton, H.B.; Clifton, K.H.

    1986-04-01

    Lethal effects and chromosome aberrations induced in cells exposed to low energy (soft) X rays demonstrated that these relatively low energy X rays are just as effective as those of higher energy for radiobiological studies, and even more effective for irradiating cultured mammalian cells than laboratory animals. (author)

  12. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    International Nuclear Information System (INIS)

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-01-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of [ 125 I]iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of [ 125 I]iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of [ 125 I]iodoinsulin was much lower than that of [ 125 I]iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in [ 125 I]iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of [ 125 I]iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of [ 125 I]iodo-IGF-I to thyroid cells

  13. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  14. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate.

    Science.gov (United States)

    Heathman, Thomas R J; Stolzing, Alexandra; Fabian, Claire; Rafiq, Qasim A; Coopman, Karen; Nienow, Alvin W; Kara, Bo; Hewitt, Christopher J

    2016-04-01

    The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 10(5) and 1.02 ± 0.005 × 10(5) cells/mL compared with 0.79 ± 0.05 × 10(5) and 0.36 ± 0.04 × 10(5) cells/mL in FBS-containing medium. This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Radiobiological Research in JINR

    CERN Document Server

    Krasavin, E A

    2000-01-01

    The results of long-term radiobiological and radiation-genetical research in DRRR (Division of Radiobiology) are summarized. The different radiation-induced effects in bacteria, yeasts, mammalian and human cells after irradiation by gamma-rays and heavy charged particles are considered. The important role of DNA repair processes in biological effectiveness of different types of radiation were shown. The data on mutagenic action of such kinds of radiation on pro- and eukaryotic cells were analyzed. On the basis of our data the hypersensitivity of human and mammalian chromosomes after low doses of gamma-rays (10-20 sGy) was revealed. The radiobiological effect of ^{211}At - methylene blue complex on human melanoma cells was studied. The extremely high effectiveness of this complex on melanoma cells was shown.

  16. The uptake of tritium-labelled carnitine by monolayer cultures of human fetal muscle and its potential as a label in cytotoxicity studies

    International Nuclear Information System (INIS)

    Cambridge, G.; Stern, C.M.M.

    1981-01-01

    As a novel approach to the investigation of immune responses directed against muscle antigens in inflammatory muscle disease, the use of tritium-labelled carnitine as a selective marker for myotubes in monolayer cultures was investigated. Tritium-labelled carnitine was incubated either with monolayer cultures of human fetal muscle or with syngeneic monolayer cultures of human fetal fibroblasts. The rate of uptake and loss of tritium-labelled carnitine by muscle cultures was compared with that shown by fibroblast cultures; values for the ratio Ksub(m)/Vsub(max) were 3.1 for muscle cultures and 0.46 for fibroblast cultures. Freeze-dried radioautographs of muscle monolayers, previously incubated with tritium-labelled carnitine confirmed the specific intra-tubular localization of the label. Fetal muscle monolayers, previously incubated with tritium-labelled carnitine, were used as targets in long-term cytotoxicity experiments into lymphocyte-mediated myotoxicity. Peripheral blood lymphocytes from patients with inflammatory muscle disease were shown to be myotoxic, but lymphocytes from normal individuals or those with non-inflammatory muscle disease were not. Carnitine-based measures of myotoxicity closely followed the clinical activity of the disease in one patient and the test shows considerable potential as a means of assessing myotube killing by lymphocytes on a per-cell basis. (author)

  17. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  18. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    Directory of Open Access Journals (Sweden)

    Babak Qasemi-Panahi

    2013-02-01

    Full Text Available Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1 on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 μL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  19. Research in Radiobiology

    International Nuclear Information System (INIS)

    Miller, S.C.; Buster, D.S.

    1988-01-01

    This document contains the tables of contents for the reports published by the University of Utah Radiobiology Laboratory from 1953--1987. Also included is a keyword index for the reports, and references for all books, book and symposia chapters and journal article published by Laboratory staff between 1950 and 1988

  20. With the Radiobiology Group

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Radiobiology Group carries out experiments to study the effect of radiation on living cells. The photo shows the apparatus for growing broad beans which have been irradiated by 250 GeV protons. The roots are immersed in a tank of running water (CERN Weekly Bulletin 26 January 1981 and Annual Report 1980 p. 160). Karen Panman, Marilena Streit-Bianchi, Roger Paris.

  1. The Future of Radiobiology.

    Science.gov (United States)

    Kirsch, David G; Diehn, Max; Kesarwala, Aparna H; Maity, Amit; Morgan, Meredith A; Schwarz, Julie K; Bristow, Robert; Demaria, Sandra; Eke, Iris; Griffin, Robert J; Haas-Kogan, Daphne; Higgins, Geoff S; Kimmelman, Alec C; Kimple, Randall J; Lombaert, Isabelle M; Ma, Li; Marples, Brian; Pajonk, Frank; Park, Catherine C; Schaue, Dörthe; Bernhard, Eric J

    2018-04-01

    Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.

  2. An introduction to radiobiology

    International Nuclear Information System (INIS)

    Nias, A.H.W.; Dimbleby, R.

    1990-01-01

    This text provides an introduction to quantitative radiobiology with emphasis on practical aspects of the subject. Among the topics considered are reparable damage, densely ionizing radiation, normal and malignant cells, and whole body regulation. These and other aspects of radiation biology are described in detail

  3. History of radiobiology in Argentina

    International Nuclear Information System (INIS)

    Mayo, Jose

    2004-01-01

    Radiobiology is a multidisciplinary science dealing with ionising radiation effects on biological material. The history of Radiobiology begins in Germany and France around 1886. Radiobiology was introduced in Argentina in 1926 at the Institute of Oncology Angel H. Roffo as a biomedical research branch. Later on in 1957 was incorporated at the National Atomic Energy Commission (CNEA) of Argentina as a result of the newly started nuclear activities in Argentina. Prior that time no Radiobiology research existed in Argentina. To fill this need a Project to create new laboratories was elaborated by the CNEA. New laboratories in Radiobiodosimetry, Cellular Radiobiology, Radiopathology, Radiomicrobiology, Genetics and Somatic Effects were created. Human resources on different areas of Radiobiology were formed with the assistance of IAEA. With professional and technical personnel specialized in Radiobiology at the beginning of the 1970 decade, the transference of fundamental and applied research to others laboratories started. (author)

  4. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  5. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  6. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors.

    Directory of Open Access Journals (Sweden)

    Akira Niwa

    Full Text Available Elucidating the in vitro differentiation of human embryonic stem (ES and induced pluripotent stem (iPS cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.

  7. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  8. Quantitative clinical radiobiology

    International Nuclear Information System (INIS)

    Bentzen, S.M.

    1993-01-01

    Based on a series of recent papers, a status is given of our current ability to quantify the radiobiology of human tumors and normal tissues. Progress has been made in the methods of analysis. This includes the introduction of 'direct' (maximum likelihood) analysis, incorporation of latent-time in the analyses, and statistical approaches to allow for the many factors of importance in predicting tumor-control probability of normal-tissue complications. Quantitative clinical radiobiology of normal tissues is reviewed with emphasis on fractionation sensitivity, repair kinetics, regeneration, latency, and the steepness of dose-response curves. In addition, combined modality treatment, functional endpoints, and the search for a correlation between the occurrence of different endpoints in the same individual are discussed. For tumors, quantitative analyses of fractionation sensitivity, repair kinetics, reoxygenation, and regeneration are reviewed. Other factors influencing local control are: Tumor volume, histopathologic differentiation and hemoglobin concentration. Also, the steepness of the dose-response curve for tumors is discussed. Radiobiological strategies for improving radiotherapy are discussed with emphasis on non-standard fractionation and individualization of treatment schedules. (orig.)

  9. Immobilisation of a thrombopoietin peptidic mimic by self-assembled monolayers for culture of CD34+ cells.

    Science.gov (United States)

    Lee, Eun-Ju; Be, Cheang Ly; Vinson, Andrew R; Riches, Andrew G; Fehr, Friederike; Gardiner, James; Gengenbach, Thomas R; Winkler, David A; Haylock, David

    2015-01-01

    Compared to soluble cytokines, surface-tethered ligands can deliver biological signalling with precise control of spatial positioning and concentration. A strategy that immobilises ligand molecules on a surface in a uniform orientation using non-cleavable linkages under physiological conditions would enhance the specific and systemic delivery of signalling in the local environment. We used mixed self-assembled monolayers (SAMs) of oxyamine- and oligo(ethylene glycol)-terminated thiols on gold to covalently install aldehyde- or ketone-functionalised ligands via oxime conjugation. Characterisation by electrochemistry and X-ray photoelectron spectroscopy showed quantitative immobilisation of the ligands on SAM surfaces. The thrombopoietin mimetic peptide, RILL, was immobilised on SAMs and the bioactivity of the substrate was demonstrated by culturing factor-dependent cells. We also optimised the immobilisation and wash conditions so that the peptide was not released into the culture medium and the immobilised RILL could be re-used for consecutive cell cultures. The surface also supported the growth of haematopoietic CD34+ cells comparable to the standard thrombopoietin-supplemented culture. Furthermore, the RILL-immobilised SAM surface was as effective in expanding uncommitted CD34+ cells as standard culture. The stimulatory effect of surface-tethered ligands in haematopoietic stem cell expansion supports the use of ligand immobilisation strategies to replicate the haematopoietic stem cell niche. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  11. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  12. Thresholds in radiobiology

    International Nuclear Information System (INIS)

    Katz, R.; Hofmann, W.

    1982-01-01

    Interpretations of biological radiation effects frequently use the word 'threshold'. The meaning of this word is explored together with its relationship to the fundamental character of radiation effects and to the question of perception. It is emphasised that although the existence of either a dose or an LET threshold can never be settled by experimental radiobiological investigations, it may be argued on fundamental statistical grounds that for all statistical processes, and especially where the number of observed events is small, the concept of a threshold is logically invalid. (U.K.)

  13. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  14. Radiobiology and dosimetry

    International Nuclear Information System (INIS)

    Saenger, E.L.; Kereiakes, J.G.

    1975-01-01

    A brief review of radiobiology is presented that should indicate the reasonable limits of pediatric nuclear medicine. Together with the dosimetric information and the few caveats of laboratory procedure, the use of nuclear medicine as clinically indicated, maintaining doses as low as practicable, should be readily applied to pediatrics. In discussing benefits versus risks in nuclear medicine, the conscience guide (CG) was introduced as a unit, being defined as the referral rate to better qualified centers from a laboratory where expertise in a given test is lacking versus the total number of examinations done in that laboratory. When considering procedures in the pediatric age group, the physician is urged to use the CG to do only those procedures for which he and his staff have adequate equipment and experience. In this way, the best interests of the patient and physician can be insured. (auth)

  15. Radiation Protection Research: Radiobiology

    International Nuclear Information System (INIS)

    Desaintes, C.

    2000-01-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  16. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  17. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides.

    Science.gov (United States)

    Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji

    2018-05-01

    Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  19. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    Science.gov (United States)

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  20. Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

    CERN Document Server

    Laurinavichius, K S

    1998-01-01

    Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

  1. Radiobiology and Epidemiology

    International Nuclear Information System (INIS)

    Desaintes, C; Holmstock, L.

    2001-01-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality in nuclear workers in Belgium and to co-ordinate the Belgian contribution to the 'International Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry'; (2) to elucidate the molecular basis of individual susceptibility to ionizing radiation in mammalian embryo during the early phases of its development; (3) to assess the genetic risk of maternal exposure to ionizing radiation; (4) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (5) to monitor the early variations of gene expression induced by ionising radiation and cytokines; (6) to evaluate the use of cytokines and natural substances for improving radiotherapy protocols; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 2000 are reported

  2. Radiobiology and Epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C; Holmstock, L

    2001-04-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality in nuclear workers in Belgium and to co-ordinate the Belgian contribution to the 'International Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry'; (2) to elucidate the molecular basis of individual susceptibility to ionizing radiation in mammalian embryo during the early phases of its development; (3) to assess the genetic risk of maternal exposure to ionizing radiation; (4) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (5) to monitor the early variations of gene expression induced by ionising radiation and cytokines; (6) to evaluate the use of cytokines and natural substances for improving radiotherapy protocols; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 2000 are reported.

  3. Theory of targets and modern radiobiology

    International Nuclear Information System (INIS)

    Krasavin, E.A.; Kozubek, S.

    1988-01-01

    Detailed analysis of the history of classical radiobiology concepts was carried out and N.V. Timofeev-Resovskiy leading role in the formation of cell radiobiology was shown. Synthesis of penetration principle, target theory, microdosimetry, genetics and molecular radiobiology, disclosure of damage mechanisms of cell DNA by ionizing different LET radiation of, as well as, main mechanisms of cell repair have allowed to explain the nature of cell all radiobiological reactions

  4. Biophysical models of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1987-01-01

    Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed

  5. Cardiac endothelial cells isolated from mouse heart - a novel model for radiobiology

    International Nuclear Information System (INIS)

    Jelonek, K.; Walaszczyk, A.; Gabrys, D.; Pietrowska, M.; Widlak, P.; Kanthou, Ch.

    2011-01-01

    Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH 2 A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. (authors)

  6. Research in radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Safety in the production and use of radioactive substances and protection against ionizing radiation are matters of direct concern to the International Atomic Energy Agency. On the one hand, the Agency has been trying to establish standards of safe practice, and on the other, it has been trying to promote research on the biological effects of radiation. Radiobiological research is of basic importance in the context of the growing use of radiation sources all over the world, because measures of radiation protection or the treatment of radiation sickness can be adequate and effective only when there is a clear and thorough understanding of the effects of ionizing radiation on living organisms. IAEA has placed several contracts with scientific institutions in different countries for research on problems that may throw some light on various aspects of this problem. One line of research is to study the effects of small doses of radiation, a study that is essential in establishing the maximum permissible doses for radiation workers and others. A contract has been given to the Pharmacological Institute of Vienna University for the investigation of the response of cells, particularly of the nervous system, to low-level exposures. Another important field of research is the protective action of certain substances against the effects of radiation. Under a research contract given by IAEA, the mode of protective action of certain chemical compounds is being studied at the Physiological Institute of Vienna University. Of the possible effects of radiation, those of a genetic nature have caused widespread concern. Under an IAEA contract, cytogenetical investigations are being carried out at the Institute of Medical Genetics of Uppsala University on the effects of radiation on human cells grown in vitro. While certain conclusions about the effects of radiation on human cells can be deduced from test tube experiments, some valuable inferences can also be drawn from studies of the

  7. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Radiobiological studies with marine fish

    International Nuclear Information System (INIS)

    Pentreath, R.J.

    1975-01-01

    The experimental methodology employed in radiobiological studies with fish is discussed and reviewed. The problems of care and maintenance of healthy stock fish are cons. (author)idered, including the techniques of egg and larval rearing. A variety of methods have been used to study the accumulation and loss of radionuclides, including labelled water, food and injections, and their relative merits are discussed in conjunction with the parameters affecting these processes. Other, more specialized, techniques that aid the physiological interpretation of tracer experiments are also discussed. Finally, consideration is given to some of the mathematical models that have been applied to radiobiological studies with fish, and of their value in extrapolating laboratory data to environmental conditions

  9. Radiobiology software for educational purpose

    International Nuclear Information System (INIS)

    Pandey, A.K.; Sharma, S.K.; Kumar, R.; Bal, C.S.; Nair, O.; Haresh, K.P.; Julka, P.K.

    2014-01-01

    To understand radio-nuclide therapy and the basis of radiation protection, it is essential to understand radiobiology. With limited time for classroom teaching and limited time and resources for radiobiology experiments students do not acquire firm grasp of theoretical mathematical models and experimental knowledge of target theory and Linear quadratic models that explain nature of cell survival curves. We believe that this issue might be addressed with numerical simulation of cell survival curves using mathematical models. Existing classroom teaching can be reoriented to understand the subject using the concept of modeling, simulation and virtual experiments. After completion of the lecture, students can practice with simulation tool at their convenient time. In this study we have developed software that can help the students to acquire firm grasp of theoretical and experimental radiobiology. The software was developed using FreeMat ver 4.0, open source software. Target theory, linear quadratic model, cell killing based on Poisson model have been included. The implementation of the program structure was to display the menu for the user choice to be made and then program flows depending on the users choice. The program executes by typing 'Radiobiology' on the command line interface. Students can investigate the effect of radiation dose on cell, interactively. They can practice to draw the cell survival curve based on the input and output data and they can also compare their handmade graphs with automatically generated graphs by the program. This software is in the early stage of development and will evolve on user feedback. We feel this simulation software will be quite useful for students entering in the nuclear medicine, radiology and radiotherapy disciplines. (author)

  10. Changes in sensitivity to radiation and to bleomycin occurring during the life history of monolayer cultures of a mouse tumour cell line

    International Nuclear Information System (INIS)

    Twentyman, P.R.; Bleehen, N.M.

    1975-01-01

    The response to X-radiation and to bleomycin has been measured at a number of times during the life of monolayer cultures of EMT6 mouse tumour cells. Little change in radiation sensitivity was seen at any time and no loss of the shoulder to the survival curve occurred. Cultures in early plateau phase (where a considerable amount of cell proliferation is balanced by cell loss) showed a reduced sensitivity to bleomycin when compared with cells in exponential growth. However, after a longer period in plateau phase, when proliferation had virtually ceased, the sensitivity became greater than that of exponential phase cells. These findings are discussed with reference to the conflicting results of other workers. (author)

  11. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  12. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  13. Intensification of the inhibitory effect of X-rays on the growth of Ehrlich ascites tumor cells in monolayer culture by quinacrine (atebrine) or chloroquine (resochine)

    International Nuclear Information System (INIS)

    Biller, H.; Pfab, R.; Hess, F.; Schachtschabel, D.O.; Leising, H.B.

    1980-01-01

    Monolayers of Ehrlich ascites tumor cells in their logarithmic phase of growth were exposed to a single X-ray dose of 1 to 16 Gy. Following exposure, the monolayers were cultured for several days or weeks with or without an addition of 4 x to 6 x 10 -6 M of quinacrine (atebrine) or 3.3 x 10 -5 to 1 x 10 -4 M of chloroquine. Proliferation activity was controlled by the daily microscopical count of representative areas out of the total population. A significant delay resulted from exposure to 4 Gy (particularly during the 1st day), while sole irradiation with 1 or 2 Gy did not much influence the proliferation of the cells. An 8-Gy dose and to a larger extent 16 Gy led to a fall of the cell number down to 20% (8 Gy) or around 10% (16 Gy) of the initial value between the 7th and the 10th day. The cells subsequently multiplied with nearly the growth rate of controls. The inhibitory effect on cells proliferation produced by an exposure to X-rays was distinctly intensified by means of incubation with continuously replaced quinacrine or chloroquine containing culture media. Treatment with 1 x 10 -4 mol chloroquine thus brought about a more pronounced inhibition after pre-irradiation with a single dose of 2 or 8 Gy. If 4 x 10 -6 or 6 x 10 -6 M of quinacrine were added to cultures pretreated with 4 Gy, a more intense inhibition of growth resulted therefrom than from sole treatment with either quinacrine or X-rays. Incubation of cultures pretreated with 8 Gy in the presence of 6 x 10 -6 M quinacrine led to the death of all the cells within 8 days. Quinacrine and chloroquine effects on cells previously exposed to X-rays are discussed in view of the well-known effects these agents exert by inhibiting enzymatic repair processes of DNA damage. (orig.) [de

  14. Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell-adhesive matrix and supplemented medium

    International Nuclear Information System (INIS)

    Baker, F.L.; Spitzer, G.; Ajani, J.A.

    1986-01-01

    The limitations of the agar suspension culture method for primary culturing of human tumor cells prompted development of a monolayer system optimized for cell adhesion and growth. This method grew 83% of fresh human tumor cell biopsy specimens, cultured and not contaminated, from a heterogeneous group of 396 tumors including lung cancer (93 of 114, 82%); melanoma (54 of 72, 75%); sarcoma (46 of 59, 78%); breast cancer (35 of 39, 90%); ovarian cancer (16 of 21, 76%); and a miscellaneous group consisting of gastrointestinal, genitourinary, mesothelioma, and unknown primaries (78 of 91, 86%). Cell growth was characterized morphologically with Papanicolaoustained coverslip cultures and cytogenetically with Giemsastained metaphase spreads. Morphological features such as nuclear pleomorphism, chromatin condensation, basophilic cytoplasm, and melanin pigmentation were routinely seen. Aneuploid metaphases were seen in 90% of evaluable cultures, with 15 of 28 showing 70% or more aneuploid metaphases. Colony-forming efficiency ranged between 0.01 and 1% of viable tumor cells, with a median efficiency of 0.2%. This culture system uses a low inoculum of 25,000 viable cells per well which permitted chemosensitivity testing of nine drugs at four doses in duplicate from 2.2 X 10(6) viable tumor cells and radiation sensitivity testing at five doses in quadruplicate from 0.6 X 10(6) cells. Cultures were analyzed for survival by computerized image analysis of crystal violet-stained cells. Drug sensitivity studies showed variability in sensitivity and in survival curve shape with exponential cell killing for cisplatin, Adriamycin, and etoposide, and shouldered survival curves for 5-fluorouracil frequently seen. Radiation sensitivity studies also showed variability in both sensitivity and survival curve shape. Many cultures showed exponential cell killing, although others had shouldered survival curves

  15. Radiobiology of human cancer radiotherapy

    International Nuclear Information System (INIS)

    Andrews, J.R.

    1978-01-01

    The author has systematically collected and collated the scientific literature correlating the basic and clinical sciences in this field in order to produce a definitive treatise. The book thoroughly reviews the biology and biochemistry relevant to radiobiology and describes the critical locus for the extinction of cell reproductive capacity. Extensive coverage is given to oxygen effect, hyperthermia, high linear energy transfer, cell populations, and similar topics. Separate sections cover time, dose, and fractionation; radiation hematology; cancer chemotherapy; and cancer immunology. The book also contains invaluable discussions of techniques for optimizing radiotherapy alone and in combination with other therapies

  16. Application of microdosimetry to radiobiology

    International Nuclear Information System (INIS)

    Zaider, M.; Rossi, H.H.

    1987-01-01

    The application of microdosimetry to radiobiology has frequently been based on the site model, i.e., the concept of a sensitive subcellular volume in which energy concentration determines the biological effect regardless of the nature of ionizing radiations. A later publication extended the treatment as to include the distance model in which lesion formation is assumed to depend on the initial separation of the two component sublesions. This was developed as a theoretical basis for the molecular ion experiment in which the biological effectiveness of pairs of ions is determined as a function of their separation. The results of this experiment made it evident that the effectiveness of single events must be largely determined by energy concentration in volumes having dimensions of less than a tenth of a micrometer. It can not be determined a priori whether this difference is due to a distance-dependent probability of combination between sublesions that are perhaps produced at random locations in a critical region of the cell (the gross sensitive volume, GSV), or whether the interaction probability is constant but the sensitive material is contained in a matrix that is within the GSV but has a complex geometrical shape. The generalized TDRA allows for either condition or their combination. In this paper it will be shown that regardless of the ultimate resolution of this question microdosimetry can retain its predictive role in radiobiology provided measurements are performed in a series of spherical sites (of different dimensions) rather than one single, micrometer-size volume

  17. Radiobiology of heavy charged particles

    International Nuclear Information System (INIS)

    Kraft, G.

    1996-11-01

    The increase in the biological efficiency is the major motivation to use ions heavier than protons for therapy. Therefore, the detailed understanding of the radiobiological potential of heavy ions like carbon or oxygen is the basic condition of a proper application of these ions in therapy. But also for the lightest ion, the proton, evidence accumulates that changes in the radiobiological properties at the end of the particle range influence the therapeutic effect. Compared to sparsely ionizing radiation heavy charged particles exhibit a different physical interaction with the target material: The highly charged ions interact mostly via Coulomb forces with the electrons of the target material producing a track of ionizations and highly kinetic electrons along the path of the primary ion. In these tracks damage to the biological structures like the DNA occurs in a non stochastic, but spatially correlated way yielding a dramatic variation in the biological severity of the created damage. In cell-experiments the variation in the relative biological efficiency has been measured for many biological reactions like cell inactivation, chromosome aberrations and DNA damage. An overview on the inactivation data will be given and theoretical approaches will be discussed and compared to experimental data. (orig.)

  18. Radiobiology

    International Nuclear Information System (INIS)

    Ures, Cristina

    1994-01-01

    A brief study about the biological effects of the ionizing radiations in life s organisms specially in the cells (ADN,ATP),the chemical radiation effects, the energy deposition and the radiosensitivity in different types of cells, the radiations dose including the radiation Let, stochastic and non stochastic processes in the man, the radiation syndrome, late somatic mutations and genetic effects. A brief description was given about many types of radiation: external sources and internal exposition

  19. Survival and Functionality of hESC-Derived Retinal Pigment Epithelium Cells Cultured as a Monolayer on Polymer Substrates Transplanted in RCS Rats.

    Science.gov (United States)

    Thomas, Biju B; Zhu, Danhong; Zhang, Li; Thomas, Padmaja B; Hu, Yuntao; Nazari, Hossein; Stefanini, Francisco; Falabella, Paulo; Clegg, Dennis O; Hinton, David R; Humayun, Mark S

    2016-05-01

    To determine the safety, survival, and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN), group 2 (n = 59) received rCPCB-RPE1 implants, and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery), the eyes were examined histologically for cell survival, phagocytosis, and local toxicity. Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry, suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. These results demonstrate the safety, survival, and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.

  20. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  1. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    Science.gov (United States)

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  2. Radiobiological comparison of pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1981-01-01

    The physical and radiobiological differences between some aspects of pions and heavy ions are discussed, followed by a discussion of acute and late effects of high LET radiations compared to low LET radiations

  3. Paradigms of modern radio-biology

    International Nuclear Information System (INIS)

    Grodzins'kij, D.M.

    2005-01-01

    The basic paradigms of modern radio-biology are considered as models of pictures of essence of radio-biology problems and methods of their decision. It is marked on absolute heuristics of these ascending conceptual assertions and their assistance to subsequent development of experimental science. That has the concrete display in the decision of actual tasks of protection of people from action of ionizing radiation

  4. Influence of neuraminidase and X-ray irradiation (2 Gy and 8 Gy) on microvilli and membrane invaginations of Ehrlich ascites tumor cells in monolayer culture

    International Nuclear Information System (INIS)

    Laudenbach, G.; Baganz, O.; Pfab, R.; Hess, F.; Schachtschabel, D.O.

    1987-01-01

    A monolayer culture (Eagle basal medium plus 10% of fetal calf serum) of Ehrlich ascites tumor cells was exposed to X-radiation with 2 Gy and 8 Gy and treated with Vibrio cholerae neuraminidase alone or combined with sublethal X-ray irradiation (2 Gy). Pictures of the Ehrlich ascites tumor cells taken with the electron microscope were investigated in order to find out any cell surface modifications due to membrane invaginations and microvilli. The results showed that the rate of microvilli as well as that of membrane invaginations became higher with the increasing X-ray dose (2 Gy; 8 Gy). Following to neuraminidase treatment there was a considerable augmentation of membran invaginations as compared to control cells, whereas the number of microvilli was slightly reduced. As it has been already described before, the influence of neuraminidase produced an increased endocytosis activity and a strengthening of the cytoskeleton. Combined treatment with neuraminidase and sublethal X-radiation (2 Gy) caused a higher rate of membrane invaginations than each method alone; the number of microvilli was slightly increased by combined treatment. The conclusion is drawn that these structure modifications are due to reparation processes induced by radiation on the one hand and to an enzymic action of neuraminidase on the cell surface on the other hand. (orig.) [de

  5. Radiobiological experiments with heavy ions

    International Nuclear Information System (INIS)

    Kraft, G.

    1988-11-01

    In experiments, performed at the Unilac, Bevalac, and Ganil a large body of radiobiological data, cross sections for cell inactivation and mutation, induction of both, chromosome aberrations, and strand breaks of DNA have been measured for different atomic numbers, from helium (Z=2) to uranium (Z=92), and at an LET range from 10 to 16000 keV/μm. These data exhibit a common feature: At LET values below 100 keV/μm all data points of one specific effect form one single curve as a function of LET, independent from the atomic number of the ion. In this LET range, the biological effects are independ from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in this regime. For LET values greater than 100 keV/μm, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the σ-LET curves for different endpoints shows that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. For this part of the reaction chain only a very limited amount of data are available. (orig./MG)

  6. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    OpenAIRE

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the ...

  7. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    Science.gov (United States)

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  8. Influence of serum extraction from the culture medium and of sublethal X-ray irradiation upon microvilli and invaginations of the membrane of Ehrlich ascites tumor cells in monolayer culture

    International Nuclear Information System (INIS)

    Laudenbach, G.; Pfab, R.; Hess, F.; Schachtschabel, D.O.

    1984-01-01

    In order to find out modifications of microvilli and invaginations, the cellular surfaces of Ehrlich ascites tumor cells in monolayer culture (basal medium of Eagle + 10% fetal calf serum) were investigated with the aid of electron-microscopic cross-sections. The tumor cells had been cultured without serum 24 hours prior to investigation or irradiated with 2 Gy. Morphometric evaluation after cell culture in a serum-free medium showed a reduced number of microvilli and a diminution of sections of microvilli. As already described before, a reduction of cell proliferation, of the microtubule-microfilament system, and of the endocytosis activity occurs under these serum-free conditions. The number of invaginations (related to a constant membrane part) was reduced by nearly 50% after serum extraction. Similarly to serum extraction, sublethal X-ray irradiation reduced the sections of microvilli, whereas the number of microvilli increased slightly. Contrary to the effect of serum extraction, the irradiated cells showed twice as many invaginations as the non-irradiated control cells. These differences in the surface structures are interpreted as a result of modified growth stimulations (+- serum) and radiogenic reparation processes. (orig.) [de

  9. Radiobiology of Cell Renewal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Patt, H. M. [Laboratory of Radiobiology, University of California Medical Center, San Francisco, CA (United States)

    1968-08-15

    In recent years, considerable attention has been given to quantitative aspects of radiation effects on cell renewal systems. The behaviour of stem-type cells has been a focal point of interest, and it has been assumed by many that the fraction of surviving stem cells is the principal determinant of the probability of survival of the irradiated system or organism. The apparent close similarity in dose requirements for impairment of reproductive capacity, and the similarity in early repair and in stage sensitivity in vitro and in vivo.clearly indicate that purely cellular phenomena are reflected in the organized population. It does not necessarily follow, however, that there is a straightforward relationship between radiation effects on stem cells and the response of systems or organisms. Indeed, this is not so. It is abundantly clear that differential radiosensitivity is anchored in a number of variables that are associated with the organizational framework of the system and its environment. Many, but not all, effects can be understood in terms of the normal kinetics of the developmental pathway. Yet, deviations from normal kinetics that are minor in the steady state can have profound significance in the perturbed state. To understand the radiobiology of cell renewal systems and to place the many possible variables in reasonable perspective, we need to know a good deal more about the interplay of the component parts than we do at present. When we view the totality of an organized cell population, it seems necessary to postulate mechanisms external to any given cell in the regulation of the balanced sequence of proliferation and differentiation. At present, we have only a vague idea about this. Most attention has been directed to the proliferative process and it is encouraging to note the growing interest in the more developmental facets of cell renewal. (author)

  10. Radiobiology of systemic radiation therapy.

    Science.gov (United States)

    Murray, David; McEwan, Alexander J

    2007-02-01

    Although systemic radionuclide therapy (SRT) is effective as a palliative therapy in patients with metastatic cancer, there has been limited success in expanding patterns of utilization and in bringing novel systemic radiotherapeutic agents to routine clinical use. Although there are many factors that contribute to this situation, we hypothesize that a better understanding of the radiobiology and mechanism of action of SRT will facilitate the development of future compounds and the future designs of prospective clinical trials. If these trials can be rationalized to the biological basis of the therapy, it is likely that the long-term outcome would be enhanced therapeutic efficacy. In this review, we provide perspectives of the current state of low-dose-rate (LDR) radiation research and offer linkages where appropriate with current clinical knowledge. These include the recently described phenomena of low-dose hyper-radiosensitivity-increased radioresistance (LDH-IRR), adaptive responses, and biological bystander effects. Each of these areas require a major reconsideration of existing models for radiation action and an understanding of how this knowledge will integrate into the evolution of clinical SRT practice. Validation of a role in vivo for both LDH-IRR and biological bystander effects in SRT would greatly impact the way we would assess therapeutic response to SRT, the design of clinical trials of novel SRT radiopharmaceuticals, and risk estimates for both therapeutic and diagnostic radiopharmaceuticals. We believe that the current state of research in LDR effects offers a major opportunity to the nuclear medicine community to address the basic science of clinical SRT practice, to use this new knowledge to expand the use and roles of SRT, and to facilitate the introduction of new therapeutic radiopharmaceuticals.

  11. Radiobiological characteristics of cervical cancer

    International Nuclear Information System (INIS)

    Kagabu, Teruo; Kobayashi, Takashi; Nanayama, Kunihiko

    1976-01-01

    In order to observe the radiobiological characteristics of cervical cancer, the author carried out irradiation of 60 Co in 16 cases of cervical cancer. The primary lesion of each case was exposed to radiation of 100 R once a day, 40 times in sequence, totaling 4,000 R. To evaluate this results, the vaginal smears were obtained everyday and examined for changes in cancerous cells caused by the irradiation. The results of our study showed that cervical cancer could be classified into three groups according to the radiosensitivity of its cancerous cells. In the group of low-radiosensitivity (11 cases of 16), the cancerous cells decreased gradually, and enlargement of the nuclei of the cancerous cells was observed from 2,000 R of irradiation, but the majority of the cancerous cells were those of nucleus after the irradiation of 4,000 R. In all of the 5 uterus removed, residual cancer lesion was noted. The radiocuability was unfavourable. In the group of high-radiosensitivity (4 cases of 16), the cancerous cells decreased remarkablly. Enlargement of nucleus was noted from 1,000 R of the irradiation, the cancerous cells of small-sized nucleus appeared with the irradiation of 3,000 R but the cancerous cells almost disappeared with the irradiation of 4,000 R. The radiocuability was favourable. In the group of combination of high-radiosensitivity and low-radiosensitivity portions (one case of 16), the cancerous cells decreased remarkablly until the exposure to the radiation of 2,000 R but thereafter did slowly. In a removed uterus, the cancer lesion was noted, but the prognosis was favourable. The foregoing results suggest that changes in the nuclear diameter of the cancerous cells in vaginal smears during irradiation can tell the radiosensitivity of the cancerous cells. (Kanao, N.)

  12. Characteristics and mechanisms of the bystander response in monolayer cell cultures exposed to very low fluences of alpha particles

    International Nuclear Information System (INIS)

    Little, John B.; Azzam, Edouard I.; Toledo, Sonia M. de; Nagasawa, Hatsumi

    2005-01-01

    When confluent cultures of mammalian cells are irradiated with very low fluences of alpha particles whereby only occasional cells receive any radiation exposure, genetic changes are observed in the non-irradiated ('bystander') cells. Upregulation of the p53 damage-response pathway as well as activation of proteins in the MAPK family occurred in bystander cells; p53 was phosphorylated on the serine 15 residue suggesting that the upregulation of p53 was a consequence of DNA damage. Damage signals were transmitted to bystander cells through gap junctions, as confirmed by the use of genetically manipulated cells including connexin43 knockouts. Expression of connexin43 was markedly enhanced by irradiation. A moderate bystander effect was observed for specific gene mutations and chromosomal aberrations. This effect was markedly enhanced in cells defective in the non-homologous end joining DNA repair pathway. Finally, an upregulation of oxidative metabolism occurred in bystander cells; the increased levels of reactive oxygen species appeared to be derived from flavine-containing oxidase enzymes. We hypothesize that genetic effects observed in non-irradiated bystander cells are a consequence of oxidative base damage; >90% of mutations in bystander cells were point mutations. When bystander cells cannot repair DNA double strand breaks, they become much more sensitive to the induction of chromosomal aberrations and mutations, the latter consisting primarily of deletion mutants. While we propose that the genetic effects occurring in bystander cells are a consequence of oxidative stress, the nature of the signal that initiates this process remains to be determined

  13. National Radiobiology Archives distributed access programmer's guide

    International Nuclear Information System (INIS)

    Prather, J.C.; Smith, S.K.; Watson, C.R.

    1991-12-01

    The National Radiobiology Archives is a comprehensive effort to gather, organize, and catalog original data, representative specimens, and supporting materials related to significant radiobiology studies. This provides researchers with information for analyses which compare or combine results of these and other studies and with materials for analysis by advanced molecular biology techniques. This Programmer's Guide document describes the database access software, NRADEMO, and the subset loading script NRADEMO/MAINT/MAINTAIN, which comprise the National Laboratory Archives Distributed Access Package. The guide is intended for use by an experienced database management specialist. It contains information about the physical and logical organization of the software and data files. It also contains printouts of all the scripts and associated batch processing files. It is part of a suite of documents published by the National Radiobiology Archives

  14. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  15. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  16. Mathematical and physical models and radiobiology

    International Nuclear Information System (INIS)

    Lokajicek, M.

    1980-01-01

    The hit theory of the mechanism of biological radiation effects in the cell is discussed with respect to radiotherapy. The mechanisms of biological effects and of intracellular recovery, the cumulative radiation effect and the cumulative biological effect in fractionated irradiation are described. The benefit is shown of consistent application of mathematical and physical models in radiobiology and radiotherapy. (J.P.)

  17. National Radiobiology Archives Distributed Access user's manual

    International Nuclear Information System (INIS)

    Watson, C.; Smith, S.; Prather, J.

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems

  18. Advances and perspectives in radiobiological technology

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Kaushanskij, D.A.

    1983-01-01

    On the basis of the analysis of experience in the USSR and in foreign countries nowadays the state and perspectives for the development of a new, in principle, aspect of technology is considered based on using ionizing radiations and radiobiological effects in agriculture, medical-, food-, microbiological and other branches of industry

  19. Feasibility studies of colorless LR 115 SSNTD for alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Chan, K.F.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2006-01-01

    The feasibility of using the active layer of the colorless LR 115 SSNTD for alpha-particle radiobiological experiments was studied. The track revelation time on the bottom side (the side attached to the polyester base) was much longer than that on the top side (the side not attached to the polyester base) of the active layer so track formation on the top side was more desirable. In relation to this, culture of HeLa cells on the bottom side of the active layer was found feasible although the cultured cell number was relatively smaller. The feasibility of using this SSNTD for alpha-particle radiobiological experiments was demonstrated by culturing cells on the bottom side while performing alpha-particle irradiation and chemical etching on the top side, and by taking photographs of the cells and alpha-particle tracks together under the optical microscope

  20. Workshop on radiobiological effectiveness of neutrons

    International Nuclear Information System (INIS)

    Stapleton, G.E.; Thomas, R.G.; Thiessen, J.W.

    1985-09-01

    The radiobiological effectiveness (RBE) of neutrons has become the subject of some heated discussions in both scientific and radiation-protection oriented communities. This has become especially so since the realization that neutron exposures of A-bomb survivors in Hiroshima were considerably lower than previously assumed, thus ''devaluating'' the importance of what we thought was a solid human data base. At the same time, more recent data from radiobiological research appeared to indicate that, at least for some biological endpoints, the RBE of neutrons at low doses and low dose rates was increased dramatically compared to the RBE at higher dose and dose rates. As a consequence, the protection of health against neutrons became a subject of some urgency. The objective of this workshop was to evaluate the existing data base in order to determine the need for additional research in this field. 22 refs., 3 figs., 6 tabs

  1. Practical Radiobiology for Proton Therapy Planning

    Science.gov (United States)

    Jones, Bleddyn

    2017-12-01

    Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject. Part of Series in Physics and Engineering in Medicine and Biology.

  2. Neutron radiobiology. Summary of a workshop

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a summary of a workshop held in June 1977 at Oak Ridge National Laboratory to evaluate the progress of research in the field of neutron radiobiology. The participants reviewed the results of current research and identified unresolved questions and areas of uncertainty. They then defined areas in which additional research should be undertaken, and, finally, they reviewed ways in which results from current and projected research could be applied to inform and influence regulatory decisions

  3. Scientific projection paper for space radiobiological research

    International Nuclear Information System (INIS)

    Vinograd, S.P.

    1980-01-01

    A nationale for the radiobiological research requirements for space is rooted in a national commitment to the exploration of space, mandated in the form of the National Space Act. This research is almost entirely centered on man; more specifically, on the effects of the space radiation environment on man and his protection from them. The research needs discussed in this presentation include the space radiation environment; dosimetry; radiation biology-high LET particles (dose/response); and operational countermeasures

  4. Radiobiological input to radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1981-01-01

    A brief review of the radiobiological data relevant to radiation protection standards is given. In particular the nature of the dose-response relationships for mutagenesis and carcinogenesis in animals and man is discussed with reference to the BEIR 1 1972, the NRC75, the UNSCEAR 77 and the NCRP80 Reports. It was concluded that the linear-no-threshold relationship for mutagenesis and carcinogenesis is too simple and that the relationship is best described by curves of varying slopes depending on the dose rate. By examining the data on the incidence of actual tumour systems in animals and man in relation to radiation dose, it was shown that the relationships developed in the simple Tradescantia single-cell system appear to hold widely throughout radiobiology. In developing radiation protection standards, first animal and human radiobiological data were used in determining an appropriate risk coefficient for late and genetic effects for the human being, and second an appropriate comparison of radiation and other more common risks was used as a basis for setting limits of incidence in the exposed population/individual. (U.K.)

  5. Radiobiology: radiotherapy and radiation protection, fundamental bases

    International Nuclear Information System (INIS)

    Tubiana, M.

    2008-01-01

    The radiobiology constitutes one of the most successful tools of the research in biology. It has for twenty years, as all the biology, strangely progressed with the increase of the knowledge in molecular biology and the new techniques of the genome exploration. It allows to dissect the living matter, to analyze the repair mechanisms of the damage in the molecular, cellular and tissular scale, to understand the transformation of a normal cell in cancer cell as well as the system of defence, multiple and powerful, against the carcinogenesis to mammals, notably to man. The radiobiology is the base on which the radiotherapy was built and perfected, now this one contributes largely to the cure of half of the cancers. With the increase of the number of the long-term cures, the indication of the second cancers provoked by the ionizing radiations and the cytotoxic largely increased: to reduce their frequency is an imperative, the radiobiology has to help to make it. (N.C.)

  6. Installation of a flow cytometry facility and some applications in radiobiology

    International Nuclear Information System (INIS)

    Walsh, M.; Kellington, J.P.

    1988-01-01

    Flow cytometry has enormous potential in many areas of experimental pathology. Details of the installation and commissioning of a flow cytometer at the Harwell Laboratory are described. Following an explanation of the principles of flow cytometry, several applications to specific problems in radiobiology are discussed. Also included are results of some preliminary studies with the Harwell flow cytometer on samples such as blood, bone marrow, macrophages and cell cultures, and a discussion of future applications. (author)

  7. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  8. Radiobiological Optimization in Lung Stereotactic Body Radiation Therapy: Are We Ready to Apply Radiobiological Models?

    Directory of Open Access Journals (Sweden)

    Marco D’Andrea

    2018-01-01

    Full Text Available Lung tumors are often associated with a poor prognosis although different schedules and treatment modalities have been extensively tested in the clinical practice. The complexity of this disease and the use of combined therapeutic approaches have been investigated and the use of high dose-rates is emerging as effective strategy. Technological improvements of clinical linear accelerators allow combining high dose-rate and a more conformal dose delivery with accurate imaging modalities pre- and during therapy. This paper aims at reporting the state of the art and future direction in the use of radiobiological models and radiobiological-based optimizations in the clinical practice for the treatment of lung cancer. To address this issue, a search was carried out on PubMed database to identify potential papers reporting tumor control probability and normal tissue complication probability for lung tumors. Full articles were retrieved when the abstract was considered relevant, and only papers published in English language were considered. The bibliographies of retrieved papers were also searched and relevant articles included. At the state of the art, dose–response relationships have been reported in literature for local tumor control and survival in stage III non-small cell lung cancer. Due to the lack of published radiobiological models for SBRT, several authors used dose constraints and models derived for conventional fractionation schemes. Recently, several radiobiological models and parameters for SBRT have been published and could be used in prospective trials although external validations are recommended to improve the robustness of model predictive capability. Moreover, radiobiological-based functions have been used within treatment planning systems for plan optimization but the advantages of using this strategy in the clinical practice are still under discussion. Future research should be directed toward combined regimens, in order to

  9. Hidden stressors in the clonogenic assay used in radiobiology experiments

    International Nuclear Information System (INIS)

    Potter, M.D.E.; Suchowerska, N.; Rizvi, S.; McKenzie, D.R.

    2011-01-01

    Full text: While clonogenic assays are extensively used in radiobiology, there is no widely accepted procedure for choosing the composition of the cell culture media. Cell line suppliers recommend a specific culture medium for each cell line, however a researcher will frequently customize this aspect of the protocol by supplementing the recommended support medium with additives. For example, many researchers add antibiotics, in order to avoid contamination of cells and the consequent loss of data, with little discussion of the influence of the antibiotics on the clonogenic survival of the cells. It is assumed that the effect of any variables in the growth medium on cell survival is taken into consideration by comparing the survival fraction relative to that of controls grown under the same conditions. In the search for better cancer treatment, the effect of various stressors on clonogenic cell survival is under investigation. This study seeks to identify and test potential stressors commonly introduced into the cell culture medium, which may confound the response to radiation. (author)

  10. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Banas, D.; Braziewicz, J.; Choinski, J.; Jaskola, M.; Korman, A.; Szeflinski, Z.; Wojcik, A.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw Univ.. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as in the region of the Bragg peak. (authors)

  11. Status and role of radiobiology in veterinary medicine

    International Nuclear Information System (INIS)

    Benova, K.

    2013-01-01

    In this presentation history of radiobiology in University of Veterinary Medicine and Pharmacy in Kosice from 1949 is presented. Scientific and pedagogic programs, role of veterinary physician as well as concept of radiobiology and cooperation are reviewed. Changes in Poecilia reticulata and Artemia franciscana after gamma radiation are presented.

  12. Radiation monitoring considerations for radiobiology facilities

    International Nuclear Information System (INIS)

    McClelland, T.W.; McFall, E.D.

    1976-01-01

    Battelle, Pacific Northwest Laboratories, conducts a wide variety of radiobiology and radioecology research in a number of facilities on the Hanford Reservation. Review of radiation monitoring problems associated with storage, plant and animal experiments, waste handling and sterile facilities shows that careful monitoring, strict procedural controls and innovative techniques are required to minimize occupational exposure and control contamination. Although a wide variety of radioactivity levels are involved, much of the work is with extremely low level materials. Monitoring low level work is mundane and often impractical but cannot be ignored in today's ever tightening controls

  13. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  14. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  15. Radiobiological analyse based on cell cluster models

    International Nuclear Information System (INIS)

    Lin Hui; Jing Jia; Meng Damin; Xu Yuanying; Xu Liangfeng

    2010-01-01

    The influence of cell cluster dimension on EUD and TCP for targeted radionuclide therapy was studied using the radiobiological method. The radiobiological features of tumor with activity-lack in core were evaluated and analyzed by associating EUD, TCP and SF.The results show that EUD will increase with the increase of tumor dimension under the activity homogeneous distribution. If the extra-cellular activity was taken into consideration, the EUD will increase 47%. Under the activity-lack in tumor center and the requirement of TCP=0.90, the α cross-fire influence of 211 At could make up the maximum(48 μm)3 activity-lack for Nucleus source, but(72 μm)3 for Cytoplasm, Cell Surface, Cell and Voxel sources. In clinic,the physician could prefer the suggested dose of Cell Surface source in case of the future of local tumor control for under-dose. Generally TCP could well exhibit the effect difference between under-dose and due-dose, but not between due-dose and over-dose, which makes TCP more suitable for the therapy plan choice. EUD could well exhibit the difference between different models and activity distributions,which makes it more suitable for the research work. When the user uses EUD to study the influence of activity inhomogeneous distribution, one should keep the consistency of the configuration and volume of the former and the latter models. (authors)

  16. Melanomas: radiobiology and role of radiation therapy

    International Nuclear Information System (INIS)

    Peschel, Richard E.

    1995-01-01

    Purpose/Objective: This course will review the radiobiology of malignant melanoma (MM) and the clinical use of radiation therapy for metastatic melanoma and selected primary sites. The course will emphasize the scientific principles underlying the clinical treatment of MM. Introduction: The incidence of malignant melanoma has one of the fastest growth rates in the world. In 1991, there were 32,000 cases and 7,000 deaths from MM in the United States. By the year 2000, one of every 90 Americans will develop MM. Wide local excision is the treatment of choice for Stage I-II cutaneous MM. Five-year survival rates depend on (a) sex: female-63%, male-40%; (b) tumor thickness: t 4 mm-25%; (c) location: extremity-60%, trunk-41%; and (d) regional lymph node status: negative-77%, positive-31%. Despite adequate surgery, 45-50% of all MM patients will develop metastatic disease. Radiobiology: Both the multi-target model: S = 1-(1-e-D/Do)n and the linear quadratic mode: -In(S) = alpha x D + beta x D2 predict a possible benefit for high dose per fraction (> 400 cGy) radiation therapy for some MM cell lines. The extrapolation number (n) varies from 1-100 for MM compared to other mammalian cells with n=2-4. The alpha/beta ratios for a variety of MM cell lines vary from 1 to 33. Other radiobiologic factors (repair of potentially lethal damage, hypoxia, reoxygenation, and repopulation) predict a wide variety of clinical responses to different time-dose prescriptions including high dose per fraction (> 400 cGy), low dose per fraction (200-300 cGy), or b.i.d. therapy. Based on a review of the radiobiology of MM, no single therapeutic strategy emerges which could be expected to be successful for all tumors. Time-Dose Prescriptions: A review of the retrospective and prospective clinical trials evaluating various time-dose prescriptions for MM reveals: (1) MM is a radiosensitive tumor over a wide range of diverse time-dose prescriptions; and (2) The high clinical response rates to a

  17. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  18. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    International Nuclear Information System (INIS)

    LOWENSTEIN, D.I.

    2000-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10 10 to 10 11 ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented

  19. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  20. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  1. Harmonization of radiobiological assays: why and how?

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    The International Atomic Energy Agency has made available a technical manual for cytogenetic biodosimetry assays (dicentric chromosome aberration (DCA) and cytokinesis-block micronucleus (CBMN) assays) used for radiation dose assessment in radiation accidents. The International Standardization Organization, which develops standards and guidelines, also provides an avenue for laboratory accreditation, has developed guidelines and recommendations for performing cytogenetic biodosimetry assays. Harmonization of DCA and CBMN assays, has improved their accuracy. Double-blinded inter-laboratory comparison studies involving several networks have further validated DCA and CBMN assays and improved the confidence in their potential use for radiation dose assessment in mass casualties. This kind of international harmonization is lacking for pre-clinical radiobiology assays. The widely used pre-clinical assays that are relatively important to set stage for clinical trials include clonogenic assays, flow-cytometry assays, apoptotic assays, and tumor regression and growth delay assays. However, significant inter-laboratory variations occur with respect to data among laboratories. This raises concerns on the reliability and reproducibility of preclinical data that drives further development and translation. Lack of reproducibility may stem from a variety of factors such as poor scientist training, less than optimal experimental design, inadequate description of methodology, and impulse to publish only the positive data etc. Availability of technical manuals, standard operating procedures, accreditation avenues for laboratories performing such assays, inter-laboratory comparisons, and use of standardized protocols are necessary to enhance reliability and reproducibility. Thus, it is important that radiobiological assays are harmonized for laboratory protocols to ensure successful translation of pre-clinical research on radiation effect modulators to help design clinic trials with

  2. A systemic approach to modelling of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1988-01-01

    Basic principles of the systemic approach to modelling of the radiobiological effects at different levels of cell organization have been formulated. The methodology is proposed for theoretical modelling of the effects at these levels

  3. Radiobiology with heavy charged particles: a historical review

    International Nuclear Information System (INIS)

    Skarsgard, L.D.

    1997-01-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  4. Radiobiological Impact of Planning Techniques for Prostate Cancer ...

    African Journals Online (AJOL)

    of gantry rotation speed, dose rate, and multi leaf collimator ... Background: The radiobiological models describe the effects of the radiation treatment on cancer and healthy ... delivery time and decrement in the number of monitor units.[3-5].

  5. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L D [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  6. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  7. Parallel studies of His-DTrp-Ala-Trp-DPhe-Lys-NH2 and human pancreatic growth hormone-releasing factor-44-NH2 in rat primary pituitary cell monolayer culture.

    Science.gov (United States)

    Sartor, O; Bowers, C Y; Chang, D

    1985-03-01

    His-DTrp-Ala-Trp-DPhe-Lys-NH2 (GH-RP-6) is a synthetic hexapeptide that specifically releases GH both in vivo and in vitro in pituitary incubates. In this study, for the first time, GH-RP-6 was studied in primary pituitary cell monolayer culture. Parallel studies were performed with human pancreatic GH-releasing factor-44 (hpGRF-44). Culture conditions optimal for GH-RP-6 were not optimal for hpGRF-44. Both peptides released GH in a dose- and time-dependent manner. In this assay system, the ED50 for GH-RP-6 was 9 nM, and the ED50 for hp-GRF-44 was 1.6 nM. Calcium-blocking agents inhibited the GH responses of both peptides as well as basal GH release. Pretreatment with GH-RP-6 decreased the subsequent response to both GH-RP-6 and hpGRF-44. hpGRF-44 down regulated itself but not GH-RP-6. Rat sera potentiated the GH response of hpGRF-44 but not that of GH-RP-6. GH-RP-6 and hpGRF-44 GH responses were additive. These results suggest that GH-RP-6 and hpGRF-44 stimulate GH release via different somatotroph receptors.

  8. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  9. Radiobiological inactivation of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Henderson, E.; Heston, L.; Grogan, E.; Miller, G.

    1978-01-01

    Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either uv or x irradiation. No dose of irradiation increases the transforming capacity of EBV. The x-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to uv irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of uv damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of uv and x irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P 3 HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction

  10. Biophysical and biomathematical adventures in radiobiology

    International Nuclear Information System (INIS)

    Scott, B.R.

    1991-01-01

    Highlights of my biophysical and biomathematical adventures in radiobiology is presented. Early adventures involved developing ''state-vector models'' for specific harmful effects (cell killing, life shortening) of exposure to radiation. More recent adventures led to developing ''hazard-function models'' for predicting biological effects (e.g., cell killing, mutations, tumor induction) of combined exposure to different toxicants. Hazard-function models were also developed for predicting harm to man from exposure to large radiation doses. Major conclusions derived from the modeling adventures are as follows: (1) synergistic effects of different genotoxic agents should not occur at low doses; (2) for exposure of the lung or bone marrow to large doses of photon radiation, low rates of exposure should be better tolerated than high rates; and (3) for some types of radiation (e.g., alpha particles and fission neutrons), moderate doses delivered at a low rate may be more harmful than the same dose given at a high rate. 53 refs., 7 figs

  11. Radiation oncology: radiobiological and physiological perspectives

    International Nuclear Information System (INIS)

    Awwad, H.K.

    1990-01-01

    This book deals with the normal tissue and tumor radiation-induced responses in terms of the underlying radiobiological and physiological process. Coverage includes the following topics: Functional test for normal tissue responses. Relation to the underlying target cell, Clinical structural end-points, e.g., increased lung density in CT-scan. Conditions and parameters of the LQ-model in clinical applications. An NSD-type of formalism is still clinically applicable. Clinical importance of the kinetics of recovery. The notion of normal tissue tolerance and tumor control. The steepness of the response curve. How accurate radiotherpy should be. The volume effect: clinical, biological and physiological perspectives. The tumor bed effect, residual damage and the problems of reirradiation. Radiation-induced perturbations of the immune response. Clinical consequences. Exploitation to a therapeutic benefit. Hypoxia in human solid tumors. Probing and methods of control. Growth of human tumors. Parameters, measurement and clinical implications. The dose-rate effect. The optimum use of low dose rate irradiation in human cancer

  12. Radiobiological considerations in magna-field irradiation

    International Nuclear Information System (INIS)

    Evans, R.G.

    1983-01-01

    Radiobiological considerations are described for total body irradiation (TBI) as given to patients undergoing bone marrow transplantation (BMT). Although much progress has been made in the use of BMT for refractory leukemias, many patients still die from interstitial pneumonia and relapse. Fractionated TBI has been introduced in order to improve leukemic cell kill, while increasing the degree of normal tissue tolerance. Traditionally, bone marrow stem cells, leukemic cells and immunocytes have been considered as having a limited ability to repair radiation damage while cells of lung tissue and intestinal epithelial cells have a greater capacity. During fractionated radiation therapy or continuous low-dose rate exposure, repair of sublethal damage between fractions allows greater recovery in the cells of lung tissue to those in the bone marrow. Clinically, the potential benefit of six fractions over one fraction or low dose-rate TBI has yet to be proved, although there is suggestive evidence for a reduced incidence of interstitial pneumonitis. However, other extraneous factors such as doses to the lung, differences in conditioning regimens, effect of increased delay in BMT for patients receiving fractionated TBI, and the unmeasurable differences between institutions make definite conclusions impossible. Despite this, a consensus for dose fractionation has developed and most centers are moving away from the use of large single dose TBI

  13. Radiobiology, biochemistry and radiation biophysics at CYLAB

    International Nuclear Information System (INIS)

    Ftacnikova, S.

    1998-01-01

    The Cyclotron Laboratory (CYLAB) should fill the gap in the field of nuclear medicine, radiotherapy, basic research, metrology of ionizing radiation, education and implications of accelerator technology existing today in Slovak Republic. The main planned activities of this facility are in the fields of nuclear medicine (production of radioisotopes for Positron Emission Tomography - PET and for oncology) and radiotherapy (neutron capture therapy, fast neutron therapy and proton therapy). The radiobiological and biophysical research will be closely connected with medical applications, particularly with radiotherapy. Problems to be addressed include the determination of the values of Relative Biological Effectiveness (RBE) for different types of ionizing radiation involved in the therapy, microdosimetric measurements and calculations, which are indispensable in the calculation of the absorbed dose (lineal and specific energy spectra) at the cellular and macromolecular level. Radiation biophysics and medical physics help in creating therapeutic plans for radiotherapy (NCT and fast neutron therapy). In nuclear medicine, in diagnostic and therapeutical procedures it is necessary to assess the biodistribution of radiopharmaceuticals and to calculate doses in target and critical organs and to determine whole body burden - effective equivalent dose for newly developed radiopharmaceuticals

  14. Toward a national consensus: teaching radiobiology to radiation oncology residents

    International Nuclear Information System (INIS)

    Zeman, Elaine M.; Dynlacht, Joseph R.; Rosenstein, Barry S.; Dewhirst, Mark W.

    2002-01-01

    Purpose: The ASTRO Joint Working Group on Radiobiology Teaching, a committee composed of members having affiliations with several national radiation oncology and biology-related societies and organizations, commissioned a survey designed to address issues of manpower, curriculum standardization, and instructor feedback as they relate to resident training in radiation biology. Methods and Materials: Radiation biology instructors at U.S. radiation oncology training programs were identified and asked to respond to a comprehensive electronic questionnaire dealing with instructor educational background, radiation biology course content, and sources of feedback with respect to curriculum planning and resident performance on standardized radiation biology examinations. Results: Eighty-five radiation biology instructors were identified, representing 73 radiation oncology residency training programs. A total of 52 analyzable responses to the questionnaire were received, corresponding to a response rate of 61.2%. Conclusion: There is a decreasing supply of instructors qualified to teach classic, and to some extent, clinical, radiobiology to radiation oncology residents. Additionally, those instructors with classic training in radiobiology are less likely to be comfortable teaching cancer molecular biology or other topics in cancer biology. Thus, a gap exists in teaching the whole complement of cancer and radiobiology curricula, particularly in those programs in which the sole responsibility for teaching falls to one faculty member (50% of training programs are in this category). On average, the percentage of total teaching time devoted to classic radiobiology (50%), clinical radiobiology (30%), and molecular and cancer biology (20%) is appropriate, relative to the current makeup of the board examination. Nevertheless large variability exists between training programs with respect to the total number of contact hours per complete radiobiology course (ranging from

  15. Proceedings of the 4th Radiobiological conference with international participation 2008

    International Nuclear Information System (INIS)

    Benova, K.; Falis, M.

    2008-06-01

    Scientific conference deals with problems in radiobiology, photobiology and radio-environmental sciences. The Conference included the following sessions: (i): Radiobiology; (ii) Biology. Proceedings contains thirty-two papers dealing with the scope of INIS

  16. Radiobiological basis of SBRT and SRS.

    Science.gov (United States)

    Song, Chang W; Kim, Mi-Sook; Cho, L Chinsoo; Dusenbery, Kathryn; Sperduto, Paul W

    2014-08-01

    Stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) have been demonstrated to be highly effective for a variety of tumors. However, the radiobiological principles of SBRT and SRS have not yet been clearly defined. It is well known that newly formed tumor blood vessels are fragile and extremely sensitive to ionizing radiation. Various lines of evidence indicate that irradiation of tumors with high dose per fraction, i.e. >10 Gy per fraction, not only kills tumor cells but also causes significant damage in tumor vasculatures. Such vascular damage and ensuing deterioration of the intratumor environment then cause ischemic or indirect/secondary tumor cell death within a few days after radiation exposure, indicating that vascular damage plays an important role in the response of tumors to SBRT and SRS. Indications are that the extensive tumor cell death due to the direct effect of radiation on tumor cells and the secondary effect through vascular damage may lead to massive release of tumor-associated antigens and various pro-inflammatory cytokines, thereby triggering an anti-tumor immune response. However, the precise role of immune assault on tumor cells in SBRT and SRS has not yet been clearly defined. The "4 Rs" for conventional fractionated radiotherapy do not include indirect cell death and thus 4 Rs cannot account for the effective tumor control by SBRT and SRS. The linear-quadratic model is for cell death caused by DNA breaks and thus the usefulness of this model for ablative high-dose SBRT and SRS is limited.

  17. Problems of radiation medicine and radiobiology

    International Nuclear Information System (INIS)

    Bazyka, D.A.

    2014-01-01

    Research activities and scientific advance achieved in 2013 at the State Institution 'National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine' (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report. Key points include the research results of XRCC1 and XPD gene polymorphism in thyroid cancer patients, CD38 gene GG genotype as a risk factor for chronic lymphocytic leukemia, frequency of 185delAG and 5382insC mutations in BRCA1 gene in women with breast cancer, cognitive function and TERF1, TERF2, TERT gene expression both with telomere length in human under the low dose radiation exposure. The 'source-scattering/shielding structures-man' models for calculation of partial dose values to the eye lens and new methods for radiation risk assessment were developed and adapted. Radiation risks of leukemia including chronic lymphocytic leukemia in the cohort of liquidators were published according to the 'case-control' study results after 20 years of survey. Increase of non-tumor morbidity in liquidators during the 1988-2011 with the maximum level 12-21 years upon irradiation was found. Incidence in evacuees appeared being of two-peak pattern i.e. in the first years after the accident and 12 years later. Experimental studies have concerned the impact of radio-modifiers on cellular systems, reproductive function in the population, features of the child nutrition in radiation contamination area were studied. Report also shows the results of scientific and organizational, medical and preventive work, staff training, and implementation of innovations. The NRCRM Annual Report was approved at the Scientific Council meeting of NAMS on March 3, 201

  18. Modern concepts for basic radiobiological factors characterizing tumor tissue radiosensitivity

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.

    2002-01-01

    Traditionally radiotherapy is prescribed at doses consistent with the expected therapeutic response and tolerance of tumor and normal tissues without consideration to individual differences in radiosensitivity. However, the basic radiobiological knowledge and clinical experience along this line point to significant variations in the observed therapeutic results. It has been established that cells and tissues under experimental and clinical conditions manifest a wide spectrum of individual radiosensitivity. The aim of this survey is to outline the current concepts for the basic radiobiological factors influencing tumor radiosensitivity. A thorough discussion is done of the essence, mechanisms of action, methods of determination and measurement, and effect on the prognosis in patients with malignant diseases of a number of radiobiological factors, such as: tumor-cell proliferation, apoptosis, tumor hypoxia and neovascularization. Although the knowledge of the mechanisms of radiosensitivity is constantly expanding, its clinical implementation is still rather limited. The true role of radiosensitivity in predicting the therapeutic response should be more accurately defined. (authors)

  19. National Radiobiology Archives distributed access programmer's guide

    Energy Technology Data Exchange (ETDEWEB)

    Prather, J. C. [Linfield Coll., McMinnville, OR (United States); Smith, S. K.; Watson, C. R. [Pacific Northwest Lab., Richland, WA (United States)

    1991-12-01

    The National Radiobiology Archives is a comprehensive effort to gather, organize, and catalog original data, representative specimens, and supporting materials related to significant radiobiology studies. This provides researchers with information for analyses which compare or combine results of these and other studies and with materials for analysis by advanced molecular biology techniques. This Programmer's Guide document describes the database access software, NRADEMO, and the subset loading script NRADEMO/MAINT/MAINTAIN, which comprise the National Laboratory Archives Distributed Access Package. The guide is intended for use by an experienced database management specialist. It contains information about the physical and logical organization of the software and data files. It also contains printouts of all the scripts and associated batch processing files. It is part of a suite of documents published by the National Radiobiology Archives.

  20. Subcellular topological effect of particle monolayers on cell shapes and functions.

    Science.gov (United States)

    Miura, Manabu; Fujimoto, Keiji

    2006-12-01

    We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and

  1. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  2. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A.

    1991-01-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  3. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    Science.gov (United States)

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  4. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique

    International Nuclear Information System (INIS)

    Giesbrecht, J.L.; Wilson, W.R.; Hill, R.P.

    1981-01-01

    The radiation response of V79 Chinese hamster cells grown as multicellular spheroids has been investigated by determining survival curves for treatment under a variety of different oxygen concentrations. Spheroids were irradiated under fully oxygenated conditions in air-equilibrated medium at 37 0 C, in medium exposed to lower oxygen tension (5% O 2 ) for times varying from 1 hr to 3 days, or under anoxic conditions. For comparison with the spheroids, using identical treatment conditions, V79 cells were grown in suspension as a subconfluent monolayer attached to Sephadex (microcarrier) beads and irradiated under fully oxygenated or anoxic conditions. The radiation response of cells at different depths within the spheroid was investigated by using a sequential trypsinization technique developed to remove eight or nine shells of cells successively from the spheroid surface. When irradiation was given under fully oxygenated conditions the outer few cell layers were more sensitive than the inner cells, a finding which is not understood. As expected the inner cells in spheroids irradiated in air (at 37 0 C) or in 5% O 2 are more resistant than the outer cells. For an acute exposure to 5% O 2 (1 hr) in the inner cells displayed full radiobiological hypoxia; however, for chronic exposures to low oxygen this was not the case. These results with the sequential trypsinization procedure suggest that the radiation response of cells in spheroids is more complex than anticipted

  5. National Radiobiology Archives Distributed Access user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  6. Radiobiological researches on Dianthus caryophyllus L. carnation chimeras

    International Nuclear Information System (INIS)

    Pereau-Leroy, Pierre

    1975-01-01

    This research thesis reports a radiobiological study of Dianthus periclinal chimeras performed by submitting plants and plant cuttings at different physiological stages to cobalt-60 gamma irradiation under different dose conditions and rates. The effects of these treatments are studied while growing the so-processed plants and by microscopic examination of sections of irradiated meristems [fr

  7. Tritium radiobiology research in the US DOE program

    International Nuclear Information System (INIS)

    Carsten, A.L.

    1986-01-01

    The history of the original US Atomic Energy Commission, its replacement, the Energy Research and Development Administration, and the present Department of Energy's interest and sponsorship of tritium radiobiology is reviewed beginning in 1971 and continuing through 1986. In particular, the four remaining US Department of Energy, Division of Health and Environmental Research programs are described in some detail

  8. The status and role of radiobiology in veterinary medicine

    International Nuclear Information System (INIS)

    Benova, K.

    2007-01-01

    In this presentation author deals with history of the University of Veterinary Medicine in Kosice as well as with the status and role of radiobiology in veterinary medicine. Some results of gamma irradiation of Pecilia reticulata are presented. Activity levels of cesium-137 in contaminated mushrooms gathered in Slovakia in 2001 are presented.

  9. Biometrical analysis in radiobiological works of N.V. Luchnik

    International Nuclear Information System (INIS)

    Glotov, N.V.

    1996-01-01

    The contribution of the famous Russian geneticist and biophysics N.V. Luchnik into biometrical analysis of radiobiological data is discussed. His works on radiation mortality of mice (2) and the process of post-radiation repair of chromosome aberrations (10) are thoroughly observed. The conclusion of necessity to develop biometrical analysis as separate part of biometry is made

  10. In vivo tumor radiobiology of heavy charged particles

    International Nuclear Information System (INIS)

    Curtis, S.B.; Tenforde, T.S.

    1980-01-01

    The response of tumor cells systems to irradiation with carbon, neon and argon beams at various positions in the plateau and extended-peak regions of the Bragg ionization curve is being evaluated from experiments conducted both in vivo and in vitro. The radiobiological end points being studied include: tumor volume response, cellular survival after tumor irradiation in situ, and cell-kinetic parameters

  11. The ATM gene and the radiobiology of ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Jorgensen, T.J.; Shiloh, Y.

    1996-01-01

    Ataxia-telangiectasia (A-T) is the classic human genetic disease involving severe ionizing radiation sensitivity and as such has been intensely studied by radiation biologists over the years. Unlike its counterpart for UV light sensitivity -xeroderma pigmentosum - A-T has no obvious DNA repair defect; and there has been much speculation as to the mechanism underlying the altered radioresponses associated with this disease. The gene defective in A-T (ATM) has recently been cloned, and its primary coding sequence determined. The primary sequence of the ATM protein suggests that it has some regulatory functions related to cellular radioresponse and maintenance of genomic stability, and shares these functions with a growing family of other proteins in various organisms. At this juncture it is appropriate to review our current knowledge about the radiobiology of A-T and reflect on the possible radiobiological mechanisms that are suggested by the ATM gene itself. This article will attempt briefly to review current knowledge about the radiobiology of A-T and to introduce new speculations about underlying radiobiological mechanisms that are suggested by the primary amino acid sequence of the predicted ATM gene product. (Author)

  12. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  13. Research in radiobiology. Annual report, Internal Irradiation Program

    International Nuclear Information System (INIS)

    Miller, S.C.; Buster, D.S.

    1985-01-01

    The annual progress report for the Radiobiology Division of the University of Utah College of Medicine is presented. Summaries of twenty-four projects concerning the metabolism, dosimetry and toxicity of a variety of actinide elements in beagles or rats are given. Individual papers within this report have been separately indexed and abstracted for the data base

  14. Simple preparation of thin CR-39 detectors for alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Chan, K.F.; Lau, B.M.F.; Nikezic, D.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2007-01-01

    Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require accurate positions where the alpha particles hit the cells. In the present work, we prepared thin CR-39 detectors from commercially available CR-39 SSNTDs with a thickness of 100 μm by etching them in 1 N NaOH/ethanol at 40 deg. C to below 20 μm. The desired final thickness was achieved within ∼8 h. Such etching conditions can provide relatively small roughness of the detector as revealed by atomic force microscope, and thus provide transparent detectors for radiobiological experiments. UV radiation was employed to shorten track formation time on these thin CR-39 detectors. After exposure to UV light (UVA + B radiation) for 2-3 h with doses from 259 to 389 W/cm 2 , 5 MeV alpha-particle tracks can be seen to develop on these CR-39 detectors clearly under the optical microscope within 2 h in 14 N KOH at 37 deg. C. As an example for practical use, custom-made petri dishes, with a hole drilled at the bottom and covered with a thin CR-39 detector, were used for culturing HeLa cells. The feasibility of using these thin CR-39 detectors is demonstrated by taking photographs of the cells and alpha-particle tracks together under the optical microscope, which can allow the hit positions on the cells by the alpha particles to be determined accurately

  15. Design of a radiation facility for very small specimens used in radiobiology studies

    Science.gov (United States)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  16. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  17. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  18. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  19. Repair during multifraction exposures: spheroids versus monolayers

    International Nuclear Information System (INIS)

    Durand, R.E.

    1984-01-01

    Many type of mammalian cells, when grown in culture as multicell spheroids, display an increased ability to accumulate and repair sublethal radiation damage which has been called the ''contact effect''. Since this effect has the potential to markedly modify the multifraction radiation response of cells in V79 spheroids relative to cells in monolayer cultures, an investigation was made of regimens ranging from 1 to 100 fractions. Effective dose rates were chosen near 1 Gy h -1 to inhibit cell progression and thus simplify analysis of the results. As expected, larger doses per fraction produced more net cell killing in both systems than lower doses per fraction. Additionally, less killing of spheroid cells was observed in all regimens, in accord with their greater potential for repair. However, when the data were expressed as isoeffect curves, the spheroid and monolayer curves converged as the number of fractions increased. Thus, quite similar inherent sensitivity and repair capabilities would be predicted for ultra-low doses per fraction. High precision techniques for defining survival after doses of radiation from 0.2 to 1 Gy were, however, still able to demonstrate a survival advantage for cells grown as spheroids. (author)

  20. Optimization in brachytherapy with the implementation of Radiobiology

    International Nuclear Information System (INIS)

    Duran, M.P.; Bourel, V.J.; Rodriguez, I.; Torre, M. de la; Caneva, S.

    1998-01-01

    In the brachytherapy planning treatments with High dose rates (HDR), the optimization algorithms used are based in dosimetric considerations and/or geometric ones, ignoring the radiobiological response of the tissue treated. In this work we wish to show the implementation of radiobiological concepts in the optimization. Assuming that the subtiles differences that result in the dose distribution among the different optimization models which are not visible in an isodose plane, it is studied how is classically make it , the quality implant through natural histograms about dose volumes and the resulting parameters. Also is studied the necrosis probability which may be caused by the choice of some optimization model, allowing with this the choice of the best implant. (Author)

  1. National radiobiology archives Dr. J. Newell Stannard Collection Inventory Listing

    International Nuclear Information System (INIS)

    Watson, C.R.; Ligotke, E.K.; Smith, S.K.

    1994-11-01

    This document describes the National Radiobiology Archives (NRA) J. Newell Stannard Collection. Items in the Stannard Collection are available upon written request. The written correspondence should identify specific items, or the topic of the items, to be retrieved from the NRA holdings. The NRA is a Department of Energy Office of Health and Environmental Research (DOE/OHER) funded project at Pacific Northwest Laboratory (PNL). Dr. Charles R. Watson, telephone (509) 376-3483, is the project director. The NRA project is a comprehensive effort to gather, organize, and catalog data, tissues, and documents related to radiobiology studies. This archiving activity will provide future researchers with information for statistical analyses to compare results of these and other studies and materials for analysis and application of advanced molecular biology techniques

  2. Radiobiology of Proton Therapy - Results of an international expert workshop

    DEFF Research Database (Denmark)

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg

    2018-01-01

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full...... in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness...... of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data...

  3. Vertical uniformity of cells and nuclei in epithelial monolayers.

    Science.gov (United States)

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  4. Radiobiology Department. Report of Activities 1977-1980

    International Nuclear Information System (INIS)

    1982-02-01

    The different research activities carried out by the Radiobiology Department of the CNEA over the 4-year period 1977-1980 are summarized. These activities were devoted to the study of the effects of radiation on different biological systems, to the search for adequate experimental models, and to the development of techniques permiting a correct evaluation of the information obtained. Topics covered are genetics, microbiology, somatic effects of radiation, pathology and the operation of the animal's house. (M.E.L.) [es

  5. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  6. Amchitka radiobiological program progress report, January 1976--December 1976

    International Nuclear Information System (INIS)

    Nelson, V.A.; Seymour, A.H.

    1977-05-01

    The Amchitka Radiobiological Program is a continuing program to collect biological and environmental samples for radiometric analyses. Results of analyses for samples collected during 1976 include gamma-emitting radionuclides in air filters, freshwater, birds, lichens, marine algae, marine invertebrates, fish, aufwuchs, and freshwater moss and plants; 90 Sr in rats, birds, and soil; 239 240 Pu in sand, soil, marine algae and fish; and tritium ( 3 H) in seawater, freshwater, and biological organisms

  7. Influence of oxygen on the chemical stage of radiobiological mechanism

    International Nuclear Information System (INIS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-01-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too. - Highlights: • Creation of the mathematical model. • Realization of the model with the help of Continuous Petri nets. • Obtain the time dependence of changes in the concentration of radicals. • Influence of oxygen on the chemical stage of radiobiological mechanism.

  8. New challenges in high-energy particle radiobiology

    Science.gov (United States)

    2014-01-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space. PMID:24198199

  9. (RadioBiological Optimization of External-Beam Radiotherapy

    Directory of Open Access Journals (Sweden)

    Alan E. Nahum

    2012-01-01

    Full Text Available “Biological optimization” (BIOP means planning treatments using (radiobiological criteria and models, that is, tumour control probability and normal-tissue complication probability. Four different levels of BIOP are identified: Level I is “isotoxic” individualization of prescription dose at fixed fraction number. is varied to keep the NTCP of the organ at risk constant. Significant improvements in local control are expected for non-small-cell lung tumours. Level II involves the determination of an individualized isotoxic combination of and fractionation scheme. This approach is appropriate for “parallel” OARs (lung, parotids. Examples are given using our BioSuite software. Hypofractionated SABR for early-stage NSCLC is effectively Level-II BIOP. Level-III BIOP uses radiobiological functions as part of the inverse planning of IMRT, for example, maximizing TCP whilst not exceeding a given NTCP. This results in non-uniform target doses. The NTCP model parameters (reflecting tissue “architecture” drive the optimizer to emphasize different regions of the DVH, for example, penalising high doses for quasi-serial OARs such as rectum. Level-IV BIOP adds functional imaging information, for example, hypoxia or clonogen location, to Level III; examples are given of our prostate “dose painting” protocol, BioProp. The limitations of and uncertainties inherent in the radiobiological models are emphasized.

  10. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  11. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  12. The radiobiological response of the thyroid

    International Nuclear Information System (INIS)

    O'Connor, M.K.; Malone, J.F.; Moriarty, M.; Cullen, M.J.

    1980-01-01

    The response of sheep thyroid cells in culture to single doses of X or γ rays is described. In the absence of cellular proliferation the cells were unusually radioresistant, showing little sign of interphase death at doses up to 9 krad. The follicular morphology characteristic of thyroid cells in vivo was also very radioresistant. Iodide trapping was reduced to 50% of the control value by doses of the order of 2 krad. When proliferation was induced the cells could be assayed for post-irradiation survival using a clonogenic endpoint. The survival curves were sigmoid with a Do of 410 rad and a very low extrapolation number. (author)

  13. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  14. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  15. Solution-processable septithiophene monolayer transistor

    NARCIS (Netherlands)

    Defaux, M.; Gholamrezaie, F.; Wang, J.; Kreyes, A.; Ziener, U.; Anokhin, D.V.; Ivanov, D.A.; Moser, A.; Neuhold, A.; Salzmann, I.; Resel, R.; Leeuw, de D.M.; Meskers, S.C.J.; Moeller, M.; Mourran, A.

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  16. Solution-Processable Septithiophene Monolayer Transistor

    NARCIS (Netherlands)

    Defaux, Matthieu; Gholamrezaie, Fatemeh; Wang, Jingbo; Kreyes, Andreas; Ziener, Ulrich; Anokhin, Denis V.; Ivanov, Dimitri A.; Moser, Armin; Neuhold, Alfred; Salzmann, Ingo; Resel, Roland; de Leeuw, Dago M.; Meskers, Stefan C. J.; Moeller, Martin; Mourran, Ahmed

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  17. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  18. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  19. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  20. Experimental radiotherapy and clinical radiobiology. Vol. 18. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel

    2009-01-01

    The proceedings on experimental radiotherapy and clinical radiobiology contain two review articles (prediction of normal tissue reactions after radiotherapy, ?H2AX foci as a marker for DNA double-strand breaks) and 34 contributions to the following topics: Hypoxia and molecular mechanisms of radiation resistance; biological imaging of the tumor micromilieu; DNA repair, genomic instability and carcerogenesis; molecular factors of radiation resistance; actual controversial discussion on possible irradiation caused metastasis risk enhancement; EGFR inhibition and irradiation; biology of experimental radiation/ normal tissue toxicity

  1. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  2. Microculture system for studying monolayers of functional beta-cells.

    Science.gov (United States)

    Dobersen, M J; Scharff, J E; Notkins, A L

    1980-04-01

    A method is described for growing monolayers of newborn rat beta-cells in microculture trays. After disruption of the pancreas with collagenase, islets were isolated by Ficoll density gradient centrifugation, trypsinized to obtain individual cells, and plated in 96-well tissue culture trays. The cells were incubated for the first 3 days in growth medium containing 0.1 mM 3-isobutyl-1-methylxanthine to promote monolayer formation. The cultures could be maintained in a functional state, as defined by their responsiveness to known modulators of insulin secretion, for at least 2 weeks. As few as 1 X 10(3) islet cells/well gave results that were reproducible within +/- 10%. It is suggested that the microculture system for islet cells might prove to be a rapid and reproducible screening technique for studying drugs, viruses, or other agents that affect beta-cell function.

  3. Some applications of radiation chemistry to biochemistry and radiobiology

    International Nuclear Information System (INIS)

    Wardman, P.

    1987-01-01

    In this chapter illustrate the use of radiation chemistry as a tool in investigating biologically important radical reactions, and also outline some studies of models for radiobiological damage. Because aqueous solutions usually offer the most important matrix, an appreciation of the main features of water radiolysis will be essential. Most of the illustrations involve pulse radiolysis, and some familiarity with chemical kinetics is assumed. In addition to these and other chapters in this book, readers find the proceedings of a recent NATO Advanced Study Institute most useful. The authors shall not try to review here all the applications of radiation chemistry to biochemistry and biology, but they will illustrate, using selected examples, the main principles and practical advantages and problems. Another recent volume covers the main contributions of flash photolysis and pulse radiolysis to the chemistry of biology and medicine, complementing earlier reviews. Papers from symposia on radical processes in radiobiology and carcinogenesis, and on super-oxide dismutases, and proceedings of recent international congresses of radiation research, together with the other publications referred to above will enable the reader to gain a comprehensive overview of the role of radicals in biological processes and the contributions of radiation chemistry

  4. A radiobiological review on melatonin. A novel radioprotector

    International Nuclear Information System (INIS)

    Shirazi Hosseinidokht, A.

    2007-01-01

    Complete text of publication follows. For the sake of improvement in radiation therapy, radiobiology plays a crucial role through explaining observed phenomena, and suggesting improvements to existing therapies. Due to the damaging effects of ionizing radiation, radiobiologists have long been interested in identifying novel, nontoxic, effective, and convenient compounds to protect humans against radiation induced normal tissue injuries. Melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, has been documented to ameliorate the oxidative injuries due to ionizing radiation. This article reviews different features that make melatonin a potentially useful radioprotector. Moreover, based on radiobiological models we hypothesize that melatonin may postpone the saturation of repair enzymes which leads to repairing more induced damage by repair system and more importantly allows the use of higher doses of radiation during radiotherapy to get a better therapeutic ratio. The implications of the accumulated observations suggest by virtue of melatonin's radioprotective and anticancer effects; it is time to use it as a radioprotector both for radiation workers and patients suffering from cancer either alone for cancer inhibition or in combination with traditional radiotherapy for getting a favorable efficacy/toxicity ratio during the treatment. Although compelling evidence suggests that melatonin may be effective for a variety of disorders, the optimum dose of melatonin for human radioprotection is yet to be determined by further research. We propose that, in the future melatonin improve therapeutic ratio in radiation oncology.

  5. Radiobiologically based treatment plan evaluation for prostate seed implants

    Directory of Open Access Journals (Sweden)

    Sotirios Stathakis

    2011-07-01

    Full Text Available Purpose: Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation.Material and methods: Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. Results: The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. Conclusions: The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  6. A comparison of physically and radiobiologically based optimization for IMRT

    International Nuclear Information System (INIS)

    Jones, Lois; Hoban, Peter

    2002-01-01

    Many optimization techniques for intensity modulated radiotherapy have now been developed. The majority of these techniques including all the commercial systems that are available are based on physical dose methods of assessment. Some techniques have also been based on radiobiological models. None of the radiobiological optimization techniques however have assessed the clinically realistic situation of considering both tumor and normal cells within the target volume. This study considers a ratio-based fluence optimizing technique to compare a dose-based optimization method described previously and two biologically based models. The biologically based methods use the values of equivalent uniform dose calculated for the tumor cells and integral biological effective dose for normal cells. The first biologically based method includes only tumor cells in the target volume while the second considers both tumor and normal cells in the target volume. All three methods achieve good conformation to the target volume. The biologically based optimization without the normal tissue in the target volume shows a high dose region in the center of the target volume while this is reduced when the normal tissues are also considered in the target volume. This effect occurs because the normal tissues in the target volume require the optimization to reduce the dose and therefore limit the maximum dose to that volume

  7. Radiobiology at GANIL: local project and others fields studied

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This article reviews the research that is led in the field of radiobiology using heavy ions at Ganil. Our first studies with heavy ions were mainly focused on chromosome rearrangements induced in irradiated human cells. We analyzed R-banded chromosome rearrangements in human lymphocytes irradiated with several ions having a wide range of linear energy transfer (LET). Damage increased with the fluence and LET but at the higher LET, damage decreased for fluences above 10 7 particles/cm 2 . Chromosome rearrangements of high complexity involve several breaks. DNA strand breaks are concentrated in localized areas and their complexity is greatly increased by high-LET radiations. Our study was mainly qualitative and we showed a clear shift and dispersion of comet distribution towards high tail moments when particle LET and fluence increased. The higher the LET, the greater the level of DNA breaks observed for the same fluence. Gamma rays were more effective in producing DNA breaks than all the ions, at least in the lower dose range. In addition to early damage, high-LET irradiation also induces delayed lesions, and genomic instability occurs after many generations in the progeny of irradiated cells. We observed delayed chromosome instability on human dermis fibroblasts exposed to heavy ions, neon, argon, and lead but not after gamma rays. Various fields of radiobiology are now explored by different research groups. One of the studies aims to detect locally multiple damage sites (LMDS) formed in DNA after exposure to heavy ions. (A.C.)

  8. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Adamus, T.; Banas, D.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw University. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as the plateau of the Bragg curve as well as in the Bragg peak. The passive beam spread out by a thin scattering foil provides a homogeneous irradiation field over an area of at least 1 x 1 cm 2 . For in vitro irradiation of biological samples the passive beam spreading combined with the x - y mechanical scanning of the irradiated sample was found to be an optimum solution. Using x - y step motor, the homogenous beam of ions with the energy loss range in the cells varied from 1 MeV/μm to 200 keV/μm is able to cover a 6 cm in diameter Petri dish that holds the biological samples. Moreover on-line fluence monitoring based on single-particle counting is performed to determine the dose absorbed by cells. Data acquisition system for dosimetry and ion monitoring based on a personal computer is described. (author)

  9. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  10. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  11. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  12. Culture.

    Science.gov (United States)

    Smith, Timothy B; Rodríguez, Melanie Domenech; Bernal, Guillermo

    2011-02-01

    This article summarizes the definitions, means, and research of adapting psychotherapy to clients' cultural backgrounds. We begin by reviewing the prevailing definitions of cultural adaptation and providing a clinical example. We present an original meta-analysis of 65 experimental and quasi-experimental studies involving 8,620 participants. The omnibus effect size of d = .46 indicates that treatments specifically adapted for clients of color were moderately more effective with that clientele than traditional treatments. The most effective treatments tended to be those with greater numbers of cultural adaptations. Mental health services targeted to a specific cultural group were several times more effective than those provided to clients from a variety of cultural backgrounds. We recommend a series of research-supported therapeutic practices that account for clients' culture, with culture-specific treatments being more effective than generally culture-sensitive treatments. © 2010 Wiley Periodicals, Inc.

  13. Philosophy of veterinary radiobiology twenty years after the Chernobyl disaster

    International Nuclear Information System (INIS)

    Dvorak, P.; Toropila, M.

    2006-01-01

    The basic objective is to provide safe foodstuffs. This approach has connection with the food chain protection including the diagnostics and the acute radiation disease therapy at the farm animals. The extra significance is given to the research of technologies which can reduce the activity of the contaminated foodstuffs. In the field of the ionizing radiation effect research in live organisms attention should be devoted to the new alternative bio-tests. The low-dose effect or the interaction with other negative physical and chemical aspects of the environment is mainly considered. In cooperation with human medicine, it is necessary to develop radiotherapy and to study the effects of therapy and radiotherapy. From the standpoint of perspective technologies, it is advisable to focus on irradiation of the foodstuffs in veterinary radiobiology. (authors)

  14. Radon as a remedy - radiobiological and medical aspects, risk

    International Nuclear Information System (INIS)

    Schwarz, E.R.; Nuernberger, E.; Martignoni, K.

    1995-01-01

    For years there have been controversial discussions about the benefit and risk of radon-balneo-therapy. This is particularly true where the inhalation of radon and its daughter products in curative galleries is concerned. Animal experiments and studies on uranium miners have clearly shown that the exposure with radon and its daughter products is connected with an additional risk for lung cancer. Findings on balneo-therapeutic mechanisms are, at best, incomplete and the topic of controversial discussions in radiobiology. This applies specifically to 'hormesis' or 'adaptive response', as indicated in this context. Given the numerous reports of therapeutic results, there appear to be curative effects from radon-balneotherapy for special indications. (orig.) [de

  15. Dictionary of radiation protection, radiobiology and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R [comp.

    1986-01-01

    Radiation protection, including aspects of radiobiology, nuclear medicine, and nuclear legislation, has an important role within nuclear research and the use of radioactive materials. Radiation protection comprises all measures and efforts to prevent the unwanted distribution and negative influence of ionizing radiation, especially where the human organism and the living environment are involved. The increasing role of radiation protection is reflected by the foundation of institutes in all industrial countries to control such radiant energy and prevent radiation damage. Nowadays ionizing radiation is employed on a large scale for basic investigations in biochemistry, molecular biology and genetics, in soil tests, fertilization problems and pest control in agriculture, as well as for medicinal diagnoses and therapy. This dictionary is a thematic enlargement of the four-language 'Dictionary of Nuclear Engineering', compiled by the same author. It comprises about 12,000 terms in each language.

  16. Dictionary of radiation protection, radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Sube, R.

    1986-01-01

    Radiation protection, including aspects of radiobiology, nuclear medicine, and nuclear legislation, has an important role within nuclear research and the use of radioactive materials. Radiation protection comprises all measures and efforts to prevent the unwanted distribution and negative influence of ionizing radiation, especially where the human organism and the living environment are involved. The increasing role of radiation protection is reflected by the foundation of institutes in all industrial countries to control such radiant energy and prevent radiation damage. Nowadays ionizing radiation is employed on a large scale for basic investigations in biochemistry, molecular biology and genetics, in soil tests, fertilization problems and pest control in agriculture, as well as for medicinal diagnoses and therapy. This dictionary is a thematic enlargement of the four-language 'Dictionary of Nuclear Engineering', compiled by the same author. It comprises about 12,000 terms in each language. (orig.)

  17. Monte Carlo studies on photon interactions in radiobiological experiments

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Krstic, D.; Nikezic, D.

    2018-01-01

    X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an “exposed” cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the “exposed” cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  18. Tumor radiobiology studies with heavy charged-particle beams

    International Nuclear Information System (INIS)

    Curtis, S.B.; Tenforde, T.S.; Tenforde, S.D.; Parr, S.S.; Flynn, M.J.

    1981-01-01

    The response of tumor-cell systems to irradiation with carbon, neon, and argon beams at various positions in the plateau and extended peak regions of the Bragg ionization (dose versus depth) curve is being evaluated from experiments conducted both in vivo and in vitro. The radiobiological end points being studied include: tumor volume response, cellular survival after tumor irradiation in situ, cell-kinetic parameters measured by flow cytofluorometry and time-lapse cinematography, and survival of oxic and hypoxic cells irradiated in suspension. One focus of the research effort during the past year has been on the combined effect of radiosensitizing drugs and charged-particle irradiation. In this article, the results are presented of studies on combined drug and radiation treatment of a rat rhabdomyosarcoma tumor and a human melanoma tumor growing in athymic (thymus-less) nude mice

  19. Monte Carlo studies on photon interactions in radiobiological experiments.

    Directory of Open Access Journals (Sweden)

    Mehrdad Shahmohammadi Beni

    Full Text Available X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an "exposed" cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated, there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the "exposed" cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1 The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2 Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV and high-energy (100 keV and 1 MeV incident photons. (3 The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4 The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  20. Radiobiological arguments for and clinical possibilities of unconventional fractionating rhythms

    International Nuclear Information System (INIS)

    Herrmann, T.; Voigtmann, L.

    1986-01-01

    Radiobiological considerations are presented using unconventional fractionating rhythms. The aim of this method is to enlarge the therapeutic dimensions between maximum tumor destruction and most careful treatment of late responding cell systems. These late responding tissues show a very similar dose-time reaction, probably by reason of a causal injury on cells of the capillary endothelium. In linear-quadratic models for the estimation of the parameters of the number of fractions and total treatment period it becomes evident that a careful treatment of late responding tissue can be attained by reduction of the single dose per fraction. Because with partition of a total dose in several fractions at daily irradiation a longer repopulation period is available also for the tumor irradiations are presented, done repeatedly during the day. Accelerated fractionation (same fractionating number in reduced treatment period) are contrasted to hyperfractionation (increased fractionating number within the same total treatment period) and possibilities in application are suggested. (author)

  1. IMRT optimization: Variability of solutions and its radiobiological impact

    International Nuclear Information System (INIS)

    Mattia, Maurizio; Del Giudice, Paolo; Caccia, Barbara

    2004-01-01

    We aim at (1) defining and measuring a 'complexity' index for the optimization process of an intensity modulated radiation therapy treatment plan (IMRT TP), (2) devising an efficient approximate optimization strategy, and (3) evaluating the impact of the complexity of the optimization process on the radiobiological quality of the treatment. In this work, for a prostate therapy case, the IMRT TP optimization problem has been formulated in terms of dose-volume constraints. The cost function has been minimized in order to achieve the optimal solution, by means of an iterative procedure, which is repeated for many initial modulation profiles, and for each of them the final optimal solution is recorded. To explore the complexity of the space of such solutions we have chosen to minimize the cost function with an algorithm that is unable to avoid local minima. The size of the (sub)optimal solutions distribution is taken as an indicator of the complexity of the optimization problem. The impact of the estimated complexity on the probability of success of the therapy is evaluated using radiobiological indicators (Poissonian TCP model [S. Webb and A. E. Nahum, Phys. Med. Biol. 38(6), 653-666 (1993)] and NTCP relative seriality model [Kallman et al., Int. J. Radiat. Biol. 62(2), 249-262 (1992)]). We find in the examined prostate case a nontrivial distribution of local minima, which has symmetry properties allowing a good estimate of near-optimal solutions with a moderate computational load. We finally demonstrate that reducing the a priori uncertainty in the optimal solution results in a significant improvement of the probability of success of the TP, based on TCP and NTCP estimates

  2. A radiobiological review on melatonin. A novel radioprotector

    International Nuclear Information System (INIS)

    Shirazi, A.; Ghobadi, G.; Ghazi-Khansari, M.

    2007-01-01

    In spite of the fact that radiotherapy is a common and effective tool for cancer treatment; the radio sensitivity of normal tissues adjacent to the tumor which are unavoidably exposed to radiation limits therapeutic gain. For the sake of improvement in radiation therapy, radiobiology- the study of the action of ionizing radiation on living things- plays a crucial role through explaining observed phenomena, and suggesting improvements to existing therapies. Due to the damaging effects of ionizing radiation, radiobiologists have long been interested in identifying novel, nontoxic, effective, and convenient compounds to protect humans against radiation induced normal tissue injuries. In hundreds of investigations, melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, has been documented to ameliorate the oxidative injuries due to ionizing radiation. This article reviews different features that make melatonin a potentially useful radioprotector. Moreover, based on radiobiological models we can hypothesize that melatonin may postpone the saturation of repair enzymes which leads to repairing more induced damage by repair system and more importantly allows the use of higher doses of radiation during radiotherapy to get a better therapeutic ratio. The implications of the accumulated observations suggest by virtue of melatonin's radioprotective and anticancer effects; it is time to use it as a radioprotector both for radiation workers and patients suffering from cancer either alone for cancer inhibition or in combination with traditional radiotherapy for getting a favorable efficacy/toxicity ratio during the treatment. Although compelling evidence suggests that melatonin may be effective for a variety of disorders, the optimum dose of melatonin for human radioprotection is yet to be determined. We propose that, in the future, melatonin improve the therapeutic ratio in radiation oncology. (author)

  3. Method for validating radiobiological samples using a linear accelerator

    International Nuclear Information System (INIS)

    Brengues, Muriel; Liu, David; Korn, Ronald; Zenhausern, Frederic

    2014-01-01

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools. (orig.)

  4. Method for validating radiobiological samples using a linear accelerator.

    Science.gov (United States)

    Brengues, Muriel; Liu, David; Korn, Ronald; Zenhausern, Frederic

    2014-04-29

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools.

  5. NO2 decreases paracellular resistance to ion and solute flow in alveolar epithelial monolayers

    International Nuclear Information System (INIS)

    Cheek, J.M.; Kim, K.J.; Crandall, E.D.

    1990-01-01

    Primary cultured monolayers of rat alveolar epithelial cells grown on tissue culture-treated Nuclepore filters were exposed to 2.5 ppm nitrogen dioxide NO 2 for 2-20 min. Changes in monolayer bioelectric properties and solute permeabilities were subsequently measured. Exposure to NO 2 produced a dose-dependent decrease in monolayer transepithelial electrical resistance (Rt), whereas monolayer short-circuit current was unaffected. Post-exposure monolayer permeability to 14 C-sucrose (which primarily crosses alveolar epithelium via the paracellular pathway) increased markedly. That for 3 H-glycerol (which permeates through both paracellular and transcellular pathways) increased to a lesser extent. Partial recovery of Rt and solute permeabilities was noted by 48-h post-exposure. The time courses of the decrease in Rt and increase in solute permeabilities were similar. These results suggest that NO 2 primarily impairs passive alveolar epithelial barrier functions in vitro, probably by altering intercellular junctions, and does not appear to directly affect cell membrane active ion transport processes. When correlated with results obtained from experimental approaches, studies of in vitro alveolar epithelial monolayers may facilitate investigations of dosimetry, sites, and mechanisms of oxidant injury in the lung

  6. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  7. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  8. Biological effects of embedded depleted uranium (DU). Summary of Armed Forces Radiobiology Research Institute research

    International Nuclear Information System (INIS)

    McClain, D.E.; Dalton, T.K.; Emond, C.A.; Hodge, S.J.; Kalinich, J.F.; Landauer, M.A.; Miller, A.C.; Stewart, M.D.; Villa, V.; Xu, J.; Benson, K.A.; Ejnik, J.; Pellmar, T.C.

    2001-01-01

    The Persian Gulf War resulted in injuries of US Coalition personnel by fragments of depleted uranium (DU). Fragments not immediately threatening the health of the individuals were allowed to remain in place, based on long-standing treatment protocols designed for other kinds of metal shrapnel injuries. However, questions were soon raised as to whether this approach is appropriate for a metal with the unique radiological and toxicological properties of DU. The Armed Forces Radiobiology Research Institute (AFRRI) is investigating health effects of embedded fragments of DU to determine whether current surgical fragment removal policies remain appropriate for this metal. These studies employ rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate uranium from implanted DU fragments distributed to tissues far-removed from implantation sites, including bone, kidney, muscle, and liver. Despite levels of uranium in the kidney that were nephrotoxic after acute exposure, no histological or functional kidney toxicity was observed. However, results suggest the need for further studies of long-term health impact, since DU was found to be mutagenic, and it transformed human osteoblast cells to a tumorigenic phenotype. It also altered neurophysiological parameters in rat hippocampus, crossed the placental barrier, and entered fetal tissue. This report summarizes AFRRI's depleted uranium research to date

  9. Press breakfast, radiobiology stakes: an European context, Thursday 25 March 2004

    International Nuclear Information System (INIS)

    2004-03-01

    The radiobiology endeavours to know the ionizing radiations effects on living systems, particular at low doses exposures. The researches in this area contribute to the elaboration of international regulation on nuclear industry. The individual radiosensitivity is an other aspect of the research in radiobiology. These studies should allow the establishing of radiation protection standards founded on a direct approach and an individual estimation of the level of acceptable dose. (N.C.)

  10. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  11. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  12. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  13. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  14. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  15. Radiobiological research needed for the improvement of radiotherapy

    International Nuclear Information System (INIS)

    1977-01-01

    The use of radiation in therapy of cancer and diagnosis of other diseases has been practised since the discovery of X-ray. Radiotherapy of cancer was founded on the simple observation that radiations can kill tumour cells. As the science of radiobiology developed, some of its concepts were slowly incorporated in the therapeutic use of radiations, and this led to improve patient treatment. However, although radiobiology continued to progress, a communication gap built up between practising clinicians and radiobiologists. The purpose of this symposium was to help bridge the gap and to encourage co-operation between radiotherapists and radiobiologists. Fractionated dose regimes for external cobalt or X-ray therapy were extensively discussed. Of particular concern was whether acute dose rates which could reduce treatment time per patient would be favourable from the point of view of side effects on normal tissues such as skin, spinal cord, lungs, kidneys and other organs. Also discussed was whether high doses followed by small dose fractionation would lead to a therapeutic gain. New information was presented that during the fractionation period, normal cells may have better recovery potential than the tumour cells, and in view of this new information, the present practice of radiotherapy using fractionated doses may be further improved. The failures of radiotherapy are mainly due to the radioresistant hypoxic cells which escape radiation damage. These could be destroyed with the use of high LET radiations, super fractionated dose schedules or radiosensitisers specifically active towards hypoxic cells. Chemical radiosensitisers have now become available and have proved as effective as neutrons in their therapeutic gains. Clinical trials are underway in the UK and Romania on these radiosensitisers. One that deserves special mention is a nitroimidazole derivative, RO-07-0582, which has had extensive in vitro and in vivo studies, and clinical trials with human patients

  16. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  17. Amchitka Radiobiological Program. Final report, July 1970-December 1979

    International Nuclear Information System (INIS)

    Sibley, T.H.; Tornberg, L.D.

    1982-11-01

    The Amchitka Radiobiological Program, to collect biological and environmental samples for radiological analyses, began in 1970 and continued through 1979. The principal objective was to determine the extent of radionuclide contamination from worldwide atmospheric fallout and from the detonation of three underground nuclear tests on Amchitka. Leakage of radionuclides from the underground test sites would be suspected if the amount of contamination was significantly greater than could be attributed to worldwide fallout or if an unexpected assemblage of radionuclides was detected. No radionuclides from the underground sites were detected, except for tritium from the Long Shot test (1965) which produced increased tritium concentrations in surface water and freshwater plants near the test site. This final report compiles all previous data into one report and considers the temporal trends in these data. Two naturally occurring radionuclides, 40 K and 7 Be, were the most abundantly occurring radionuclides in most samples; in lichen samples either 137 Cs or 144 Ce had the highest activity. All samples were below applicable Radiation Protection Guides and by 1979 most samples were near or below the statistical detection limits. Increased concentrations of short-lived fallout radionuclides following the Chinese atmospheric tests were found in freshwater and seawater samples and in most indicator organisms

  18. Radiobiological experiments at the Munich ion microbeam SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, A.A.; Drexler, G.A.; Loewe, R. [Strahlenbiologisches Inst., Ludwig-Maximilians-Univ. Muenchen (Germany); Dollinger, G.; Hauptner, A.; Hable, V.; Greubel, C.; Kruecken, R. [Physik Dept. E12, Technische Univ. Muenchen, Garching (Germany); Cremer, T.; Dietzel, S. [Dept. Biologie II, Ludwig-Maximilians-Univ. Muenchen, Planegg-Martinsried (Germany)

    2005-07-01

    The ion microbeam SNAKE at the Munich 14 MV tandem accelerator was recently adapted for irradiation of cells and is now routinely used for radiobiological experiments. Several features, including ion-optical beam focussing to achieve a targeting accuracy of about 500 nm, fast movement of the beam by electrostatic deflection and single ion preparation make SNAKE an excellent tool for localized irradiation with a defined number of ions. The ion spectrum available ranges from 20 MeV protons to 200 MeV gold ions, thus allowing to vary the LET over four orders of magnitude and to conduct low and high LET irradiation in a single experimental set-up. This offers the possibility of a systematic analysis of the cellular response mechanisms in their dependence on dose and LET. Other current lines of research include analysis of the spatio-temporal dynamics of protein recruitment at damaged chromatin sites and determination of the mobility of damaged chromatin regions in the interphase nucleus. (orig.)

  19. Radiobiological research on carnation chimerae Dianthus Caryophyllus L

    International Nuclear Information System (INIS)

    Pereau-Leroy, Pierre.

    1975-01-01

    A radiobiological study of periclinal carnation chimerae is carried out by subjecting whole plants and cuttings at different physiological stages to cobalt 60 gamma radiation under different dose and dose rate conditions. The effects of these treatments are observed during cultivation of the treated plants and by microscopic examination of irradiated meristem sections. The destruction of meristem cells in proportions varying with the irradiation conditions leads to structural changes in the chimerae; the more frequent change is the formation of genetically homogeneous stalks from different genotypes existing in the irradiated plant. Treatment by ionizing radiations is thus a practical means of detecting periclinical chimerae which, as in the case of carnations, are very common in plants grown by vegetative propagation. However since more than two independent meristem cell groups are usually present it is not possible by this method alone to define the distribution of the differentent genotypes in these groups; additional genetic studies or cell labelling such as chlorophyll or genoma mutations are then necessary [fr

  20. Amchitka Radiobiological Program progress report, January 1979-December 1979

    International Nuclear Information System (INIS)

    Thornberg, L.D.; Sibley, T.H.; Nakatani, R.E.

    1980-07-01

    The objective of the Amchitka Radiobiological Program for the period 1970-1979 was to determine the extent of radionuclide contamination from world-wide atmospheric fallout and from the detonation of three underground nuclear blasts on Amchitka Island. The objective is achieved, by the collection and radiological analyses of biological and environmental samples and by background radiation measurements. Leakage of radionuclides from the underground sites of the Amchitka nuclear detonations would be suspected if the contamination was significntly greater than would be expected from world fallout. An account of the program from July 1970 to December 1978 has been given in nine previous reports from the Laboratory of Radiation Ecology to the Nevada Operations Office of the US Department of Energy. This report is an account of the program for calendar year 1979. The results of analyses of the samples collected in 1979 lead to the same conclusions as in previous years; i.e., there is no evidence that the radionuclide contamination at Amchitka Island is greater than would be expected from world fallout except for a slight contamination of the Long Shot Mud Pits with tritium

  1. Study of quality effects on radiobiological actions, 1

    International Nuclear Information System (INIS)

    Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Hashimoto, Shozo.

    1979-01-01

    In order to interpret the quality effects of high LET radiation on the radiobiological actions, the target theory formulated by Oda on basis of the microdose concept introduced by Rossi has been developed to express intertrack effect (cumulative effect) and intratrack effect (non-cumulative effect) separately. Analysis for the dose-survival relation by this theory have been discussed with comparison of those of Rossi or Bender. If the target for the intertrack effect was the same one for the intratrack effect, it was found in this theory that the contribution of the intertrack effect for the cell lethality was larger than that of the intratrack effect in the case of high LET radiation as well as in that of low LET ones. The survival rates of Escherichia coli B/r and B sub(s-1) irradiated with heavy ions such as He, C, N and O at 4 MeV/a.m.u. and neutrons at 1, 2 and 5 MeV were calculated with this theory. The results were in reasonable agreement with experimental ones. (author)

  2. Stochastic, weighted hit size theory of cellular radiobiological action

    International Nuclear Information System (INIS)

    Bond, V.P.; Varma, M.N.

    1982-01-01

    A stochastic theory that appears to account well for the observed responses of cell populations exposed in radiation fields of different qualities and for different durations of exposure is described. The theory appears to explain well most cellular radiobiological phenomena observed in at least autonomous cell systems, argues for the use of fluence rate (phi) instead of absorbed dose for quantification of the amount of radiation involved in low level radiation exposure. With or without invoking the cell sensitivity function, the conceptual improvement would be substantial. The approach suggested also shows that the absorbed dose-cell response functions currently employed do not reflect the spectrum of cell sensitivities to increasing cell doses of a single agent, nor can RBE represent the potency ratio for different agents that can produce similar quantal responses. Thus, for accurate comparison of cell sensitivities among different cells in the same individual, or between the cells in different kinds of individuals, it is necessary to quantify cell sensitivity in terms of the hit size weighting or cell sensitivity function introduced here. Similarly, this function should be employed to evaluate the relative potency of radiation and other radiomimetic chemical or physical agents

  3. Radiobiological research for improving tumor radiotherapy - an Indian perspective

    International Nuclear Information System (INIS)

    Jain, Viney

    1990-01-01

    Radiation-induced damage to normal tissues within the non-target volume is a major limitation of tumor radiotherapy. Physical methods to obtain superior spatial dose distributions use sophisticated technology and are expensive. Large scale applications of these technologies in a developing country like India, with a large number of cancer patients, poor instrumental facilities and inadequate infrastructure face several problems. Radiobiological research aiming at developing simple, inexpensive and effective methods to increase the differential response between tumor and normal tissues should be, therefore, strengthened. Biological end-points are determined not only by the molecular lesions produced due to the absorption of the radiation energy but also by the cellular repair processes, which become operative in response to lesions in the living system. Therefore, enhancement of repair processes in the normal tissues and inhibition of the same in tumors should considerably improve the therapeutic index of radiation treatment. A combination of agents which can suitably alter the spectrum of important molecular lesions with modifiers of cellular repair could be an effective strategy. Initial experiments using halopyrimidines to increase repairable DNA lesions produced by sparsely ionizing radiations in combination with 2-deoxy-D-glucose to modulate differentially the repair and fixation processes in the tumor and normal tissues have provided promising results. Further research work is warranted since this strategy appears to have great potential for improving tumor radiotherapy. (author). 46 refs., 4 figs., 1 tab

  4. Radiobiological considerations in gynaecological HDR and LDR brachytherapy

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1989-01-01

    In brachytherapy the advantages of high dose rate over low dose rate afterloading therapy were obvious. Out-patient treatment becomes possible, the position of the sources is reproducible and can be observed during the treatment and the patients have to be immobilised for only a short time, giving less psychological stress and a decreased risk of thrombosis and embolism. When changing from LDR to HDR afterloading therapy we are not yet able to evaluate its biological impact. Radiobiological considerations and our experimental data, however, give us the following clinical consequences by using HDR brachytherapy: There is a need for about 15 fractions or more and each increase in dose rate requires higher fractioning. Due to the steep dose rate decline and the inhomogeneous dose distribution, multiple equivalence factors are necessary when fractioning is not sufficiently high. Correction factors to reduce the dose close to the source are low, with increasing distance from the source they increase. If HDR radiation therapy is used, the percutaneous dose in the pelvic wall region should be reduced. The reduction of the dose in HDR brachytherapy is a compromise to limit the side effects caused by the radiation. The drawback is a small therapeutic range and reduced therapeutic effectivity at the tumour. (orig.) [de

  5. Radiobiological basis of radiation protection and ICRP 2007 general recommendations

    International Nuclear Information System (INIS)

    Rao, B.S.

    2014-01-01

    The ICRP 2007 General Recommendations are based on the detailed review of the new information on the biological effects and risk evaluation done during the last decade. Most of this information reinforces the validity of earlier findings. Since the publication of ICRP 60 general recommendations in 1991(ICRP 1991b), sufficient new information on the health effects of ionizing radiations has accrued based on radiobiological and epidemiological studies (UNSCEAR 2000, ICRP Publication 99). There is an improvement in understanding the mechanistic aspects of the induction of radiation damage at cellular level. Biophysical studies based on Monte Carlo track structure codes have provided information on the nature of critical damage to DNA leading to the radiation effects at cellular level. Experimental work with model animal systems has provided information on the role of post irradiation repair processes and the genes influencing the process of radiation carcinogenesis. Longer follow up of A-Bomb survivors of Hiroshima and Nagasaki now provides a more reliable risk estimate based on the cancer incidence data and also a better model for the transfer of risk among different populations with varying frequency of background incidence. At present it is clear that the breast cancer contributes substantially to the radiation risk and provides quantitative risk estimates for brain and salivary glands. In the light of the new information, Tissue Weighting factors (WT) have been revised

  6. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  7. Comparison of electronic structure between monolayer silicenes on Ag (111)

    Science.gov (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  8. The significance of the choice of radiobiological (NTCP) models in treatment plan objective functions

    International Nuclear Information System (INIS)

    Miller, J.; Fuller, M.; Vinod, S.; Holloway, L.

    2009-01-01

    Full text: A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at lOGy (V|0) and 20 G y (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

  9. Fast neutrons: Inexpensive and reliable tool to investigate high-LET particle radiobiology

    International Nuclear Information System (INIS)

    Gueulette, J.; Slabbert, J.P.; Bischoff, P.; Denis, J.M.; Wambersie, A.; Jones, D.

    2010-01-01

    Radiation therapy with carbon ions as well as missions into outer space have boosted the interest for high-LET particle radiobiology. Optimization of treatments in accordance with technical developments, as well as the radioprotection of cosmonauts during long missions require that research in these domains continue. Therefore suitable radiation fields are needed. Fast neutrons and carbon ions exhibit comparable LET values and similar radiobiological properties. Consequently, the findings obtained with each radiation quality could be shared to benefit knowledge in all concerned domains. The p(66+Be) neutron therapy facilities of iThemba LABS (South Africa) and the p(65)+Be neutron facility of Louvain-la-Neuve (Belgium) are in constant use to do radiobiological research for clinical applications with fast neutrons. These beams - which comply with all physical and technical requirements for clinical applications - are now fully reliable, easy to use and frequently accessible for radiobiological investigations. These facilities thus provide unique opportunities to undertake radiobiological experimentation, especially for investigations that require long irradiation times and/or fractionated treatments.

  10. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  11. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  12. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  13. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  14. Janus Monolayer Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  15. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  16. Radiobiological basis for setting neutron radiation safety standards

    International Nuclear Information System (INIS)

    Straume, T.

    1985-01-01

    Present neutron standards, adopted more than 20 yr ago from a weak radiobiological data base, have been in doubt for a number of years and are currently under challenge. Moreover, recent dosimetric re-evaluations indicate that Hiroshima neutron doses may have been much lower than previously thought, suggesting that direct data for neutron-induced cancer in humans may in fact not be available. These recent developments make it urgent to determine the extent to which neutron cancer risk in man can be estimated from data that are available. Two approaches are proposed here that are anchored in particularly robust epidemiological and experimental data and appear most likely to provide reliable estimates of neutron cancer risk in man. The first approach uses gamma-ray dose-response relationships for human carcinogenesis, available from Nagasaki (Hiroshima data are also considered), together with highly characterized neutron and gamma-ray data for human cytogenetics. When tested against relevant experimental data, this approach either adequately predicts or somewhat overestimates neutron tumorigenesis (and mutagenesis) in animals. The second approach also uses the Nagasaki gamma-ray cancer data, but together with neutron RBEs from animal tumorigenesis studies. Both approaches give similar results and provide a basis for setting neutron radiation safety standards. They appear to be an improvement over previous approaches, including those that rely on highly uncertain maximum neutron RBEs and unnecessary extrapolations of gamma-ray data to very low doses. Results suggest that, at the presently accepted neutron dose limit of 0.5 rad/yr, the cancer mortality risk to radiation workers is not very different from accidental mortality risks to workers in various nonradiation occupations

  17. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  18. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    International Nuclear Information System (INIS)

    Schmid, T E; Zlobinskaya, O; Michalski, D; Molls, M; Multhoff, G; Greubel, C; Hable, V; Girst, S; Siebenwirth, C; Dollinger, G; Schmid, E

    2012-01-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm −1 ) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE MN = 1.48 ± 0.07) and dicentrics (RBE D = 1.92 ± 0.15), in human–hamster hybrid (A L ) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm 2 matrix compared to quasi homogeneous in a 1 × 1 µm 2 matrix applied protons (RBE MN = 1.28 ± 0.07; RBE D = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12 C ion with 55 MeV total energy (4.48 MeV u −1 ). The enhancements are about half of that obtained for 12 C ions (RBE MN = 2.20 ± 0.06 and RBE D = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles. (paper)

  19. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    Science.gov (United States)

    Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.

    2012-10-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  20. Radiobiologically based assessments of the net costs of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Jones, Bleddyn

    1996-01-01

    Purpose: To examine how the long-term costs of radiation therapy may be influenced by modifications to fractionation schemes, and how any improvements in tumor control might, in principle, be translated into a potential cost saving for the responsible healthcare organization. Methods and Materials: Standard radiobiological modeling based on the linear-quadratic (LQ) model is combined with financial parameters relating to the estimated costs of different aspects of radiotherapy treatment delivery. The cost model includes provision for the long-term costs of treatment failure and enables the extra costs of near optimal radiotherapy to be balanced against suboptimal alternatives, which are more likely to be associated with further radiotherapy, salvage surgery, and continuing care. Results: A number of caveats are essential in presenting a model such as this for the first time, and these are clearly stated. However, a recurring observation is that, in terms of the whole cost of supporting a patient from first radiotherapy treatment onwards, high quality radiotherapy (i.e., based on individual patterns of fractionation that are near optimal for particular subpopulations of tumor) will frequently be associated with the lowest global cost. Conclusions: This work adds weight to the case for identifying fast and accurate predictive assay techniques, and supports the argument that suboptimal radiotherapy is usually more costly in the long term. Although the article looks only at the cost-benefit consequences of altered patterns of fractionation, the method will, in principle, have application to other changes in the way radiotherapy can be performed, e.g., to examining the cost-benefit aspects of tumor dose escalation as a consequence of using advanced conformal treatment planning

  1. Toxicological characteristics and primary radiobiological screening of Cystizid-M

    International Nuclear Information System (INIS)

    Minkova, M.; Pantev, T.; Georgieva, R.

    1987-01-01

    The toxic and radioprotective properties of the potential radioprotector of the mollecular combination Cystisid-M (cysteamine-adenosin-5'-monophosphate - CAM) were investigated. The experiments were carried out on male mice C 57 BI irradiated with 137 Cs source. The intraperitoneal administration of 1000 mg/kg b.w. and 500 mg/kg b.w., injected 15 min prior to the irradiation with 8,5 Gr (LD 90/30 ) was performed, and orally 3000 mg/kg b.w. and 1500 mg/kg b.w. was introduced into the stomach 45 min prior to the irradiation with 8,2 Gr (LD 83/30 ). The radioprotective effect of CAM was recorded according to: individual survival curves up to the 30th day; the biometrical coefficients 'ALPHA' (the individual survival expectancy in the population); and S 30 (the group survival expectancy). At the intraperitoneal administration of the protector the values of LD 50 = 1390 mg/kg b.w. and MPD (maximum permissible dose) = 1200 mg/kg b.w. were found. At the oral administration these doses were LD 50/3 = 4630 mg/kg b.w. and MPD = 3500 mg/kg b.w. It was established that CAM injected intraperitoneally in a dose of 1000 mg/kg b.w. ensured 75% survival of the protected mice against 10% of the control ones, increased the mean survival of the deceased and reduced the percentage of the animals died during the height of the bone marrow syndrome. The twofold lower dose exetted a considerably slighter effect. At oral administration the protector did not significantly modify the survival of the animals. The data obtained revealed the perspectiveness of the tested protective agent radiobiological investigations are required

  2. Laser-driven proton beams applied to radiobiological experiments

    International Nuclear Information System (INIS)

    Yogo, Akifumi

    2012-01-01

    The proton accelerators based on the high intensity laser system generate shorter and higher pulse beams compared to the conventional particle accelerators used for the cancer therapy. To demonstrate the radiobiological effects of the new proton beams, the program to develop a biological irradiation instrument for the DNA double-strand break was started in the fiscal year 2008. A prototype instrument was made by making use of the J-KAREN (JAEA Kansai Advanced Relativistic Engineering) laser beam. Polyimide thin film targets were used to irradiate A-549 cells. The DNA double-strand break was tested by the fluorescence spectrometry. In the second year the quantitative yield of the DNA double-strand break and its proton dose dependence were measured. The results indicated that they were comparative to the cases of the conventional particle accelerators. In the fiscal year of 2010 the design of the magnetic field for the energy selection has been changed. The new irradiation instrument, the main part of which is only about 40 cm in length as illustrated in the figure, has been constructed and tested. The experiment has been carried out using the human cancer cells (HSG) and the relative biological effectiveness (RBE) has been quantitatively evaluated by the colony assay for varied distribution of the proton beam energy. The survival fractions plotted against the dose were in good agreement with the case of 3 He beam. RBE was found not to be changed up to 1x10 7 Gy/s. Stability of the energy peak, half width and the proton density has been confirmed for this very compact instrument. (S. Funahashi)

  3. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  4. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  5. Studies of biocompatibility of chemically etched CR-39 SSNTDs in view of their applications in alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Li, W.Y.; Chan, K.F.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2006-01-01

    Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require thin biocompatible materials which can record alpha-particle traversals as substrates for cell cultures. The biocompatibilities of chemically etched CR-39 solid-state nuclear track detectors (SSNTDs) using aqueous NaOH or NaOH/ehtanol are studied through the abundance and morphology of the cultured HeLa cells. The wetting properties of these etched CR-39 SSNTDs are also studied. The moderately hydrophobic CR-39 SSNTDs as well as the hydrophobic NaOH/ethanol-etched CR-39 SSNTDs are more biocompatible than the hydrophilic aqueous-NaOH-etched SSNTDs. Too small water contact angles, too large surface energy (γ s ) or the polar component γ s p do not favor the cell culture. On the other hand, the dispersive component γ s d of the surface energy and the ratio γ s p /γ s d do not seem to significantly affect the biocompatibility

  6. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  7. Recent radiobiological findings from spaceflight and ground-based studies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H.; Facius, R.

    1980-01-01

    An a priori risk assessment of radiobiological effects remains uncertain due to the unpredictable solar flare contribution to the low LET radiation or the unknown reaction mechanisms of heavy ions. Tests suggest that mechanisms inherent to biological systems may be impeded by physiological and psychological stress during spaceflight. The discovery of heavy ion induced late effects in rabbits demonstrates what might be experienced during longer space missions. The evidence for a specific radiobiological reaction mechanism of heavy ions as encountered in space is discussed. A report by Kovalev and Markelov (1979) on LET spectra is reviewed, and the use of absorbed dose as the quantity of reference in estimating an average radiobiological quality factor representative of cosmic particle radiation is criticized.

  8. Characterization and performances of DOSION, a dosimetry equipment dedicated to radiobiology experiments taking place at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Boissonnat, Guillaume, E-mail: boissonnat@lpccaen.in2p3.fr [LPC (Normandie Univ-ENSICAEN-UNICAEN-CNRS/IN2P3), 6 Bd Maréchal Juin, 14050 Caen (France); Fontbonne, Jean-Marc [LPC (Normandie Univ-ENSICAEN-UNICAEN-CNRS/IN2P3), 6 Bd Maréchal Juin, 14050 Caen (France); Balanzat, Emmanuel [CIMAP (CEA/DSM-CNRS/INP-ENSICAEN-UNICAEN), Bd Henri Becquerel, 14076 Caen (France); Boumard, Frederic; Carniol, Benjamin [LPC (Normandie Univ-ENSICAEN-UNICAEN-CNRS/IN2P3), 6 Bd Maréchal Juin, 14050 Caen (France); Cassimi, Amine [CIMAP (CEA/DSM-CNRS/INP-ENSICAEN-UNICAEN), Bd Henri Becquerel, 14076 Caen (France); Colin, Jean; Cussol, Daniel; Etasse, David; Fontbonne, Cathy [LPC (Normandie Univ-ENSICAEN-UNICAEN-CNRS/IN2P3), 6 Bd Maréchal Juin, 14050 Caen (France); Frelin, Anne-Marie [GANIL (CEA/DSM-CNRS/IN2P3), Bd Henri Becquerel, 14076 Caen (France); Hommet, Jean; Salvador, Samuel [LPC (Normandie Univ-ENSICAEN-UNICAEN-CNRS/IN2P3), 6 Bd Maréchal Juin, 14050 Caen (France)

    2017-06-01

    Currently, radiobiology experiments using heavy ions at GANIL (Grand Accélérateur National d′Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state-of-the-art dosimetric references.

  9. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  10. Radiobiology of normal tissue. Scientific advances and perspectives; Strahlenbiologie der Normalgewebe. Wissenschaftliche Fortschritte und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, W. [Medizinische Univ. Wien (Austria). Universitaetsklinik fuer Strahlentherapie; Medizinische Univ. Wien (Austria). Universitaetsklinik fuer Radioonkologie; Medizinische Univ. Wien (Austria). Christian Doppler Labor fuer Medizinische Strahlenforschung fuer die Radioonkologie; Herskind, C. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Labor fuer Zellulaere und Molekulare Radioonkologie

    2012-11-15

    Radiotherapy involves always the exposure of normal tissue, resulting in an excepted risk of complications. The side effect rate is therefore the compromise between optimized tumor doses and the side effect minimization. The report covers the issues target cell hypothesis and the consequences, new aspect of the pathogenesis of normal issue reactions and strategies of targeted reduction of normal tissue effects. The complexity of the radiobiological processes, the specificity and action mechanisms, the mutual interactions of chemical and radiological processes require further coordinated radiobiological research in the future.

  11. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    International Nuclear Information System (INIS)

    Herrera, Higmar; Yañez, Elvia; López, Jesús

    2012-01-01

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerología de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  12. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    Science.gov (United States)

    Herrera, Higmar; Yañez, Elvia; López, Jesús

    2012-10-01

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerología de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  13. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Higmar; Yanez, Elvia; Lopez, Jesus [Centro Estatal de Cancerologia de Durango, Victoria de Durango, Durango (Mexico); ISSSTE General Hospital Dr. Santiago Ramon y Cajal, Victoria de Durango, Durango (Mexico)

    2012-10-23

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerologia de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  14. Small dose multi-fractionation therapy, its radiobiological aspects and clinics

    International Nuclear Information System (INIS)

    Iwai, Hiroshi; Katagiri, Shiro; Furuhata, Akihiko; Fukusi, Itsuhisa

    1979-01-01

    Recent radiobiological data reveal that cell killings by small dose fractionation are almost due to nonrepairable damage with low oxygen enhancement ratio. Then, Small dose multi-fractionation method suggests a higher therapeutic-ratio than that in conventional high dose fractionated irradiation. Using these data of radiobiology, intermittent irradiations three times a day, four hours interval, with 60 - 80 rads for multi-fractionation, with high total doses of 7,200 - 7,500 rads/6.5 - 7 weeks mainly on bladder, laryngeal and esophageal tumour are applied. The results obtained are slightly improved. (author)

  15. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  16. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    International Nuclear Information System (INIS)

    Arbeitman, Claudia R.; Grosso, Mariela F. del; Behar, Moni; García Bermúdez, Gerardo

    2013-01-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology

  17. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    Science.gov (United States)

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Skin carcinomas: Radiobiological principles, radiotherapeutic techniques and clinical management

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, Rupert K.; Johnson, Christopher R.

    1997-01-01

    Purpose/Objective: The course will be divided into three major topics: (1) Review of radiobiological principles as they apply to the radiotherapeutic management of skin carcinomas; (2) review of radiotherapeutic techniques including beam qualities, beam collimation, tissue dose profiles, and the relative indications of external beam irradiation vs. brachytherapy; (3) comprehensive review of the tumor biology of skin malignancies, including malignant melanoma, and of the relative indications for radiotherapeutic and/or surgical management. (1) Review of critical data which have led to currently applied principles of time-dose-volume concepts in the radiotherapeutic management of skin carcinomas. Emphasis will be placed on the relative importance of fraction size and overall treatment time on tumor control probability and acute and late normal tissue toxicity. (2) Considering that radiotherapy in the management of skin carcinomas is often used to minimize patient disfiguration and to preserve critical body functions (e.g. eye lids) the technical aspects of radiotherapy delivery are most critical. Careful evaluation of the extent of the lesions including evaluation of their depth of invasion will determine the quality of the radiation beams, orthovoltage and low energy electrons being the most useful. Beam harding for orthovoltage beams and secondary and tertiary (skin) collimation of appropriate electron beams are critical. For more extensive and deeply invasive lesions contour-shaping through customized bolus material is essential. Equally important is the familiarity with custom shielding of critical structures, such as eyes, ears, oral cavity and central nervous system structures. Brachytherapy applications in the treatment of skin carcinomas is limited but should be considered when implants with high dose uniformity can be constructed. (3) The discussion of clinical management will start with a discussion of properties and routes of spread of the diverse

  19. Skin carcinomas: radiobiological principles, radiotherapeutic techniques and clinical management

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, Rupert K. A.; Johnson, Christopher R.

    1995-01-01

    Purpose/Objective: The course will be divided into three major topics: (1) Review of radiobiological principles as they apply to the radiotherapeutic management of skin carcinomas; (2) review of radiotherapeutic techniques including beam qualities, beam collimation, tissue dose profiles, and the relative indications of external beam irradiation vs. brachytherapy; (3) comprehensive review of the tumor biology of skin malignancies, including malignant melanoma, and of the relative indications for radiotherapeutic and/or surgical management. (1) Review of critical data which have lead to currently applied principles of time-dose-volume concepts in the radiotherapeutic management of skin carcinomas. Emphasis will be placed on the relative importance of fraction size and overall treatment time on tumor control probability and acute and late normal tissue toxicity. (2) Considering that radiotherapy in the management of skin carcinomas is often used to minimize patient disfiguration and to preserve critical body functions (e.g. eye lids) the technical aspects of radiotherapy delivery are most critical. Careful evaluation of the extent of the lesions including evaluation of their depth of invasion will determine the quality of the radiation beams, orthovoltage and low energy electrons being the most useful. Beam harding for orthovoltage beams and secondary and tertiary (skin) collimation of appropriate electron beams are critical. For more extensive and deeply invasive lesions contour-shaping through customized bolus material is essential. Equally important is the familiarity with custom shielding of critical structures, such as eyes, ears, oral cavity and central nervous system structures. Brachytherapy applications in the treatment of skin carcinomas is limited but should be considered when implants with high dose uniformity can be constructed. (3) The discussion of clinical management will start with a discussion of tumor biological properties of the diverse malignant

  20. Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Lofton-Day, C.E.

    1989-01-01

    Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to 125 I-labeled albumin, which was abolished by 10 -8 -10 -6 M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods

  1. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    International Nuclear Information System (INIS)

    Duverger, James Elber; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-01-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction–diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh–Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation. (paper)

  2. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  3. Interface between technical physics and technological irradiation with reference to applications in vegetal and animal radiobiology

    International Nuclear Information System (INIS)

    Peteu, G.; Opris, M.

    1994-01-01

    The main goals of vegetal and animal radiobiology in a specific correlation with technical physics are the stimulation of germination and induced mutations; vegetal and animal food conservation, sterilization techniques, and modifications in the radiosensitivity of biological systems. The existing correlation between the effects of exposed and absorbed doses, and the behaviour of the 'microflora' (microbes, fungi), are discussed. (Author)

  4. A community call for a dedicated radiobiological research facility to support particle beam cancer therapy

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Dosanjh, Manjit

    2012-01-01

    Recently more than one hundred researchers followed an invitation to a brainstorming meeting on the topic of a future dedicated radio-biological and radio-physical research center. 100 more joint the meeting via webcast. After a day of presentations and discussions it was clear, that an urgent need...

  5. Experimental radiotherapy and clinical radiobiology. Vol. 8, special issue 1. Proceedings

    International Nuclear Information System (INIS)

    Doerr, W.; Baumann, M.; Herrmann, T.

    1999-01-01

    The publication contains the abstracts of all papers and posters presented at the symposium. The headings were as follows: Radiobiology of the lung, mediation of radiation damage in the lung, clinical studies, future clinical directions, as well as documentation and management. (MG)

  6. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  7. Radiobiological heterogeneity of leukemic lymphocyte precursors from acute lymphoblastic leukemia patients

    International Nuclear Information System (INIS)

    Uckun, F.M.; Kim, T.H.; Ramsay, N.C.; Min, W.S.; Song, C.W.

    1989-01-01

    The report outlines the authors' findings on the radiobiological features of leukemic lymphocyte precursors from acute lymphoblastic leukemia (ALL) patients. A marked heterogeneity existed between different cell lines, with a remarkable radioresistance and repair capacity in some ALL patients and an acute radiosensitivity in the absence of a detectable repair capacity in others. (U.K.)

  8. AFRRI (Armed Forces Radiobiology Research Institute) Reports, October, November and December 1987.

    Science.gov (United States)

    1988-03-01

    pulsive motility (7), diarrhea (10), anorexia (29, present ported by the Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, under...there was no significant interaction be- food than the rats with VMH lesions alone this was teen time and treatment groups (h’= 1.74. df= 12. not a

  9. Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses

    Science.gov (United States)

    Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.

    1974-01-01

    Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.

  10. Radiobiological research at its best. Does a low radiation dose involve risks?

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.; Derradji, H.

    2011-01-01

    Radiotherapy, radiation protection, nuclear medicine, etc.: there is a growing interest in radio(bio)logy in the health care sector. The number of medical treatments with ionising radiation per year will increase even more. It is therefore increasingly important to closely monitor the possible harmful effects of low radiation doses.

  11. Radiological and Environmental Research Division, Center for Human Radiobiology. Annual report, July 1980-June 1981

    International Nuclear Information System (INIS)

    1982-03-01

    Separate abstracts were prepared for the 22 papers of this annual report of the Center for Human Radiobiology. Abstracts were not written for 2 appendices which contain data on the exposure and radium-induced malignancies of 2259 persons whose radium content has been determined at least once

  12. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  14. Recommendations for the future of translational radiobiology research: a Canadian perspective

    International Nuclear Information System (INIS)

    Bristow, Robert G.

    2004-01-01

    The use of molecular medicine is now merging into clinical practice with the advent of molecular targeting agents, molecular pathology and molecular imaging for both diagnosis and treatment response. Radiation oncologists must therefore gain expertise in utilizing this information to drive new treatment protocols. Recognizing the importance of this issue, the Canadian Association of Radiation Oncologists (CARO) charged a Task Force in Translational Radiobiology to: (1) critically assess training programs and research infrastructure in relation to current and future translational radiobiology requirements; and (2) make specific recommendations to accelerate the implementation of translational science into day-to-day practice. Selected Task Force recommendations included the principle that universities and departmental Chairs increase the opportunities for academic promotion, funding, and tenure track positions of radiobiologists and translational radiation oncologists. The dedication of 4 to 5 national centers as translational 'hubs', can serve as an interface between clinicians, clinical specimens and radiobiological sciences within the context of correlative clinical trials. The model of the clinician-scientist was encouraged as an important adjunct to good clinical care to be associated with strong enticement, training and mentoring programs and 75%-protected research time. Finally, an integrated model of radiobiological training programs and mutual continuing education between clinicians and basic scientists can be facilitated through a new national radiobiology meeting sponsored by CARO. These recommendations have been accepted by the national radiation oncology membership. Such a framework may serve useful for national programs wishing to develop rapid conduits from the lab to the clinic as a means of integrating molecular biology and the day-to-day practice of radiation oncology

  15. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  16. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  17. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  18. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  19. Proliferation of pulmonary endothelial cells: time-lapse cinematography of growth to confluence and restitution of monolayer after wounding.

    Science.gov (United States)

    Ryan, U S; Absher, M; Olazabal, B M; Brown, L M; Ryan, J W

    1982-01-01

    A fundamental characteristic of vascular endothelium is that it exists as a monolayer, a condition that must be met in both vascular growth and repair. Maintenance of the monolayer is important both for the exchange of nutrients and for interactions between blood solutes and endothelial enzymes and transport systems. We have used time-lapse cinematography to compare proliferative behavior of bovine pulmonary endothelial cells in (1) establishment of a monolayer from a low-density seed (7.5 X 10(4) cells in a 60 mm dish) and (2) restitution of a confluent monolayer (approx. 2.9 x 10(6) cells in a 60 mm dish) following a mechanical wound (removal of cells from an area 5 x 15 mm by scraping). Culture 2 was not refed after wounding. In culture 2, approx. 30% of the cells accounted for repopulation (confluence in 40 hr). In culture 1, all cells entered into division. Participating cells of culture 2 began division immediately (69 divisions/filmed area in 10 hr, vs. four divisions in culture 1). Interdivision times (IDT) were longer and relatively constant in culture 1 until near confluence; none were less than 10 h, whereas in 2, 24% of the IDT's were less than or equal to 10 hr. Remarkably, IDTs of culture 2 decreased steadily until confluence was re-established. Cell migration in culture 1 was multidirectional while direction of migration in culture 2 was always into the wound area. Mean migration rate (MIG) in culture 2 was related to the site of origin of the cells, those dividing farthest from the unwounded area had fastest MIGs. Neither culture formed more than a single layer of cells. Although the cell kinetics of cultures 1 and 2 differed, the same goal, confluence, was achieved in either case.

  20. IAEA advisory group meeting on nuclear and atomic data for radiotherapy and related radiobiology in co-operation with the Radiobiological Institute of the Division for Health Research TNO, 16-20 September 1985, Rijswijk, the Netherlands

    International Nuclear Information System (INIS)

    Okamoto, K.

    1985-11-01

    The IAEA Advisory Group Meeting on ''Nuclear and Atomic Data for Radiotherapy and Related Radiobiology'' was held at Rijswijk, the Netherlands, from 16 to 20 September 1985, in co-operation with the Radiobiological Institute TNO. The meeting participants reviewed the current and future requirements on nuclear and atomic data for radiotherapy and radiobiology, identified data requirements and their priorities, and issued a number of specific recommendations for future technical work in nuclear and atomic data required to establish a more solid nuclear physics foundation of radiotherapy and related radiobiology. The recommendations in this report are directed to three areas, namely beam production and field description, dosimetry, and interpretation and optimization of biological effects. The final proceedings will be issued as an IAEA publication in 1986. (author)

  1. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ2

    Directory of Open Access Journals (Sweden)

    Dorothy I. Wallace

    2016-01-01

    Full Text Available Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M as well as quiescent (Q and necrotic (N cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment.

  2. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  3. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  4. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  5. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  6. Fullerene monolayer formation by spray coating

    NARCIS (Netherlands)

    Cervenka, J.; Flipse, C.F.J.

    2010-01-01

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method

  7. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun; Takata, Tsuyoshi; Katayama, Masao; Zhang, Fuxiang; Moriya, Yosuke; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  8. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  9. Paul Scherrer Institut annual report 1995. Annex II: PSI life sciences and institute for medical radiobiology newsletter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Blaeuenstein, P; Gschwend, B [eds.

    1996-09-01

    The newsletter presents the 1995 progress report of PSI F2-Department and of the Institute for Medical Radiobiology in the fields of radiation medicine, radiopharmacy and radiation hygiene. figs., tabs., refs.

  10. Activities of the radiobiological institute, the institute for experimental gerontology, and the primate center. Annual report, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Activities, presented by way of concise articles, cover the following subjects: radiation physics, radiobiology, experimental tumor therapy, tumor induction and tumor biology, immunology, transplantation and immunogenetics, hematology, gerontology, ethology, microbiology and quotobiology, techniques, and animals

  11. Paul Scherrer Institut annual report 1995. Annex II: PSI life sciences and institute for medical radiobiology newsletter 1995

    International Nuclear Information System (INIS)

    Blaeuenstein, P.; Gschwend, B.

    1996-01-01

    The newsletter presents the 1995 progress report of PSI F2-Department and of the Institute for Medical Radiobiology in the fields of radiation medicine, radiopharmacy and radiation hygiene. figs., tabs., refs

  12. Paul Scherrer Institut annual report 1996. Annex II: PSI life sciences and Institute for Medical Radiobiology Newsletter 1996

    International Nuclear Information System (INIS)

    Kuehne, G.; Gschwend, B.

    1997-01-01

    This annex to the PSI Annual Report 1996 reports on the progress achieved by the PSI Department II during 1996 in the fields of radiation medicine, radiopharmacy, radiation hygiene, positron emission tomography and medical radiobiology. figs., tab., refs

  13. SU-F-T-03: Radiobiological Evaluation of a Directional Brachytherapy Device Surgically Implanted Following EBRT

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Emrich, JG; Poli, J [Drexel University College of Medicine, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Preceding surgical implantation following external-beam radiotherapy (EBRT) delivery, a radiobiological evaluation was performed for a new LDR Pd-103 directional brachytherapy device (CivaSheet). As this was the first case with the device used in combination with EBRT, there was concern to determine the appropriate prescription dose. Methods: The radiobiological model of Dale (1985, 1989) was used for a permanent LDR implant including radioactive decay. The biological effective dose (BED) was converted to the equivalent dose in 2 Gy fractions (EQD2) for comparison with EBRT prescription expectations. Given IMRT delivery of 50.4 Gy, an LDR brachytherapy dose of approximately 15–20 Gy EQD2 was desired. To be specific to the treatment site (leiomyosarcoma T2bN0M0, grade 2 with R1 surgical margin), the radiobiological model required several radiobiological parameters with values taken from the literature. A sensitivity analysis was performed to determine their relative importance on the calculated BED and subsequent EQD2. The Pd-103 decay constant (λ=0.0017 h{sup −1}) was also used. DVHs were prepared for pre- and post-surgical geometries to glean the possible and realized implant geometric configuration. DVHs prepared in VariSeed9 were converted to BEDVHs and subsequently EQD2 values for each volume-element. Results: For a physical dose of 28 Gy to a 0.5 cm depth, BED=21.7 Gy and EQD2=17.6 Gy, which was near the center of the desired EQD2 range. Tumor bed (CTV=4 cm{sup 3}) coverage was 99.2% with 48 sources implanted. In order of decreasing importance from the sensitivity analysis, the radiobiological parameters were α=0.25 Gy{sup −1}, T{sub POT}=23 days, α/β=8.6 Gy, and T=1.5 h. Percentage variations in these values produced EQD2 variations of 40%, 20%, 18%, and 1%, respectively. Conclusion: This radiobiological evaluation indicated that prescription dose may be determined for comparison with the desired EQD2, and that radiobiologicalparameter

  14. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  15. Radiobiological effects in small mammals populations dwelled at radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Sypin, V.D.; Osipov, A.N.; Pol'skij, O.G.; Elakov, A.L.; Egorov, V.G.; Synsynys, B.I.

    2004-01-01

    A major issue in evaluating the ecological acceptability of a disposal system for radioactive waste is in preventing the ecological risk that may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Therefore, the adequate estimation of the ecological acceptability of a radioactive waste disposal system required a complex radioecological and radiobiological approach. Environmental surveillance at the Sergievo-Posadsky radioactive waste disposal system of the Scientific and Industrial Association Radon in additional to a standard complex radiological testing includes also the study of the radiobiological effects in different biological objects sampled from the contaminated areas. In present report the results obtained on small rodents (mice and voles) sampled from the strict mode and fence zones of this disposal system are displayed and discussed. (author)

  16. Development of fast neutron therapy worldwide. Radiobiological, clinical and technical aspects

    International Nuclear Information System (INIS)

    Wambersie, A.; Richard, F.; Breteau, N.

    1994-01-01

    Radiobiological data indicate that fast neutrons could bring a benefit in the treatment of some tumour types, and suggest mechanisms through which this benefit could be achieved. However, radiobiology also clearly indicates that there is a need for patient selection as well as for a high-physical selectivity. The main difficulty when interpreting the results of neutron therapy are the poor technical conditions in which the first treatments were applied. This explains why the value and the place of neutron therapy are not universally recognized, although more than 15000 patients have been treated so far worldwide. There are, however, clinical indications of fast neutrons bringing a benefit for the following tumour sites: salivary glands, paranasal sinuses, soft tissue sarcomas, prostatic adenocarcinomas, palliative treatment of melanoma and rectum. These tumours represent about 10-15% of all patients currently referred to the radiation therapy departments. (orig.)

  17. Radiobiological work using a negative pion beam at the Rutherford Laboratory 1971-76

    International Nuclear Information System (INIS)

    Ellis, R.E.; Lindop, P.J.; Coggle, J.E.; Fraser, G.

    1976-08-01

    The subject is discussed in two sections: physics experiments (including, inter alia, dose measurement, LET distribution, radiation products of spallation); radiobiological studies (including separate reports as follows: review of experimental programme; some in vivo effects of negative pions in mice; survival and recovery of Hela cells in vitro; negative pion dose-response curves for frozen Hela cells; response of vicia faba to irradiation with negative pions; pion experiments with chromosome aberrations). (U.K.)

  18. [From microdosimetry to nanodosimetry--the link between radiobiology and radiation physics].

    Science.gov (United States)

    Fu, Yuchuan; Li, Ping

    2014-06-01

    The link between micro- and macro-parameters for radiation interactions that take place in living biological systems is described in this paper. Meanwhile recent progress and development in microdosimetry and nanodosimetry are introduced, including the methods to measure and calculate these micro- or nano-parameters. The relationship between radiobiology and physical quantities in microdosimetry and nanodosimetry was presented. Both the current problems on their applications in radiation protection and radiotherapy and the future development direction are proposed.

  19. The European Radiobiology Archives (ERA) - Content, structure and use illustrated by an example

    International Nuclear Information System (INIS)

    Gerber, G. B.; Wick, R. R.; Kellerer, A. M.; Hopewell, J. W.; Di Majo, V.; Dudoignon, N.; Goessner, W.; Stather, J.

    2006-01-01

    The European Radiobiology Archives (ERA), supported by the European Commission and the European Late Effect Project Group (EULEP), together with the US National Radiobiology Archives (NRA) and the Japanese Radiobiology Archives (JRA) have collected all information still available on long-term animal experiments, including some selected human studies. The archives consist of a database in Microsoft Access, a web site, databases of references and information on the use of the database. At present, the archives contain a description of the exposure conditions, animal strains, etc. from ∼350,000 individuals; data on survival and pathology are available from ∼200,000 individuals. Care has been taken to render pathological diagnoses compatible among different studies and to allow the lumping of pathological diagnoses into more general classes. 'Forms' in Access with an underlying computer code facilitate the use of the database. This paper describes the structure and content of the archives and illustrates an example for a possible analysis of such data. (authors)

  20. What kind of radiobiology should be done at a hadron therapy center

    International Nuclear Information System (INIS)

    Kraft, G.; Kraft-Weyrather, W.; Taucher-Scholz, G.; Scholz, M.

    1997-01-01

    Although therapy with heavy particles like neutrons, protons or heavier ions has now a rather long history of several decades, but there are more open questions than settled problems. This fact is really amazing because the use of the high LET particles, neutrons and heavy ions was strongly motivated by radiobiological arguments. Presently, the use of protons with a better physical dose distribution is more widely accepted than neutrons or heavy ions where the expected high LET benefit could not be verified clinically. This demonstrates that predictions made on the basis of radiobiological experiments cannot be transferred directly from in vitro experiments to the therapy situation. In particular, it is not possible to transfer an average RBE value measured in vitro in an extended exposure field to the treatment situation. Therefore, in the following section the dependence of RBE on LET, dose and radiosensitivity will be summarized and compared to models. Basic experiments illustrating the RBE problem in a particle field will be described. The fundamentals of a recently developed track structure model will be given and calculations will be compared to experiments. Finally, a short outline of possible future developments for radiobiology will be presented. (orig.)

  1. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  2. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  3. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  4. Electrochemical behaviour of monolayer and bilayer graphene

    OpenAIRE

    Valota, Anna T.; Kinloch, Ian A.; Novoselov, Kostya S.; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W.; Dryfe, Robert A. W.

    2011-01-01

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as masking coating in order to expose a stable, well defined area of graphene. Both multilayer and monolayer graphene microe...

  5. Conformation, orientation and interaction in molecular monolayers

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1989-01-01

    Knowledge of the conformation and ordering of molecular monolayers is essential for a detailed understanding of a wide variety of surface and interfacial phenomena. Over the past several years, surface second harmonic generation (SHG) has proven to be a valuable and versatile probe of monolayer systems. Our group has recently extended the technique to infrared-visible sum frequency generation (SFG) which has unique capabilities for surface vibrational spectroscopy. Like second harmonic generation, SFG is highly surface specific with submonolayer sensitivity at all interfaces accessible by light. The orientation of individual groups within an adsorbate molecule can be deduced by a polarization analysis of the SFG signal from the vibrational modes of the groups. The authors have used SHG and SFG to study orientations and conformations of surfactant and liquid crystal (LC) monolayers and their interaction on a substrate. The interfacial properties of LC are of great interest to many researchers for both basic science understanding and practical application to LC devices. It is well known that the bulk alignment of a liquid crystal in a cell is strongly affected by the surface treatment of the cell walls. The reason behind it is not yet clear. The theoretical background and experimental arrangement of SHG and SFG have been described elsewhere. In the setup, a 30 psec. Nd:YAG mode-locked laser system together with nonlinear accessories generates a visible beam at .532μm and an infrared beam tunable about 3.4μm. Both beams are focused to a common spot of 300μm dia. The typical signal off the surface from a compact ordered alkyl chain monolayer is ∼500 photons per pulse, easily detected with a photomultiplier tube

  6. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  7. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-02-15

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China){sub 6}]{sup 4-}, [Ru(NH{sub 3}){sub 6}]{sup 2+} and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK{sub a}pH{sub medium} reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH{sub 3}){sub 6}]{sup 2+/3+}. Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH.

  8. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    International Nuclear Information System (INIS)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-01-01

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China) 6 ] 4- , [Ru(NH 3 ) 6 ] 2+ and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK a medium and at pK a >pH medium reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH 3 ) 6 ] 2+/3+ . Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH

  9. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  10. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  11. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  12. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  13. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  14. Cellular and molecular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.H.; Chang, P.Y.; Lommel, L.; Craise, L.M.; Yezzi, M.J.

    1982-01-01

    Accelerated heavy particles are candidates for use in cancer radiotherapy, and the major goal of our program has been to characterize the biological potential of Bevalac beams for this purpose. Relative biological effectiveness (RBE) values and oxygen enhancement ratio (OER) properties of monoenergetic carbon, neon, and argon beams with initial energies of several hundred MeV/u have been measured as a function of residual range. Bevalac beams with Bragg peaks modified to encompass tumors of various sizes have also been studied using cultured cells in vitro

  15. Report of the Van de Graaff Group: radiobiology

    International Nuclear Information System (INIS)

    Renan, M.J.; Van der Riet, F.; Parker, I.

    1984-01-01

    There exists a need for relevant information on the molecular and cellular processes induced by radiation. In this project several aspects of the problem of developing a human tumor model and growing human cells in culture, have been investigated. Human embryo fibroblasts were grown in 1000 mm plastic Petri dishes in a suitable nutrient medium, supplemented with 10% fetal calf serum and antibiotics. The following series of mutagens were utilized: ultra-violet radiation, chemical carcinogens and nucleosite analogues, such as 5-azacytidine (aza C). Some of the treated human fibroblasts were also examined by electron microscopy and the reverse transcriptase assay

  16. Kadar Prostaglandin F2? pada Cairan Vesikula Seminalis dan Produk Sel Monolayer Vesikula Seminalis Sapi Bali (CONCENTRATIONS OF PROSTAGLANDIN F2? IN SEMINAL VESICLE FLUID AND PRODUCT OF SEMINAL VESICLE MONOLAYER CELLS OF BALI CATTLE

    Directory of Open Access Journals (Sweden)

    Tjok Gde Oka Pemayun

    2007-12-01

    Full Text Available In this study, the concentration of prostaglandin F2 ? (PGF2? in seminal vesicle fluid and seminal vesicle monolayer cell cultures of Bali cattle was determined. The seminal vesicle fluid was aspirated and the epithelial cells of the seminal vesicles were cultured in tissue culture medium (TCM 199 growth medium containing 10% fetal calf serum (FCS and 10% oestrus mares serum (EMS with a density of 1.9 x 106 cells / ml medium. Following an incubation at 38.50 C in 5% CO2 atmosphere for 6 days and the level of PGF2 ? in the original seminal vesicle fluid and in the cell culture medium were determined by radioimmunoassay techniques (RIA. The results showed that the level of PGF2 ? in the non-extracted monolayer culture of seminal vesicle (1287,50 ± 3,39 pg/ml was significantly higher than that of detected in non-extracted seminal vesicle fluid (1,23 ± 0,79 pg/ml. In contrast, after extraction the level of PGF2 ? in seminal vesicle monolayer cell cultures (218,33 ± 2,87 pg/ml significantly decreased as compared to seminal vesicle fluid (1750,83 ± 2,71 pg/ml. In conclusion the highest level of PGF2 ? was found in the extract of seminal vesicle fluid.

  17. Interactions between an anticancer drug - edelfosine - and cholesterol in Langmuir monolayers

    International Nuclear Information System (INIS)

    Wiecek, Agata; Dynarowicz-Latka, Patrycja; Minones, J.; Conde, Olga; Casas, Matilde

    2008-01-01

    Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, abbr. Et-18-OCH 3 ) is a new generation anticancer drug based on a phospholipids-like structure. Since its mechanism of action is believed to be related to the lipids of cellular membrane, we have investigated the interactions between edelfosine and main mammalian sterol: cholesterol, using the Langmuir monolayer technique. The interactions have been analyzed by comparing the experimental curves with theoretical ones, obtained basing on the additivity rule. The observed contraction together with negative deviations from ideality observed on the mean molecular area (A 12 ) vs film composition plots proves the existence of strong attractive forces between edelfosine and cholesterol, which have been quantified with the excess free energy of mixing (ΔG exc ) values, calculated from the surface pressure-area isotherms datapoints. The most negative values of ΔG exc have been found for the mixture of equimolar composition, proving its highest thermodynamic stability and the existence of the strongest interactions between film components. Thus, it has been postulated that at the surface edelfosine and cholesterol form stable complexes of 1:1 stoichiometry. The analysis of the collapse pressure values for the investigated mixed monolayers proves that films of edelfosine mole fraction ≤ 0.5 are miscible within the whole range of surface pressures, while monolayers richer in edelfosine mix in the pressure region below ca. 37.6 mN/m, which corresponds to the collapse of pure edelfosine monolayer. At this very surface pressure, edelfosine is expelled from the mixed monolayer and the remaining film is composed by surface complexes of high stability. The hypothesis of complex formation explains the results performed in vitro on cell cultures, indicating that the increase of cholesterol content significantly reduces the uptake of edelfosine

  18. Alpha-particle radiobiological experiments using thin CR-39 detectors

    International Nuclear Information System (INIS)

    Chan, K. F.; Siu, S. Y. M.; McClella, K. E.; Tse, A. K. W.; Lau, B. M. F.; Nikezic, D.; Richardson, B. J.; Lam, P. K. S.; Fong, W. F.; Yu, K. N.

    2006-01-01

    The present paper studied the feasibility of applying comet assay to evaluate the DNA damage in individual HeLa cervix cancer cells after alpha-particle irradiation. We prepared thin CR-39 detectors (<20 μm) as cell-culture substrates, with UV irradiation to shorten the track formation time. After irradiation of the HeLa cells by alpha particles, the tracks on the underside of the CR-39 detector were developed by chemical etching in (while floating on) a 14 N KOH solution at 37 deg. C. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside of the CR-39 detectors could also be observed by just changing the focal plane of the confocal microscope. (authors)

  19. Transfer plate radioassay using cell monolayers to detect anti-cell surface antibodies synthesized by lymphocyte hybridomas

    International Nuclear Information System (INIS)

    Schneider, M.D.; Eisenbarth, G.S.

    1979-01-01

    A solid phase [ 125 I] Protein A radioassay for anti-cell surface antibodies is described, which employs target cell monolayers cultured on fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each well is small enough to retain fluid contents by surface tension during monolayer growth, but also permits fluid to enter the wells when transfer plate are lowered into receptacles containing washing buffer on test sera. To assay for antibodies directed against target cell surface antigens, transfer plates bearing monolayers are inserted into microculture plates with corresponding 96-well geometry, thereby simultaneously sampling 96 wells. This assay allows rapid screening of hundreds of hybrid cell colonies for production of antibodies with desired tissue specificity. (Auth.)

  20. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  1. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  2. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  3. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    Science.gov (United States)

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  5. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments

    Czech Academy of Sciences Publication Activity Database

    Olžyńska, Agnieszka; Zubek, M.; Roeselová, Martina; Korchowiec, J.; Cwiklik, Lukasz

    2016-01-01

    Roč. 1858, č. 12 (2016), s. 3120-3130 ISSN 0005-2736 R&D Projects: GA ČR GA15-14292S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : phospholipid monolayers * Lung surfactant * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  6. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  7. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  8. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Carrington, Rhys [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom)

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.

  9. SU-E-T-194: From Dicom-RT to Radiobiological Dose Metrics in 5 Minutes

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Holloway, L

    2014-06-01

    Purpose: To develop a flexible and standalone framework for batch calculation of radiobiological dose metrics from Dicom-RT. Methods: Software has been developed which allows (1) The calculation of DVH data from DICOM dose and structure files (DVHgenerator), (2) Calculation of a wide range of radiobiological metrics from this data (CompPlanGui). Both these tools are run via graphical user interface (GUI), making them fast and simple. Part 1 is a new tool which has not previously been published, whilst part 2 is a GUI overlay for the previously published software ‘Comp-Plan’ (Holloway et. al., Medical Dosimetry, 2012), previously reliant on command line interface. The time taken for an experienced user to evaluate a test case of 6 plans with and without CompPlanGUI was quantified. Results: The DVH-generator has been found to be faster, more robust and require far less physical memory then using alternative software solutions for the same purpose. The Comp Plan GUI significantly reduces the amount of time required to set up a base directory, eliminates code crashes arising from typographical errors, and renders the code far more accessible to non-expert users. It took an experienced user of the code around 3 minutes to set up a base directory of 6 plans compared around 8 minutes without, indicating that using CompPlanGUI reduced setup time by over 50%. Conclusion: A standalone GUI based framework has developed which allows for the batch calculation of radiobiological dose metrics directly from Dicom-RT files. As with the original code, this work will be made freely available on request, as well as via matlab file exchange.

  10. SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies

    Energy Technology Data Exchange (ETDEWEB)

    Viscariello, N; Culberson, W; Lawless, M; Kunugi, K; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surface of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.

  11. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A.; Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Resendiz G, G.; Posadas V, A. [Hospital Angeles Lomas, Av. Vialidad de la Barranca s/n, Col. Valle de las Palmas, 52763 Huixquilucan de Degallado, Estado de Mexico (Mexico); Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan, Esq. Jesus Carranza s/n, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico (Mexico); Rodriguez L, A.; Flores C, J. M., E-mail: armando.astudillo@inin.gob.mx [Hospital Medica Sur, Puente de Piedra 150, Col. Toriello Guerra, 14050 Tlalpan, Mexico D. F. (Mexico)

    2015-10-15

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  12. Dictionary of radiation protection, radiobiology and nuclear medicine. English-German-French-Russian

    International Nuclear Information System (INIS)

    Sube, R.

    1985-01-01

    This multilingual dictionary covers the subject fields of radiation protection, radiobiology, and nuclear medicine with about 12,000 terms in each language. All terms are supplemented by one or more abbreviations of 22 special branches to assure the use of the very relevant terms. Special branches listed are for instance decontamination, dosimetry, atomic legislation, radiation detectors, radiography (medical), radiotherapy, safeguards, shielding, tansportation and storage. The terminology used in the International Nuclear Information System (INIS) of the IAEA has been completely taken into account

  13. Experimental radiotherapy and clinical radiobiology. Vol. 22. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 25. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild [Universitaetsklinikum Technische Univ. Dresden (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologie; Cordes, Nils [Universitaetsklinikum Technische Univ. Dresden (Germany). OncoRay - Nationales Zentrum fuer Strahlenforschung in der Radioonkologie; Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Petersen, Cordula [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Rodemann, H. Peter [Universitaetsklinikum Tuebingen (Germany). Sektion fuer Strahlenbiologie; Rothkamm, Kai [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Lab. fuer Strahlentherapie und Experimentelle Radioonkologie; Zips, Daniel (ed.) [Tuebingen Univ. (Germany). Universitaetsklinik fuer Radioonkologie

    2016-05-01

    The proceedings of the 25th symposium on experimental radiotherapy and clinical radiobiology include papers on the following issues: radiotherapy individualization based on imaging; pre-clinic imaging and new experimental methods; methods and models, micromilieu and metabolism, combined therapy; secondary tumors following radiotherapy; radiogenic effects in normal tissue; resistance mechanism of tumors and normal tissue; personalized radio-oncology - which biological data are needed; pre-clinic and personalized radio-oncology; biomarkers - pre-clinic and translational; translational examinations for personalized radio-oncology.

  14. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Czech Academy of Sciences Publication Activity Database

    Adjei, D.; Ayele, M. G.; Wachulak, P.; Bartnik, A.; Wegrzynski, L.; Fiedorowicz, H.; Vyšín, Luděk; Wiechec, A.; Lekki, J.; Kwiatek, W. M.; Pina, L.; Davídková, Marie; Juha, Libor

    2015-01-01

    Roč. 364, Dec (2015), s. 27-32 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389005 Keywords : laser-produced plasma * soft X-rays * radiobiology * gas puff target * water window Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.389, year: 2015

  15. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized

  16. Experimental radiotherapy and clinical radiobiology. Vol. 18. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 18. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H Peter; Zips, Daniel [eds.

    2009-07-15

    The proceedings on experimental radiotherapy and clinical radiobiology contain two review articles (prediction of normal tissue reactions after radiotherapy, ?H2AX foci as a marker for DNA double-strand breaks) and 34 contributions to the following topics: Hypoxia and molecular mechanisms of radiation resistance; biological imaging of the tumor micromilieu; DNA repair, genomic instability and carcerogenesis; molecular factors of radiation resistance; actual controversial discussion on possible irradiation caused metastasis risk enhancement; EGFR inhibition and irradiation; biology of experimental radiation/ normal tissue toxicity.

  17. Environmental Research Division annual report: Center for Human Radiobiology, July 1982-June 1983

    International Nuclear Information System (INIS)

    1984-03-01

    This is the fourteenth Annual Report of the Center for Human Radiobiology. New cases of bone cancer and carcinoma of head sinuses are occurring at a rate of about one per year in patients who acquired radium burdens 50 to 60 years ago. Several papers deal with dosimetry of alpha-emitting radionuclides in man, in animals, or in the environment. The report concludes with an appendix containing data on the exposure of 2312 persons whose radium content has been determined and an appendix listing the classical radium-related malignancies (osteosarcomas and carcinomas of the paranasal sinuses and mastoid)

  18. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications

    International Nuclear Information System (INIS)

    Baverstock, K.F.; Burns, W.G.

    1981-01-01

    Consideration is given to the possibility that molecular oxygen generated in the tracks of energetic heavy ions is responsible for the reduction in oxygen enhancement ratio (OER) with increasing linear energy transfer (LET) observed for the loss of reproductive capacity caused by radiation in many cellular organisms. Yields of oxygen relationship of OER to LET for two organisms, Chlamydomonas reinhardii and Shigella flexneri, using a simple diffusion kinetic model for radiobiological action which takes account of the diffusion of oxygen after its formation. The results of these calculations show that the model accounts well for the shape of the OER vs. LET relationship

  19. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    International Nuclear Information System (INIS)

    Astudillo V, A.; Paredes G, L.; Resendiz G, G.; Posadas V, A.; Mitsoura, E.; Rodriguez L, A.; Flores C, J. M.

    2015-10-01

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  20. SU-F-J-11: Radiobiologically Optimized Patient Localization During Prostate External Beam Localization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Gardner, S; Liu, C; Zhao, B; Wen, N; Brown, S; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery with radiobiological response knowledge, and to evaluate its application during prostate external beam radiotherapy. Methods: Ten patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions with PTV = prostate + 7 mm margin, except for 5mm in the posterior direction. Five representative pretreatment CBCT images were selected for each patient, and prostate, rectum, and bladder were delineated on all CBCT images. Each CBCT was auto-registered to the corresponding PCT. Starting from this auto-matched position (AM-position), a search for optimal treatment position was performed utilizing a score function based on radiobiological and dosimetric indices (D98-DTV, NTCP-rectum, and NTCP-bladder) for the daily target volume (DTV), rectum, and bladder. DTV was defined as prostate + 4 mm margin to account for intra-fraction motion as well as contouring variability on CBCT. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The indices, averaged over the 10 patients’ treatment plans, were (mean±SD): 77.7±0.2 Gy (D98-PTV), 12.3±2.7% (NTCP-rectum), and 53.2±11.2% (NTCP-bladder). The corresponding values calculated on all 50 CBCT images at the AM-positions were 72.9±11.3 Gy (D98-DTV), 15.8±6.4% (NTCP-rectum), and 53.0±21.1% (NTCP-bladder), respectively. In comparison, calculated on CBCT at the ROCS-positions, the indices were 77.0±2.1 Gy (D98-DTV), 12.1±5.7% (NTCP-rectum), and 60.7±16.4% (NTCP-bladder). Compared to autoregistration, ROCS-optimization recovered dose coverage to target volume and lowered the risk to rectum. Moreover, NTCPrectum for one patient remained high after ROCS-optimization and therefore could potentially benefit from adaptive planning

  1. Research in radiobiology. Annual report of work in progress in the Internal Irradiation Program

    International Nuclear Information System (INIS)

    Miller, S.C.

    1980-01-01

    Survival data on 160 nonirradiated control beagles of the University of Utah's Radiobiology Laboratory were analyzed. The animals died during a period from 1958 into 1979. The average age at death of animals which died during the 1958 to 1965 interval was significantly less than that of those whose deaths occurred in the 1965 to 1979 interval. The best estimate for average age at death for Super-Selected nonirradiated control beagles of the colony is 4864 +- 901 days. The Super-Selected dogs excluded those dying because of epilepsy, lymphosarcoma, lymphoma or accidents, and also excluded all dogs dying before 1966

  2. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  3. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  4. Radiobiology in clinical radiation therapy part I - Systems and principles

    International Nuclear Information System (INIS)

    Hall, Eric J.

    1996-01-01

    Objective: This course is designed for residents in radiation oncology, preparing for their boards. It includes the physics and chemistry of the absorption of radiation, a description of the biological systems used to obtain a quantitative relationship between dose and biological effect, as well as a review of the basic principles in radiation biology that have been established. The biological effects of radiation may result from the direct action, which refers to ionizations in the DNA itself, or the indirect action which is mediated by free radicals. For x or gamma rays, about 70% of the damage is by the indirect action, which can be modified by oxygen and various chemical agents. Radiation-induced DNA damage may lead to carcinogenesis and hereditary effects, which are important in personnel protection, or to cell lethality which is the basis of radiotherapy. Chromosome aberrations and cell lethality appear to result from the interaction of two lesions (probably double strand breaks) which leads to the linear-quadratic relationship. This refers to mitotic death, which is the most common form of radiation induced death. Programmed cell death orApoptosis also occurs which appears to be important in more radiosensitive tumors, and relatively unimportant in radioresistant tumors. A number of quantitative biological test systems have been developed to quantify the effects of radiation as a function of dose. Cells may be cultured in vitro, of normal and neoplastic origin, and survival curves produced with reproductive integrity plotted as a function of dose. Normal tissue systems where reproductive integrity can be scored as an endpoint include skin, gut, colony forming units in the bone marrow, as well as breast, thyroid and testis. The response of some normal tissues depends, not only on the fraction of cells killed, but on the tissue architecture in terms of functional subunits, this will be discussed in Part III. A range of transplantable tumors have been studied

  5. Radiobiology in clinical radiation therapy - Part I: Systems and principles

    International Nuclear Information System (INIS)

    Hall, Eric J.

    1997-01-01

    Objective: This course is designed for residents in radiation oncology, preparing for their boards. It begins with the principles of cell and molecular biology as they relate to carcinogenesis, and concentrates on the principles of radiation biology that have been established by the use of quantitative biological systems. Malignant cells are characterized by their capacity for unlimited proliferation; this change from normal cells is the consequence of genetic changes that may include the activation of dominantly acting oncogenes and/or the deletion of recessively acting tumor suppressor genes. The biological effects of radiation may result from the direct action, which refers to ionizations in the DNA itself, or the indirect action which is mediated by free radicals. Radiation-induced DNA damage may lead to carcinogenesis and hereditary effects, which are important in personnel protection, or to cell lethality which is the basis of radiotherapy. Chromosome aberrations and cell lethality appear to result from the interaction of two lesions (probably double strand breaks) which leads to the ubiquitous linear-quadratic relationship. This refers to mitotic death, which is the most common form of radiation induced death. Programmed cell death or Apoptosis also occurs which is important in more radiosensitive tumors, and relatively unimportant in radioresistant tumors. A number of quantitative biological test systems have been developed to quantify the effects of radiation as a function of dose. Cells may be cultured in vitro, of normal and neoplastic origin, and survival curves produced with reproductive integrity plotted as a function of dose. Normal tissue systems where reproductive integrity can be scored as an endpoint include skin, gut, colony forming units in the bone marrow, as well as breast, thyroid and testis. The response of some normal tissues depends, not only on the fraction of cells killed, but on the tissue architecture in terms of functional subunits

  6. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  7. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  8. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  9. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, P.J; Schouten, A.J.

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures.

  10. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  11. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  12. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  13. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  14. A pentacene monolayer trapped between graphene and a substrate.

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  15. A model to describe potential effects of chemotherapy on critical radiobiological treatments

    International Nuclear Information System (INIS)

    Rodríguez-Pérez, D.; Desco, M.M.; Antoranz, J.C.

    2016-01-01

    Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment. (paper)

  16. Claudius Regaud (1870-1940): A pioneer of radiobiology and radiotherapy

    International Nuclear Information System (INIS)

    Foray, N.

    2012-01-01

    Born in 1870, Claudius Regaud was a pioneer of radiobiology and radiotherapy. As histologist, he developed a new staining technique that allowed him to describe in detail all the reproduction system of a number of animal models. As radio-biologist, he contradicted the interpretations of Tribondeau and Bergonie about relationships between cell proliferation and radiosensitivity. In 1908, he suggested that chromatin was the main target of radiation. As physician, he defined the first bases of anti-cancer radiation treatments and treated patients suffering from incurable cancer from 1911. As military doctor, he organized war hospitals by creating multidisciplinary teams for the surgery of hurts. Organizer, he was one of the founders of the League against Cancer. As radiotherapist and brachy-therapist, he contributed to make Institut Curie an international reference center for research and teaching, with nearly a thousand treated patients. As globe-trotter, he was at the origin of the creation of numerous worldwide radiotherapy and radiobiology centers. He died in December 1940 and let an impressive but still mis-known scientific heritage. A re-reading of the familial archives and the Regaud Fund of Institut Curie is the occasion to remind the contribution of Regaud. (authors)

  17. Radiobiological and PK assays at advance Centre for Training Research and Education in Cancer (ACTREC)

    International Nuclear Information System (INIS)

    Sastri, Goda Jayant; Gota, Vikram

    2014-01-01

    Radiobiological, pharmacokinetic and biodistribution studies are of paramount importance for drug development and more so in the development of newer radiation modulators. Radiobiological studies have now graduated from simple cell survival and viability assays to more complex molecular and imaging studies to study radiation modulation both in in-vitro and in-vivo models. Tata Memorial Centre and its research centre (ACTREC) is a premiere cancer centre in India dedicated to cancer research. The Department of Radiation Oncology treats approximately 7000 new patients in a year and is uniquely placed to do both translational radiation and clinical research in the field of drug development. The Clinical Biology Lab of the Department of Radiation Oncology at ACTREC in collaboration with other labs at ACTREC has standardized cell survival assays, DNA damage assays such as Gamma H2AX assay (by flow as well as confocal microscopy), Micronuclei assay and COMET assays using CASP software for quantification. We have also done apoptotic assays. These assays have been conducted for development newer drug formulations (for e.g liposomal radiosensitizers). We also have a strong imaging division having sophisticated microscopes (confocal and single molecule super resolution microscopes) for in-vitro optical imaging and a dedicated preclinical PET/CT/SPECT for in-vivo imaging. The clinical 3T MRI and PET/CT is being used to study the effect of hypoxia in various cancers

  18. Checking the foundation: recent radiobiology and the linear no-threshold theory.

    Science.gov (United States)

    Ulsh, Brant A

    2010-12-01

    The linear no-threshold (LNT) theory has been adopted as the foundation of radiation protection standards and risk estimation for several decades. The "microdosimetric argument" has been offered in support of the LNT theory. This argument postulates that energy is deposited in critical cellular targets by radiation in a linear fashion across all doses down to zero, and that this in turn implies a linear relationship between dose and biological effect across all doses. This paper examines whether the microdosimetric argument holds at the lowest levels of biological organization following low dose, low dose-rate exposures to ionizing radiation. The assumptions of the microdosimetric argument are evaluated in light of recent radiobiological studies on radiation damage in biological molecules and cellular and tissue level responses to radiation damage. There is strong evidence that radiation initially deposits energy in biological molecules (e.g., DNA) in a linear fashion, and that this energy deposition results in various forms of prompt DNA damage that may be produced in a pattern that is distinct from endogenous (e.g., oxidative) damage. However, a large and rapidly growing body of radiobiological evidence indicates that cell and tissue level responses to this damage, particularly at low doses and/or dose-rates, are nonlinear and may exhibit thresholds. To the extent that responses observed at lower levels of biological organization in vitro are predictive of carcinogenesis observed in vivo, this evidence directly contradicts the assumptions upon which the microdosimetric argument is based.

  19. Preliminary study on proteomic technique in radiobiological characteristics in nasopharyngeal carcinoma cell line

    International Nuclear Information System (INIS)

    Wang Hui; Yi Xuping; Hu Bingqiang; Zeng Liang; Liu Yisong; Liang Songping

    2007-01-01

    Objective: To examine the variation of protein expression in nasopharyngeal carcinoma cell lines with different biological characteristics and to identify the radiobiological associated proteins. Methods: Biological characteristics of 5-8F and 6-10B were compared by flow cytometry assay after irradiation. The total proteins of 5-8F and 6-10B were separated by immobilized pH gradient(IPG) IEF-SDS two-dimensional gel eleetrophoresis technique. The differentially expressed proteins were cut from the gel and digested into peptides for MALDI-TOF MS and the Q-TOF mass spectrometric analysis. Identification of protein was made through searching in protein sequence database. Protein expressions were examined by western blot and immunohistochemistry method. Results: Nine most differentially expressed proteins between 5-8F cell and 6-10B cell were identified, p73 and CK19 expression examined by western blot were conformal with that by proteomic method, p73 expression in 5-8F cell was higher than in 6-10B cell. CK19 expression in 6- 10B cell was higher than in 5-8F cell. Conclusion: Differentially expression of proteins exist in nasopharyngeal carcinoma cell lines with different biological characteristics. These proteins may be associated with cell radiobiological characteristic with the p73 as a potential biomarker. (authors)

  20. Research in radiobiology: Annual report of work in progress in the internal irradiation program

    International Nuclear Information System (INIS)

    Miller, S.C.; Buster, D.S.

    1987-01-01

    In the early 1950's the Atomic Energy Commission established at the University of Utah a large, long-term study designed to investigate the toxicity of internally deposited radionuclides in beagles. The first animals were injected on December 1, 1952 and thus began an odyssey unusual in modern science both for its duration and continued scientific interest and relevance. The original dogs were injected with 239 Pu and 226 Ra. Later, studies were initiated with 241 Am, 249 Cf, 252 Cf, 253 Es, 224 Ra, 228 Ra, 90 Sr, and 228 Th. These studies were unique and have and will continue to contribute valuable scientific information on the behavior and effects of these substances in biological systems. We feel that the data collected from these studies will be useful for many decades to come as we ask more demanding questions relative to radionuclides and environmental, biological and health issues. While this publication will be the last of our series Research in Radiobiology, the lifespan carcinogenesis studies are continuing under a collaborative arrangement with the I.T.R.I. Beginning in 1988, the colony status tables of dogs in the Utah studies and reports of research by the Radiobiology faculty will be included in the annual I.T.R.I. report. Under our new collaborative arrangements with the I.T.R.I. for the conduct of the lifespan carcinogenesis studies, we expect a continued high level of scientific productivity from our faculty

  1. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  2. Preliminary results in the application of radiobiological models in the evaluation of radiotherapy plans

    International Nuclear Information System (INIS)

    Calderon, Carlos; Napoles, Mysleidis; Asencion, Yudy; Yanes, Yahima; Alfonso, Rodolfo; Gonzalez, Joaquin

    2009-01-01

    Notwithstanding the limitations of radiobiological models in the clinical application, its use is becoming more widespread in order to quantitatively assess the bioequivalence of different regimens of irradiation, the effective comparison between different treatment plans by estimating the probability tumor control (TCP) or the probability of normal tissue complication (NTCP), or solve problems, such as the rescheduling of treatments in case of failure. The response to irradiation in the tissues at risk (OARS) depends on factors such as volume irradiated or its organizational structure and behavior can vary for a given dose distribution. Another important aspect is the sensitivity of these models to the variation of parameters (α, α / β, proliferation, clonogenic density, etc.) Measuring the difference between-subjects. Commercial planning systems do not always possible to estimate the biological response of the OARS and CTV. This study presents an assessment of the results of two applications (free ware) and Albireo Target BIOPLAN Cygnus X1 that calculate statistical parameters of the DVH: equivalent uniform dose (EUD), equivalent biological dose (BED), medium dose and other to estimate TCP (Poisson model) and NTCP (Lyman-Kutcker models-Burman and relative seriality) for the calculation of the objective functions: the probability of uncomplicated control (UTCP) based on generalized EUD (f). We studied the response of both systems to the variation of relevant radiobiological parameters and the shape of the DVH. (Author)

  3. Preliminary results in the application of radiobiological models in the evaluation of radiotherapy plans

    International Nuclear Information System (INIS)

    Calderon, Carlos; Napoles, Mysleidis; Asencion, Yudy; Yanes, Yahima; Alfonso, Rodolfo; Gonzalez Joaquin

    2009-01-01

    Notwithstanding the limitations of radiobiological models in the clinical application, its use is becoming more widespread in order to quantitatively assess the bioequivalence of different regimens of irradiation, the effective comparison between different treatment plans by estimating the probability tumor control (TCP) or the probability of normal tissue complication (NTCP), or solve problems, such as the rescheduling of treatments in case of failure. The response to irradiation in the tissues at risk (OARS) depends on factors such as volume irradiated or its organizational structure and behavior can vary for a given dose distribution. Another important aspect is the sensitivity of these models to the variation of parameters (a, a / β, proliferation, clonogenic density, etc.) Measuring the difference between-subjects. Commercial planning systems do not always possible to estimate the biological response of the OARS and CTV. This study presents an assessment of the results of two applications (free ware) and Albireo Target BIOPLAN Cygnus X1 that calculate statistical parameters of the DVH: equivalent uniform dose (EUD), equivalent biological dose (BED), medium dose and other to estimate TCP (Poisson model) and NTCP (Lyman-models-Kutcker Burman and relative seriality) for the calculation of the objective functions: the probability of uncomplicated control (UTCP) based on generalized EUD (f). We studied the response of both systems to the variation of relevant radiobiological parameters and the shape of the DVH. (author)

  4. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy

    International Nuclear Information System (INIS)

    Jalade, P.

    2005-11-01

    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  5. A model to describe potential effects of chemotherapy on critical radiobiological treatments

    Science.gov (United States)

    Rodríguez-Pérez, D.; Desco, M. M.; Antoranz, J. C.

    2016-08-01

    Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment.

  6. An Estimation of Radiobiological Parameters for Head-and-Neck Cancer Cells and the Clinical Implications

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Yang, Qiuhui; Lee, Steve P.; Li, X. Allen; Wang, Dian

    2012-01-01

    In vitro survival measurements using two human head-and-neck cancer (HNC) cell lines were performed. The specially designed split-dose surviving fraction was obtained and fitted to the linear-quadratic formalism. The repair halftime (Tr), the potential doubling time (T d ), α/β and radiosensitivity α, were estimated. Other radiobiological models: EUD, BED, TCP, etc., were used to examine the potential treatment effectiveness of different IMRT techniques. Our data indicated the repair halftime of ~17 min based on two HNC cell lines. The combined α/β, α and T d are α/β = 8.1 ± 4.1 Gy, α = 0.22 ± 0.08 Gy −1 , T d = 4.0 ± 1.8 day, respectively. The prolonged IMRT dose delivery for entire HNC treatment course could possibly result in the loss of biological effectiveness, i.e., the target EUDs decreased by 11% with fraction dose delivery time varying from 5 to 30 min. We determined the sublethal damage repair halftime and other radiobiological parameters for HNC cells, and to evaluate treatment effectiveness of the prolonged dose delivery times associated with different IMRT techniques. The estimated repair halftime for HNC is relatively short and may be comparable to the step-and-shoot IMRT fraction dose delivery time. The effectiveness of IMRT treatment may be improved by reducing the fraction delivery time for HNC treatment

  7. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  8. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  9. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  10. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  11. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  12. Enhanced photocurrent in engineered bacteriorhodopsin monolayer.

    Science.gov (United States)

    Patil, Amol V; Premaruban, Thenhuan; Berthoumieu, Olivia; Watts, Anthony; Davis, Jason J

    2012-01-12

    The integration of the transmembrane protein bacteriorhodopsin (BR) with man-made electrode surfaces has attracted a great deal of interest for some two decades or more and holds significant promise from the perspective of derived photoresponse or energy capture interfaces. Here we demonstrate that a novel and strategically engineered cysteine site (M163C) can be used to intimately and effectively couple delipidated BR to supporting metallic electrode surfaces. By virtue of the combined effects of the greater surface molecular density afforded by delipidation, and the vicinity of the electrostatic changes associated with proton pumping to the transducing metallic continuum, the resulting films generate a considerably greater photocurrent density on wavelength-selective illumination than previously achievable with monolayers of BR. Given the uniquely photoresponsive, wavelength-selective, and photostable characteristics of this protein, the work has implications for utilization in solar energy capture and photodetector devices.

  13. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  14. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  15. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    Science.gov (United States)

    Lejeune, Emma; Linder, Christian

    2018-06-01

    Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.

  16. Literature study of the radiobiological parameters of Caesium-137 required for evaluating internal irradiation doses as a function of age

    International Nuclear Information System (INIS)

    Garnier, A.

    1968-01-01

    This document reassembles information published in scientific literature on radiobiological parameters of Cs-137, necessary for the estimate of the internal irradiation dose of man according to his age (during growth). The data are completed by a commented review of the mathematical models, proposed in order to value the irradiation doses from ingested cesium and the biological parameters. (author) [fr

  17. Radiological and Environmental Research Division, Center for Human Radiobiology. Annual report, July 1980-June 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    Separate abstracts were prepared for the 22 papers of this annual report of the Center for Human Radiobiology. Abstracts were not written for 2 appendices which contain data on the exposure and radium-induced malignancies of 2259 persons whose radium content has been determined at least once. (KRM)

  18. Veterinary radiobiology

    International Nuclear Information System (INIS)

    Kirshin, V.A.; Belov, A.D.; Budarkov, V.A.; Prochazka, Z.

    1989-01-01

    The monograph summarizes the authors' experience and data from Soviet and foreign scientific literature. It consists of the following chapters: radioactive sources; utilization of ionizing radiation and radioactive isotopes; biological effects of ionizing radiation; radiation sickness in animals; combined post-irradiation syndromes; prophylaxis of radiation injury; therapy of irradiated animals; and veterinary radiation hygiene control of the environment, fodder, animals and animal products. (P.A.)

  19. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  20. Micro-and nanodosimetry for radiobiological planning in radiotherapy and cancer risk assessment in radiation environment

    International Nuclear Information System (INIS)

    Rosenfeld, A.B.

    2006-01-01

    Full text: Microdosimetry and nanodosimetry can provide unique information for prediction of radiobiological properties of radiation, which is important in radiation therapy for accurate dose planning and in radiation protection for cancer induction risk assessment. This demand measurements of the pattern of energies deposited by ionizing radiation on cellular scale and DNA levels.Silicon microelectronics technology is offering a unique opportunity for replacing gas proportional counters (TEPC) with miniature detectors for regional microdosimetry. Silicon on Insulator (SOI) technology has been used for the development of arrays of micron size sensitive volumes for modelling energy deposited in biological cells. The challenge in silicon microdosimetry is the development of well defined sensitive volume (SV) and full charge collection deposited by ionizing radiation in the SV. First generation SOI microdosimeters were developed at CMRP and investigated in a wide range of radiation fields for proton and neutron therapies and recently on isotopic neutron sources and heavy ions with energy up to lGeV/jj,m which are typical for deep space radiation environment. Microdosimetric spectra were obtained in a phantom that are well matched to TEPC and Monte Carlo simulations. Evidence that radiations with the same LET exhibit different biological effects demand development of new sensors sensitive to the track structure of ions or the type of particle for prediction of radiobiological effect of radiation using radiobiological models. New monolithic Si AE-E telescope of cellular size for simultaneous regional microdosimetry and particle identification will be presented and results will be discussed. The new design of the SOI microdosimeter is based on 3D micron and submicron size of Si SVs. This approach allows improvement in the accuracy of the Si microdosimetry because of full charge collection and the ability to measure low LET as low as 0.01 keV/jjm, which is similar to TEPC

  1. A note on modeling of tumor regression for estimation of radiobiological parameters

    International Nuclear Information System (INIS)

    Zhong, Hualiang; Chetty, Indrin

    2014-01-01

    Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients

  2. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  3. Radiobiology 2000: advances in fundamental and clinical radiobiology. Programme and abstracts: 1st international congress of the South African Radiobiology Society (SARS) in conjunction with the South African Association of Physicists in Medicine and Biology (SAAPMB) and the University of Stellenbosch, 10-13 December 2000, Music Conservatoire, University of Stellenbosch

    International Nuclear Information System (INIS)

    2000-12-01

    Programme and abstracts of the 1st international congress of the South African Radiobiology Society, held in conjunction with the South African Association of Physicists in Medicine and Biology and the University of Stellenbosch, from 10-13 December 2000. This publication contain the abstracts of the forty-four papers and posters that were presented

  4. Skin, eye, and testis: current exposure problems and recent advances in radiobiology

    International Nuclear Information System (INIS)

    Charles, M.W.

    1986-01-01

    Three organs, the skin, eye and testis are potentially at risk from poorly penetrating radiations such as beta particles or low energy X-Rays. They may be preferentially irradiated in fields with steep depth - dose gradients and thereby dictate radiological protection procedures. Since there is not a wide margin of safety in the annual permissible dose limits for these organs it is important to have clearly defensible methods of dose assessment. This requires both an adequate understanding of the radiobiology of these organs and the availability of experimental techniques for measuring doses at various depths near the surface of the body. This paper reviews the current state of knowledge in this field, drawing partly on information from two recent CEC workshops on the 'Dosimetry of Beta Particles and Low Energy X-Rays' and 'Radiation Damage to the Skin'. It is concluded that protection criteria for the limitation of skin dose are in need of revision. (author)

  5. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †

    Directory of Open Access Journals (Sweden)

    Spiridon V. Spirou

    2018-06-01

    Full Text Available Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.

  6. Radiobiological considerations in the treatment of neuroblastoma by total body irradiation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; O'Donoghue, J.; Gregor, A.; Livingstone, A.; Wilson, L.; West of Scotland Health Boards, Glasgow

    1986-01-01

    Neuroblastoma is a radiosensitive neoplasm for which total body irradiation (TBI) is presently under clinical consideration. Collated data on the radiobiology of human neuroblastoma cells in vitro indicates moderate cellular radiosensitivity and low capacity for accumulation of sublethal damage. Mathematical studies incorporating these parameters suggest that low dose fractionated TBI is unlikely to achieve significant levels of tumour cell kill. When high dose TBI is used in conjuction with bone marrow rescue a tumour 'log cell kill' of 4-5 should be achievable. This effect would be additional to that acheived by chemotherapy. Fractionated TBI with bone marrow rescue may be curative for some patients in clinical remission who are presently destined to relapse. (Auth.)

  7. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  8. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    International Nuclear Information System (INIS)

    Nelson, G.A.; Schubert, W.W.; Marshall, T.M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represents a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space. (author)

  9. Recent tasks and status of National Research Institute for Radiobiology and Radiohygiene as TSO

    International Nuclear Information System (INIS)

    Pellet, S.

    2007-01-01

    The technical support function of the National Research Institute for Radiobiology and Radiohygiene has been introduced at the time of its establishment. In order to support the actual requirements the Institute carries on extended research in the fields of radiation protection and radiation biology participating in national and international projects. Supporting the proper performance of national radiation protection and safety tasks the Institute gives professional directives and expert opinions for decision processes of authorities. The Institutes main areas of radiation protection activity are: - Radiation-related licensing, inspection, record keeping; - assuring safety of radiation sources; - National Personal Dosimetry Service; - radiological monitoring of the environment; - preparedness for radiological incidents and accidents; - radiation protection training activities. The Institute has an accredited Testing Laboratory with nearly sixty examination protocols. Together with its Central Environmental Testing Laboratory, the Institute thus provides a significant support for both theoretical and practical accomplishment of the national radiation protection and safety tasks. (author)

  10. A method for radiobiological investigations in radiation fields with different LET and high dose rates

    International Nuclear Information System (INIS)

    Grundler, W.

    1976-01-01

    For investigations: 1. Performed in the field of radiobiology with different LET-radiation and a relatively high background dose rate of one component (e.g. investigations with fast and intermediate reactor neutrons) 2. Concerning radiation risk studies within a wide range 3. Of irradiations, covering a long time period (up to 100 days) a test system is necessary which on the one hand makes it possible to analyze the influence of different LET radiation and secondly shows a relative radiation resistant behaviour and allows a simple cell cycle regulation. A survey is given upon the installed device of a simple cell observation method, the biological test system used and the analysis of effects caused by dose, repair and LET. It is possible to analyze the behaviour of the nonsurvival cells and to demonstrate different reactions of the test parameters to the radiation of different LET. (author)

  11. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy.

    Science.gov (United States)

    Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-10-21

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

  12. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP

    International Nuclear Information System (INIS)

    Astudillo V, A. J.; Mitsoura, E.; Paredes G, L.; Resendiz G, G.

    2014-08-01

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  13. Radiobiological research for improving cancer therapy in India: rationale, problems and prospects

    International Nuclear Information System (INIS)

    Kalia, Vijay K.; Shobha, A.G.; KaIia, Anita; Saxena, Amit

    2012-01-01

    Cancer is emerging as a very important health hazard in India. According to recent studies by the Indian Council of Medical Research, about 2.25 million patients are presently suffering from different types of cancer in India. Approximately one million new cases are diagnosed, and nearly 0.3 million deaths occur every year on account of this disease. About 2/3rd of the cancers are at an advanced stage at the time of diagnosis. However, the allocation of funds for healthcare in India to support the research efforts for developing more potent radio-chemotherapy protocols for cancer treatment is too little. Studies by the W.H.O. have estimated that less developed countries including India use less than 5% of world resources destined for cancer control. It follows from the above discussions that it is imperative to further encourage and diversify the radiobiological research in India. This can be achieved by creating radiobiological research facilities, mainly in all the cancer centers and post graduate medical institutions, and further expanding the upcoming laboratories in the universities such as Bikaner. Collaborative research programs between laboratories at different centers could facilitate systematic evaluation of various pharmacological agents and neutraceuticals for potential application for treatment of different cancers. Our studies on combination of radiation with temozolomide and certain adjuvants with selective effects on brain tumour cells will be very briefly discussed in this presentation. Finally the possible administrative set up and multi dimensional collaborations for cost effective utilization of existing resources to further augment radiation biology research will also be discussed

  14. Radiobiological effect of different irradiation fractionated regimens in human brain glioma

    International Nuclear Information System (INIS)

    Gai Xue; Yang Weizhi; Gao Li; Jiang Heng; Wang Mianrong; Shi Huizhen

    2010-01-01

    Objective: To evaluate the radiobiological effect of different irradiation fractionated regimens in human glioma cells (BT 325 cell line). Methods: The xenografts in Balb/c-nude mice were irradiated with different single and fractionated regimens. The single fraction dose was 10, 20, 30, 40 and 60 Gy, respectively. The fractionated regimens were 2 Gy x 5 fractions ( irradiated every day), and 3 Gy x 3 fractions (irradiated every other day), 3 Gy x 5 fractions (irradiated every day) and 4 Gy x 3 fractions (irradiated every other day), with total doses of 125 Gy, 114 Gy, 126 Gy and 112 Gy, respectively. The growth curve was used to evaluate the tumor doubling time. clonogenic assays was performed to draw the cell survival curve and analyze the radiobiological parameters with doses of 1, 2, 4, 6, 8 and 10 Gy. T 1/2 was measured by comet assay. Results: Tumor regression were not observed by single fraction irradiation, 2 Gy x 5 fractions and 3 Gy x 3 fractions irradiation regimens. The tumor regress was more significant with the increas of fraction dose. The 4 Gy x 3 fractions inhibited tumor more though not curing tumor. The cell doubling time of the BT 325 cell was 30. 16 h and the tumor doubling time of the xenograft was 43 days.When fitted with L-Q model, α was 0. 36 Gy -1 and β was 0. 057 Gy -2 . When fitted with the single-hit multi target model, D 0 was 1. 394 Gy, Dq was 2. 127 Gy and SF 2 was 0.714, respectively. The T 1/2 was 9.999 min. Conclusions: Glioma is a radioresistant tumor. Increase of the fraction dose improves recent effect.Further study is needed to control the tumor stem cells. (authors)

  15. Linear versus non-linear: a perspective from health physics and radiobiology

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1998-01-01

    There is a vigorous debate about whether or not there may be a 'threshold' for radiation-induced adverse health effects. A linear-no threshold (LNT) model allows radiation protection practitioners to manage putative risk consistently, because different types of exposure, exposures at different times, and exposures to different organs may be summed. If we are to argue to regulators and the public that low doses are less dangerous than we presently assume, it is incumbent on us to prove this. The question is, therefore, whether any consonant body of evidence exists that the risk of low doses has been over-estimated. From the perspectives of both health physics and radiobiology, we conclude that the evidence for linearity at high doses (and arguably of fairly small total doses if delivered at high dose rate) is strong. For low doses (or in fact, even for fairly high doses) delivered at low dose rate, the evidence is much less compelling. Since statistical limitations at low doses are almost always going to prevent a definitive answer, one way or the other, from human data, we need a way out of this epistemological dilemma of 'LNT or not LNT, that is the question'. To our minds, the path forward is to exploit (1) radiobiological studies which address directly the question of what the dose and dose rate effectiveness factor is in actual human bodies exposed to low-level radiation, in concert with (2) epidemiological studies of human populations exposed to fairly high doses (to obtain statistical power) but where exposure was protracted over some years. (author)

  16. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  17. Coexistence of multiple conformations in cysteamine monolayers on Au(111)

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Bilic, A; Reimers, JR

    2005-01-01

    The structural organization, catalytic function, and electronic properties of cysteamine monolayers on Au(111) have been addressed comprehensively by voltammetry, in situ scanning tunneling microscopy (STM) in anaerobic environment, and a priori molecular dynamics (MD) simulation and STM image si...

  18. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting; Lu, Li-Syuan; Wang, Dean; Huang, Jing-Kai; Li, Ming-Yang; Chang, Tay-Rong; Chou, Yi-Chia; Juang, Zhen-Yu; Jeng, Horng-Tay; Li, Lain-Jong; Chang, Wen-Hao

    2017-01-01

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties

  19. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  20. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  1. Atomic defects and doping of monolayer NbSe2

    OpenAIRE

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J.P.; Lawlor, Sean; Sanchez, Ana M.; Sloan, Jeremy; Gorbachev, Roman; Grigorieva, Irina; Krasheninnikov, Arkady V.; Haigh, Sarah

    2017-01-01

    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reve...

  2. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  3. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  4. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  5. Electrical Contacts in Monolayer Arsenene Devices.

    Science.gov (United States)

    Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing

    2017-08-30

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

  6. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  7. Optical absorption in disordered monolayer molybdenum disulfide

    Science.gov (United States)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  8. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  9. Technique for etching monolayer and multilayer materials

    Science.gov (United States)

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  10. Radiobiological Characterization of Two Photon-Beam Energies 6 and 15 MV used in Radiotherapy From Linear Accelerator

    International Nuclear Information System (INIS)

    Eltayeb, A.E.H.

    2009-02-01

    The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37 o C for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37 o C for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the

  11. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  12. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  14. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  15. Estimation of the radiobiological and kinetic factors of radiosensitivity and radiocurability of metastases of squamous cell carcinoma of the larynx to neck lymph nodes

    International Nuclear Information System (INIS)

    Maciejewski, B.

    1985-01-01

    The usefulness of theoretical model of tumour growth and experimental methods of kinetic and radiobiological factors for analysis of clinical data to improve the effectiveness of dose fractionation are checked. 176 refs., 27 figs., 19 tabs. (author)

  16. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  17. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  18. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  19. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  20. A comparative study of post-irradiation growth kinetics of spheroids and monolayers

    International Nuclear Information System (INIS)

    Dertinger, J.; Luecke-Huhle, C.

    1975-01-01

    Post-irradiation growth kinetics of γ-irradiated spheroid and monolayer cells in exponential growth phase was investigated by means of dose-response curves based on cell counts after specified time intervals following irradiation. A mathematical model of cell-growth after irradiation was fitted to these curves. The model parameters (related to division delay and growth of non-surviving cells) obtained from this analysis consistently indicated increasing resistance to sub-lethal damage of cells cultured as multicellular spheroids under conditions of increasing three-dimensional contact. In contrast, no indication of an increased radiation-resistance was found with cells cultured on a substratum under a variety of conditions. (author)

  1. Radiobiological parameters of a human tumor parent line and four tumor clones of a human epidermoid carcinoma

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Beckett, M.; Dahlberg, W.

    1987-01-01

    The authors examined the radiobiological parameters of a parent tumor line and four tumor clones of a human squamous cell carcinoma of the skin. The parent line and clones have a tumor morphology, aneuploid karyotype, and the ability to passage continuously in vitro. With the exception of clone F2A, all cell lines form tumors in nude mice. The parent line, SCC-12 has a D/sub o/ of 154 and an n 7.5 In four tumor clones, D/sub o/ ranges from 131 (clone V) to 266 (clone B2); n ranges from 22.8 in clone V to 2.1 in clone B2. PLDR following 1100 rad ranges from 1.7 in clone B2 to 13.1 in clone V. However, PLDR following equitoxic doses of radiation is similar in the parent and all sub-clones. Radiobiological heterogeneity may complicate predictive assays for clinical radiotherapy

  2. Optimization in brachytherapy with the implementation of Radiobiology; Optimizacion en Braquiterapia con la implementacion de la Radiobiologia

    Energy Technology Data Exchange (ETDEWEB)

    Duran, M.P.; Bourel, V.J.; Rodriguez, I.; Torre, M. de la; Caneva, S. [Braqui S.R.L. Viamonte 1861, Buenos Aires (Argentina)

    1998-12-31

    In the brachytherapy planning treatments with High dose rates (HDR), the optimization algorithms used are based in dosimetric considerations and/or geometric ones, ignoring the radiobiological response of the tissue treated. In this work we wish to show the implementation of radiobiological concepts in the optimization. Assuming that the subtiles differences that result in the dose distribution among the different optimization models which are not visible in an isodose plane, it is studied how is classically make it , the quality implant through natural histograms about dose volumes and the resulting parameters. Also is studied the necrosis probability which may be caused by the choice of some optimization model, allowing with this the choice of the best implant. (Author)

  3. Relationships Between Rectal Wall Dose-Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer

    International Nuclear Information System (INIS)

    Marzi, Simona; Arcangeli, Giorgio; Saracino, Bianca; Petrongari, Maria G.; Bruzzaniti, Vicente; Iaccarino, Giuseppe; Landoni, Valeria; Soriani, Antonella; Benassi, Marcello

    2007-01-01

    Purpose: The purpose of this article was to investigate how exceeding specified rectal wall dose-volume constraints impacts on the risk of late rectal bleeding by using radiobiologic calculations. Methods and Materials: Dose-volume histograms (DVH) of the rectal wall of 250 patients with prostate cancer were analyzed. All patients were treated by three-dimensional conformal radiation therapy, receiving mean target doses of 80 Gy. To study the main features of the patient population, the average and the standard deviation of the distribution of DVHs were generated. The mean dose , generalized equivalent uniform dose formulation (gEUD), modified equivalent uniform dose formulation (mEUD) 0 , and normal tissue complication probability (NTCP) distributions were also produced. The DVHs set was then binned into eight classes on the basis of the exceeding or the fulfilling of three dose-volume constraints: V 40 = 60%, V 50 = 50%, and V 70 = 25%. Comparisons were made between them by , gEUD, mEUD 0 , and NTCP. Results: The radiobiologic calculations suggest that late rectal toxicity is mostly influenced by V 70 . The gEUD and mEUD 0 are risk factors of toxicity always concordant with NTCP, inside each DVH class. The mean dose, although a reliable index, may be misleading in critical situations. Conclusions: Both in three-dimensional conformal radiation therapy and particularly in intensity-modulated radiation therapy, it should be known what the relative importance of each specified dose-volume constraint is for each organ at risk. This requires a greater awareness of radiobiologic properties of tissues and radiobiologic indices may help to gradually become aware of this issue

  4. Radiobiological effects in organisms of plants and animals exposed to ionizing irradiation in the Chernobyl NPP zone

    International Nuclear Information System (INIS)

    Panchenko, N.A.; Arkhipov, N.P.; Alesina, M.Y.; Kuchma, V.I.; Gaschak, S.P.; Burov, N.I.

    1997-01-01

    Influence of ionizing radiation on forest ecosystems most clearly revealed itself near the Chernobyl NPP (ChNPP), were magnitudes of absorbed doses reached 'lethal' values, as applied to conifers. Main contribution to absorbed dose was due to beta-radiation of short-living radionuclides. To largest extent the radiobiological effects appeared at injured plantations of pines and firs. Nevertheless, during the first year maximum absorbed doses influenced also on leaf-bearing trees (birch, alder, asp) which then rehabilitated themselves completely

  5. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    Science.gov (United States)

    Pyakuryal, Anil Prasad

    Cancer is one of the leading causes of mortalities in the world. The precise diagnosis of the disease helps the patients to select the appropriate modality of the treatments such as surgery, chemotherapy and radiation therapy. The physics of X-radiation and the advanced imaging technologies such as positron emission tomography (PET) and computed tomography (CT) plays an important role in the efficient diagnosis and therapeutic treatments in cancer. However, the accuracy of the measurements of the metabolic target volumes (MTVs) in the PET/CT dual-imaging modality is always limited. Similarly the external beam radiation therapy (XRT) such as 3D conformal radiotherapy (3DCRT) and intensity modulated radiation therapy (IMRT) is the most common modality in the radiotherapy treatment. These treatments are simulated and evaluated using the XRT plans and the standard methodologies in the commercial planning system. However, the normal organs are always susceptible to the radiation toxicity in these treatments due to lack of knowledge of the appropriate radiobiological models to estimate the clinical outcomes. We explored several methodologies to estimate MTVs by reviewing various techniques of the target volume delineation using the static phantoms in the PET scans. The review suggests that the more precise and practical method of delineating PET MTV should be an intermediate volume between the volume coverage for the standardized uptake value (SUV; 2.5) of glucose and the 50% (40%) threshold of the maximum SUV for the smaller (larger) volume delineations in the radiotherapy applications. Similarly various types of optimal XRT plans were designed using the CT and PET/CT scans for the treatment of various types of cancer patients. The qualities of these plans were assessed using the universal plan-indices. The dose-volume criteria were also examined in the targets and organs by analyzing the conventional dose-volume histograms (DVHs). The biological models such as tumor

  6. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Parajon, M., E-mail: mhuerta@essbilbao.org; Martinez-Ballarin, R., E-mail: rmartinez@essbilbao.org; Abad, E., E-mail: eabad@essbilbao.org

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 10{sup 6} protons/cm{sup 2} s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  7. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  8. Cell survivor: Modeling radiobiological phenomena with a new kind of simulation

    Science.gov (United States)

    Spencer, Melissa A.

    Despite widespread societal fear of radiation, whether justified or unjustified, and whether related to medicine (e.g., CT scans) or other forms of nuclear and atomic radiation (e.g., nuclear power) there is a fundamental lack of basic understanding of radiation effects on the human body. Different types of radiation are psychologically grouped into the same general fear category irrespective of their different potential to do harm, and this fear is not balanced by their potential beneficial effects. By modeling certain types of radiation biology experiments within a game engine, it is possible to enhance the player's intuitive understanding of radiobiology, both the effects of different types of radiation as well as different environmental factors that can enhance or suppress repair. For this dissertation, a game/simulation has been developed that intends to narrow the gap between public perception and the reality of these physical processes. The building blocks of this simulation are cells, which are damaged by incident radiation, accumulating either single or double strand breaks. They grow and reproduce, and are especially vulnerable during certain phases of the cell cycle (e.g. mitosis). Two dominant damage mechanisms are modeled, along with multiple repair mechanisms, for example, double strand breaks can be repaired by either non-homologous end joining or homologous repair. The output of the developed simulation was compared to data collected in experimental studies and the simulation appears to be a valid representation of the dominant mechanisms of radiobiology, as far as can be determined within the scope of this dissertation. Cell survival curves generated from playtest data display shoulders that depend on the LET of incident radiation, and rest time restores repair capability. In addition to public outreach, the presented code can be used to aid investigators by collecting data during play that can be used as a distributed Monte Carlo simulation

  9. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.

    Science.gov (United States)

    Waker, A J; Maughan, R L

    1986-11-01

    For fast neutron therapy and radiobiology beams, knowledge of the primary neutron spectrum is the most fundamental requirement for the definition of radiation quality. However, microdosimetric measurements in the form of single-event spectra not only complement the primary neutron spectrum as a statement of radiation quality but also provide a sensitive method of detecting changes in the radiation field in situations where it is no longer possible to have precise knowledge of the primary neutron spectrum, for example after collimator changes and in positions where the radiation field consists of a large scattered component. For the various collimator arrangements employed at the Gray Laboratory facility small perturbations of the radiation field are observed which can be related to a softening of the primary neutron spectrum with increasing field size of the collimator. Gamma fraction determinations are in very good agreement with measurements employing the dual chamber technique and also show small changes with collimator field size giving rise to gamma components ranging from 0.09 to 0.12, the higher values being measured for the larger field sizes. Quality changes represented by the shape of the measured event-size spectra and the derived microdosimetric parameters were greatest for off axis and phantom measurements. With increasing depth in water, yD was found to decrease from 47.3 keV micron-1 at 5 cm to 35.6 keV micron-1 at 15 cm depth, and the gamma fraction was found to increase from 0.23 to 0.40. Although there is no generally accepted and agreed method of relating microdosimetric information to biological effectiveness, the dual radiation theory in its original form (Kellerer and Rossi 1972) has been shown to be a very useful model for the assessment of the biological effectiveness of fast neutrons (Kellerer et al 1976). The microdosimetric parameter which is used in the dual radiation model is the dose mean specific energy corrected for saturation zeta

  10. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J; Lindsay, P [Princess Margaret Cancer Centre, Toronto (Canada); University of Toronto, Toronto (Canada); Jaffray, D [Princess Margaret Cancer Centre, Toronto (Canada); The Techna Institute for the Advancement of Technology for Health, Toronto (Canada)

    2014-06-15

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations

  11. An in vitro study of the radiobiological effects of flattening filter free radiotherapy treatments

    International Nuclear Information System (INIS)

    King, R B; Hyland, W B; McGarry, C K; Hounsell, A R; Cole, A J; Butterworth, K T; McMahon, S J; Redmond, K M; Trainer, C; Prise, K M

    2013-01-01

    Flattening filter free (FFF) linear accelerators allow for an increase in instantaneous dose-rate of the x-ray pulses by a factor of 2–6 over the conventional flattened output. As a result, radiobiological investigations are being carried out to determine the effect of these higher dose-rates on cell response. The studies reported thus far have presented conflicting results, highlighting the need for further investigation. To determine the radiobiological impact of the increased dose-rates from FFF exposures a Varian Truebeam medical linear accelerator was used to irradiate two human cancer cell lines in vitro, DU-145 prostate and H460 non-small cell lung, with both flattened and FFF 6 MV beams. The fluence profile of the FFF beam was modified using a custom-designed Nylon compensator to produce a similar dose profile to the flattened beam (6X) at the cell surface but at a higher instantaneous dose-rate. For both cell lines there appeared to be no significant change in cell survival. Curve fitting coefficients for DU145 cells irradiated with constant average dose-rates were 6X: α = 0.09 ± 0.03, β = 0.03 ± 0.01 and 6FFF: α = 0.14 ± 0.13, β = 0.03 ± 0.02 with a significance of p = 0.75. For H460 cells irradiated with the same instantaneous dose-rate but different average dose-rate the fit coefficients were 6FFF (low dose-rate): α = 0.21 ± 0.11, 0.07 ± 0.02 and 6FFF (high dose-rate): α = 0.21 ± 0.16, 0.07 ± 0.03, with p = 0.79. The results indicate that collective damage behaviour does not occur at the instantaneous dose-rates investigated here and that the use of either modality should result in the same clinical outcome, however this will require further validation in vivo. (note)

  12. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    International Nuclear Information System (INIS)

    Stewart, J; Lindsay, P; Jaffray, D

    2014-01-01

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations

  13. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2017-10-09

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties by investigating the strain effects on the photoluminescence of monolayer MoS2 and WSe2. Instead of applying stress, we investigate the strain effects by imaging the direct exciton populations in monolayer WSe2–MoS2 and MoSe2–WSe2 lateral heterojunctions with inherent strain inhomogeneity. We find that unstrained monolayer WSe2 is actually an indirect gap material, as manifested in the observed photoluminescence intensity–energy correlation, from which the difference between the direct and indirect optical gaps can be extracted by analyzing the exciton thermal populations. Our findings combined with the estimated exciton binding energy further indicate that monolayer WSe2 exhibits an indirect quasiparticle gap, which has to be reconsidered in further studies for its fundamental properties and device applications.

  14. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  15. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    Science.gov (United States)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  16. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  17. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  18. Lateral Interactions in Monolayer Thick Mercury Films

    Science.gov (United States)

    Kime, Yolanda Jan

    An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through

  19. A detailed radiobiological and dosimetric analysis of biochemical outcomes in a case-control study of permanent prostate brachytherapy patients

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Stewart, Renee R.; Merrick, Gregory S.

    2009-01-01

    The purpose of this study is to determine dosimetric and radiobiological predictors of biochemical control after recalculation of prostate implant dosimetry using updated AAPM Task Group 43 (TG-43) parameters and the radiobiological parameters recommended by TG-137. All biochemical failures among patients implanted with 125 I or 103 Pd sources between 1994 and March 2006 were matched 2:1 with nonfailure controls. The individual matching was by risk group, radionuclide, prescribed dose, and time of implant (one match before and one after the failed patient) resulting in a median follow-up of 10.9 years. Complete dose volume histogram (DVH) data were recalculated for all 55 cases and 110 controls after updating the original source strength by the retrospectively determined ratios of TG-43. Differential DVH data were acquired in 179 increments of prostate volume versus percentage prescribed dose. At each incremental dose level i, the biologically equivalent dose BED i , equivalent uniform dose EUD i , and tumor control probability TCP i were calculated from the implant dose plus any external beam delivered to the patient. Total BED, EUD, and TCP were then derived from the incremental values for comparison with single point dosimetric quality parameters and DVH-based averages. There was no significant difference between failures and controls in terms of total BED (143 vs 142 Gy), EUD (95 vs 94 Gy), or TCP (0.87 vs 0.89). Conditional logistic regression analysis factored out the matching variables and stratified the cohort into each case and its controls, but no radiobiological parameter was predictive of biochemical failure. However, there was a significant difference between radiobiological parameters of 125 I and 103 Pd due to less complete coverage of the target volume by the former isotope. The implant BED and TCP were highly correlated with the D 90 and natural prescription doses and a series of mean DVH-based doses such as the harmonic mean and expressions of the

  20. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  1. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  2. Triptycene-terminated thiolate and selenolate monolayers on Au(111

    Directory of Open Access Journals (Sweden)

    Jinxuan Liu

    2017-04-01

    Full Text Available To study the implications of highly space-demanding organic moieties on the properties of self-assembled monolayers (SAMs, triptycyl thiolates and selenolates with and without methylene spacers on Au(111 surfaces were comprehensively studied using ultra-high vacuum infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy and thermal desorption spectroscopy. Due to packing effects, the molecules in all monolayers are substantially tilted. In the presence of a methylene spacer the tilt is slightly less pronounced. The selenolate monolayers exhibit smaller defect densities and therefore are more densely packed than their thiolate analogues. The Se–Au binding energy in the investigated SAMs was found to be higher than the S–Au binding energy.

  3. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  4. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  5. Radiobiological significance of radioactive contamination - summary assessment based on great number of measurements

    International Nuclear Information System (INIS)

    Angelov, V.; Bonchev, Ts.; Mavrodiev, V.; Kyrdzhilov, N.

    1995-01-01

    In order to facilitate quantitative and qualitative characterisation of radioactive contamination the authors introduce a relative estimate of radionuclide activity by setting as a reference the most abundant element -Co-60 in the case of the Kozloduy NPP. The ratio η i of the mean annual permissible concentration in air for each radionuclide (RPC-92) to that of Co-60 is calculated. It is found that η i has the same or close values for groups of radionuclides, e.g. η i = 2.10 -4 for 238 Pu, 239 Pu, 240 Pu, 241 Am, 244 Cm; η i = 5 for 89 Sr, 91 Y; 93 Nb, 134 Cs, 137 Cs; η i = 50 for 55 Fe, 63 Ni, 95 Zr, 95 Nb, 140 Ba, 140 La. Then it is compared to the experimentally measured values of the same quantity η iexp , derived from surface contamination data. The ratio η iexp /η i is plotted against log η i . The resulting nomograms give graphic representation of the radiobiological significance of various radionuclide groups. Data from different locations at the Kozloduy NPP are presented. It is found that the alpha emitter contamination has highest values in the Unit 1 (WWER-440) control rooms after repair. The Unit 5 (WWER-1000) has lower alpha contamination compared to WWER-440 units. 1 ref., 5 figs., 1 tab

  6. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-01-01

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  7. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Kim, Won Woo; Park, In Hwan; Kim, Hee Jong; Lee, Eun Jin; Jung, Jae Hoon [Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Lawrence Chin Soo; Song, Chang W. [Dept. of Radiation Oncology, University of Minnesota Medical School, Minneapolis (United States)

    2015-12-15

    Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

  8. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  9. Environmental Research Division annual report: Center for Human Radiobiology, July 1983-June 1984. Part 2

    International Nuclear Information System (INIS)

    1985-04-01

    Epidemiological studies of the late effects of internal radium in man, and mechanistic investigations of those effects, have continued. The current status of the study is summarized. An experimental technique for preparing thin sections of bone and the application of that technique in studying the comparative distribution of radium and plutonium are described. Radiological dental changes due to radium in man and dog are compared. Survival of human fibroblasts irradiated with alpha particles in vitro was found to be higher when the average LET was higher. In the study of the late effects of thorium in man, the relative activities of the daughter products in the lung have been determined spectrometrically in vivo. The exhalation of thoron in these persons has been investigated in relation to lung burden of thorium and to personal factors such as smoking, age, and weight. The administration of two isotopes to large mammals has been used to demonstrate that the metabolism of plutonium is independent of route of entry and to determine the gastrointestinal absorption of plutonium. The effect of thermoluminescence on a scintillation radon counting system has been investigated quantitatively. Data on the exposure of 88 persons to radium were added to the data base, bringing the total to 2400 radium cases under study by the Center for Human Radiobiology. Separate abstracts were prepared for individual papers

  10. Radiobiological characterization of different energy-photon beams used in radiotherapy from linear accelerator

    International Nuclear Information System (INIS)

    Elata, A.; Hassan, A. M. E.; Ali, E.; Calzolari, P.; Bettega, D.

    2009-02-01

    The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37o C for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37o C after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)

  11. The challenge for the paradigms heat have guided the radiobiology in the past

    International Nuclear Information System (INIS)

    Real, A.

    2001-01-01

    Until recently, it has been commonly accepted that the biological consequences following ionizing radiation exposure are attributable to direct DNA damage. However, in the last decade some evidence have emerged to suggest that the classical genetic effects associated with radiation exposure (i.e. mutations, chromosomal aberrations, micronucleus) are not necessarily the result of the direct damage induced in the cellular DNA. These effects have been termed non-targeted and include radiation-induced genomic instability, effects detected after cytoplasmic irradiation and bystander effects. All of them support the hypothesis that important genetic consequences of radiation may arise in cells that in themselves receive no direct radiation exposure at all. The radioinduced damage signals could be transmitted to these cells from those that have been directly irradiated. The non-targeted effects challenge the paradigms that have guided radiobiology in the past and may change our thinking about the early events in the carcinogenic process and in particular about the critical targets for genetic and carcinogenic damage by radiation. These effects could be particularly important at low doses, when non all the cells are directly exposed to an ionizing track. (Author) 45 refs

  12. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect

    International Nuclear Information System (INIS)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2016-01-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5–7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1–4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. (author)

  13. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    Science.gov (United States)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  14. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  15. Discrepancies between measured changes of radiobiological hypoxic fraction and oxygen tension monitoring using two assay systems

    International Nuclear Information System (INIS)

    Sasai, K.; Brown, J.M.

    1994-01-01

    This study was conducted to assess the ability of computerized pO 2 histography to measure changes in tumor oxygenation produced by low oxygen breathing. Female syngeneic C3H/Km mice bearing SCC VII/St carcinomas were used in these experiments. Changes in tumor oxygenation produced by the mice breathing 10% oxygen were assessed with computerized pO2 histography, 3 H-misonidazole binding, and the paired survival curve assay of radiosensitivity. The hypoxic cell fraction of the tumors in mice breathing 10% oxygen was 3.1 times higher than that of tumors in mice breathing normal air determined by an in vivo-in vitro clonogenic assay. Binding of radiolabeled misonidazole to the tumors in mice breathing 10% oxygen was also significantly higher than that to tumors in mice breathing normal air (p 2 value for the tumor. The number of pO 2 readings lower than 5 mmHg in the tumor was not affected by the 10% oxygen breathing. These findings indicate that increases in radiobiological hypoxic fraction produced by lower blood oxygen levels may not correlate well with the results of polarographic measurements of tumor pO 2 levels. 29 refs., 4 figs., 1 tab

  16. An automated method for breathing frequency determination for rat lung radiobiology in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Coderre, J.A.; Kiger, W.S. III

    2006-01-01

    Whole-body plethysmography was used to the measure the breathing rate in rats as a functional indication of radiation-induced lung damage, either weekly or bi-weekly for a period of 180 days following thorax irradiations in a BNCT radiobiology study. A three-minute digital breathing signal was collected in each measurement. Software has been developed to automatically discriminate against large-amplitude noise due to animal movement. After segmenting the signal into consecutive, overlapping and circular blocks, the mean frequency spectrum of the processed signal was calculated using the Fast Fourier Transform (FFT). The breathing rate was defined as the primary frequency of the spectrum and the standard deviation was estimated using the bootstrap method. The mean standard deviation of all measurements in the data set (n=4269) was 2.4%. The improved accuracy with low standard deviation of the measurements ensures good sensitivity and a low threshold for detection of responding animals; breathing rates more than 20% (∼3 σ) above the control mean were considered responding. (author)

  17. Decontamination activities at the National Institute of Oncology and Radiobiology in Havana, Cuba

    International Nuclear Information System (INIS)

    Castillo, R.; Salgado, M.; Madrazo, S.; Flores, J.; Marcos, J.

    2002-01-01

    The National Institute of Oncology and Radiobiology had a facility contaminated with 137 Cs. The contamination was produced by a leaking source stored in the place. First decontamination work was performed in 1988. Some highly contaminated floor tiles and other contaminated items were removed. Spent sealed sources stored in the facility were collected. The facility was closed because of the remaining contamination. As the Regulatory Body allowed the unrestricted use of the facility, decontamination and decommissioning were needed. D and D activities were requested to the CPHR. Contamination surveys conducted in 1999 confirmed the extent of contamination with 137 Cs. Items inside the contaminated area were carefully monitored and segregated. Six Radium sources were recovered. Physical and chemical methods of decontamination were used. For different reasons, the requirements established by the Regulatory Authority for decommissioning could not be achieved, and therefore the facility could not be released from regulatory control. A Radiological Status Report was done explaining the high cost of decontamination according to the established clearance levels. New alternatives were then proposed for decommissioning of this facility. (author)

  18. Analysis of the radiobiology of ytterbium-169 and iodine-125 permanent brachytherapy implants

    Energy Technology Data Exchange (ETDEWEB)

    Lazarescu, G.R. [Windsor Regional Cancer Center, Ontario Cancer Treatment and Research Foundation, Windsor, Canada N8W 2X3 (Canada); Battista, J.J. [London Regional Cancer Center, Ontario Cancer Treatment and Research Foundation, Dept. of Oncology and Dept. of Medical Biophysics, University of Western Ontario, London, Canada N6A 4L6 (Canada)

    1997-09-01

    Recently, Yb-169 has been considered as a potential replacement for I-125 and Pd-103 in permanent implants. In spite of the uncertainties in the parameters necessary for an accurate radiobiological modelling, the linear quadratic model can be useful in the comparative evaluation of the radiotherapeutic merit of similar implants. In order to find out if a Yb-169 permanent implant can be made biologically 'equivalent' to an I-125 implant, we studied the dependence of local control on the tumour cell radiosensitivity and on the balance between the rate of tumour cell killing and tumour cell proliferation, for rapidly and slowly proliferating tumours. The extrapolated response dose (ERD) has been calculated for tumour and late reacting normal tissue for both types of implants and the possible biological restrictions due to the normal tissue tolerance have been discussed. Our theoretical analysis is consistent with the clinical results published for I-125 permanent implants in prostate tumours and meningiomas. It predicts that Yb-169, which has only recently been used in human tumours, can provide comparable tumour control for permanent implants in slowly proliferating tumours with an initial dose rate of 13 cGy h{sup -1}. Control might be extended to rapidly proliferating tumours by increasing the initial dose rate within a range consistent with an acceptable level of normal tissue late reaction. (author)

  19. Impact of radiobiological considerations on epidemiological inferences of age-dependent radiosensitivity

    International Nuclear Information System (INIS)

    Crawford-Brown, D.J.

    1983-01-01

    Current epidemiological studies of the age-dependent risk of radiogenic carcinomas are based on populations still in the early stages of cancer expression. The result is a set of logical uncertainties concerning the manner in which inferences may be drawn from the existing data. These uncertainties may be formalized and examined through the application of various radiobiological principles developed from more fundamental experimental data. Chief amongst these considerations are the time course of tumor expression, the role of relative and absolute risk models, the distribution of effects between initiation and promotion, the age-dependent fraction of time a critical cell remains in radiosensitive stages and the combinatorics of the critical cellular subpopulations. Each of these and the combinatorics of the critical cellular subpopulations. Each of these principles are examined in light of their impact on the structuring of epidemiologic data and the drawing of inferences concerning age-dependent radiogenic risk. The data on atomic bomb survivors are employed as a relevant example

  20. Long-term radiobiological effects in rats after exposure of 131I in utero

    Directory of Open Access Journals (Sweden)

    V. V. Talko

    2017-12-01

    Full Text Available Remote radiobiological effects in male rats prenatally exposed by 131I in different periods of gestation were studied. It was established that the negative effects of irradiation of 131I in utero in the distant period are manifested by disorders of the functioning of the pituitary-thyroid link of endocrine regulation, pro-antioxidant equilibrium, changes in the lipid-lipoprotein spectrum of blood serum. As a result of irradiation of 131I in utero throughout the period of gestation, discoordination in the functioning of the pituitary-thyroid link of endocrine regulation, a violation of the pro-antioxidant balance by increasing the intensity of lipoperoxidation processes and the activity reducing of enzymes of antioxidant defense, the atherogenic orientation of changes in the lipid-lipoprotein spectrum was established. As a result of irradiation by 131I in utero during the third trimester of gestation, the development of hypothyroidism, changes in pro-antioxidant balance due to the activation of antioxidant defense, and the reduction of the concentration of the main classes of lipids have been established.

  1. Development of a single ion micro-irradiation facility for experimental radiobiology at cell level

    International Nuclear Information System (INIS)

    Barberet, Ph.

    2003-10-01

    A micro-irradiation device has been developed for radiobiology applications at the scale of the cell. This device is based on an upgrade of an existing micro-beam line that was already able to deliver a 1 to 3 MeV proton or alpha beam of low intensity and whose space resolution is lower than 1 micrometer in vacuum. The important part of this work has been the development of an irradiation stage designed to fit on the micro-probe and able to deliver ions in the air with an absolute accuracy of a few micrometers. A program has been set up to monitor the complete irradiation line in testing and in automatic irradiation operating phases. Simulation tools based on Monte-Carlo calculations have been validated through comparisons with experimental data particularly in the field of spatial resolution and of the number of ions delivered. The promising results show the possibility in a near future to use this tool to study the response of cells to very low irradiation doses down to the extreme limit of one ion per cell

  2. AFRRI (Armed Forces Radiobiology Research Institute) reports, April, May, June 1987. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    This document is a collection of reprinted technical reports. Partial contents include: Effect of ionizing radiation on prostaglandins and gastric secretion in rhesus monkeys; Characterization of rat prothymocyte with monoclonal antibodies recognizing rat lymphocyte membrane antigenic determinants; Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced condition taste aversion; Ethanol-induced taste aversions; Lack of involvement of acetaldehyde and the area postrema; Dose and time relationships of the radioprotector WR-2721 on locomotor activity in mice; Purification and analysis of rat hematopoietic stem cells by flow cytometry, Plasma histamine and catecholamine levels during hypotension induced by morphine and compound 48/80; Effects of ionizing radiation on hippocampal excitability, Tumor necrosis factor/cachectin is a less-potent inducer of serum amyloid A synthesis than interleukin 1, Protection of mice against fission-neutron irradiation by WR-2721 or WR-151327, Induction of colony-stimulating factor in vivo by recombinant interleukin 1 a and recombinant tumor necrosis factor alpha; 16,16-Dimethyl prostaglandin E2 increases survival in mice following irradiation, Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR-2721; Rat phantom depth dose studies in electron, x-ray, gamma-ray, and reactor-radiation fields; Wall attenuation and scatter characteristics of ionization chambers at Armed Forces Radiobiology Research Institute.

  3. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules?

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Miyakawa, Akifumi; Otsuka, Shinya; Iwata, Hiromitsu

    2016-01-01

    In hypofractionated stereotactic radiotherapy (SRT), high doses per fraction are usually used and the dose delivery pattern is different from that of conventional radiation. The daily dose is usually given intermittently over a longer time compared with conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. In in vivo tumors, however, this decrease in effect may be counterbalanced by rapid reoxygenation. Another issue related to hypofractionated SRT is the mathematical model for dose evaluation and conversion. The linear–quadratic (LQ) model and biologically effective dose (BED) have been suggested to be incorrect when used for hypofractionation. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when used for tumor responses in vivo, since it does not take reoxygenation into account. Correction of the errors, estimated at 5–20%, associated with the use of BED is necessary when it is used for SRT. High fractional doses have been reported to exhibit effects against tumor vasculature and enhance host immunity, leading to increased antitumor effects. This may be an interesting topic that should be further investigated. Radioresistance of hypoxic tumor cells is more problematic in hypofractionated SRT, so trials of hypoxia-targeted agents are encouraged in the future. In this review, the radiobiological characteristics of hypofractionated SRT are summarized, and based on the considerations, we would like to recommend 60 Gy in eight fractions delivered three times a week for lung tumors larger than 2 cm in diameter

  4. Radiobiological experiments with heavy ions: a comparison of the cross sections of different biological endpoints

    International Nuclear Information System (INIS)

    Kraft, G.

    1989-01-01

    Biological effect of heavy charged particles was studied in experiment at the Unilac on different physical, chemical and biological levels. On these experiments a large body of radiobiological data, cross sections for cell inactivation and mutation, induction of both, chromosome aberrations, and strand breaks, of DNA have been measured for different atomic numbers, from helium (z=2) to uranium (z=92), and at an LET range from 10 to 16000 keV/μm. At LET values below 100 keV/μm all data points to one specific effect form one single curve as a function of LET, independent of the atomic number of the ion. In this LET range the biological effects are independent of the particle energy or track structure and depend only on the energy transfer. Therefore LET is a good parameter in this regime. For LET values greater than 100 keV/μm this regime LET is no longer a good parameter and the physical parameters of the formation of particle track are important. The energy and angular distribution of the electrons in a solid target has to be measured. 28 refs.; 14 figs

  5. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection

    International Nuclear Information System (INIS)

    Vogin, G.

    2009-01-01

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  6. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  7. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  8. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, Priyanka; Sellmyer, D. J.; Skomski, Ralph [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sharma, Vinit [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Yu, Hongbin [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-07-20

    The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX{sub 2}; X = S, Se, and Te) are investigated using density-functional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX{sub 2} monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications.

  9. Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

    Science.gov (United States)

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition. PMID:27877866

  10. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  11. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  12. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    Science.gov (United States)

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  13. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications.

    Science.gov (United States)

    Guo, Yi; Li, Mengyan; Mylonakis, Andreas; Han, Jingjia; MacDiarmid, Alan G; Chen, Xuesi; Lelkes, Peter I; Wei, Yen

    2007-10-01

    A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.

  14. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Emergence of Dirac and quantum spin Hall states in fluorinated monolayer As and AsSb

    KAUST Repository

    Zhang, Qingyun; Schwingenschlö gl, Udo

    2016-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer As and AsSb. While the pristine monolayers are semiconductors (direct band gap at the Γ point), fluorination results in Dirac cones at the K

  16. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Science.gov (United States)

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  17. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  18. DOE/CEC [Department of Energy/Commission of the European Communities] workshop on critical evaluation of radiobiological data to biophysical modeling

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy's Office of Health and Environmental Research and the Commission of the European Communities (CEC) Radiation Protection Program support the majority of Research in the Field of Radiobiological Modeling. This field of science develops models based on scientifically sound principles to predict biological response (at the cellular, molecular, and animal level) to exposure to low level ionizing radiation. Biophysical models are an important tool for estimating response of ionizing radiation at low doses and dose rates. Generally speaking, the biophysical models can be classified into two groups: (1) mechanistic models and (2) phenomenological models. Mechanistic models are based on some assumptions about the physical, chemical, or biological mechanisms of action in association with radiobiological data whereas the phenomenological models are based solely on available experimental data on radiobiological effects with less emphasis on mechanisms of action. There are a number of these models which are being developed. Since model builders rely on radiobiological data available in the literature either to develop mechanistic or phenomenological models, it is essential that a critical evaluation of existing radiobiological data be made and data that is generally considered good and most appropriate for biophysical modeling be identified. A Workshop jointly sponsored by the DOE and the CEC was held at Oak Ridge, Tennessee from June 23--25, 1988, to review the data available from physical and chemical, cellular and molecular and animal studies with ionizing radiation

  19. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  20. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Mandoc, MM; van Woudenbergh, T; Blom, PWM

    2005-01-01

    Work functions of gold and silver are varied by over 1.4 and 1.7 eV, respectively, by using self-assembled monolayers. Using these modified electrodes, the hole current in a poly(2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylene vinylene) light-emitting diode is tuned by more than six orders of

  1. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Physical and Materials Chemistry Division, National Chemical Laboratory,. Pune 411 008, India e-mail: viji@ems.ncl.res.in. Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with ...

  2. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  3. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bøggild, Peter; Grey, Francois; Hassenkam, T.

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...

  4. Suppressing segregation in highly phosphorus doped silicon monolayers

    NARCIS (Netherlands)

    Keizer, Joris; Kölling, Sebastian; Koenraad, Paul; Simmons, Michelle Y.

    2015-01-01

    Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called

  5. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  6. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia Parajo, M.F.; van Hulst, N.F.; Ravoo, B.J.; Reinhoudt, David; van den Berg, Albert

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to

  7. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  8. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  9. Theory of lithium islands and monolayers: Electronic structure and stability

    International Nuclear Information System (INIS)

    Quassowski, S.; Hermann, K.

    1995-01-01

    Systematic calculations on planar clusters and monolayers of lithium are performed to study geometries and stabilities of the clusters as well as their convergence behavior with increasing cluster size. The calculations are based on ab initio methods using density-functional theory within the local-spin-density approximation for exchange and correlation. The optimized nearest-neighbor distances d NN of the Li n clusters, n=1,...,25, of both hexagonal and square geometry increase with cluster size, converging quite rapidly towards the monolayer results. Further, the cluster cohesive energies E c increase with cluster size and converge towards the respective monolayer values that form upper bounds. Clusters of hexagonal geometry are found to be more stable than square clusters of comparable size, consistent with the monolayer results. The size dependence of the cluster cohesive energies can be described approximately by a coordination model based on the concept of pairwise additive nearest-neighbor binding. This indicates that the average binding in the Li n clusters and their relative stabilities can be explained by simple geometric effects which derive from the nearest-neighbor coordination

  10. Permethylated 12-Vertex p-Carborane Self-Assembled Monolayers

    Czech Academy of Sciences Publication Activity Database

    Scholz, F.; Nothofer, H. G.; Wessels, J. M.; Nelles, G.; Wrochem von, F.; Roy, S.; Chen, X.; Michl, Josef

    2011-01-01

    Roč. 115, č. 46 (2011), s. 22998-23007 ISSN 1932-7447 Grant - others:National Science Foundation(US) CHE-0848477 Institutional research plan: CEZ:AV0Z40550506 Keywords : p-carbone * monolayer * scanning tunneling microscopy * ultraviolet photoelectron spectroscopy * X-ray photoelectron Subject RIV: CC - Organic Chemistry Impact factor: 4.805, year: 2011

  11. Overcrowding drives the unjamming transition of gap-free monolayers

    Science.gov (United States)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  12. Illustrative view on the magnetocrystalline anisotropy of adatoms and monolayers

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Mankovsky, S.; Polesya, S.; Bornemann, S.; Minár, J.; Ebert, H.

    2016-01-01

    Roč. 93, č. 17 (2016), s. 1-13, č. článku 174409. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:68378271 Keywords : magnetic anisotropy * adatom * monolayer * spin-orbit coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  13. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  14. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  15. Photocarrier dynamics in monolayer phosphorene and bulk black phosphorus.

    Science.gov (United States)

    Zereshki, Peymon; Wei, Yaqing; Ceballos, Frank; Bellus, Matthew Z; Lane, Samuel D; Pan, Shudi; Long, Run; Zhao, Hui

    2018-06-13

    We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.

  16. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  17. Bacterial invasion of HT29-MTX-E12 monolayers: effects of human breast milk.

    Science.gov (United States)

    Hall, Tim; Dymock, David; Corfield, Anthony P; Weaver, Gillian; Woodward, Mark; Berry, Monica

    2013-02-01

    The supramucosal gel, crucial for gut barrier function, might be compromised in necrotizing enterocolitis (NEC). Breast milk is associated with a reduced incidence of NEC. We compared the effects of human breast milk (BM) versus a neonatal formula, Nutriprem 1 (FF), on adherence, internalisation, and penetration of NEC-associated Escherichia coli through monolayers of mucus producing intestinal cells, HT29-MTX-E12 (E12). E12 cells were grown to confluence on membranes permeable to bacteria. E. coli, reference strain and isolated from a NEC-affected intestine, were cultured in LB broth, labelled with fluorescein and biotinylated. Bacteria were suspended in tissue culture medium (TC) or mixtures of TC with BM or FF and applied to the E12 cultures. Bacterial numbers were assessed by fluorescence. DyLight 650-labelled neutravidin, which cannot cross cell membrane, evaluated extracellular bacteria. Fluorescence of basolateral medium was measured to quantify translocation. Bacterial concentrations were compared using the Mann Whitney U test. After 1h exposure, E12 cultures adhered or internalised more NEC-derived bacteria than standard strain E. coli and more suspended in FF than BM (Pmilk was associated with relatively less adhesion and internalisation of NEC-associated E. coli to mucus covered E12s compared to formula milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  19. Biochemical and Radiobiological Factors in the Early Detection of Radiation Injury in Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L. J. [Life Sciences Division, Stanford Research Institute, Menlo Park, CA (United States)

    1971-03-15

    In considering the body of radiobiological knowledge upon which the present possibilities for the development of an objective quantitative laboratory procedure for early detection of radiation injury depend, it is evident that there are at least three general categories of radiation effects which are relevant to this objective: (1) Products of the enzymatic-chemical breakdown of macromolecules, and lysis of killed or dying cells from radiosensitive tissues, for example deoxypolynucleotides from lymphoid tissues and bone marrow; (2) Radiation-induced inhibition of synthesis of deoxyribonucleic acid (DNA) and/or other macromolecules, eliciting alterations in tissue and blood concentrations and pool size of metabolic intermediates in the synthesis, for example, deoxycytidine; (3) Radiation-induced alterations, suppression, or cessation of specialized cell function; of particular interest here is the immunological functions of lymphocytes, including those in the circulating blood. For rodents, the exquisite radiosensitivity of bone-marrow-stem cells as well as of lymphocytes has been precisely measured by modern cellular radiobiological techniques: the colony-forming technique of Till and McCulloch, yielding a D{sub 0} for bone-marrow cells of about 80 R; and the graft-versus-host reactivity of transplanted lymphocytes yielding a similar D{sub 0} value. In our own hands, a modified colony-formation technique for dog bone-marrow cells irradiated in.vitro and in vivo give D{sub 0} values of {approx}100 R. Thus, on the basis of radiation sensitivity and the time-relationships for interphase cell death for lymphocytes, it appears that this cell class is probably the best ''candidate'' source for an early radiation-injury detection system. However,- the important report by Zicha and Buric indicates that extrapolation of biochemical data on radiation dosimetry from rodents to man is not necessarily feasible, at least in the. case of the urinary excretion of deoxycytidine

  20. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    Science.gov (United States)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.