WorldWideScience

Sample records for monolayer collapse pressure

  1. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  2. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    Science.gov (United States)

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  3. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  4. Crystallite structure formation at the collapse pressure of fatty acid Langmuir films

    International Nuclear Information System (INIS)

    Valdes-Covarrubias, M A; Cadena-Nava, R D; Vasquez-MartInez, E; Valdez-Perez, D; Ruiz-GarcIa, J

    2004-01-01

    We report isotherm and atomic force microscopy studies of collapsed Langmuir monolayers of fatty acids. The Langmuir monolayers were overcompressed in the range 7-40 deg. C and transferred onto mica after the sharp pressure drop when the collapse pressure was reached. Collapsed material was observed by AFM, which revealed that the multilayers are indeed three-dimensional crystallites. We found that the shape of the crystallites depends on the collapse temperature, the phase from which the collapse occurs and/or the chain length. However, at higher temperatures the collapsed films no longer show a well defined crystallite formation, but rather a more heterogeneous melt-like pattern. We associated the crystallite formation with known bulk crystal phases of the fatty acids

  5. Collapse of experimental capsules under external pressure

    International Nuclear Information System (INIS)

    Simonen, F.A.; Shippell, R.J. Jr.

    1980-01-01

    Stress analyses and developmental tests of capsules fabricated from thick-walled tubing were performed for an external pressure design condition. In the design procedure no credit was taken for the expected margin in pressure between yielding of the capsule wall and catastrophic collapse or flattening. In tests of AISI-1018 low carbon steel capsules, a significant margin was seen between yield and collapse pressure. However, the experimental yield pressures were significantly below predictions, essentially eliminating the safety margin present in the conservative design approach. The differences between predictions and test results are attributed to deficiencies in the plasticity theories commonly in use for engineering stress analyses. The results of this study show that the von Mises yield condition does not accurately describe the yield behavior of the AISI-1018 steel tubing material for the triaxial stress conditions of interest. Finite element stress analyses successfully predicted the transition between uniform inward plastic deformation and ovalization that leads to catastrophic collapse. After adjustments to correct for the unexpected yield behavior of the tube material, the predicted pressure-deflection trends were found to follow the experimental data

  6. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  7. Gravitational collapse from smooth initial data with vanishing radial pressure

    International Nuclear Information System (INIS)

    Mahajan, Ashutosh; Goswami, Rituparno; Joshi, Pankaj S

    2005-01-01

    We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by requirements based on physical reasonableness. A tangential pressure model is constructed and analysed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapse develops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data are smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves

  8. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    Science.gov (United States)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  9. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    Science.gov (United States)

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  10. The dependence of lipid monolayer lipolysis on surface pressure.

    OpenAIRE

    Hall, D G

    1992-01-01

    Brönsted-Bjerrum theory [Brönsted (1922) Z. Phys. Chem. 102, 169-207; (1925) Z. Phys. Chem. 115, 337-364; Bjerrum (1924) Z. Phys. Chem. 108, 82-100] as applied to reactions at interfaces is used to interpret published data on the lipolysis of dinonanoyl phosphatidylcholine monolayers by pancreatic phospholipase A2. Reasonable quantitative agreement between theoretical and experimental results occurs when the reported effects of surface pressure on the amount of adsorbed enzyme are used togeth...

  11. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of the alveolae monolayer and at the same time allows reduction of the interfacial tension to ~0mN/m....

  12. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter

    2007-01-01

    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  13. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  14. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  15. Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels

    International Nuclear Information System (INIS)

    Staat, M.

    2005-01-01

    Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions

  16. A closed solution for the collapse load of pressurized pipelines in free spans

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Luciano M. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Civil; Murray, David W.; Xuejun Song [University of Alberta (Canada). Civil Engineering Dept.

    2005-07-01

    Submarine pipelines for oil exploitation, generally, are under internal pressure and compressive thermal loading. Due to rough see-bottom terrains, these pipelines may be supported only intermittently and span freely. The collapse of such pipelines may produce oil leakage to the environment. A common engineering practice for the determination of the collapse load of such pipelines is the use of finite element modeling. This paper presents an analytical method for the determination of the collapse load of pressurized pipelines extended over free spans. The formulation also takes into account the internal pressure and initial imperfection, generally present in these pipelines. Collapse load is determined from a deduced transcendental equation. Results of the presented formulation are compared with sophisticated finite element analyses. While sophisticated finite element analysis requires hours of computer processing, the present formulation takes practically no time to assess a good approximation for the collapse load of pressurized free span pipelines under compression. The present paper is not intended to substitute the more precise finite element analyses but to provide an easier, faster, and practical way to determine a first approximation of the collapse load of pressurized free span pipelines. (author)

  17. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.

    2015-01-14

    Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

  18. A collapse pressure prediction model for horizontal shale gas wells with multiple weak planes

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2015-01-01

    Full Text Available Since collapse of horizontal wellbore through long brittle shale interval is a major problem, the occurrence characteristics of weak planes were analyzed according to outcrop, core, and SEM and FMI data of shale rocks. A strength analysis method was developed for shale rocks with multiple weak planes based on weak-plane strength theory. An analysis was also conducted of the strength characteristics of shale rocks with uniform distribution of multiple weak planes. A collapse pressure prediction model for horizontal wells in shale formation with multiple weak planes was established, which takes into consideration the occurrence of each weak plane, wellbore stress condition, borehole azimuth, and in-situ stress azimuth. Finally, a case study of a horizontal shale gas well in southern Sichuan Basin was conducted. The results show that the intersection angle between the shale bedding plane and the structural fracture is generally large (nearly orthogonal; with the increase of weak plane number, the strength of rock mass declines sharply and is more heavily influenced by weak planes; when there are more than four weak planes, the rock strength tends to be isotropic and the whole strength of rock mass is greatly weakened, significantly increasing the risk of wellbore collapse. With the increase of weak plane number, the drilling fluid density (collapse pressure to keep borehole stability goes up gradually. For instance, the collapse pressure is 1.04 g/cm3 when there are no weak planes, and 1.55 g/cm3 when there is one weak plane, and 1.84 g/cm3 when there are two weak planes. The collapse pressure prediction model for horizontal wells proposed in this paper presented results in better agreement with those in actual situation. This model, more accurate and practical than traditional models, can effectively improve the accuracy of wellbore collapse pressure prediction of horizontal shale gas wells.

  19. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...

  20. A novel numerical model for estimating the collapse pressure of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Victor P.P.; Antoun Netto, Theodoro [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia], e-mail: victor@lts.coppe.ufrj.br

    2009-07-01

    As the worldwide oil and gas industry operational environments move to ultra-deep waters, failure mechanisms in flexible pipes such as instability of the armor layers under compression and hydrostatic collapse are more likely to occur. Therefore, it is important to develop reliable numerical tools to reproduce the failure mechanisms that may occur in flexible pipes. This work presents a representative finite element model of flexible pipe capable to reproduce its pre and post-collapse behavior under hydrostatic pressure. The model, developed in the scope of this work, uses beam elements and includes nonlinear kinematics and material behavior influences. The dependability of the numerical results is assessed in light of experimental tests on flexible pipes with 4 inches and 8 inches nominal diameter available in the literature (Souza, 2002). The applied methodology provided coherent values regarding the estimation of the collapse pressures and results have shown that the proposed model is capable to reproduce experimental results. (author)

  1. A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.

    Science.gov (United States)

    Andersson, Ove; Häussermann, Ulrich

    2018-04-19

    Type II clathrate hydrates (CHs) M·17 H 2 O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.

  2. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  3. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    Science.gov (United States)

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  4. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  5. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS2 Monolayer

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-04-01

    Full Text Available MoS2 nanosheets can be used as solid lubricants or additives of lubricating oils to reduce friction and resist wear. However, the atomic scale mechanism still needs to be illustrated. Herein, molecular simulations on the indentation and scratching process of MoS2 monolayer supported by Pt(111 surface were conducted to study the anti-pressure and friction reduction mechanisms of the MoS2 monolayer. Three deformation stages of Pt-supported MoS2 monolayer were found during the indentation process: elastic deformation, plastic deformation and finally, complete rupture. The MoS2 monolayer showed an excellent friction reduction effect at the first two stages, as a result of enhanced load bearing capacity and reduced deformation degree of the substrate. Unlike graphene, rupture of the Pt-supported MoS2 monolayer was related primarily to out-of-plane compression of the monolayer. These results provide a new insight into the relationship between the mechanical properties and lubrication properties of 2D materials.

  6. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    Science.gov (United States)

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pressure distribution due to steam bubble collapse in a BWR suppression chamber

    International Nuclear Information System (INIS)

    Giencke, E.

    1979-01-01

    For the pressure time history at the walls of a suppression chamber due to a steam bubble collaps at the condenser pipes interests, expecially the influence of the wall elasticity and the position of the condenser pipes. Two problems are to solve: the pressure time history in the steam bubble and at the walls during the collaps and the pressure distribution at the walls. Both problems are coupled with each other, but the influence of the wall elasticity on the pressure time history in the steam bubble is usually small. Thus the two problems may be solved one after each other. For simplifying the analysis the steam bubble surface may be idealized as a sphere during the whole collaps time. Then the resulting pressure time history is be put on the fluid-structure-system. To show the influence of the containment-elasticity it is favourable to investigate both the rigid and the elastic containment. Because the condenser pipes are arranged in a regular scheme, two limit loading cases are to distinguish. Collapses occur simultaneously with the same intensity at all condenser pipes and a strong collaps occurs only at one condenser pipe or a small group of pipes. When including wall elasticity first the modes of the fluid-structure-system are to analyse and then the dynamical responses of the modes. The coupling effects between the pressure time history in the bubble and at the walls are discussed and then how the membrane and bending stiffness of the walls and the buttomstructure influence the pressure distribution, both for steel and concrete structure. Finally simple models for the analysis are derived and the analytical results are compared with experiments. (orig.)

  8. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1994-01-01

    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  9. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  10. Ramifications of structural deformations on collapse loads of critically cracked pipe bends under in-plane bending and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)

    2017-02-15

    Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

  11. Monolayer Adsorption of Ar and Kr on Graphite: Theoretical Isotherms and Spreading Pressures

    Science.gov (United States)

    Mulero; Cuadros

    1997-02-01

    The validity of analytical equations for two-dimensional fluids in the prediction of monolayer adsorption isotherms and spreading pressures of rare gases on graphite is analyzed. The statistical mechanical theory of Steele is used to relate the properties of the adsorbed and two-dimensional fluids. In such theory the model of graphite is a perfectly flat surface, which means that only the first order contribution of the fluid-solid interactions are taken into account. Two analytical equations for two-dimensional Lennard-Jones fluids are used: one proposed by Reddy-O'Shea, based in the fit on pressure and potential energy computer simulated results, and other proposed by Cuadros-Mulero, based in the fit of the Helmholtz free energy calculated from computer simulated results of the radial distribution function. The theoretical results are compared with experimental results of Constabaris et al. (J. Chem. Phys. 37, 915 (1962)) for Ar and of Putnam and Fort (J. Phys. Chem. 79, 459 (1975)) for Kr. Good agreement is found using both equations in both cases.

  12. Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed

  13. Experiments of draining and filling processes in a collapsible tube at high external pressure

    Science.gov (United States)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  14. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe 2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xinpeng [State; Li, Fangfei [State; Lin, Jung-Fu [Department; Gong, Yuanbo [State; Huang, Xiaoli [State; Huang, Yanping [State; Han, Bo [State; Zhou, Qiang [State; Cui, Tian [State

    2017-07-19

    Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe2 via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X0) and charged (X–) exciton emission of monolayer MoSe2 can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM). During this process, X– emission undergoes a continuous blue shift until reaching saturation, while X0 emission turns up splitting. The pressure-dependent charging effect observed in alcohol mixture PTM results in the increase of the X– exciton component and facilitates the pressure-tuned emission of X– excitons. This substantial tunability of X– and X0 excitons in MoSe2 can be extended to other 2D TMDs, which holds potential for developing strained and optical sensing devices.

  15. Quantifying cell behaviors in negative-pressure induced monolayer cell movement

    Directory of Open Access Journals (Sweden)

    Shu-Er Chow

    2016-02-01

    Conclusion: A quick membrane ruffling formation, an early cell–substratum separation, and an ensuing decrease in the cellular interaction occur in cells at NP. These specific monolayer cell behaviors at NP have been quantified and possibly accelerate wound healing.

  16. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  17. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  18. Buoyancy Limitation of Filamentous Cyanobacteria under Prolonged Pressure due to the Gas Vesicles Collapse.

    Science.gov (United States)

    Abeynayaka, Helayaye Damitha Lakmali; Asaeda, Takashi; Kaneko, Yasuko

    2017-08-01

    Freshwater cyanobacterium Pseudanabaena galeata were cultured in chambers under artificially generated pressures, which correspond to the hydrostatic pressures at deep water. Variations occurred in gas vesicles volume, and buoyancy state of cells under those conditions were analyzed at different time intervals (5 min, 1 day, and 5 days). Variations in gas vesicles morphology of cells were observed by transmission electron microscopy images. Settling velocity (Vs) of cells which governs the buoyancy was observed with the aid of a modified optical microscope. Moreover, effects of the prolonged pressure on cell ballast composition (protein and polysaccharides) were examined. Elevated pressure conditions reduced the cell ballast and caused a complete disappearance of gas vesicles in Pseudanabaena galeata cells. Hence cyanobacteria cells were not able to float within the study period. Observations and findings of the study indicate the potential application of hydrostatic pressure, which naturally occurred in hypolimnion of lakes, to inhibit the re-suspension of cyanobacteria cells.

  19. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    Science.gov (United States)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  20. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    Directory of Open Access Journals (Sweden)

    H. Soyama

    2016-04-01

    Full Text Available In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  1. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    Science.gov (United States)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  2. The surface pressure dynamics and appearance of mixed monolayers of cholesterol and different sized polystyrenes at an air-water interface.

    Science.gov (United States)

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2005-02-15

    Synthetic polymers are increasingly being used in situations where they are designed to interact with biological systems. As a result, it is important to investigate the interactions of the polymers with biochemicals. We have used cholesterol, as an example of an important biological surfactant component, to study its interactions with polystyrene. Mixed monolayers of cholesterol and one of two different molecular weight polystyrenes were formed at an air-water interface to investigate their interactions and to determine whether the size of the polystyrene affected the interaction. The pressure-area (pi-A) isocycles of mixed monolayers of cholesterol and polystyrene MW 2700 or polystyrene MW32700 showed that strongest attractive interactions occur at high surface pressures and in polystyrene rich films. The excess area and excess free energy of mixing were most negative at high surface pressures and at high mole fraction of polystyrene. The most stable mixed monolayers were formed with X(PS2700) = 0.9 and X(PS32700) = 0.09. Microscopic observation of the mixed monolayers of cholesterol and polystyrene showed the formation of stable islands in the cholesterol/polystyrene mixtures. These observations, the nature of the inflection points in the isocycles, and the anomalous changes in free energy lead us to conclude that there is a stable rearrangement of polystyrene into compact islands when it is mixed with cholesterol. Any excess cholesterol is excluded from these islands and remains as a separate film surrounding the islands.

  3. Pressure-induced magnetic collapse and metallization of molecular oxygen: The ζ-O2 phase

    International Nuclear Information System (INIS)

    Serra, S.; Chiarotti, G.; Scandolo, S.; Tosatti, E.

    1998-01-01

    The behavior of solid oxygen in the pressure range between 5-116 GPa is studied by ab-initio simulations, showing a spontaneous phase transformation from the antiferromagnetic insulating δ-O 2 phase to a non-magnetic, metallic molecular phase. The calculated static structure factor of this phase is in excellent agreement with X-ray diffraction data in the metallic ζ-O 2 phase above 96 GPa. We thus propose that ζ-O 2 should be base centered monoclinic with space group C2/m and 4 molecules per cell, suggesting a re-indexing of the experimental diffraction peaks. Physical constraints on the intermediate-pressure ε - O 2 phase are also obtained. (author)

  4. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    Science.gov (United States)

    Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2014-03-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  5. Influence of corrosion defects on the pipeline collapse pressure; Analise da influencia de defeitos de corrosao na pressao de colapso de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Netto, Theodoro A.; Ferraz, Urbano S.; Botto, Adriana [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Oceanica

    2005-07-01

    The loss of metal in a pipeline due to corrosion usually results in localized pits with various depths and irregular shapes on its external and internal surfaces. The effect of external corrosion defects was studied via a series of small scale experiments and through a non-linear numerical model based on the finite element method. After calibrated in view of the experimental results, the model was used to determine the collapse pressure as a function of material and geometric parameters of different pipes and defects. Collapse mechanisms are complex and do affect the collapse pressure of corroded pipes. The problem is not only affected by the geometry of the defect but also by the interaction of the defect with the ovality of the cross section as we will show next. (author)

  6. Pressure-induced drastic collapse of a high oxygen coordination shell in quartz-like α-GeO2

    International Nuclear Information System (INIS)

    Dong, Juncai; Zhang, Xiaoli; Wu, Ziyu; Chen, Dongliang; Zhang, Qian; Wu, Ye; Wu, Xiang

    2014-01-01

    With the combination of a single crystal diamond anvil cell and a polycapillary half-lens, the local structural evolution around germanium in tetrahedrally networked quartz-like α-GeO 2 has been investigated using extended x-ray absorption fine structure spectroscopy of up to 14 GPa by multiple-scattering analysis method. While the first shell Ge–O bond distances show a slight contraction with increasing pressure, the third shell Ge–O bond distances are found to decrease dramatically. The sluggish lengthening of the first shell Ge–O bond distances, initiated by coordination increase from fourfold to sixfold, occurs in the 7–14 GPa range just when the third shell Ge–O bond distances fall in the region of the second shell Ge–Ge bond distances. Moreover, these features are accompanied by the closing of intertetrahedral Ge–O–Ge angles and the opening of two intratetrahedral O–Ge–O angles, whose topological configuration surprisingly exhibits a helical chirality along the c axis that is opposite to the double helices of the corner-linked GeO 4 tetrahedra. These results suggest that the high-pressure phase transitions in quartz and quartz-like materials could be associated with a structural instability that is driven by the drastic collapse of the next-nearest-neighbour anion shell, which is consistent with the emergence of high-symmetry anion sublattice. Our findings provide crucial insights into the densification mechanisms of quartz-like oxides, which would have broad implications for our understanding of the metastability of various post-quartz crystalline phases and pressure-induced amorphization. (paper)

  7. Study on collapse behavior of a square plate subjected to water pressure; Suiatsu wo ukeru kukeiban no atsukai kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T; Fujikubo, M; Mizutani, K [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    Bottom plates of a hull are subjected to laterally distributing force due to in-plane compression force and water pressure in the ship`s length direction as a result of longitudinal bending in a hogging condition. Because buckling collapse of the hull bottom plates leads directly to longitudinal bending collapse of the hull bottom cross section, the hull bottom plates must have sufficient strength. The present study performs a static elastic large deflection analysis and an elasto-plastic large deflection analysis. It elucidates buckling collapse behavior of a square plate subjected to water pressure and in-plane compression load, and considers limits in application of conventional approximation analysis methods. In the case of a water pressure action, deflection components growing in excess of the buckling load do not necessarily correspond to buckling modes of the case where no water pressure is acting upon. Conventional approximation analysis methods may not be able often to pursue actual buckling phenomena. According the result of an analysis on hull bottom panels of an actual ship, the ultimate strength decreases when the water pressure is large. Compression force in the lateral direction as a result of water pressure acting on ship`s sides affected very little the ultimate strength. 3 refs., 7 figs.

  8. Effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load

    International Nuclear Information System (INIS)

    Kim, Jin-Weon; Na, Man-Gyun; Park, Chi-Yong

    2008-01-01

    The objective of this study was to investigate the effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load. This study evaluated the global deformation behavior and collapse moment of the elbows, which contained various types of local wall-thinning defects at their intrados or extrados, using three-dimensional elastic-plastic finite element analysis. The analysis results showed that the global deformation behavior of locally wall-thinned elbows was largely governed by the mode of the bending and the elbow geometry rather than the wall-thinning parameters, except for elbows with considerably large and deep wall thinning that showed plastic instabilities induced by local buckling and plastic collapsing in the thinned area. The reduction in the collapse moment with wall-thinning depth was considerable when local buckling occurred in the thinned areas, whereas the effect of the thinning depth was small when ovalization occurred. The effects of the circumferential thinning angle and thinning length on the collapse moment of elbows were not major for shallow wall-thinning cases. For deeper wall-thinning cases, however, their effects were significant and the dependence of collapse moment on the axial thinning length was governed by the stress type applied to the wall-thinned area. Typically, the reduction in the collapse moment due to local wall thinning was clearer when the thinning defect was located at the intrados rather than the extrados, and it was apparent for elbows with larger bend radius

  9. Maximally Rotating Supermassive Stars at the Onset of Collapse: The Perturbative Effects of Gas Pressure, Magnetic Fields, Dark Matter and Dark Energy

    Science.gov (United States)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-04-01

    The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  10. Explanatory Power of Human and Environmental Pressures on the Fish Community of the Grand Bank before and after the Biomass Collapse

    Directory of Open Access Journals (Sweden)

    Danielle P. Dempsey

    2018-02-01

    Full Text Available Ecosystem based fisheries management will benefit from assessment of how various pressures affect the fish community, including delayed responses. The objective of this study was to identify which pressures are most directly related to changes in the fish community of the Grand Bank, Northwest Atlantic. These changes are characterized by a collapse and partial recovery of fish biomass and shifting trophic structure over the past three decades. All possible subsets of nine fishing and environmental pressure indicators were evaluated as predictors of the fish community structure (represented by the biomasses of six fish functional-feeding groups, for periods Before (1985–1995 and After (1996–2013 the collapse, and the Full time series. We modeled these relationships using redundancy analysis, an extension of multiple linear regression that simultaneously evaluates the effect of one or more predictors on several response variables. The analysis was repeated with different lengths (0–5 years and types (moving average vs. lags of time delays imposed on the predictors. Both fishing and environmental indicators were included in the best models for all types and length of time delays, reinforcing that there is no single type of pressure impacting the fish community in this region. Results show notable differences in the most influential pressures Before and After the collapse, which reflects the changes in harvester behavior in response to the groundfish moratoria in the mid-1990s. The best models for Before the collapse had strikingly high explanatory power when compared to the other periods, which we speculate is because of changes in the relationships among and within the pressures and responses. Moving average predictor sets generally had higher explanatory power than lagged sets, implying that trends in pressures are important for predicting changes in the fish community. Assigning a carefully chosen delay to each predictor further improved

  11. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  12. Interactions between an anticancer drug - edelfosine - and cholesterol in Langmuir monolayers

    International Nuclear Information System (INIS)

    Wiecek, Agata; Dynarowicz-Latka, Patrycja; Minones, J.; Conde, Olga; Casas, Matilde

    2008-01-01

    Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, abbr. Et-18-OCH 3 ) is a new generation anticancer drug based on a phospholipids-like structure. Since its mechanism of action is believed to be related to the lipids of cellular membrane, we have investigated the interactions between edelfosine and main mammalian sterol: cholesterol, using the Langmuir monolayer technique. The interactions have been analyzed by comparing the experimental curves with theoretical ones, obtained basing on the additivity rule. The observed contraction together with negative deviations from ideality observed on the mean molecular area (A 12 ) vs film composition plots proves the existence of strong attractive forces between edelfosine and cholesterol, which have been quantified with the excess free energy of mixing (ΔG exc ) values, calculated from the surface pressure-area isotherms datapoints. The most negative values of ΔG exc have been found for the mixture of equimolar composition, proving its highest thermodynamic stability and the existence of the strongest interactions between film components. Thus, it has been postulated that at the surface edelfosine and cholesterol form stable complexes of 1:1 stoichiometry. The analysis of the collapse pressure values for the investigated mixed monolayers proves that films of edelfosine mole fraction ≤ 0.5 are miscible within the whole range of surface pressures, while monolayers richer in edelfosine mix in the pressure region below ca. 37.6 mN/m, which corresponds to the collapse of pure edelfosine monolayer. At this very surface pressure, edelfosine is expelled from the mixed monolayer and the remaining film is composed by surface complexes of high stability. The hypothesis of complex formation explains the results performed in vitro on cell cultures, indicating that the increase of cholesterol content significantly reduces the uptake of edelfosine

  13. Structural and shear characteristics of adsorbed sodium caseinate and monoglyceride mixed monolayers at the air-water interface.

    Science.gov (United States)

    Rodríguez Patino, Juan M; Cejudo Fernández, Marta; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario

    2007-09-01

    The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at picaseinate and monoglyceride coexist at the interface, with a structural polymorphism or a liquid expanded structure due to the presence of monopalmitin or monoolein in the mixture, respectively. At higher surface pressures, collapsed Na-caseinate residues may be displaced from the interface by monoglyceride molecules. For a Na-caseinate-monopalmitin mixed film the eta(s) value varies greatly with the surface pressure (or surface density) of the mixed monolayer at the interface. In general, the greater the surface pressure, the greater are the values of eta(s). However, the values of eta(s) for a Na-caseinate-monoolein mixed monolayer are very low and practically do not depend on the surface pressure. The collapsed Na-caseinate residues displaced from the interface by monoglyceride molecules at pi>pi(e)(CS) have important repercussions on the shear characteristics of the mixed films.

  14. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    Science.gov (United States)

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  15. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  16. Collapse of the magnetic moment under pressure of AFe{sub 2} (A=Y, Zr, Lu and Hf) in the cubic Laves phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Zhang, Wanli

    2016-04-15

    The electronic structures of four Laves phase iron compounds (e.g. YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2}) have been calculated with a state-of-the-art full potential electronic structure code. Our theoretical work predicted that the magnetic moments collapse under hydrostatic pressure. This feature is found to be universal in these materials. Its electronic origin is provided by the sharp peaks in the density of states near the Fermi level. It is shown that a first order quantum phase transition can be expected under pressure in Y(Zr, or Lu)Fe{sub 2}, while a second order one in HfFe{sub 2}. The bonding characteristics are discussed to elucidate the equilibrium lattice constant variation. The large spontaneous volume magnetostriction gives one of the most important characteristics of these compounds. Invar anomalies in these compounds can be partly explained by the current work when the fast continuous magnetic moment decrease with the decrease of the lattice constant was properly considered. This work may be as a first insight into the rich world of quantum phase transition and Invar mechanism in these Laves phase compounds. - Highlights: • Magnetic moment of YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2} collapses under pressure. • The transition in Y(Zr or Lu) Fe{sub 2} under pressure is first order. • The transition in HfFe{sub 2} under pressure is second order. • The Invar effects in the compounds can be put into the magnetostriction model.

  17. A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-11-01

    Full Text Available The water inrush from karst collapse column (KCC is a cascading, vicious cycle disaster caused by geological and mining activities, that can cause serious casualties and property losses. The key to preventing this risk is to study the mechanism of water inrush under confining pressure. Aiming at the investigationg the characteristics of the KCC named X1 in Chensilou mine, a series of methods, including connectivity experiments, water pressure monitoring tests in two side-walls, and numerical simulations based on plastic damage-seepage (PD-S theory have been developed. The methods are used to test the security of the 2519 mining area, the damage thickness, pore water pressure, and seepage vector in the X1. The results indicate that the X1 has a certain water blocking capacity. In addition, with the decrease of confining pressure and increase of shear stress, deviatoric stress could cause the increase of permeability, the reduction of strength, and the reduction of pore water pressure in KCC. Therefore the increased effective stress in the rock will force the rock to become more fractured. Conversely, the broken rock could cause the change of stress, and further initiate new plastic strains, damage and pore water pressure until a new equilibrium is reached. This cascading water inrush mechanism will contribute to the exploitation of deep coal resources in complex geological and hydrogeological conditions.

  18. Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30

    Science.gov (United States)

    Mardegan, J. R. L.; Fabbris, G.; Veiga, L. S. I.; Adriano, C.; Avila, M. A.; Haskel, D.; Giles, C.

    2013-10-01

    We investigate the low temperature structural and electronic properties of the type-I clathrate Eu8Ga16Ge30 under pressure using x-ray powder diffraction (XRD), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD) techniques. The XRD measurements reveal a transition to an amorphous phase above 18 GPa. Unlike previous reports on other clathrate compounds, no volume collapse is observed prior to the crystalline-amorphous phase transition which takes place when the unit cell volume is reduced to 81% of its ambient pressure value. Fits of the pressure-dependent relative volume to a Murnaghan equation of state yield a bulk modulus B0=65±3 GPa and a pressure derivative B0'=3.3±0.5. The Eu L2-edge XMCD data shows quenching of the magnetic order at a pressure coincident with the crystalline-amorphous phase transition. This information along with the persistence of an Eu2+ valence state observed in the XANES spectra up to the highest pressure point (22 GPa) indicates that the suppression of XMCD intensity is due to the loss of long range magnetic order. When compared with other clathrates, the results point to the importance of guest ion-cage interactions in determining the mechanical stability of the framework structure and the critical pressure for amorphization. Finally, the crystalline structure is not found to recover after pressure release, resulting in an amorphous material that is at least metastable at ambient pressure and temperature.

  19. Texture collapse

    International Nuclear Information System (INIS)

    Prokopec, T.; Sornborger, A.; Brandenberger, R.H.

    1992-01-01

    We study single-texture collapse using a leapfrog discretization method on a 30x30x30 spatial lattice. We investigate the influence of boundary conditions, physical size of the lattice, type of space-time background (flat, i.e., nonexpanding, vs radiation-dominated and matter-dominated universes), and spatial distribution of the initial texture configuration on collapse time and critical winding. For a spherically symmetric initial configuration of size equal to the horizon size on a lattice containing 12 (30) horizon volumes, the critical winding is found to be 0.621±0.001 (0.602±0.003) (flat case), 0.624±0.002 (0.604±0.005) (radiation era), 0.628±0.002 (0.612±0.003) (matter era). The larger the physical size of the lattice (in units of the horizon size), the smaller is the critical winding, and in the limit of an infinite lattice, we argue that the critical winding approaches 0.5. For radially asymmetric cases, contraction of one axis ( /Ipancake case) slightly reduces collapse time and critical winding, and contraction of two axes (d/Icigar case) reduces collapse time and critical winding significantly

  20. Effect of metal ions on the formation and properties of monolayers and nanosized Langmuir-Blodgett films based on diphilic aminomethylated calix[4]resorcinarenes

    International Nuclear Information System (INIS)

    Neveshkin, A.A.; Rusanova, T.Yu.; Rumyantseva, S.S.; Serdobintsev, A.A.; Podkosov, K.V.; Shtykov, S.N.; Klimov, B.N.; Gorin, D.A.; Ryzhkina, I.S.

    2008-01-01

    The behavior of the monolayers of three diphilic aminomethylated calix[4]resorcinarene (CRA) derivatives on the surface of a pure aqueous subphase and subphase containing copper(II), nickel(II), europium(III), terbium(III), and lanthanum(III) ions was investigated. The monolayer transfer to the quartz and single-crystal silicon substrates was accomplished by the Langmuir-Blodgett (LB) technique. The films were studied by ellipsometry and mass-spectrometry. Metal ions were found to exert effect on the limit area per one CRA molecule in the monolayer, on the surface collapse pressure and transfer coefficient of monolayer, and on the thickness and refractive index of the CRA-based LB films [ru

  1. Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: A single-crystal neutron and x-ray diffraction investigation

    International Nuclear Information System (INIS)

    Goldman, A.I.; Kreyssig, A.; Prokes, K.; Pratt, D.K.; Argyriou, D.N.; Lynn, J.W.; Nandi, S.; Kimber, S.A.J.; Chen, Y.; Lee, Y.B.; Samolyuk, G.; Leao, J.B.; Poulton, S.J.; Bud'ko, S.L.; Ni, N.; Canfield, P.C.; Harmon, B.N.; McQueeney, R.J.

    2009-01-01

    Single-crystal neutron and high-energy x-ray diffraction measurements have identified the phase lines corresponding to transitions among the ambient-pressure paramagnetic tetragonal (T), the antiferromagnetic orthorhombic (O), and the nonmagnetic collapsed tetragonal (cT) phases of CaFe 2 As 2 . We find no evidence of additional structures for pressures of up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects, and we demonstrate that coexistence of the O and cT phases can occur if a nonhydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase, and we find no evidence of magnetic ordering in the cT phase. Band-structure calculations show that the transition into the cT phase results in a strong decrease in the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment.

  2. Six collapses

    International Nuclear Information System (INIS)

    Miller, R.H.; Smith, B.F.

    1979-01-01

    The self-consistent dynamical development of six stellar systems, started from rotating spherical configurations, has been studied by means of a fully three-dimensional n-body integration. The six examples had different initial angular velocities and velocity dispersions. All settled down into prolate bars rotating about a short axis within two initial rotation periods. The bars are long-lived, robust, and stable. Bars are the natural form toward which rapidly rotating stellar dynamical systems develop, instead of the flattened axisymmetric disks that had been expected.The early stages of each collapse are reasonably well described by a theoretical model according to which a collapse passes through a sequence of rigidly rotating, uniform-density spheroids. The first significant departures from spheroidal form were axisymmetric in all cases. Rings formed in some examples, sheets in others, with transition cases between these extremes. Nonaxisymmetry forms developed from these intermediate stages

  3. Mixed monolayers of dipalmitoyl phosphatidylcholine and ethyl palmitate at the air/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Gzyl, Barbara [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow (Poland)]. E-mail: gzyl@chemia.uj.edu.pl; Paluch, Maria [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow (Poland)

    2005-06-30

    The behaviour of monolayers containing dipalmitoyl phosphatidylcholine and ethyl palmitate and their mixtures at different molar fraction, using surface pressure-molecular area results, was investigated. The negative deviation from additivity of the mean molecular areas as a function of the mixture composition indicates the miscibility. The miscibility was confirmed by applying the two-dimensional phase rule, since the collapse pressure values vary with the composition of the mixtures. Also the free energy of mixing {delta}G{sub mix} and the excess free energy of mixing {delta}G{sub mix}{sup E} were determined. The negative values of {delta}G{sub mix} and {delta}G{sub mix}{sup E} indicate that the mixed monolayers are thermodynamically more stable compared to the pure ones and that the compounds in the two dimensional state experience mainly attractive interactions.

  4. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    Science.gov (United States)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  5. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    Science.gov (United States)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  6. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  7. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  8. Black hole formation in perfect fluid collapse

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S

    2004-01-01

    We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics

  9. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  10. Stress evolution during caldera collapse

    Science.gov (United States)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  11. CT of lobar collapse

    International Nuclear Information System (INIS)

    Suh, D. C.; Im, J. G.; Park, J. H.; Han, M. C.

    1987-01-01

    The computed tomographic (CT) findings of labor collapse are analysed in an attempt to evaluate the patterns of labor collapse and to get the helpful signs in differentiation between benign and malignant causes of collapse. 43 cases of labor collapse with or without endobronchial obstruction were reviewed. In 29 of 43 cases the collapses were caused by lung cancer. Benign causes of labor collapse included tuberculosis(10), broncholith(2), organizing pneumonia(1) and hamartoma(1). The helpful signs favoring malignant cause of the labor collapse were proximal bulging of the collapsed lobe, low density mass within the collapsed lung, and endobronchial lesion. Above described differential findings were especially applicable in cases of upper lobe collapse

  12. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  13. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  14. Geotechnical properties of Egyptian collapsible soils

    Directory of Open Access Journals (Sweden)

    Khaled E. Gaaver

    2012-09-01

    Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.

  15. Experimental Investigation of the Strength of Damaged Pressure Hulls - Phases 5 & 6: The Influence of Out-of-Circularity on Collapse

    Science.gov (United States)

    2011-03-01

    showed a similar response as its companion specimen, L510-No13. Figure 76 shows the circumferential distribution of shell strain at the collapse...Defence R&D Canada Canada’s leader in defence and National Security Science and Technology R & D pour Ia defense Canada Chef de file au Canada en

  16. Types of collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre-Diaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)], E-mail: ger@geociencias.unam.mx

    2008-10-01

    Three main types of collapse calderas can be defined, 1) summit caldera: those formed at the top of large volcanoes, 2) classic caldera: semi-circular to irregular-shaped large structures, several km in diameter and related to relatively large-volume pyroclastic products, and 3) graben caldera: explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several fissural vents along the graben master faults and the intra-graben block faults. These in turn can collapse at least with three styles: 1) Piston: when the collapse occurs as a single crustal block; 2) Trap-door: when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) Piece-meal: when collapse occurs as broken pieces of the crust on top of the magma chamber.

  17. Modelling of cladding creep collapse

    International Nuclear Information System (INIS)

    Koundy, V.; Forgeron, T.; Hivroz, J.

    1993-01-01

    The effects of the initial ovality and pressure level on the collapse time of Zircaloy-4 tubing subjected to uniform external pressure were examined experimentally and analytically. Experiments were performed on end closed tubes with two metallurgical states: stress relieved and recrystallized. Numerical simulations were accomplished with a specific computer program based on an analytical approach and the calculated results were compared with the experimental ones. As a comparison, the finite element method is also partially examined in this analysis. Numerical collapse times are in good agreement with regard to experimental results in the case of stress relieved structure. They seem to be too conservative in the case of a recrystallized metallurgical state and the use of the anisotropic option ameliorates numerical results. Sensibility of numerical solutions to the formulation of primary creep laws are presented

  18. Influence of Poly(ethylenimine) on the Monolayer of Oleic Acid at the Air/Water Interface.

    Science.gov (United States)

    Hwan Ha, Tai; Kyu Kim, Dai; Choi, Myung-Un; Kim, Kwan

    2000-06-01

    The effect of poly(ethylenimine) (PEI) dissolved in water on the surface pressure-area isotherm of oleic acid (OA) at the air/water interface was investigated. On a concentrated PEI solution, the isotherm of the OA monolayers exhibited a noticeable difference as a function of subphase pH. PEI caused the collapse pressure of the OA monolayer to increase up to 45 mN/m, due to a stronger acid-base-type interaction occurring between the amine group of the PEI and the carboxyl group of OA; on a pure water subphase, the collapse pressure was;28 mN/m. On the other hand, owing to a stronger OA-PEI interaction, the OA monolayers favored a liquid-expanded state more on the PEI-containing water subphase than on the pure water. From the QCM measurement, each OA molecule appeared to interact, on average, with 4.3-5.8 ethylenimine repeating units at basic pHs. We also found that OA multilayers could be assembled on a hydrophilic substrate by a Z-type Langmuir-Blodgett (LB) deposition in a PEI-containing subphase at basic pHs. The ATR-IR spectral data revealed that, in a Z-type LB film, the headgroup of OA was mostly present as carboxylate, interacting in an ionic state with the protonated amine groups of PEI. In acidic conditions, neither a Y-type nor a Z-type deposition was really accomplished. Nonetheless, the ATR-IR spectral data suggested that OA molecules should exist in a monomeric state in a LB film assembled at acidic pHs without PEI while they would form intermolecular hydrogen bridges and/or dimers in the presence of PEI. Copyright 2000 Academic Press.

  19. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, P.J; Schouten, A.J.

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures.

  20. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

    Science.gov (United States)

    Thomas, Alec N; Borden, Mark A

    2017-11-28

    The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.

  1. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  2. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  3. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  4. Lung lobe collapse: pathophysiology and radiologic significance

    International Nuclear Information System (INIS)

    Lord, P.F.; Gomez, J.A.

    1985-01-01

    The radiographic changes caused by collapse of lung lobes in pulmonary disease, pneumothorax, and pleural effusion depend on the lobar recoiling force and local pleural pressure. Differences in the tendency of normal lung lobes or regions to collapse depend on the relative surface-to-volume ratio, determined by shape and size of the region or lobe. This ratio affects the physiologic parameters of pulmonary interdependence, compliance, and collateral air flow. Pulmonary surfactant increases compliance, particularly at low volumes, maintains alveolar stability, and assists in maintaining capillary patency and preventing pulmonary edema. Its loss due to lung injury increases collapsing forces. In the presence of pneumothorax or pleural effusion, diseases that cause lobar collapse produce localized air or fluid entrapment that is a diagnostic sign of the presence of the underlying pulmonary disease

  5. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  6. Understand rotating isothermal collapses yet

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references

  7. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  8. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  9. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  10. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  11. HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán, 58089, México (Mexico)

    2015-11-20

    We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r{sup −2} density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/M{sub BE} versus M, where M is the core's mass and M{sub BE} is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

  12. Collapse of ferromagnetism in itinerant-electron system: a magnetic, transport properties, and high pressure study of (Hf,Ta)Fe.sub.2./sub. compounds

    Czech Academy of Sciences Publication Activity Database

    Diop, L.; Kaštil, Jiří; Isnard, O.; Arnold, Zdeněk; Kamarád, Jiří

    2014-01-01

    Roč. 116, č. 16 (2014), "163907-1"-"163907-10" ISSN 0021-8979 R&D Projects: GA ČR GAP204/12/0692 Institutional support: RVO:68378271 Keywords : high pressure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  13. Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds

    Science.gov (United States)

    Diop, L. V. B.; Kastil, J.; Isnard, O.; Arnold, Z.; Kamarad, J.

    2014-10-01

    The magnetism and transport properties were studied for Laves (Hf,Ta)Fe2 itinerant-electron compounds, which exhibit a temperature-induced first-order transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) state upon heating. At finite temperatures, the field-induced metamagnetic phase transition between the AFM and FM has considerable effects on the transport properties of these model metamagnetic compounds. A large negative magnetoresistance of about 14% is observed in accordance with the metamagnetic transition. The magnetic phase diagram is determined for the Laves Hf1-xTaxFe2 series and its Ta concentration dependence discussed. An unusual behavior is revealed in the paramagnetic state of intermediate compositions, it gives rise to the rapid increase and saturation of the local spin fluctuations of the 3d electrons. This new result is analysed in the frame of the theory of Moriya. For a chosen composition Hf0.825Ta0.175Fe2, exhibiting such remarkable features, a detailed investigation is carried out under hydrostatic pressure up to 1 GPa in order to investigate the volume effect on the magnetic properties. With increasing pressure, the magnetic transition temperature TFM-AFM from ferromagnetic to antiferromagnetic order decreases strongly non-linearly and disappears at a critical pressure of 0.75 GPa. In the pressure-induced AFM state, the field-induced first-order AFM-FM transition appears and the complex temperature dependence of the AFM-FM transition field is explained by the contribution from both the magnetic and elastic energies caused by the significant temperature variation of the amplitude of the local Fe magnetic moment. The application of an external pressure leads also to the progressive decrease of the Néel temperature TN. In addition, a large pressure effect on the spontaneous magnetization MS for pressures below 0.45 GPa, dln(Ms)/dP = -6.3 × 10-2 GPa-1 was discovered. The presented results are consistent with Moriya

  14. A spherical collapse solution with neutrino outflow

    International Nuclear Information System (INIS)

    Glass, E.N.

    1990-01-01

    A three-parameter family of solutions of Einstein's field equations is given that represents a collapsing perfect fluid with outgoing neutrino flux. Solutions with ''naked'' singularities are exhibited. They can be forbidden by requiring pressure less than or equal to the density as a condition of cosmic censorship

  15. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  16. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  17. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  18. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  19. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  20. Karst collapse in cities and mining areas, China

    International Nuclear Information System (INIS)

    Jian Chen

    1988-01-01

    Karst collapse is a dynamic geological phenomenon, in which the rock mass or deposits overlying the karstified zone subsides down along the karst cavity, resulting in a collapse pit or sinkhole. After discussing the typical examples of collapse emerging in the karst cities and mines in provinces and regions of South China, such as Guangdong, Guangxi, Hunan, Hubei, Zhejiang, Yunnan, Guizhou, and Jiangxi, it is considered that human activities of economy and production have become a major effect in causing karst collapse. Man-made collapses make 66.4 percent of the total, whereas natural ones 33.6 percent. Most of the collapses occurred to the area with soil overburden (96.7 percent), only a few in areas of bedrock overburden (3.3 percent). The karst collapses have a close relationship with the extent of karst development, the character and the thickness of overburden, and the dynamic condition of underground water. Collapse usually occurs in those parts of an area that are more intensely karstified, with soil thickness less than 5 m and a high amplitude of water table fluctuation. Many kinds of mechanical effects are caused by pumping or draining on the over-burden and destroying its equilibrium, leading to the collapse. These effects included the support loss and load-added effect, penetrating suffusion, gas explosion, water-hammer, suction pressure erosion, and liquefaction effects. The collapses are the result of varied comprehensive effects, particularly the support loss and load-added, and penetrating suffusion

  1. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  2. Spherically symmetric scalar field collapse

    Indian Academy of Sciences (India)

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  3. Collapse settlement in compacted soils

    CSIR Research Space (South Africa)

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  4. Úlceras por presión: un problema potencial en los servicios de urgencias colapsados Pressure ulcers: A potencial problem in collapsed emergency services

    Directory of Open Access Journals (Sweden)

    Mónica Guerrero Miralles

    2008-06-01

    Full Text Available Las úlceras por presión (UPP en el medio hospitalario son un grave problema sanitario donde la enfermera tiene una gran responsabilidad, dentro de su rol autónomo, ya que se estima que un 51,6% se producen dentro del propio hospital y que un 95% son evitables. Los servicios de urgencias (SU podrían ser el origen silente de un alto porcentaje de UPP durante los primeros días de ingreso, pues el perfil del paciente atendido es cada vez más anciano y pluripatológico, a lo que se le suma el riesgo añadido de la patología aguda y las escasas medidas de prevención pospuestas como resultado de focalizar la atención en el compromiso vital. El objetivo de este estudio es determinar la necesidad de instaurar medidas de prevención de UPP en los pacientes de riesgo desde la llegada al Servicio de Urgencias. Para ello, se recogió información de 74 de los 102 pacientes adultos atendidos en el Área de Medicina y Críticos del Hospital San Jaume de Calella, entre los días 26 de febrero y 2 de marzo de 2007. Se realizó un estudio observacional longitudinal analítico prospectivo con un muestreo probabilístico accidental que consistía en valorar la integridad de la piel del paciente a la llegada al servicio, junto con la valoración de los factores de riesgo intrínsecos y extrínsecos, y realizar dos revaloraciones dentro de las primeras 24 y 48 horas a los pacientes que continuaban en el hospital. Se observó 1 UPP grado III, 2 grado II, 8 grado I y 7 signos de alarma de nueva aparición en menos de 48 horas desde el ingreso en el servicio. Los resultados demuestran que: - Las horas en urgencias son suficientes y determinantes para iniciar el proceso de UPP en pacientes de riesgo que se encuentran en situación aguda. - La identificación del colectivo de riesgo a través de la escala de Braden y la instauración precoz de medidas de prevención disminuiría la incidencia de UPP durante los dos primeros días de ingreso.Pressure ulcers (PU in

  5. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  6. The f electron collapse revisited

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1987-03-01

    A reexamination of the collapse of 4f and 5f electrons in the lanthanide and actinide series is presented. The calculations show the well-known collapse of the f electron density at the thresholds of these series along with an f 2 collapse between thorium and protactinium. The collapse is sensitive to the choice of model for the exchange-correlation potential and the behavior of the potential at large radius

  7. Cardiopulmonary Collapse during Labour

    Directory of Open Access Journals (Sweden)

    Vasilis Sitras

    2010-01-01

    Full Text Available Cardiopulmonary collapse during labour is a catastrophic event caused by various medical, surgical and obstetrical conditions. It is an emergency that threatens the life of the mother and her unborn child. We present a case of a pregnant woman who suffered from preeclampsia and underwent induction of labour. Severe lung edema occurred early in labour that caused cardiopulmonary collapse. Advanced heart-lung resuscitation was established immediately and continued until an emergency cesarean section was performed few minutes later. The outcome was favourable for both mother and child. We further discuss some aspects of the pathophysiology and appropriate treatment of cardiorespiratory arrest during labour, which involves the coordinated action of the obstetric, pediatric and surgical ward personnel.

  8. Tracheal collapse in two cats

    International Nuclear Information System (INIS)

    Hendricks, J.C.; O'Brien, J.A.

    1985-01-01

    Two cats examined bronchoscopically to discover the cause of tracheal collapse were found to have tracheal obstruction cranial to the collapse. Cats with this unusual sign should be examined bronchoscopically to ascertain whether there is an obstruction, as the cause in these 2 cats was distinct from the diffuse airway abnormality that causes tracheal collapse in dogs

  9. Collapse, environment, and society

    Science.gov (United States)

    2012-01-01

    Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579

  10. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  11. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  12. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  13. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  14. The langmuir monolayer: an efficient model for studying interfacial properties of biomembranes

    International Nuclear Information System (INIS)

    Cirak, J.; Sokolsky, M.; Dobrocka, E.; Weis, M.

    2012-01-01

    In this communication, we describe aspects of monolayer technology by focusing on effects of calcium ions on physical properties of phospholipid monolayers using results of measurements of surface pressure, x-ray reflectivity and AFM. These experiments are motivated by the search for lipid-DNA complexes with high transfection efficiency but without toxicity which might be a promising tool in gene therapy. In each part methodological importance is stressed and its specificity for studying molecular interactions at a lipid monolayer. (authors)

  15. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  16. Scapholunate advanced collapse

    International Nuclear Information System (INIS)

    Chen, C.; Haller, J.; Resnick, D.

    1989-01-01

    Scapholunate advanced collapse 9SLAC) is a pattern of wrist malalignment (characterized mainly by radiocarpal abnormalities) that has been attributed to osteoarthritis. In order to determine the frequency of SLAC in calcium pyrophosphate dihydrate (CPPD) disease, the authors have reviewed wrist radiographs in 190 cases of this disorder. Forty-two (22%) of these cases reveal wrist abnormalities typical of SLAC. Associated findings include bilateral alterations (63%), abnormal calcification (70%), scapholunate dissociation (70%), and additional compartmental arthropathies. The authors' results confirm that CPPD crystal deposition disease is a major cause of SLAC. They believe, therefore, that this pattern of malalignment is not specific for posttraumatic or spontaneous osteoarthritis of the wrist

  17. A collapsible shelter

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Asadulin, Kh.F.; Maloiaroslavtsev, D.A.; Prokopov, O.I.; Rastorquev, M.A.

    1980-08-15

    A collapsible shelter is proposed which includes a foundation, a framework with reinforced elements which form a roof, tie bolt elements which are riveted to the reinforced elements, and a railing; it is characterized by an arrangement whereby in order to simplify its construction and improve its reliability, the reinforced elements are detachable and are equipped with rigid connecting rods made of separate sections which are mounted to allow for movement via the reinforced elements; the connecting rod of each reinforcement element is connected to the connecting rod of the adjacent reinforced element using horizontal rods on which the shelter is secured. The shelter is made from separate planks.

  18. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  19. PREFACE: Collapse Calderas Workshop

    Science.gov (United States)

    Gottsmann, Jo; Aguirre-Diaz, Gerardo

    2008-10-01

    Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior

  20. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    Science.gov (United States)

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Influence Of Collapsing Matter On The Enveloping Expanding Universe

    OpenAIRE

    Choudhury, A. Latif

    2005-01-01

    Using a collapsing matter model at the center of an expanding universe as described by Weinberg we assume a special type of generated pressure. This pressure transmits into the surrounding expanding universe. Under certain restriction the ensuing hubble parameter is positive. The deacceleration parameter fluctuates with time, indicating that the universe accelerates for certain time and decelerates for other time intervals.

  2. Dangers of collapsible ventricular drainage systems. Technical note.

    Science.gov (United States)

    Kaye, A H; Wallace, D

    1982-02-01

    Ventricular drainage systems employing a collapsible plastic bag for fluid collection were postulated to cause an increasing back-pressure produced in part by the elasticity of the bag. This postulate was shown to be correct in an experimental situation. There was a logarithmic rise in cerebrospinal fluid pressure as the bag filled. By increasing the size of the bag, the problem was overcome.

  3. Morphology of compressed dipalmitoyl phosphatidylcholine monolayers investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Yang, Y.-P.; Tsay, R.-Y.

    2007-01-01

    The effectiveness of a substitute of natural lung surfactants on replacement therapy strongly depends on the stability of the monolayer of those substitute molecules. An atomic force microscope is utilized to investigate the microstructure of the films of the major components of natural lung surfactants, dipalmitoyl phosphatidylcholine-DPPC, which are transferred to mica substrates by the Langmuir-Blodgett film technique. A concave deformation structure was first observed for DPPC in solid phase. The depth of the concave domain was about 6 nm and was remarkably uniform. For a collapsed DPPC monolayer, the surface film consists of a granular convex multilayer structure and a disc-like concave structure. Dynamic cyclic compression-expansion experiments indicate that the formation of the concave domain is a reversible process while the process for convex multilayer formation is irreversible. This gives direct evidence that convex grain is the collapsed structure of DPPC monolayer and the concave shallow disc corresponds to the elastic deformation of a DPPC solid film. Results of atomic force microscopy indicate that the nucleation and growth model instead of the fracture model can better describe the collapse behavior of a DPPC monolayer

  4. Spherical collapse in chameleon models

    International Nuclear Information System (INIS)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A.

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity

  5. Spherical collapse in chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  6. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  7. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  8. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  9. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.; Mandal, Pritam; Malcolm, Dominic W.; Mann, Elizabeth; Chaieb, Saharoui

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal

  10. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  11. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  12. Gravitational radiation from stellar collapse: The initial burst

    International Nuclear Information System (INIS)

    Shapiro, S.L.

    1977-01-01

    The burst of gravitational radiation emitted during the initial collapse and rebound of a homogeneous, uniformly rotating spheroid with internal pressure is analyzed numerically. The surface of the collapsing spheroid is assumed to start at rest from infinity with negligible eccentricity (''zero-energy collapse''). The adopted internal pressure function is constant on self-similar spheroidal surfaces, and its central value is described by a polytropic law with index n< or =3. The Newtonian equations of motion are integrated numerically to follow the initial collapse and rebound of the configuration for the special case in which the collapse is time-reversal invariant about the moment of maximum compression, and the total energy and frequency spectrum of the emitted quadrupole radiation are computed. The results are employed to estimate the (approx.minimum) total energy and frequency distribution of the initial burst of gravitational radiation emitted during the formation of low-mass (Mapproximately-less-thanM/sub sun/) neutron stars and during the collapse of supermassive gas clouds

  13. Inertial collapse of bubble pairs near a solid surface

    Science.gov (United States)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  14. Collapse of triangular channels in a soft elastomer

    Science.gov (United States)

    Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel

    2013-01-01

    We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.

  15. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  16. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  17. Electromagnetic wave collapse in a radiation background

    International Nuclear Information System (INIS)

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-01-01

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed

  18. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.

    1987-01-01

    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of 14 C-labelled apolipoprotein. At a given initial film pressure (π/sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at π/sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m 2 for egg PC and distearoyl PC, respectively, with 3 x 10 -4 mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL 3 surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles

  19. The collapsed football pla yer

    African Journals Online (AJOL)

    Football is the most popular sport in the world, played by over 265 ... FIFA Medical Officer and Honorary Part-time Lecturer, Wits Centre for Exercise Science and Sports Medicine, Johannesburg .... Management of a collapsed player does not.

  20. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  1. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  2. The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance

    International Nuclear Information System (INIS)

    Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D

    2012-01-01

    The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.

  3. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  4. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  5. Correlated random walks induced by dynamical wavefunction collapse

    Science.gov (United States)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  6. Solution-processable septithiophene monolayer transistor

    NARCIS (Netherlands)

    Defaux, M.; Gholamrezaie, F.; Wang, J.; Kreyes, A.; Ziener, U.; Anokhin, D.V.; Ivanov, D.A.; Moser, A.; Neuhold, A.; Salzmann, I.; Resel, R.; Leeuw, de D.M.; Meskers, S.C.J.; Moeller, M.; Mourran, A.

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  7. Solution-Processable Septithiophene Monolayer Transistor

    NARCIS (Netherlands)

    Defaux, Matthieu; Gholamrezaie, Fatemeh; Wang, Jingbo; Kreyes, Andreas; Ziener, Ulrich; Anokhin, Denis V.; Ivanov, Dimitri A.; Moser, Armin; Neuhold, Alfred; Salzmann, Ingo; Resel, Roland; de Leeuw, Dago M.; Meskers, Stefan C. J.; Moeller, Martin; Mourran, Ahmed

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  8. Flow and oscillations in collapsible tubes: Physiological applications ...

    Indian Academy of Sciences (India)

    pressure changes associated with fluid flow in the tube may be enough to generate large area changes. Collapsible ... As a very simple model, consider a single, uniform pipe containing viscous fluid flowing steadily at volume ..... (1986). For each mode the instability occurs through a Hopf bifurcation, which is supercritical.

  9. The final outcome of dissipative collapse in the presence of

    Indian Academy of Sciences (India)

    in the gravitational collapse of conformally flat, radiating spheres. ... Comprehensive studies of static fluid spheres in the presence of a cosmological constant have led .... tions with isotropic pressures in the presence of heat flux and cosmological constant ..... radiation from the stellar surface reaches our observer at infinity.

  10. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  11. Shock-induced nanobubble collapse and its applications

    Science.gov (United States)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  12. A novel animal model for hyperdynamic airway collapse.

    Science.gov (United States)

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  13. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L_α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  14. Collapse of Non-Rectangular Channels in a Soft Elastomer

    Science.gov (United States)

    Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel

    2013-03-01

    We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.

  15. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  16. Magnetic tension and gravitational collapse

    International Nuclear Information System (INIS)

    Tsagas, Christos G

    2006-01-01

    The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions

  17. Collapse of nonlinear Langmuir waves

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1986-01-01

    The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

  18. Non-adiabatic radiative collapse of a relativistic star under different ...

    Indian Academy of Sciences (India)

    ditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with ... We have examined the collapse of a relativistic star with matter density and fluid pressure decreasing ..... are invoked to extract information about the change in the equation of state of the interior matter of a ...

  19. Conformations and orientations of a signal peptide interacting with phospholipid monolayers

    International Nuclear Information System (INIS)

    Cornell, D.G.; Dluhy, R.A.; Briggs, M.S.; McKnight, C.J.; Gierasch, L.M.

    1989-01-01

    The interaction of a chemically synthesized 25-residue signal peptide of LamB protein from Escherichia coli with phospholipids has been studied with a film balance technique. The conformation, orientation, and concentration of the peptides in lipid monolayers have been determined from polarized infrared spectroscopy, ultraviolet spectroscopy, and assay of 14 C-labeled peptide in transferred films. When the LamB signal peptide in injected into the subphase under a phosphatidylethanolamine-phosphatidylglycerol monolayer at low initial pressure, insertion of a portion of the peptide into the lipid film is evidenced by a rapid rise in film pressure. Spectroscopic results obtained on films transferred to quartz plates and Ge crystals show that the peptide is a mixture of α-helix and β-conformation where the long axis of the α-helix penetrates the monolayer plane and the β-structure which is coplanar with the film. By contrast, when peptide is injected under lipid at high initial pressure, no pressure rise is observed, and the spectroscopic results show the presence of only β-structure which is coplanar with the monolayer. The spectroscopic and radioassay results are all consistent with the picture of a peptide anchored to the monolayer through electrostatic binding with a helical portion inserted into the lipid region of the monolayer and a β-structure portion resident in the aqueous phase. The negative charges on the lipid molecules are roughly neutralized by the positive charges of the peptide

  20. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  1. Electron capture and stellar collapse

    International Nuclear Information System (INIS)

    Chung, K.C.

    1979-01-01

    In order, to investigate the function of electron capture in the phenomenon of pre-supernovae gravitacional collapse, an hydrodynamic caculation was carried out, coupling capture, decay and nuclear reaction equation system. A star simplified model (homogeneous model) was adopted using fermi ideal gas approximation for tthe sea of free electrons and neutrons. The non simplified treatment from quasi-static evolution to collapse is presented. The capture and beta decay rates, as wellas neutron delayed emission, were calculated by beta decay crude theory, while the other reaction rates were determined by usual theories. The preliminary results are presented. (M.C.K.) [pt

  2. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  3. Collapse dynamics of ultrasound contrast agent microbubbles

    Science.gov (United States)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering

  4. Temperature evolution during dissipative collapse

    Indian Academy of Sciences (India)

    Abstract. We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this par- ticular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by ...

  5. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  6. On the Induced Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    M. Becerra Laura

    2018-01-01

    Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  7. Transport in the Sawtooth Collapse

    International Nuclear Information System (INIS)

    Wesson, J.A.; Alper, B.; Edwards, A.W.; Gill, R.D.

    1997-01-01

    The rapid temperature collapse in tokamak sawtooth oscillations having incomplete magnetic reconnection is generally thought to occur through ergodization of the magnetic field. An experiment in JET using injected nickel indicates that this explanation is improbable. copyright 1997 The American Physical Society

  8. Thermal duality and gravitational collapse

    International Nuclear Information System (INIS)

    Hewitt, Michael

    2015-01-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)

  9. Collapse of simple harmonic universe

    International Nuclear Information System (INIS)

    Mithani, Audrey T.; Vilenkin, Alexander

    2012-01-01

    In a recent paper Graham et al constructed oscillating and static universe models which are stable with respect to all classical perturbations. Here we show that such universes are quantum-mechanically unstable and can collapse by quantum tunneling to zero radius. We also present instantons describing nucleation of oscillating and static universes from nothing

  10. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  11. Thermal conduction and gravitational collapse

    International Nuclear Information System (INIS)

    Herrera, L.; Jimenez, J.; Esculpi, M.

    1987-01-01

    A method used to study the evolution of radiating spheres, reported some years ago by Herrera, Jimenez, and Ruggeri, is extended to the case in which thermal conduction within the sphere is taken into account. By means of an explicit example it is shown that heat flow, if present, may play an important role, affecting the final outcome of collapse

  12. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    Science.gov (United States)

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.

  13. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  14. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    International Nuclear Information System (INIS)

    Zhang Lei; Hao Changchun; Feng Ying; Gao Feng; Lu Xiaolong; Li Junhua; Sun Runguang

    2016-01-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure–area ( π – A ) and pressure–time ( π – T ) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. (special topic)

  15. Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7

    International Nuclear Information System (INIS)

    Thiyagarajan, R; Manivannan, N; Arumugam, S; Esakki Muthu, S; Tamilselvan, N R; Yoshino, H; Murata, K; Sekar, C; Apostu, M O; Suryanarayanan, R; Revcolevschi, A

    2012-01-01

    We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La 0.4 Pr 0.6 ) 1.2 Sr 1.8 Mn 2 O 7 . Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T 6 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P > 7.0 GPa. A modification in the orbital occupation of the e g electron between 3d x 2 -y 2 and 3d z 2 -r 2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data. (paper)

  16. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Collapsed Thunderstorm, Southwest Pacific Ocean

    Science.gov (United States)

    1992-01-01

    This collapsed thunderstorm was observed over the open ocean (9.0N, 120.0E) between the Philippine island of Mindoro and Borneo, Malaysia. The cleared area in the center is the result of the clouds being driven from there by the sudden rush of katabatic air spreading downward and outward from the dying thunderstorm. Around the edges of the downdrafted air, new though smaller storms are developing. The two small coral atolls are the Tubbataha Reefs.

  18. Critical behavior of collapsing surfaces

    DEFF Research Database (Denmark)

    Olsen, Kasper; Sourdis, C.

    2009-01-01

    We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...... data reveals the existence of a critical initial surface that develops a degenerate neckpinch. The limiting flow of the type II singularity is accurately modeled by the rotationally symmetric translating soliton....

  19. Soliton collapse during ionospheric heating

    International Nuclear Information System (INIS)

    Sheerin, J.P.; Nicholson, D.R.; Payne, G.L.; Duncan, L.M.

    1984-01-01

    We present analytical and numerical work which indicates that during ionospheric heating with high-powered hf radio waves, the oscillating two-stream instability may dominate the parametric decay instability. The oscillating two-stream instability saturates nonlinearly through the formation of solitons which undergo a collisionally damped collapse. Using the heater and radar facilities at Arecibo Observatory, we have investigated this phenomenon experimentally. Recent results from our theoretical and experimental investigations are presented

  20. Scanning the parameter space of collapsing rotating thin shells

    Science.gov (United States)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  1. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  2. Collapse Mechanisms Of Masonry Structures

    International Nuclear Information System (INIS)

    Zuccaro, G.; Rauci, M.

    2008-01-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  3. A trough for improved SFG spectroscopy of lipid monolayers

    Science.gov (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  4. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    Science.gov (United States)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  5. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  6. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  7. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  8. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  9. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    Science.gov (United States)

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  10. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes

    Science.gov (United States)

    Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth

    2018-05-01

    Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.

  11. Studies of lipid interactions in mixed Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gzyl-Malcher, Barbara [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)], E-mail: gzyl@chemia.uj.edu.pl; Paluch, Maria [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2008-10-31

    The mixed monolayers of dipalmitoyl phosphatidylcholine (DPPC) with 3-monopalmitoyl glycerol (PG) and palmitic acid 4-methylumbelliferyl ester (4-MU) were compared. Relevant thermodynamic parameters such as excess area ({delta}A{sup E}) and excess free energy of mixing ({delta}G{sub mix}{sup E}) were derived from the surface pressure data obtained from compression measurements performed in a Langmuir trough. Generally, DPPC formed more condensed monolayers with PG and greater negative values of {delta}A{sup E} and {delta}G{sub mix}{sup E} were observed for DPPC/PG system than for DPPC/4-MU one. The positive values of the excess free entropy of mixing ({delta}S{sub mix}{sup E}) were calculated for DPPC/4-MU system at lower temperatures and for DPPC/PG system at higher temperatures.

  12. Collapsing radiating stars with various equations of state

    Science.gov (United States)

    Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.

    2017-06-01

    We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.

  13. Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jacqueline; Badia, Antonella

    2003-09-01

    Atomic force microscopy imaging of dipalmitoylphosphatidylcholine (DPPC)/dilauroylphosphatidylcholine (DLPC) monolayers deposited onto alkanethiol modified-gold surfaces by the Langmuir-Schaefer technique was used to investigate domain formation in a binary system where phase separation arises from a difference in the alkyl chain lengths of the lipids. We have established how the condensed domain structure (shape and size) in DPPC/DLPC monolayers depends on the surface pressure and lipid composition. The mixed monolayers exhibit a positive deviation from an ideal mixing behavior at surface pressures of {<=}32 mN/m. Lateral compression to pressures greater than the liquid-expanded-to-liquid-condensed (LE-to-LC) phase transition pressure of the mixed monolayer ({approx}8-16 mN/m) induces extensive separation into condensed DPPC-rich domains and a fluid DLPC matrix. The condensed structures observed at a few milliNeutons per meter above the LE-to-LC transition pressure resemble those reported for pure DPPC monolayers in the LE/LC co-existence region. At a bilayer equivalence pressure of 32 mN/m and 20 deg. C, condensed domains exist between x{sub DPPC} {approx}0.25 and {approx}0.80, analogous to aqueous DPPC/DLPC dispersions. Compression from 32 to 40 mN/m results in either a striking distortion of the DPPC domain shape or a break-up of the microscopic DPPC domains into a network of nanoscopic islands (at higher DPPC mol fractions), possibly reflecting a critical mixing behavior. The results of this study provide a fundamental framework for understanding and controlling the formation of lateral domain structures in mixed phospholipid monolayers.

  14. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  15. Collapsing stage of 'bosonic matter'

    International Nuclear Information System (INIS)

    Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.

    2006-01-01

    We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N

  16. PSI collapse and relativistic covariance

    International Nuclear Information System (INIS)

    Costa de Beauregard, Olivier

    1980-01-01

    We call macrorelativistic a theory invariant under the orthochronous Lorentz group and obeying the 'factlike' principle of retarded causality, and microrelativistic a theory invariant under the full Lorentz group and CPT symmetric. The Einstein correlations either direct (non-separability of measurements issuing from a common preparation) or reversed (non-separability of preparations producing a common measurement) are incompatible with the macro-, but compatible with the microrelativity. We assume that fundamental physics is fully Lorentz and CPT invariant (the transition to macrophysics introducing a 'factlike asymmetry) and consequently define the collapse-and-retrocollapse concept [fr

  17. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-01-01

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  18. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.

    Science.gov (United States)

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro

    2016-07-15

    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.

  19. Collapsing avian community on a Hawaiian island

    Science.gov (United States)

    Paxton, Eben H.; Camp, Richard J.; Gorresen, P. Marcos; Crampton, Lisa H.; Leonard, David L.; VanderWerf, Eric

    2016-01-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua‘i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species’ ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua‘i represents an early warning for the forest bird communities on the Maui and Hawai‘i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.

  20. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  1. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  2. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  3. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  4. Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111)

    International Nuclear Information System (INIS)

    Boecking, Till; Wong, Elicia L.S.; James, Michael; Watson, Jolanta A.; Brown, Christopher L.; Chilcott, Terry C.; Barrow, Kevin D.; Coster, Hans G.L.

    2006-01-01

    Poly(amidoamine) dendrimers were attached to activated undecanoic acid monolayers, covalently linked to smooth silicon surfaces via Si-C bonds. The resulting ultra-thin dendrimer films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray reflectometry (XR) and atomic force microscopy (AFM). XPS results suggested amide bond formation between the dendrimer and the surface carboxylic acid groups. XR yielded thicknesses of 10 A for the alkyl region of the undecanoic acid monolayer and 12 A for the dendrimer layer, considerably smaller than the diameter of these spherical macromolecules in solution. This was consistent with AFM images showing collapsed dendrimers on the surface. It was concluded that the deformation arose from a large number of amine groups on the surface of each dendrimer reacting efficiently with the activated surface, whereby the dendrimers can deform to fill voids while spreading over the activated surface to form a homogeneous macromolecular layer

  5. Collapse models with non-white noises

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo

    2007-01-01

    We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise

  6. Morphological changes of monolayers of two polymerizable pyridine amphiphiles upon complexation with Cu(II) ions at the air-water interface

    NARCIS (Netherlands)

    Werkman, P.J.; Schouten, A.J.; Noordegraaf, M.A.; Kimkes, P.; Sudhölter, E.J.R.

    1998-01-01

    The monolayer behavior of two amphiphilic, diacetylenic units containing pyridine Ligands at the air-water interface is studied by measuring the surface pressure-area isotherms and by Brewster angle microscopy(BAM). Both amphiphiles form stable monolayers at the air-water interface. The amphiphile

  7. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Science.gov (United States)

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  8. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  9. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  10. Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

    Directory of Open Access Journals (Sweden)

    Wanda Barzyk

    2013-01-01

    Full Text Available Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol sodium salt (DPPG. Effects on surface pressure (Π and electric surface potential (ΔV were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative while no significant effect on the host membranes (neutral is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically.

  11. Completely quantized collapse and consequences

    International Nuclear Information System (INIS)

    Pearle, Philip

    2005-01-01

    Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL

  12. Spherical dust collapse in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse

  13. Geophysical Processes - MO 2013 Collapse Potential (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Collapse potential correlates with locations of underground mines and sinkholes. Computer-generated hazard calculations include areas in close proximity to mines and...

  14. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  15. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  16. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  17. Collapse Analysis of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2008-01-01

    of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obtained. Therefore the structure can be considered......A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...

  18. An axisymmetric gravitational collapse code

    Energy Technology Data Exchange (ETDEWEB)

    Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-05-07

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.

  19. An axisymmetric gravitational collapse code

    International Nuclear Information System (INIS)

    Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans

    2003-01-01

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations

  20. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  1. Gravitational instability in a primordial collapsing gas cloud

    International Nuclear Information System (INIS)

    Lacey, C.G.

    1989-01-01

    This paper presents an analysis of the linear evolution of short-wavelength perturbations in a background fluid flow which is undergoing gravitational collapse on large scales. Local evolution equations for perturbations to an arbitrary flow are derived in the linear regime and the short-wavelength limit. Local perturbation behavior in an inhomogeneous flow is found to be the same as that in a homogeneous anisotropic flow having the same local velocity field. Background flows in which the scale factors vary as power laws in time are considered to illustrate the relative effects of self-gravity, pressure and kinematics of the background flow on the density perturbation evolution. Perturbation analyses are then presented for more realistic background flows arising from the evolution into the nonlinear regime of initially small density perturbations in an isotropically expanding cosmological model. For low-pressure, inhomogeneous collapses, kinematic effects tend to dominate over self-gravity in driving perturbation growth as the collapse proceeds. 28 references

  2. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    microns can obliterate small features. The nanoimprint lithography community extensively uses functional monolayer coatings on silicon/SiO2 lithographic stamps [7–11]. This treatment dramatically reduces stiction, and improves yield and quality of replicated nanostructures. Here we report on a fluorinated...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...

  3. Numerical investigation of the strength of collapse of a harmonically excited bubble

    International Nuclear Information System (INIS)

    Varga, Roxána; Paál, György

    2015-01-01

    The nonlinear dynamics of an acoustically excited spherical gas bubble in water is being investigated numerically. The applied model to describe the motion of the bubble radius is the Keller–Miksis equation, a second order ordinary differential equation, which takes into account the compressibility of the liquid. During the radial oscillations of the bubble, it may enlarge and collapse violently causing high temperature and pressure or even launch a strong pressure wave at the collapse site. These extreme conditions are exploited by many applications, for instance, in sonochemistry to generate oxidising free radicals. The recorded properties, such as the very high bubble wall velocity, and maximum bubble radius of the periodic and chaotic solutions are good indicators for the strength of the collapse. The main aim is to determine the domains of the collapse-like behaviour in the excitation pressure amplitude–frequency parameter space. Results show that at lower driving frequencies the collapse is stronger than at higher frequencies, which is in good agreement with many experimental observations (Kanthale et al., 2007, Tatake and Pandit, 2002). To find all the co-existing stable solutions, at each parameter pair the model was solved numerically with a simple initial value problem solver (4th order Runge–Kutta scheme with 5th order embedded error estimation) by applying 5 randomly chosen initial conditions. These co-existing attractors have different behaviour in the sense of the collapse strength

  4. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    Science.gov (United States)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  5. Gravitational perfect fluid collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-08-15

    The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)

  6. Asymmetric explosions of core collapse supernovae

    International Nuclear Information System (INIS)

    Guilet, Jerome

    2010-01-01

    This thesis is devoted to the study of several hydrodynamic and magnetohydrodynamic phenomena that could create an asymmetry in core collapse supernovae. In the first part giving the general context, we first describe the theoretical and observational indications suggesting an important asymmetry. We then present several instabilities that could break the initial spherical symmetry, insisting particularly on the role of the Stationary Accretion Shock Instability (SASI). The second part is dedicated to an hydrodynamic study of the Standing Accretion shock instability. We first give an argument using the frequency of unstable modes that enables us to distinguish between the two mechanisms proposed to explain the linear growth of SASI. As a second step, we study the non-linear dynamics of SASI and propose for the first time a mechanism responsible for its saturation. In this scenario, the saturation occurs when parasitic instabilities are able to grow fast enough on a SASI mode. The semi-analytical prediction of the saturation amplitude is successfully compared with published numerical simulations. The third part studies the effect of a moderate magnetic field. We find that such a magnetic field can have either a stabilizing or a destabilizing effect on SASI depending on its geometry. We then concentrate on the dynamics of the Alfven surface, where the Alfven and the advection speed coincide. We show that the amplification of Alfven waves near this surface creates a pressure feedback, which could affect significantly the dynamics of the shock if the magnetic energy is comparable to the kinetic energy. (author) [fr

  7. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  8. The Collapse of the 'Celtic Tiger' Narrative

    DEFF Research Database (Denmark)

    Böss, Michael

    2011-01-01

    An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity.......An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity....

  9. Non explosive collapse of white dwarfs

    International Nuclear Information System (INIS)

    Canal, R.; Schatzmann, E.

    1976-01-01

    We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de

  10. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  11. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  12. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...

  13. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  14. Sharper criteria for the wave collapse

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.; Rypdal, K.

    1995-01-01

    Sharper criteria for three-dimensional wave collapse described by the Nonlinear Schrodinger Equation (NLSE) are derived. The collapse threshold corresponds to the ground state soliton which is known to be unstable. Thus, for nonprefocusing distributions this represents the separatrix between...

  15. Contagious cooperation, temptation, and ecosystem collapse

    NARCIS (Netherlands)

    Richter, A.; van Soest, D.P.; Grasman, J.

    2013-01-01

    Real world observations suggest that social norms of cooperation can be effective in overcoming social dilemmas such as the joint management of a common pool resource—but also that they can be subject to slow erosion and sudden collapse. We show that these patterns of erosion and collapse emerge

  16. Oxidative coupling polymerization in a Langmuir monolayer of octadecyl 3,5-diaminobenzoate

    NARCIS (Netherlands)

    Kimkes, P.; Sohling, U.; Oostergetel, G.T.; Schouten, A.J.

    1996-01-01

    In a Langmuir monolayer of the surface active monomer octadecyl 3,5-diaminobenzoate (ODDB), stabilized at a surface pressure of 10 mN/m and a temperature of 23.7 degrees C at the air-water interface, oxidative coupling polymerization occurs when copper(II) chloride was added or already was present

  17. Molecular structure of dipalmitoylphospatidylcholine Langmuir-Blodgett monolayers studied by atomic force microscopy.

    NARCIS (Netherlands)

    Zhai, X.; Kleijn, J.M.

    1997-01-01

    Monolayers of dipalmitoylphosphatidylcholine (DPPC) on the air-water interface have been transferred at various surface pressures onto quartz substrates using the Langmuir-Blodgett (LB) technique. The topography of these layers, on a molecular scale, has been examined by atomic force microscopy

  18. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  19. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  20. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  1. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  2. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  3. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  4. Janus Monolayer Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  5. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  6. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface

    International Nuclear Information System (INIS)

    El Abed, A.; Faure, M-C.; Pouzet, E.; Abillon, O.

    2002-01-01

    We show the spontaneous formation of an antiparallel monolayer of diblock semifluorinated n-alkane molecules spread at the air-water interface. We used simultaneous measurements of surface pressure and surface potential versus molecular area and performed grazing x-ray reflectivity experiments to characterize the studied monolayer, which is obtained at almost zero surface pressure and precedes the formation of a bilayer at higher surface pressure. Its thickness, equal to 2.7 nm, was found to be independent of the molecular area. This behavior may be explained by van der Waals and electrostatic interactions

  7. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  8. The influence of long-range residual stress on plastic collapse of pressurised pipes with and without flaws

    International Nuclear Information System (INIS)

    Wu, Gui-Yi; Smith, David J.; Pavier, Martyn J.

    2013-01-01

    Structural integrity assessments of pressurised pipes include plastic collapse as a potential failure mode. This paper uses analytical and numerical models to explore the effect of the end conditions of the pipe on the collapse pressure. The pipe is open-ended and two bounding conditions are addressed: one where axial loading is applied to the ends of the pipe and the other where a fixed axial displacement is applied. The fixed axial displacement condition represents long-range or fit-up residual stress. It is common practice to treat long-range residual stress in the same way as axial loading, leading to the conclusion that such long-range residual stress reduces the collapse pressure. Pipes in a number of states are considered: pipes with no flaws, pipes with fully circumferential flaws and pipes with part circumferential flaws. The flaws consist of either a crack or a slot on the external surface of the pipe. For the axial load condition, the collapse pressure for a flawed pipe is reduced when higher magnitudes of tensile or compressive axial loads are applied. For the fixed displacement condition however, the magnitude of the displacement may have little or no effect on the collapse pressure. The results of the work indicate that substantially conservative assessments may be made of the collapse pressures of pipes containing flaws, when long-range residual stress is taken to be a form of axial loading. -- Highlights: • The effect of end conditions on the collapse pressure of a pipe has been explored. • Fixed displacement conditions represent long-range residual stress. • Long-range residual stress is commonly thought to contribute to plastic collapse. • We show long-range residual stress has no influence on collapse for flawed pipes. • It is therefore possible to reduce conservatism in structural integrity assessment

  9. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  10. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    Science.gov (United States)

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A. H.

    2015-02-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.

  11. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    International Nuclear Information System (INIS)

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A.H.

    2015-01-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis. (orig.)

  12. Comparison of existing plastic collapse load solutions with experimental data for 90° elbows

    International Nuclear Information System (INIS)

    Han, Jae-Jun; Lee, Kuk-Hee; Kim, Nak-Hyun; Kim, Yun-Jae; Jerng, Dong Wook; Budden, Peter J.

    2012-01-01

    This paper compares published experimental plastic collapse loads for 90° elbows with existing closed-form solutions. A total of 46 experimental data are considered, covering pure bending (in-plane closing, in-plane opening and out-of-plane bending) and combined pressure and bending loads. The plastic collapse load solutions considered are from the ASME code, the Ductile Fracture handbook of Zahoor, by Chattopadhyay and co-workers, and by Y.-J. Kim and co-workers. Comparisons with the experimental data shows that the ASME code solution is conservative by a factor of 2 on collapse load for in-plane closing bending, 2.3 for out-of-plane bending, and 3 for in-plane opening bending. The solutions given by Kim and co-workers give the least conservative estimates of plastic collapse loads, although they provide slightly non-conservative estimates for some data. - Highlights: ► We compare published 46 experimental data of plastic collapse loads for 90° elbows with existing four different plastic collapse load solutions. ► We find that the ASME code solution is conservative by a factor of 2–3, depending on the loading mode. ► We find that the solutions given by Kim and co-workers give the least conservative estimates of plastic collapse loads.

  13. UV-induced reaction kinetics in dilinoleoylphosphatidylcholine monolayers with incorporated photosensitizers

    Directory of Open Access Journals (Sweden)

    DEJAN MARKOVIC

    2006-04-01

    Full Text Available Mixed insoluble monolayers (Langmuir films of 1,2-di-O-linoleoyl-3-sn-phosphatidylcholine (1,2-DLPC and incorporated benzophenone-type photosensitizers at an air-water interface were exposed to prolonged UV-irradiation. The irradiation was initiated at a particular fixed molecular packing value. Changes of the surface pressure during the UV-induced photolysis of the sensitizers were plotted against the irradiation time and the results were interpreted in terms of themolecular lipid / sensitizer ratios inside the monolayers.

  14. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers.

    Science.gov (United States)

    Arseneault, Marjolaine; Bédard, Sarah; Boulet-Audet, Maxime; Pézolet, Michel

    2010-03-02

    Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.

  15. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...

  16. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    Science.gov (United States)

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  17. Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1995-01-01

    We have investigated the role of the substrate on the interfacial activation of Upases by an interdisciplinary study of the structure and dynamics of 1,2-sn dipalmitoylglycerol monolayers at distinct surface pressures. The diglyceride Langmuir film undergoes two phase transitions occurring at 38......, the alkyl chains pack in an hexagonal structure relaxing to a distorted-hexagonal lattice in the lowest pressure phase with the alkyl chains tilted by approx 14° in a direction close to a nearest neighbour direction....

  18. The Pore Collapse “Hot-Spots” Model Coupled with Brittle Damage for Solid Explosives

    Directory of Open Access Journals (Sweden)

    L. R. Cheng

    2014-01-01

    Full Text Available This paper is devoted to the building of a numerical pore collapse model with “hot-spots” formation for the impacted damage explosives. According to damage mechanical evolution of brittle material, the one-dimensional elastic-viscoplastic collapse model was improved to incorporate the impact damage during the dynamic collapse of pores. The damage of explosives was studied using the statistical crack mechanics (SCRAM. The effects of the heat conduction and the chemical reaction were taken into account in the formation of “hot-spots.” To verify the improved model, numerical simulations were carried out for different pressure states and used to model a multiple-impact experiment. The results show that repeated weak impacts can lead to the collapse of pores and the “hot-spots” may occur due to the accumulation of internal defects accompanied by the softening of explosives.

  19. The covariant entropy bound in gravitational collapse

    International Nuclear Information System (INIS)

    Gao, Sijie; Lemos, Jose P. S.

    2004-01-01

    We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)

  20. On the quantum corrected gravitational collapse

    International Nuclear Information System (INIS)

    Torres, Ramón; Fayos, Francesc

    2015-01-01

    Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls

  1. On the quantum corrected gravitational collapse

    Directory of Open Access Journals (Sweden)

    Ramón Torres

    2015-07-01

    Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  2. On the quantum corrected gravitational collapse

    Science.gov (United States)

    Torres, Ramón; Fayos, Francesc

    2015-07-01

    Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  3. Galileon radiation from a spherical collapsing shell

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2017-01-17

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  4. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  5. BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2011-01-01

    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM 2 = 1 by the appearance of nonaxisymmetric rotational instabilities.

  6. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  7. Spherical collapse in quintessence models with zero speed of sound

    CERN Document Server

    Creminelli, Paolo; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo

    2010-01-01

    We study the spherical collapse model in the presence of quintessence with zero speed of sound. This case is particularly motivated for w<-1 as it is required by stability. As pressure gradients are negligible, quintessence follows dark matter during the collapse. The spherical overdensity behaves as a separate closed FLRW universe, so that its evolution can be studied exactly. We derive the critical overdensity for collapse and we use the extended Press-Schechter theory to study how the clustering of quintessence affects the dark matter mass function. The effect is dominated by the modification of the linear dark matter growth function. A larger effect occurs on the total mass function, which includes the quintessence overdensities. Indeed, here quintessence constitutes a third component of virialized objects, together with baryons and dark matter, and contributes to the total halo mass by a fraction ~ (1+w) Omega_Q / Omega_m. This gives a distinctive modification of the total mass function at low redshif...

  8. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  9. Pasta phases in core-collapse supernova matter

    International Nuclear Information System (INIS)

    Pais, Helena; Chiacchiera, Silvia; Providência, Constança

    2016-01-01

    The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean field models. Three different calculations are used for comparison, the Thomas-Fermi (TF), the Coexisting Phases (CP) and the Compressible Liquid Drop (CLD) approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy and pressure, in the space of particle number densities and temperatures expected to cover the pasta region, are calculated. Finally, a comparison with a finite temperature Skyrme-Hartree-Fock calculation is drawn. (paper)

  10. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    Science.gov (United States)

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  11. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  12. Gravitational collapse and the vacuum energy

    International Nuclear Information System (INIS)

    Campos, M

    2014-01-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  13. Tetanus with multiple wedge vertebral collapses

    African Journals Online (AJOL)

    owner

    2012-07-06

    Jul 6, 2012 ... associated with traumatic injury, often a penetrating wound inflicted by dirty ... multiple vertebral collapses and the management chal- .... back pains and swelling as in our patient.9 There are usually no ... The cervical and.

  14. The collapse of interstellar gas clouds

    International Nuclear Information System (INIS)

    McNally, D.; Settle, J.J.

    1980-01-01

    The stability of spherically symmetric free-fall collapse to small radial perturbations is examined for non-uniform clouds. It is concluded that fragmentation of the central region of a collapsing gas cloud is possible if: (a) the density distribution is sufficiently smooth; and (b) the collapse is nearly free fall. Generally, perturbations enjoy only finite amplification during the collapse, and the amplification tends to decrease with increasing distance from the centre of the cloud. Unlimited amplification occurs only for uniform density clouds. Fragmentation is therefore unlikely to result from dynamical instability in the outer parts of a non-uniform cloud. Isothermal clouds are also briefly considered and, while it is argued that an earlier suggestion of their instability to fragmentation is unfounded, no general conclusion on the instability of such clouds could be drawn. (author)

  15. Cooperation, cheating, and collapse in biological populations

    Science.gov (United States)

    Gore, Jeff

    2014-03-01

    Natural populations can collapse suddenly in response to small changes in environmental conditions, and recovery from such a collapse can be difficult. We have used laboratory microbial ecosystems to directly measure theoretically proposed early warning signals of impending population collapse. Yeast cooperatively break down the sugar sucrose, meaning that below a critical size the population cannot sustain itself. We have demonstrated experimentally that changes in the fluctuations of the population size can serve as an early warning signal that the population is close to collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to ``cheater'' cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We confirm this possibility experimentally and find that such social parasitism decreases the resilience of the population.

  16. Simple Analytic Models of Gravitational Collapse

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.

    2005-02-09

    Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.

  17. Collapsed Lung: MedlinePlus Health Topic

    Science.gov (United States)

    ... Spanish Pneumothorax - infants (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Collapsed Lung updates ... Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...

  18. Headgroup effects of template monolayers on the adsorption behavior and conformation of glucose oxidase adsorbed at air/liquid interfaces.

    Science.gov (United States)

    Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang

    2011-06-21

    Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society

  19. Four tails problems for dynamical collapse theories

    Science.gov (United States)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  20. Nonlinear wave collapse and strong turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1997-01-01

    The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society

  1. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.

    Science.gov (United States)

    Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł

    2017-12-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.

  2. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    Science.gov (United States)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  3. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  5. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  6. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  7. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  8. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  9. Morphology, defect evolutions and nano-mechanical anisotropy of behenic acid monolayer

    International Nuclear Information System (INIS)

    Yang Guanghong; Jiang Xiaohong; Dai Shuxi; Cheng Gang; Zhang Xingtang; Du Zuliang

    2010-01-01

    Langmuir-Blodgett monolayers of behenic acid (BA) were prepared by the vertical deposition method and their morphological evolutions and nano-mechanical anisotropy were studied by atomic force microscopy (AFM) and lateral force microscopy. Results show that there are platforms in the differential surface pressure-area (π-A) isotherm presenting linear relations between the chain tilting angles and surface pressures. The reorganization, appearance and disappearance of defects such as pinholes and holes can strongly affect the profile of π-A isotherm; AFM images reflect evolution rules from pinholes to holes, and from monolayer to bilayers along with compression and relaxation of structures in BA monolayer. Due to higher molecule density and larger real contact area, the tip-monolayer contacts at 15 and 25 mN/m correspond to the Derjaguin-Muller-Toporov (DMT) model showing long-ranged interaction forces. But owing to more easily-deformed conformations, contacts at 5 and 35 mN/m accord with the Johnson-Kendall-Robert and DMT transition cases exhibiting short-ranged interface interactions. A little higher friction is proved in the direction perpendicular to the deposition.

  10. Current status of relativistic core collapse simulations

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de Astronomia y Astrofisica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-05-15

    With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms.

  11. Current status of relativistic core collapse simulations

    International Nuclear Information System (INIS)

    Font, Jose A

    2007-01-01

    With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms

  12. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  13. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    Science.gov (United States)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  14. Timescales of isotropic and anisotropic cluster collapse

    Science.gov (United States)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be

  15. Review of collapse triggering mechanism of collapsible soils due to wetting

    Directory of Open Access Journals (Sweden)

    Ping Li

    2016-04-01

    Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.

  16. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  17. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  18. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  19. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  20. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  1. Fullerene monolayer formation by spray coating

    NARCIS (Netherlands)

    Cervenka, J.; Flipse, C.F.J.

    2010-01-01

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method

  2. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun; Takata, Tsuyoshi; Katayama, Masao; Zhang, Fuxiang; Moriya, Yosuke; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  3. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  4. Progressive Collapse of High-Rise Buildings from Fire

    Directory of Open Access Journals (Sweden)

    Pershakov Valerii

    2016-01-01

    Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.

  5. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  6. Inflationary gravitational waves in collapse scheme models

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)

    2016-01-10

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  7. Did mud contribute to freeway collapse?

    Science.gov (United States)

    Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.

    At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).

  8. Sonographic Analysis of the Collapsed Gall Bladder

    International Nuclear Information System (INIS)

    Han, Sang Suk; Choi, Jae Young; Choi, Seok Jin; Eun, Chung Ki; Nam, Kyung Jin; Lee, Jeong Mi

    1996-01-01

    This study was done to find answers for further following questions in cases of the collapsed gallbladder (GB) : What is the probability of the presence of stone when stony echo is visible in GB area? What is the probability of the presence of stone when only acoustic shadow is visible from GB area? What are the associated GB pathologies except stone or cholecystitis in previously mentioned situations and is it possible to differentiate them? What are the underlying pathologies of GB collapse without stony echo or acoustic shadow and is it possible to differentiate them sonographic ally? What are the rate and causes of re-expansion of the collapsed GB on follow-up study? Prospective study was done in 157 cases of collapsed GB with no visible or nearly no visible bile filled lumen in recent 3 years. Sonographic analysis for GB lesions was done in 61 confirmed cases. Changing pattern of GB lumen on follow-up study and their underlying pathologies were analyzed in 28 cases. Initial sonographic examination was done with 3 or 3.5 MHz transducer. No other transducer was used in cases showing stony echo or acoustic shadow in GB area, but additional examination was done with 5 or 7-4 MHz transducer in cases without stony echo or acoustic shadow. Among 31 cases, which showed stony echo, stone was found in 30 cases and milk of calcium bile in one case. Stone was present in all of the 11 cases which showed only acoustic shadow from the collapsed GB without stony echo. GB cancer was accompanied in 2 cases among upper 42 cases, and its possibility could be suspected sonographic ally. Underlying pathologies of the 19cases without stony echo or acoustic shadow were as follows : GB stone (3), cholecystitis (6), GB cancer (1), bile plug syndrome (1), hepatitis (5), and ascites (3). And sonographic differentiation of the underlying causes for the collapse was possible in only 1 case of GB cancer. Among 28 cases of the follow-up study, 20 cases showed re-expansion of the GB lumen and

  9. Relativistic collapse using Regge calculus: Pt. 1

    International Nuclear Information System (INIS)

    Dubal, M.R.; Leicester Univ.

    1989-01-01

    Regge calculus is used to simulate the dynamical collapse of model stars. In this paper we describe the general methodology of including a perfect fluid in dynamical Regge calculus spacetimes. The Regge-Einstein equations for spherical collapse are obtained and are then specialised to mimic a particular continuum gauge. The equivalent continuum problem is also set up. This is to be solved using standard numerical techniques (i.e. the method of finite difference). A subsequent paper will consider the solution of the equations presented here and will use the continuum problem for comparison purposes in order to check the Regge calculus results. (author)

  10. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  11. Static axisymmetric discs and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, A.; Gregory, R.; Stewart, J.M.

    1987-09-08

    Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.

  12. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation.

    Science.gov (United States)

    Štengl, Václav; Henych, Jiří

    2013-04-21

    Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.

  13. Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers

    Directory of Open Access Journals (Sweden)

    Syed W. H. Shah

    2017-10-01

    Full Text Available We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl-sn-glycero-3-phosphocholine, a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC. The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide block flanked by hydrophilic poly(glycerol monomethacrylate blocks (GP. F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m−1, much higher than GP (32.5 mN m−1. We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE to liquid-condensed (LC transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m−1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m−1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.

  14. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon.

    Science.gov (United States)

    Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other

  15. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    Science.gov (United States)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  16. State-of-the-Art-Review of Collapsible Soils

    Directory of Open Access Journals (Sweden)

    A. A. AL-Rawas

    2000-12-01

    Full Text Available Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.

  17. Influence of flow stress choice on the plastic collapse estimation of axially cracked steam generator tubes

    International Nuclear Information System (INIS)

    Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo

    2008-01-01

    The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe

  18. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  19. Nonlinear Progressive Collapse Analysis Including Distributed Plasticity

    Directory of Open Access Journals (Sweden)

    Mohamed Osama Ahmed

    2016-01-01

    Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.

  20. General relativistic collapse of rotating stars

    International Nuclear Information System (INIS)

    Nakamura, T.

    1984-01-01

    When a rotating star begins to collapse, the gravity becomes so strong that there appears a region from which even a photon cannot escape. After the distortion of space-time is radiated as gravitational waves, a Kerr black hole is formed finally. One of the main goals for numerical relativity is to simulate the collapse of a rotating star under realistic conditions. However, to know both the dynamics of matter and the propagation of gravitational radiation seems to be very difficult. Therefore, in this paper the problem is divided into 4 stages. They are: (1) The time evolution of pure gravitational waves is calculated in a 2-D code. (2) In this stage, the author tries to understand the dynamics of a collapsing, rotating star in 2D code. (3) Combining the techniques from stages 1, 2, the author tries to know both the dynamics of matter and the propagation of gravitational waves generated by the nonspherical motion of matter. (4) The author simulates the gravitational collapse of a rotating star to a black hole in 3D. 25 references, 12 figures, 1 table

  1. Langmuir field structures favored in wave collapse

    International Nuclear Information System (INIS)

    Robinson, P.A.; Wouters, M.J.; Broderick, N.G.

    1996-01-01

    Study of Langmuir collapse thresholds shows that they have little polarization dependence and that moving packets have the lowest thresholds in the undamped case. However, incorporation of damping into the density response inhibits collapse of packets moving at more than a small fraction of the sound speed. Investigation of energy transfer to packets localized in density wells emdash the nucleation process emdash shows that at most a few trapped states can exist and that energy transfer is most effective when there is a single barely-trapped state. Coupled with an argument that closely packed wave packets have lower collapse thresholds, this argument yields an estimate of the number density of localized nucleating states in a turbulent plasma. It also leads to a simple and direct semiquantitative estimate of the collapse threshold. All these results are in accord with previous numerical simulations incorporating ion-sound damping, which show a preponderance of slow-moving or stationary packets with little or no intrinsic polarization dependence of thresholds. Likewise, the number densities obtained are in good agreement with simulation values, and the simple estimate of the threshold is semiquantitatively correct. The extent of the agreement supports the nucleation scenario with close-packed nucleation sites in the turbulent state. copyright 1996 American Institute of Physics

  2. Identification and behavior of collapsible soils.

    Science.gov (United States)

    2011-01-01

    Loess is a soil that can exhibit large deformations upon wetting. Cases of wetting induced collapse in loess have : been documented for natural deposits and man-made fills. These issues are of concern to the Indiana DOT due to the growth : of the sta...

  3. The collapse of turbulence in the evening

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Sun, J.; Holtslag, A.A.M.

    2012-01-01

    A common experience in everyday weather is the fact that near-surface wind speeds tend to weaken in the evening, particularly in fair weather conditions. This cessation of wind usually coincides with the collapse of turbulence which leads to a quiet flow near the ground. As the absence of turbulent

  4. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  5. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  6. Gravitational collapse with decaying vacuum energy

    Indian Academy of Sciences (India)

    Abstract. The effect of dark energy on the end state of spherical radiation collapse is considered within the context of the cosmic censorship hypothesis. It is found that it is possible to have both black holes as well as naked singularities.

  7. Schuster's law, black holes and gravitational collapse

    International Nuclear Information System (INIS)

    Massa, C.

    1988-01-01

    Consequences of the application of Schuster's law to black holes are investigated. It is shown that Schuster's law can reduce the intrinsic angular momentum of a collapsing body. The possibility is supposed that Schuster's law provides the general mechanism required by the cosmic censorship hypothesis which is taken seriously as a fundamental law of nature

  8. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  9. The heterogeneity of world trade collapses

    NARCIS (Netherlands)

    P.A.G. van Bergeijk (Peter)

    2015-01-01

    textabstractThis paper analyses drivers of imports during the major world trade collapses of the Great Depression (1930s; 34 countries) and the Great Recession (1930s; 173 countries). The analysis deals with the first year of these episodes and develops a small empirical model that shows a

  10. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer.

    Science.gov (United States)

    Li, Siyang; Du, Lin; Tsona, Narcisse T; Wang, Wenxing

    2018-04-01

    Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe 3+ , Pb 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Cr 3+ , Cd 2+ , and Co 2+ , with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn 2+ and Fe 3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn 2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe 3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Plastic collapse moment for pipe repaired with weld overlay

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Shibuya, Akira; Deardorff, Arthur

    2009-01-01

    The Weld Overlay has been used in several countries as an effective method to repair the stress corrosion cracks in nuclear power plant piping. However, the method to evaluate the plastic collapse stress for the pipe repaired with Weld Overlay has not been proposed and the limit load criterion for single uniform material has been used to design its structure by now. In this paper, the equations to evaluate the plastic collapse moment for the pipe repaired with Weld Overlay have been derived considering two layer materials. Moreover, several numerical examples are given to show the validity of Weld Overlay. The equations given in this paper are simple to use like the limit load criterion showed in present standards such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI, and they can not only be used to evaluate the fracture of the pipe, but also be applied to design the weld structure. (author)

  12. Miscibility of dl-α-tocopherol β-glucoside in DPPC monolayer at air/water and air/solid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Neunert, G. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Makowiecki, J.; Piosik, E.; Hertmanowski, R. [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland); Polewski, K. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Martynski, T., E-mail: tomasz.martynski@put.poznan.pl [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-10-01

    The role of newly synthesized tocopherol glycosidic derivative in modifying molecular organization and phase transitions of phospholipid monolayer at the air/water interface has been investigated. Two-component Langmuir films of dl-α-tocopheryl β-D-glucopyranoside (BG) mixed with dipalmitoyl phosphatidylcholine (DPPC) in the whole range of mole fractions were formed at the water surface. An analysis of surface pressure versus mean molecular area (π-A) isotherms and Brewster angle microscope images showed that the presence of BG molecules changes the structure and packing of the DPPC monolayer in a BG concentration dependent manner. BG molecules incorporated into DPPC monolayer inhibit its liquid expanded to liquid condensed phase transition proportionally to the BG concentration. The monolayers were also transferred onto solid substrates and visualized using an atomic force microscope. The results obtained indicate almost complete miscibility of BG and DPPC in the monolayers at surface pressures present in the biological cell membrane (30-35·10{sup -3} N·m{sup -1}) for a BG mole fraction as high as 0.3. This makes the monolayer less packed and more disordered, leading to an increased permeability. The results support our previous molecular dynamics simulation data. - Highlights: • Langmuir films of α-tocopherol derivative with DPPC was studied thermodynamically. • Mixed DPPC/BG films were transferred onto mica substrates for topography imaging by using AFM. • Miscibility of BG/DPPC films at surface pressures present in membranes was observed up to MF = 0.3.

  13. Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects

    International Nuclear Information System (INIS)

    Zhang Ya-Ping; Ling Cui-Cui; Li Gui-Xia; Zhu Hai-Feng; Zhang Meng-Yu

    2015-01-01

    By employing molecular mechanics and molecular dynamics simulations, we investigate the radial collapses and elasticities of different chiral single-walled carbon nanotubes (SWCNTs) with divacancy, and 5-8-5 defects. It is found that divacancy and 5-8-5 defect can reduce the collapse pressure (P c ) of SWCNT (10, 10) while 5-8-5 defect can greatly increase P c of SWCNT (17, 0). For example, 5-8-5 defect can make P c of SWCNT (17, 0) increase by 500%. A model is established to understand the effects of chirality, divacancy, and 5-8-5 defect on radial collapse of SWCNTs. The results are particularly of value for understanding the mechanical behavior of SWCNT with divacancy, and the 5-8-5 defect that may be considered as a filler of high loading composites. (paper)

  14. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  15. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  16. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  17. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  18. Electrochemical behaviour of monolayer and bilayer graphene

    OpenAIRE

    Valota, Anna T.; Kinloch, Ian A.; Novoselov, Kostya S.; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W.; Dryfe, Robert A. W.

    2011-01-01

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as masking coating in order to expose a stable, well defined area of graphene. Both multilayer and monolayer graphene microe...

  19. Conformation, orientation and interaction in molecular monolayers

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1989-01-01

    Knowledge of the conformation and ordering of molecular monolayers is essential for a detailed understanding of a wide variety of surface and interfacial phenomena. Over the past several years, surface second harmonic generation (SHG) has proven to be a valuable and versatile probe of monolayer systems. Our group has recently extended the technique to infrared-visible sum frequency generation (SFG) which has unique capabilities for surface vibrational spectroscopy. Like second harmonic generation, SFG is highly surface specific with submonolayer sensitivity at all interfaces accessible by light. The orientation of individual groups within an adsorbate molecule can be deduced by a polarization analysis of the SFG signal from the vibrational modes of the groups. The authors have used SHG and SFG to study orientations and conformations of surfactant and liquid crystal (LC) monolayers and their interaction on a substrate. The interfacial properties of LC are of great interest to many researchers for both basic science understanding and practical application to LC devices. It is well known that the bulk alignment of a liquid crystal in a cell is strongly affected by the surface treatment of the cell walls. The reason behind it is not yet clear. The theoretical background and experimental arrangement of SHG and SFG have been described elsewhere. In the setup, a 30 psec. Nd:YAG mode-locked laser system together with nonlinear accessories generates a visible beam at .532μm and an infrared beam tunable about 3.4μm. Both beams are focused to a common spot of 300μm dia. The typical signal off the surface from a compact ordered alkyl chain monolayer is ∼500 photons per pulse, easily detected with a photomultiplier tube

  20. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  1. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-02-15

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China){sub 6}]{sup 4-}, [Ru(NH{sub 3}){sub 6}]{sup 2+} and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK{sub a}pH{sub medium} reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH{sub 3}){sub 6}]{sup 2+/3+}. Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH.

  2. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    International Nuclear Information System (INIS)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-01-01

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China) 6 ] 4- , [Ru(NH 3 ) 6 ] 2+ and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK a medium and at pK a >pH medium reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH 3 ) 6 ] 2+/3+ . Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH

  3. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  4. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  5. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  6. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  7. Therapeutic CPAP Level Predicts Upper Airway Collapsibility in Patients With Obstructive Sleep Apnea.

    Science.gov (United States)

    Landry, Shane A; Joosten, Simon A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A

    2017-06-01

    Upper airway collapsibility is a key determinant of obstructive sleep apnea (OSA) which can influence the efficacy of certain non-continuous positive airway pressure (CPAP) treatments for OSA. However, there is no simple way to measure this variable clinically. The present study aimed to develop a clinically implementable tool to evaluate the collapsibility of a patient's upper airway. Collapsibility, as characterized by the passive pharyngeal critical closing pressure (Pcrit), was measured in 46 patients with OSA. Associations were investigated between Pcrit and data extracted from patient history and routine polysomnography, including CPAP titration. Therapeutic CPAP level, demonstrated the strongest relationship to Pcrit (r2=0.51, p CPAP level (6.2 ± 0.6 vs. 10.3 ± 0.4 cmH2O, p -2 cmH2O). A therapeutic CPAP level ≤8.0 cmH2O was sensitive (89%) and specific (84%) for detecting a mildly collapsible upper airway. When applied to the independent validation data set (n = 74), this threshold maintained high specificity (91%) but reduced sensitivity (75%). Our data demonstrate that a patient's therapeutic CPAP requirement shares a strong predictive relationship with their Pcrit and may be used to accurately differentiate OSA patients with mild airway collapsibility from those with moderate-to-severe collapsibility. Although this relationship needs to be confirmed prospectively, our findings may provide clinicians with better understanding of an individual patient's OSA phenotype, which ultimately could assist in determining which patients are most likely to respond to non-CPAP therapies. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Functional Catastrophe Analysis of Collapse Mechanism for Shallow Tunnels with Considering Settlement

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Limit analysis is a practical and meaningful method to predict the stability of geomechanical properties. This work investigates the pore water effect on new collapse mechanisms and possible collapsing block shapes of shallow tunnels with considering the effects of surface settlement. The analysis is performed within the framework of upper bound theorem. Furthermore, the NL nonlinear failure criterion is used to examine the influence of different factors on the collapsing shape and the minimum supporting pressure in shallow tunnels. Analytical solutions derived by functional catastrophe theory for the two different shape curves which describe the distinct characteristics of falling blocks up and down the water level are obtained by virtual work equations under the variational principle. By considering that the mechanical properties of soil are not affected by the presence of underground water, the strength parameters in NL failure criterion can be taken to be the same under and above the water table. According to the numerical results in this work, the influences on the size of collapsing block different parameters have are presented in the tables and the upper bounds on the loads required to resist collapse are derived and illustrated in the form of supporting forces graphs that account for the variation of the embedded depth and other factors.

  9. X-ray studies of the liquid/vapor interface: Water and polymer and fatty acid monolayers on water

    International Nuclear Information System (INIS)

    Schlossman, M.L.; Schwartz, D.K.; Kawamoto, E.H.; Kellogg, G.J.; Pershan, P.S.; Ocko, B.M.; Kim, M.W.; Chung, T.C.

    1989-01-01

    X-ray specular reflectivity is used to study the liquid-vapor interface of pure water and of fatty acid and polymer monolayers at that interface. For the pure water surface the reflectivity was measured for three different spectrometer resolutions and simultaneous fits with only one free parameter to all of the data are in excellent agreement with the prediction of capillary wave theory for the RMS surface roughness. Diffuse scattering away from the specular condition, at wavevectors corresponding to those of the capillary waves, yields intensities and line shapes in agreement with theory with no significant adjustable parameters. Reflectivity from separate monolayers of co-poly 1, 2-butadiene/butyl alcohol (50% random substitution) and lignoceric acid (CH 3 (CH 2 ) 22 COOH) at the water/vapor interface are interpreted to obtain profiles of the average electron density ρ(z) as a function of distance z along the surface normal. For the polymer monolayer we find the following: (1) a local maximum in the electron density approximately 10% larger than that of the bulk polymer and (2) the RMS roughness of the vapor/polymer interface agrees with capillary wave theory predictions for the lower surface pressures. For the highest surface pressure the RMS roughness exceeds the value predicted by the capillary wave model. Measurements of reflectivity from a lignoceric acid monolayer, as a function of surface pressure throughout an isotherm (near room temperature), reveal the following behavior: (1) the overall thickness of the monolayer increases with increasing pressure and (2) the head groups occupy a progressively larger region along the surface normal as the pressure increases, indicating that they rearrange normal to the interface. 15 refs., 5 figs., 2 tabs

  10. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  11. Identification and behavior of collapsible soils : [technical summary].

    Science.gov (United States)

    2011-01-01

    Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...

  12. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  13. Unifying Research on Social-Ecological Resilience and Collapse.

    Science.gov (United States)

    Cumming, Graeme S; Peterson, Garry D

    2017-09-01

    Ecosystems influence human societies, leading people to manage ecosystems for human benefit. Poor environmental management can lead to reduced ecological resilience and social-ecological collapse. We review research on resilience and collapse across different systems and propose a unifying social-ecological framework based on (i) a clear definition of system identity; (ii) the use of quantitative thresholds to define collapse; (iii) relating collapse processes to system structure; and (iv) explicit comparison of alternative hypotheses and models of collapse. Analysis of 17 representative cases identified 14 mechanisms, in five classes, that explain social-ecological collapse. System structure influences the kind of collapse a system may experience. Mechanistic theories of collapse that unite structure and process can make fundamental contributions to solving global environmental problems. Copyright © 2017. Published by Elsevier Ltd.

  14. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  15. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  16. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    International Nuclear Information System (INIS)

    Chen, Liang-Huei; Hsu, Wen-Ping; Chan, Han-Wen; Lee, Yuh-Lang

    2014-01-01

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules

  17. mode of collapse of square single panel reinforced concrete space

    African Journals Online (AJOL)

    The models were loaded directly till collapse. The estimated and actual collapse loads of the five models were compared. The estimated collapse load for the slab was 35 kN/m2. Also, the numerical estimate of the collapse load for the beam was 10.2kN/m (with an equivalent slab load of 40.8kN/m2), while the shear capacity ...

  18. Collapse and revival in holographic quenches

    International Nuclear Information System (INIS)

    Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-01-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  19. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  20. Collapse and bounce of null fluids

    OpenAIRE

    Creelman, Bradley; Booth, Ivan

    2016-01-01

    Exact solutions describing the spherical collapse of null fluids can contain regions which violate the energy conditions. Physically the violations occur when the infalling matter continues to move inwards even when non-gravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for these violations: spacetime surgery should be used to replace the energy condition violating region with an outgoing solution. The matter bounces. We revisit and implement this p...

  1. Analysis of power system collapse risk

    International Nuclear Information System (INIS)

    Eleschova, Z.; Belan, A.; Cintula, B.; Smitkova, M.

    2012-01-01

    In this paper are analysed the initialization events with considering different scenarios and their impact on the power system transient stability. As an initialization event is considered a short circuit at various places of power line. In each scenario are considered protection failures (backup protection), circuit-breaker failures (breaker failure relay activation). The individual states are analysed and the power system collapse risk assessed based on the simulation experiments results (Authors)

  2. Distributed Monitoring of Voltage Collapse Sensitivity Indices

    OpenAIRE

    Simpson-Porco, John W.; Bullo, Francesco

    2016-01-01

    The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded ...

  3. Rate of stellar collapses in the Galaxy

    International Nuclear Information System (INIS)

    Lande, K.; Stephens, W.E.

    1977-01-01

    From an analysis of pulsar spatial and luminosity distributions, the number density of observed pulsars in the local region is determined to be 1.1+-0.4x10 -7 pulsar pc -3 . Multiplication by the detection factor and by the ratio of Galaxy mass to local matter density and division by a mean lifetime of pulsars of 3x10 6 yr suggests a pulsar birth every 4 yr. A stellar collapse might occur even more often. (Auth.)

  4. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  5. Decoupling of crystalline and conformational degrees of freedom in lipid monolayers

    DEFF Research Database (Denmark)

    Ipsen, John Hjorth; Mouritsen, Ole G.; Zuckermann, Martin J.

    1989-01-01

    of variables which describe the orientations of crystalline domains in the solid. The phase behavior of the model as a function of temperature and lateral pressure is explored using mean-field theory and computer-simulation techniques. Attention is paid to the particular interplay between the two types......-formation processes observed along the isotherms in the phase diagram spanned by lateral pressure and area. A description is given of the kinetics of the nonequilibrium phase transitions and the concomitant heterogeneous microstructure of the monolayer. This leads to an explanation of the peculiarities...

  6. Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds

    International Nuclear Information System (INIS)

    Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.

    2005-01-01

    We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term Λ. It is investigated how Λ modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of Λ on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter

  7. Cooperation, cheating, and collapse in microbial populations

    Science.gov (United States)

    Gore, Jeff

    2012-02-01

    Natural populations can suffer catastrophic collapse in response to small changes in environmental conditions, and recovery after such a collapse can be exceedingly difficult. We have used laboratory yeast populations to study proposed early warning signals of impending extinction. Yeast cooperatively breakdown the sugar sucrose, meaning that there is a minimum number of cells required to sustain the population. We have demonstrated experimentally that the fluctuations in the population size increase in magnitude and become slower as the population approaches collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to cheater cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We have confirmed this possibility experimentally by using a cheater yeast strain that lacks the gene encoding the cooperative behavior [1]. However, recent results in the lab demonstrate that the presence of a bacterial competitor may drive cooperation within the yeast population.[4pt] [1] Gore et al, Nature 459, 253 -- 256 (2009)

  8. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  9. Collapse postulate for observables with continuous area

    International Nuclear Information System (INIS)

    Srinivas, M.D.

    1979-03-01

    In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate ''generalized collapse postulate'' which associates with each observable a unique ''finitely additive expectation valued measure''. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general σ-additive. The implications of this non-σ-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations

  10. The Collapse of Ecosystem Engineer Populations

    Directory of Open Access Journals (Sweden)

    José F. Fontanari

    2018-01-01

    Full Text Available Humans are the ultimate ecosystem engineers who have profoundly transformed the world’s landscapes in order to enhance their survival. Somewhat paradoxically, however, sometimes the unforeseen effect of this ecosystem engineering is the very collapse of the population it intended to protect. Here we use a spatial version of a standard population dynamics model of ecosystem engineers to study the colonization of unexplored virgin territories by a small settlement of engineers. We find that during the expansion phase the population density reaches values much higher than those the environment can support in the equilibrium situation. When the colonization front reaches the boundary of the available space, the population density plunges sharply and attains its equilibrium value. The collapse takes place without warning and happens just after the population reaches its peak number. We conclude that overpopulation and the consequent collapse of an expanding population of ecosystem engineers is a natural consequence of the nonlinear feedback between the population and environment variables.

  11. Matter and gravitons in the gravitational collapse

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2016-12-01

    Full Text Available We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell gravitons that account for the (negative Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.

  12. Matter and gravitons in the gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy); Giugno, Andrea, E-mail: A.Giugno@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany); Giusti, Andrea, E-mail: andrea.giusti@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy)

    2016-12-10

    We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell) gravitons that account for the (negative) Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive) interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.

  13. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  14. Collapse postulate for observables with continuous spectra

    International Nuclear Information System (INIS)

    Srinivas, M.D.; Madras Univ.

    1980-01-01

    In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate 'generalized collapse postulate' which associates with each observable a unique 'finitely additive expectation valued measure'. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general sigma-additive. The implications of this non-sigma-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations. (orig.) 891 HJ/orig. 892 CKA

  15. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    CERN Document Server

    Matsuoka, H; Matsumoto, K

    2003-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanost...

  16. Mesoscopic states in graphene in magnetic field: collapse and revival of wave packets

    International Nuclear Information System (INIS)

    Demikhovskij, V.Ya.; Telezhnikov, A.V.; Frolova, E.V.; Kravets, N.A.

    2013-01-01

    The effects of wave packet collapse and revival in monolayer and bilayer graphene at an external perpendicular magnetic field are described. The evolution of electron wave packets, which are a superposition of the states with quantum numbers n around that of some Landau level n 0 was studied. The probability densities as well as average velocities of the packet center were calculated analytically and then visualized. The initial wave packet consisting only of positive energy decomposed into several subpackets at the moments t = (m/n)T R , where T R is the revival time and m, n are the mutually prime integers. Besides, it is shown that the behavior of a wave packet containing the states of both energy bands (with E n > 0 and E n < 0) is more complicated. Such packet splits into two parts, which rotate with a cyclotron frequency in the opposite directions, and then experience collapse and revival. The structure of multipole electromagnetic radiation of these packets is analyzed.

  17. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  18. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where asMmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole

  19. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  1. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  2. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  3. Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media

    DEFF Research Database (Denmark)

    Bang, Ole; Edmundson, Darran; Królikowski, Wieslaw

    1999-01-01

    We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics of the...... of the walk-off modes is illustrated for collapsing and diffracting partially coherent beams.......We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics...

  4. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  5. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments

    Czech Academy of Sciences Publication Activity Database

    Olžyńska, Agnieszka; Zubek, M.; Roeselová, Martina; Korchowiec, J.; Cwiklik, Lukasz

    2016-01-01

    Roč. 1858, č. 12 (2016), s. 3120-3130 ISSN 0005-2736 R&D Projects: GA ČR GA15-14292S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : phospholipid monolayers * Lung surfactant * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  6. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  7. Study on collapse mechanism of junction between greatly deeper shaft and horizontal drifts (Contract research)

    International Nuclear Information System (INIS)

    Kurosaki, Yukio; Yamachi, Hiroshi; Katsunuma, Yoshio; Nakata, Masao; Kuwahara, Hideki; Yamada, Fumitaka; Matsushita, Kiyoshi; Sato, Toshinori

    2008-03-01

    The Mizunami underground research laboratory is planned to consist of greatly deeper shaft and horizontal drifts. A junction space between a greatly deeper shaft and horizontal drifts forms which would take a complicated mechanical behavior during a junction excavation. However, a quantitative design method of supporting measures for a deep junction has not yet been established. This is because a conventional shaft design has been conducted based on past experience. Detail records have not been left either in what kind of collapses and deformed phenomena occurring in shaft constructions in a past. In order to examine a collapse mechanism of greatly deeper shaft junction, we have conducted literature surveys and interview studies concerned with deep shaft construction works in a past, and investigated what collapses or difficulties had been occurred in deep shaft junctions. Considering the results of investigations with reviews of intellectuals, a collapse mechanism of a super deep shaft junction depends on both a construction procedure of shaft junction and a geological condition at great depth. During a construction of a shaft junction, stress state of rock masses near junction wall would take a complicated stress path. Especially, it should be necessary to take a most careful consideration on that tangential stress acted around a shaft wall may reduce during horizontal drift excavation. On the other hand, where greatly deeper junction intersects faults and/or fractures with a large angle, a collapse called 'Take-nuke' may occur or extraordinary earth pressure acts on a concrete wall. This is the most typical difficulties during shaft construction. In order to recognize a mechanism of these phenomena and to find out a cause of collapse generation, numerical studies that can simulate a practical rock mass behavior around a shaft junction should be carry out. We demonstrate the finite difference method is most adequate for these simulations with intellectual review

  8. Tetragonal To Collapsed Tetragonal Phase Transition In BaFe2As2 and CaFe2As2

    International Nuclear Information System (INIS)

    Mittal, R.; Mishra, S. K.; Chaplot, S. L.; Ovsyannikov, S. V.; Trots, D. M.; Dubrovinsky, L.; Greenberg, E.; Su, Y.; Brueckel, Th.; Matsuishi, S.; Hosono, H.; Garbarino, G.

    2010-01-01

    Superconductivity in MFe 2 As 2 (M = Ba, Ca) compounds appears either at a critical doping level at ambient pressure or in the parent compound itself by application of pressure above a critical value. We report high pressure powder x-ray diffractions studies for these compounds at 300 K up to about 56 GPa using membrane diamond anvil cells. The measurements for BaFe 2 As 2 show a new tetragonal to collapsed tetragonal phase transition at about 22 GPa that remains stable upto 56 GPa. CaFe 2 As 2 is already known to transform to collapsed phase at 1.7 GPa at 300 K. Our measurements on CaFe 2 As 2 do not show any post collapsed phase transition on increase of pressure 50 GPa at 300 K. It is important to note that the transition in both compounds occurs when they are compressed to almost the same value of the unit cell volume and attain similar c t /a t ratios. We present a detailed analysis of the pressure dependence and structure phase transitions as well as equation of state in these important FeAs compounds that should be useful in the context of possible superconductivity in the collapsed phase.

  9. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  10. Holographic probes of collapsing black holes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Maxfield, Henry

    2014-01-01

    We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous

  11. Gravitational collapse of conventional polytropic cylinder

    Science.gov (United States)

    Lou, Yu-Qing; Hu, Xu-Yao

    2017-07-01

    In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.

  12. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  13. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  14. Repair during multifraction exposures: spheroids versus monolayers

    International Nuclear Information System (INIS)

    Durand, R.E.

    1984-01-01

    Many type of mammalian cells, when grown in culture as multicell spheroids, display an increased ability to accumulate and repair sublethal radiation damage which has been called the ''contact effect''. Since this effect has the potential to markedly modify the multifraction radiation response of cells in V79 spheroids relative to cells in monolayer cultures, an investigation was made of regimens ranging from 1 to 100 fractions. Effective dose rates were chosen near 1 Gy h -1 to inhibit cell progression and thus simplify analysis of the results. As expected, larger doses per fraction produced more net cell killing in both systems than lower doses per fraction. Additionally, less killing of spheroid cells was observed in all regimens, in accord with their greater potential for repair. However, when the data were expressed as isoeffect curves, the spheroid and monolayer curves converged as the number of fractions increased. Thus, quite similar inherent sensitivity and repair capabilities would be predicted for ultra-low doses per fraction. High precision techniques for defining survival after doses of radiation from 0.2 to 1 Gy were, however, still able to demonstrate a survival advantage for cells grown as spheroids. (author)

  15. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  16. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.I.; Yagi, M.

    1999-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlapping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  17. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.-I.; Yagi, M.

    2001-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlaping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  18. Origin of calderas: discriminating between collapses and explosions

    Directory of Open Access Journals (Sweden)

    Izumi Yokoyama

    2017-01-01

    Full Text Available Origins of calderas may differ according to their subsurface structure that may be characterized by high or low density deposits that may be observed as high or low gravity anomalies, respectively. In the Introduction, the pioneering work of Fouqué[1879] on Santorini caldera is referred to in relation to definition of calderas. First, our discussion is focused on four calderas that were seen forming during the period from 1815 (the Tambora eruption to 1991 (the Pinatubo eruption. Coincidently, these four calderas are all low-gravity-anomaly type. Their formation processes and subsurface structure are summarized by the existing data analyzed by various authors. These results are confirmed by results of drillings at some other calderas. Then, caldera formation of both types is discussed: High-gravity-anomaly-type calderas are expected to originate from subsidence of high-density ejecta into the summit magma reservoir. On the calderas of this type, the genetic eruptions believed to be accompanied by subsidences were not actually observed, and consequently three examples are mentioned only briefly. The low-gravity-anomaly-type calderas are discussed from standpoint of both the models of collapses and explosions. It is also emphasized that dynamic pressure ofexplosions is an important factor in the caldera formation, not only volume of the ejecta. To confirm the possibility that volcanic ejecta and edifices collapse into magma reservoirs, we discuss stress propagation from a depleted reservoir upward towards the Earth surface. Formation mechanisms of large calderas of this type are speculated; large calderas measuring about 20 km across may develop by successive merging of component calderas over a long period of times. A Kamchatka caldera under enlargement during the Holocene period is interpreted by successive merging of five component calderas.

  19. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hee Jung; Choi, Young Wook [Hanyang Univ., Seoul (Korea, Republic of); Kim, Nam Jeong; Sohn, Dae Won [Sahmyook Univ., Seoul (Korea, Republic of)

    2003-03-01

    Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of {pi}-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 A{sup 2}/molecule for DOPC(C8), 87 A{sup 2}/molecule for DPPC(C16), 75 A{sup 2}/molecule for DAPC(C20), and 55 A{sup 2}/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cis-trans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16)

  20. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface

    International Nuclear Information System (INIS)

    Yun, Hee Jung; Choi, Young Wook; Kim, Nam Jeong; Sohn, Dae Won

    2003-01-01

    Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 A 2 /molecule for DOPC(C8), 87 A 2 /molecule for DPPC(C16), 75 A 2 /molecule for DAPC(C20), and 55 A 2 /molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cis-trans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16)

  1. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  2. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  3. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  4. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  5. Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DoTAP at the air-water interface

    International Nuclear Information System (INIS)

    Panda, Amiya Kumar; Vasilev, Krasimir; Orgeig, Sandra; Prestidge, Clive A.

    2010-01-01

    Phospholipid monomolecular films at the air-water interface are useful model membranes to understand miscibility among various components. Surface pressure (π)-area (A) isotherms of pure and mixed monolayers of dioleoyltrimethylammonium propane (DoTAP)-dipalmitoylphosphatidylcholine (DPPC) and DoTAP-dipalmitoyphosphatidylglycerol (DPPG) were constructed using a surface balance. DPPC and DPPG produced isotherms as expected and reported earlier. DoTAP, an unsaturated lipid, demonstrated a continuous π-A isotherm. Associative interactions were identified in DPPC-DoTAP mixtures compared to the pure components, while DPPG-DoTAP mixtures showed repulsive interaction up to an equimolar ratio. Compression moduli of the monolayers revealed that DPPC-DoTAP mixtures had increasing stability with increasing surface pressure, but addition of DoTAP to DPPG showed instability at low and intermediate concentrations. In both cases increased stability was returned at higher X DoTAP values and surface pressures. Lipid monolayer film thickness values, determined on a gold coated glass substrate by surface plasmon resonance spectroscopy (SPR), indicated a systematic change in height profile for DPPC-DoTAP mixtures with increasing X DoTAP . However, DPPG-DoTAP mixed monolayer systems demonstrated a biphasic response. The SPR data were in excellent agreement with our interpretation of the structure of solid supported lipid monolayers.

  6. Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DoTAP at the air-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Amiya Kumar, E-mail: akpanda1@yahoo.com [Department of Chemistry, University of North Bengal, Darjeeling-734 013, West Bengal (India); Vasilev, Krasimir [Mawson Institute for Advanced Manufacturing, Mawson Lakes, University of South Australia, SA-5095 (Australia); Orgeig, Sandra [Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000 (Australia); Prestidge, Clive A. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2010-05-10

    Phospholipid monomolecular films at the air-water interface are useful model membranes to understand miscibility among various components. Surface pressure ({pi})-area (A) isotherms of pure and mixed monolayers of dioleoyltrimethylammonium propane (DoTAP)-dipalmitoylphosphatidylcholine (DPPC) and DoTAP-dipalmitoyphosphatidylglycerol (DPPG) were constructed using a surface balance. DPPC and DPPG produced isotherms as expected and reported earlier. DoTAP, an unsaturated lipid, demonstrated a continuous {pi}-A isotherm. Associative interactions were identified in DPPC-DoTAP mixtures compared to the pure components, while DPPG-DoTAP mixtures showed repulsive interaction up to an equimolar ratio. Compression moduli of the monolayers revealed that DPPC-DoTAP mixtures had increasing stability with increasing surface pressure, but addition of DoTAP to DPPG showed instability at low and intermediate concentrations. In both cases increased stability was returned at higher X{sub DoTAP} values and surface pressures. Lipid monolayer film thickness values, determined on a gold coated glass substrate by surface plasmon resonance spectroscopy (SPR), indicated a systematic change in height profile for DPPC-DoTAP mixtures with increasing X{sub DoTAP}. However, DPPG-DoTAP mixed monolayer systems demonstrated a biphasic response. The SPR data were in excellent agreement with our interpretation of the structure of solid supported lipid monolayers.

  7. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  8. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  9. A pentacene monolayer trapped between graphene and a substrate.

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  10. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  11. Anomalous polymer collapse winding angle distributions

    Science.gov (United States)

    Narros, A.; Owczarek, A. L.; Prellberg, T.

    2018-03-01

    In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.

  12. Design and Analysis of Collapsible Scissor Bridge

    Directory of Open Access Journals (Sweden)

    Biro Mohamad Nabil Aklif

    2018-01-01

    Full Text Available Collapsible scissor bridge is a portable bridge that can be deployed during emergency state to access remote areas that are affected by disaster such as flood. The objective of this research is to design a collapsible scissor bridge which is able to be transported by a 4x4 vehicle and to be deployed to connect remote areas. The design is done by using Solidworks and numerical analysis for structural strength is conducted via ANSYS. The research starts with parameters setting and modelling. Finite element analysis is conducted to analyze the strength by determining the safety factor of the bridge. Kutzbach equation is also analyzed to ensure that the mechanism is able to meet the targeted degree of motion. There are five major components of the scissor structure; pin, deck, cross shaft and deck shaft. The structure is controlled by hydraulic pump driven by a motor for the motions. Material used in simulation is A36 structural steel due to limited library in ANSYS. However, the proposed material is Fiber Reinforced Polymer (FRP composites as they have a high strength to weight ratio. FRP also tends to be corrosion resistance and this characteristic is useful in flooded area.

  13. Forensic Fluid Dynamics and the Indian Spring (1991) cave collapse problem

    Science.gov (United States)

    Nof, D.

    2013-05-01

    The collapse of the Indian spring cave (Florida) in 1991 was unique because it occurred while cave divers were in the cave. For the most part, the submerged cave is large enough to accommodate a passing truck so the cave divers were not in touch with its walls and it is hard to imagine why would it naturally collapse just when the divers were in it. Recently, Nof and Paldor (2010) resolved this apparent paradox by suggesting that resonance in the air pockets in the cavern, created by breathing (open circuit) divers, may have contributed to the collapse. In this scenario, divers present in the cavern during the dive may have (unknowingly) caused the collapse through the pressurized air/gas that they release with each breath. When the breathing period of the diver(s) matches the natural oscillations period of the "cave oscillator", the ensuing resonance causes the air pressure in the pockets to increase uncontrollably. Here, we place the above theory on a more solid ground. To do so, we first extended the resonance theory from our original two-pockets, symmetrical U-tube model (with two identical branches that were not specifically identified within the cave system) to a one (identified) pocket in the cavern and a very broad basin (identified, of course) that serves as the other branch of the U-tube. Our methodology is to apply familiar fluid dynamics principles to the situation that occurred in the cave. We did so, step-by-step, on the basis of our interviews with four out of the five surviving cave-divers. Namely, we dissected their testimonies to arrive at a physically plausible scenario determined on basis of a fluid dynamics application to the natural flow in the cave and the flow induced by the compressed air released by the divers as well as the collapsed mud. We found that the oscillation period was larger than what we earlier calculated (still relevant to the case, nevertheless), and that, in contrast to what most cave divers believe, there was a temporary

  14. Radiation damage on Langmuir monolayers of the anionic 1.2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt)(DPPG) phospholipid at the air–DNA solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Paulo J. [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Gonçalves da Silva, Amélia M.P.S. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa (Portugal); Ribeiro, Paulo A. [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Oliveira, Osvaldo N. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo (Brazil); Raposo, Maria, E-mail: mfr@fct.unl.pt [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2016-01-01

    The resilience of cells to ultraviolet (UV) irradiation is probably associated with the effects induced in biological molecules such as DNA and in the cell membrane. In this study, we investigated UV damage to the anionic 1.2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) phospholipid, which is an important component of cell membranes. In films cast from DPPG emulsions, UV irradiation induced cleavage of C―O, C = O and ―PO{sup 2−} bonds, while in Langmuir monolayers at the air/water interface representing the cell membrane this irradiation caused the monolayer stability to decrease. When DNA was present in the subphase, however, the effects from UV irradiation were smaller, since the ionic products from degradation of either DPPG or DNA stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV. - Highlights: • UV induce cleavage of C―O, C=O and PO{sup 2−} bonds in DPPG molecules in the presence of water. • The stability of DPPG monolayers decreased when irradiated with UV. • UV effects were mitigated if DNA molecules were incorporated into subphase. • The ionic products resulting from UV degradation stabilize DPPG monolayer. • Such mechanism explain why cells do not collapse immediately after irradiation.

  15. Vocal cord collapse during phrenic nerve-paced respiration in congenital central hypoventilation syndrome.

    Science.gov (United States)

    Domanski, Mark C; Preciado, Diego A

    2012-01-01

    Phrenic nerve pacing can be used to treat congenital central hypoventilation syndrome (CCHS). We report how the lack of normal vocal cord tone during phrenic paced respiration can result in passive vocal cord collapse and produce obstructive symptoms. We describe a case of passive vocal cord collapse during phrenic nerve paced respiration in a patient with CCHS. As far as we know, this is the first report of this etiology of airway obstruction. The patient, a 7-year-old with CCHS and normal waking vocal cord movement, continued to require nightly continuous positive airway pressure (CPAP) despite successful utilization of phrenic nerve pacers. On direct laryngoscopy, the patient's larynx was observed while the diaphragmatic pacers were sequentially engaged. No abnormal vocal cord stimulation was witnessed during engaging of either phrenic nerve stimulator. However, the lack of normal inspiratory vocal cord abduction during phrenic nerve-paced respiration resulted in vocal cord collapse and partial obstruction due to passive adduction of the vocal cords through the Bernoulli effect. Bilateral phrenic nerve stimulation resulted in more vocal cord collapse than unilateral stimulation. The lack of vocal cord abduction on inspiration presents a limit to phrenic nerve pacers.

  16. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    International Nuclear Information System (INIS)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-01-01

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  17. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    Science.gov (United States)

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  18. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate

    Science.gov (United States)

    Xu, Lei; Yang, Ming; Shen, Lei; Zhou, Jun; Zhu, Tao; Feng, Yuan Ping

    2018-01-01

    Lifting the valley degeneracy is an efficient way to achieve valley polarization for further valleytronics operations. In this Rapid Communication, we demonstrate that a large valley splitting can be obtained in monolayer transition metal dichalcogenides by magnetic proximity coupling to an insulating antiferromagnetic substrate. As an example, we perform first-principles calculations to investigate the electronic structures of monolayer WS2 on the MnO(111) surface. Our calculation results suggest that a large valley splitting of 214 meV, which corresponds to a Zeeman magnetic field of 1516 T, is induced in the valence band of monolayer WS2. The magnitude of valley splitting relies on the strength of interfacial orbital hybridization and can be tuned continually by applying an external out-of-plane pressure and in-plane strain. More interestingly, we find that both spin and valley index will flip when the magnetic ordering of MnO is reversed. Besides, owing to the sizable Berry curvature and time-reversal symmetry breaking in the WS2/MnO heterostructure, a spin- and valley-polarized anomalous Hall current can be generated in the presence of an in-plane electric field, which allows one to detect valleys by the electrical approach. Our results shed light on the realization of valleytronic devices using the antiferromagnetic insulator as the substrate.

  19. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    International Nuclear Information System (INIS)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M.

    2011-01-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl - , NO 3 - , Br - , I - , ClO 4 - , and SCN - ). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  20. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M., E-mail: mvsal@usal.es

    2011-06-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl{sup -}, NO{sub 3}{sup -}, Br{sup -}, I{sup -}, ClO{sub 4}{sup -}, and SCN{sup -}). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  1. Simulation of shock-induced bubble collapse using a four-equation model

    Science.gov (United States)

    Goncalves, E.; Hoarau, Y.; Zeidan, D.

    2018-02-01

    This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.

  2. Packing stress reduction in polymer-lipid monolayers at the air-water interface: An X-ray grazing-incidence diffraction and reflectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, T.L.; Majewski, J.; Howes, P.B.; Kjaer, K.; Nahmen, A. von; Lee, K.Y.C.; Ocko, B.; Israelachvili, J.N.; Smith, G.S.

    1999-08-25

    Using synchrotron grazing-incidence X-ray diffraction (GIXD) and reflectivity (XR), the authors have determined the in-plane and out-of-plane structure of phospholipid monolayers at the air-water interface as a function of hydrophilic lipid headgroup size. Di-stearoyl-phosphatidyl-ethanolamine (DSPE) lipid monolayers were systematically modified by chemically grafting hydrophilic poly(ethylene glycol) (PEG) chains of MW = 90 g/mol (2 ethylene oxide, EO, units), MW = 350 g/mol (8 EO units), and MW = 750 g/mol (17 EO units) to the lipid headgroups. The monolayers were studied in the solid phase at a surface pressure of 42 mN/m. At these high lipid packing densities, the PEG chains are submerged in the water subphase. The increased packing stresses from these bulky polymer headgroups distort the unit cell and the in-plane packing modes of the monolayers, leading to large out-of-plane alterations and staggering of the lipid molecules. Surprisingly, a change in the molecular packing of the monolayer toward higher packing densities (lower area per molecule) was observed on increasing the PEG MW to 750 g/mol (17 EO units). This rearrangement of the monolayer structure may be due to a conformational change in the PEG chains.

  3. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  4. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  5. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  6. Enhanced photocurrent in engineered bacteriorhodopsin monolayer.

    Science.gov (United States)

    Patil, Amol V; Premaruban, Thenhuan; Berthoumieu, Olivia; Watts, Anthony; Davis, Jason J

    2012-01-12

    The integration of the transmembrane protein bacteriorhodopsin (BR) with man-made electrode surfaces has attracted a great deal of interest for some two decades or more and holds significant promise from the perspective of derived photoresponse or energy capture interfaces. Here we demonstrate that a novel and strategically engineered cysteine site (M163C) can be used to intimately and effectively couple delipidated BR to supporting metallic electrode surfaces. By virtue of the combined effects of the greater surface molecular density afforded by delipidation, and the vicinity of the electrostatic changes associated with proton pumping to the transducing metallic continuum, the resulting films generate a considerably greater photocurrent density on wavelength-selective illumination than previously achievable with monolayers of BR. Given the uniquely photoresponsive, wavelength-selective, and photostable characteristics of this protein, the work has implications for utilization in solar energy capture and photodetector devices.

  7. Non-Spherical Gravitational Collapse of Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    Zade S S; Patil K D; Mulkalwar P N

    2008-01-01

    We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.

  8. Collapsing dynamics of attractive Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    2002-01-01

    The self-similar collapse of 3D and quasi-2D atom condensates with negative scattering length is examined. 3D condensates are shown to blow up following the scenario of weak collapse, for which 3-body recombination weakly dissipates the atoms. In contrast, 2D condensates undergo a strong collapse......, that absorbs a significant amount of particles. (C) 2002 Elsevier Science B.V. All rights reserved....

  9. Simulation of weak and strong Langmuir collapse regimes

    International Nuclear Information System (INIS)

    Hadzievski, L.R.; Skoric, M.M.; Kono, M.; Sato, T.

    1998-01-01

    In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)

  10. The collapse of acoustic waves in dispersive media

    International Nuclear Information System (INIS)

    Kuznetsov, E.A.; Musher, S.L.; Shafarenko, A.V.

    1983-01-01

    The existence of the collapse of acoustic waves with a positive dispersion is demonstrated. A qualitative description of wave collapse, based on the analysis of invariants, is proposed. Through the use of a numerical simulation, it is established that, in the Kadomtsev-Petviashvili three-dimensional equation, collapse is accompanied by the formation of a weakly turbulent background by the wave radiation from the cavity

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. Radiologic evaluation of right middle lobe collapse

    International Nuclear Information System (INIS)

    Kwun, Dae Young; Kim, Jong Deok; Kim, Jong Chul

    1989-01-01

    There are many pathogenetic factors for collapse of right middle lobe; profuse peribronchial clustering of lymph nodes about the right middle lobe bronchus, poor drainage of the bronchus because of its acute angle of take-off from the intermediate bronchus, and the isolation of this small lobe from the right upper and lower lobes, and thus from the aerating effects of collateral ventilation. Retrospectively we reviewed 36 cases of right of right middle lobe collapse of which causes were confirmed by histopathologic or bronchographic findings during the recent 6 years from March 1983 to February 1988 at Inje College Pusan Paik Hospital, and obtained the following results: 1. Male to female ratio was 1:1:4,and peak incidence (64%) was in the fifth and sixth decades with the mean age of 51.1 years. 2. Bronchiectasis was the most common cause (30.6%), and the others were chronic bronchitis (25.0%), pulmonary tuberculosis (19.4%), lung cancer (16.7%), and non-specific inflammatory disease (8.3%). This suggests benign disease is 5 times more common cause of right middle lobe collapse than lung cancer. 3. Among the plain chest radiolograph findings, obliteration of right cardiac border and triangular radiopaque density were the most frequent findings(77.8% in each) and the next was downward and anterior displacement of minor and major fissures (55.6%) 4. Bronchography was done in 11 cases; bronchiectasis was found in 8 cases and chronic bronchitis in 3 cases. Right middle lobe bronchus was obstructed in 2 cases of chronic bronchitis. 5. Chest CT scan was performed in 4 cases of lung cancer, 2 of non-specific inflammatory disease, and 1 of pulmonary tuberculosis: all of lung cancer revealed hilar mass, budged or lobulated fissures, in homogenous density, and mediastinal lymph node enlargement, and all benign disease showed homogenous density and flat to concave fissures. Right middle lobar bronchus narrowing was seen in 5 cases and its obstruction in 2 cases

  13. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  14. The onset of coherence collapse in DBR lasers

    International Nuclear Information System (INIS)

    Woodward, S.L.; Koch, T.L.; Koren, U.

    1990-01-01

    The authors investigate how the onset of coherence collapse depends on laser output power. The lasers were three-section multiquantum-well distributed-Bragg-reflector (MQW-DBR) lasers. The fraction of light reflected back into the lasing mode was varied, and the point at which the transition to coherence collapse occurred was measured. This feedback level varies approximately linearly with laser output power. For these lasers, when the output power is 1 mW, the transition to coherence collapse beings when the optical feedback into the lasing mode is below - 40 dBm; when the feedback power is - 35 dBm the laser line is completely collapsed

  15. Developing empirical collapse fragility functions for global building types

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; D'Ayala, D.

    2011-01-01

    Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in terms of macroseismic intensity. This article provides a simple procedure for quantifying collapse fragility using vulnerability criteria based on the European Macroseismic Scale (1998) for selected European building types. In addition, the collapse fragility functions are developed for global building types by fitting the beta distribution to the multiple experts’ estimates for the same building type (obtained from EERI’s World Housing Encyclopedia (WHE)-PAGER survey). Finally, using the collapse probability distributions at each shaking intensity level as a prior and field-based collapse-rate observations as likelihood, it is possible to update the collapse fragility functions for global building types using the Bayesian procedure.

  16. Improvement of group collapsing in TRANSX code

    International Nuclear Information System (INIS)

    Jeong, Hyun Tae; Kim, Young Cheol; Kim, Young In; Kim, Young Kyun

    1996-07-01

    A cross section generating and processing computer code TRANSX version 2.15 in the K-CORE system, being developed by the KAERI LMR core design technology development team produces various cross section input files appropriated for flux calculation options from the cross section library MATXS. In this report, a group collapsing function of TRANSX has been improved to utilize the zone averaged flux file RZFLUX written in double precision as flux weighting functions. As a result, an iterative calculation system using double precision RZFLUX consisting of the cross section data library file MATXS, the effective cross section producing and processing code TRANSX, and the transport theory calculation code TWODANT has been set up and verified through a sample model calculation. 4 refs. (Author)

  17. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  18. Inhomogeneities from quantum collapse scheme without inflation

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Cañate, Pedro, E-mail: pedro.canate@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico); Sudarsky, Daniel, E-mail: sudarsky@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico)

    2015-04-09

    In this work, we consider the problem of the emergence of seeds of cosmic structure in the framework of the non-inflationary model proposed by Hollands and Wald. In particular, we consider a modification to that proposal designed to account for breaking the symmetries of the initial quantum state, leading to the generation of the primordial inhomogeneities. This new ingredient is described in terms of a spontaneous reduction of the wave function. We investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities, and which are the dominant deviations that arise in the model as a consequence of the introduction of the collapse of the quantum state into that scenario.

  19. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  20. On spontaneous photon emission in collapse models

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo; Donadi, Sandro

    2013-01-01

    We reanalyze the problem of spontaneous photon emission in collapse models. We show that the extra term found by Bassi and Dürr is present for non-white (colored) noise, but its coefficient is proportional to the zero frequency Fourier component of the noise. This leads one to suspect that the extra term is an artifact. When the calculation is repeated with the final electron in a wave packet and with the noise confined to a bounded region, the extra term vanishes in the limit of continuum state normalization. The result obtained by Fu and by Adler and Ramazanoğlu from application of the Golden Rule is then recovered. (paper)

  1. Gas and vapor bubble growth and collapse

    International Nuclear Information System (INIS)

    Bonnin, J.; Reali, M.; Sardella, L.

    1976-01-01

    The rate of growth or collapse of a spherical bubble of gas or vapor under the effect of a nonequilibrium with the ambient liquid can be expressed in terms of generalized parameters taking into account either mass or heat diffusion. Diffusion equations have been solved either by numerical computation or under the form of a asymptotical solution, for a growing bubble only and with a constant nonequilibrium. Solutions are compared between them and with already published ones. Experimental results obtained match with a unique nonequilibrium parameter, analogous to a Jacob number. Discrepancies with asymptotical solutions can require in some cases complete numerical computation. But taking into account convection due to bubble lift will require a more sophisticated numerical computation [fr

  2. Network structure control of binary mixed langmuir monolayers of homo-PS and PS-b-P2VP.

    Science.gov (United States)

    Wen, Gangyao

    2010-03-25

    Our recent work showed there existed a composition window for mixed Langmuir monolayers of homopolystyrene (h-PS) and a symmetric diblock copolymer polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) to form necklace-network structures at the air/water interface. In order to study further the possible mechanism and control the network structure (i.e., surface coverage and nanoaggregate diameter), effects of spreading solution concentration and volume, subphase temperature, and transfer pressure on the network structure were studied by the Langmuir monolayer technique and tapping mode atomic force microscopy. With the increase of transfer pressure, there existed a novel nonlinear behavior for the nanoaggregate diameter first to increase, then to decrease, and finally to increase again, while the surface coverage tended to increase step by step. Moreover, with the elevation of temperature, chain motion between the adjoining nanoaggregates tended to be improved and thus the nanoaggregate diameter tended to be more uniform.

  3. An analytic model of radiative collapse of a Z-pinch

    International Nuclear Information System (INIS)

    Haines, M.G.

    1989-01-01

    There is a critical current I PB of about 1 MA (the Pease-Braginskii current) at which Ohmic heating and bremsstrahlung losses balance in a Z-pinch under pressure equilibrium. An analytic zero-dimensional model shows the process of radiative collapse when the prescribed current exceeds the critical current. In particular for a linearly rising current radiative collapse is complete when the current is 3 I PB . However, in practice the voltage limitation imposed by an external circuit prevents such a total collapse, and by including this in the model a maximum density (10 30 -10 32 m -3 )can occur followed by an expansion and damped oscillation about an equilibrium at which the current equals the Pease-Braginskii current. In the absence of alpha-particle pressure the maximum density is limited by the resistance of the narrow column, the large voltage across which (∼10 8 V) is balanced essentially bu a large negative LI; it occurs when the current is I PB [(δ-1)/(δ-2)] 1/2 where δ=7/3+4/3 In(R/a), where a is the pinch radius and R is the radius of the current return. The minimum current following maximum density is shown to be greater than I PB /√2. Degeneracy effects can be included in the model. (author) 5 refs., 1 fig

  4. An analytic model of radiative collapse of a Z-pinch

    International Nuclear Information System (INIS)

    Haines, M.G.

    1989-01-01

    There is a critical current I PB of about 1 MA (the Pease-Braginskii current) at which Ohmic heating and Bremsstrahlung losses balance in a Z-pinch under pressure equilibrium. An analytic zero-dimensional model shows the process of radiative collapse when the prescribed current exceeds the critical current. In particular for a linearly rising current radiative collapse is complete when the current is √3 I PB . However in practice the voltage limitation imposed by an external circuit prevents such a total collapse, and by including this in the model a maximum density (∼ 10 30 -10 32 m -3 ) can occur followed by an expansion and damped oscillation about an equilibrium at which the current equals the Pease-Braginskii current. In the absence of alpha-particle pressure the maximum density is limited by the resistance of the narrow column, the large voltage across which (∼ 10 8 V) is balanced essentially by a large negative LI radical; it occurs when the current is I PB [(δ-1)/(δ-2)] 1/2 where δ = 7/3+4/3 1n (R w /a), where a is the pinch radius and R w is the radius of the current return. The minimum current following maximum density is shown to be greater than I PB /√2. Degeneracy effects can be included in the model. (author)

  5. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    Science.gov (United States)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  6. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  7. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    International Nuclear Information System (INIS)

    Greene, J. E.

    2015-01-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO 2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  8. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  9. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    Science.gov (United States)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  10. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    Science.gov (United States)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  11. Observation of minor collapse of current-carrying plasma in LHD

    International Nuclear Information System (INIS)

    Narushima, Yoshiro; Sakakibara, Satoru; Watanabe, Kiyomasa

    2006-01-01

    A minor collapse observed in current-carrying plasma has been investigated in Large Helical Device (LHD). The magnetic configuration with high central rotational transform has ι/2π=1 surface at the core region and is relatively unstable for the m/n=1/1 mode (here, m and n are the poloidal and toroidal mode number, respectively). When the beam-driven current exceeds a certain value, the m/n=1/1 mode grows with a growth time of ∼30 ms and causes a sudden drop of the plasma stored energy and the electron temperature, and it also limits the plasma current itself. A local flattening in an electron temperature profile appears just after the minor collapse. The mode does not rotate and stays at the same spatial location. The possibility of pressure- and current-driven magneto-hydro dynamics (MHD) instabilities is discussed. (author)

  12. Prediction of picosecond voltage collapse and electromagnetic wave generation in gas avalanche switches

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.; Duong-Van, M.; Villa, F.

    1988-01-01

    A picosecond speed switch, the Gas Avalanche Switch (GAS), has been proposed for GeV linear accelerators. The medium is gas at high pressure (100 - 700 atm). An avalanche discharge is induced between pulse-charged high voltage electrodes by electron deposition from a fast laser pulse. Avalanche electrons move to the positive electrode, causing the applied voltage to collapse in picoseconds. A two-dimensional (2D) electromagnetic electron fluid computer code calculates the avalanche evolution and voltage collapse in air for an infinite parallel plate capacitor with a 0.1 mm spacing. Calculations are done for an accelerator switch geometry consisting of a 0.7 mm wide by 0.8 mm high, rectangular, high voltage center electrode (CE) between the grounded plates of a parallel plate line of 2 mm spacing. Several variations of CE elevation and initial electron deposition are investigated The 2D character of the outgoing TEM waves is shown

  13. Interfacial Interactions and Nano structure Changes in DPPG/HD Monolayer at the Air/Water Interface

    International Nuclear Information System (INIS)

    Zhu, H.; Zhang, P.; Sun, R.; Hao, Ch.; Wang, J.; Zhu, H.; Zhang, T.; Zhang, P.; Li, Sh.

    2015-01-01

    Lung surfactant (LS) plays a crucial role in regulating surface tension during normal respiration cycles by decreasing the work associated with lung expansion and therefore decreases the metabolic energy consumed. Monolayer surfactant films composed of a mixture of phospholipids and spreading additives are of optional utility for applications in lung surfactant-based therapies. A simple, minimal model of such a lung surfactant system, composed of 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (DPPG) and hexadecanol (HD), was prepared, and the surface pressure-area π-A) isotherms and nano structure characteristics of the binary mixture were investigated at the air/water interface using a combination of Langmuir-Blodgett (LB) and atomic force microscopy (AFM) techniques. Based on the regular solution theory, the miscibility and stability of the two components in the monolayer were analyzed in terms of compression modulusC_s"-1) , excess Gibbs free energy (δG"π_exc) , activity coefficients (γ), and interaction parameterζ. The results of this paper provide valuable insight into basic thermodynamics and nano structure of mixed DPPG/HD monolayers; it is helpful to understand the thermodynamic behavior of HD as spreading additive in LS monolayer with a view toward characterizing potential improvements to LS performance brought about by addition of HD to lung phospholipids

  14. Calculations of three-dimensional collapse and fragmentation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1978-01-01

    Calculations of the fragmentation of an isothermally collapsing cloud have been carried out using a method that follows the motion of individual fluid particles and includes pressure and viscosity forces between neighbouring particles. In a cloud or region whose mass is comparable to the Jeans mass, a highly condensed core forms, surrounded by a diffuse envelope that continues to accrete on to the core; in the presence of rotation, the inner part of the envelope becomes essentially an accretion disc. If the mass exceeds the Jeans mass, several such accreting cores are formed, the number being comparable to the initial number of jeans masses in the cloud. Binary systems and hierarchical multiple systems are frequently obtained. The mass of the largest object formed is independent of the Jeans mass but depends on the angular momentum and viscosity of the cloud, and is essentially the maximum mass accretable by a single object. The resulting mass spectrum may be determined by the development of a hierarchy of accreting objects of different sizes, such that each object has several smaller ones associated with it. The hypothesis of a self-similar accretion hierarchy predicts a power-law mass spectrum, which in the limit of inefficient accretion has an exponent x = 1, in reasonable agreement with observations. (author)

  15. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  16. Can a collapse of global civilization be avoided?

    OpenAIRE

    Ehrlich, Paul R.; Ehrlich, Anne H.

    2013-01-01

    Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.

  17. Can a collapse of global civilization be avoided?

    Science.gov (United States)

    Ehrlich, Paul R; Ehrlich, Anne H

    2013-03-07

    Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.

  18. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  19. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  20. Collapse of thin wall tubes with small initial ovality

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    A simple model of creep collapse of tubes based on the bending theory of curved beams is developed. The model is compared with more complex models. The main result of this study is the definition of a new model of creep collapse of tubes with a minimum of limited hypothesis. (author) [es

  1. Collapse of thin wall tubes small initial ovality

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    In this work a simple model of creep collapse of tubes based on the bending theory of curved beams, is developed. The model is compared with more complex models. The main result of this work is the definition of a new model of creep collapse of tubes with a minimum of limitative hypothesis. (Author) 6 refs

  2. Maternal Postpartum Role Collapse as a Theory of Postpartum Depression

    Science.gov (United States)

    Amankwaa, Linda Clark

    2005-01-01

    The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…

  3. Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos

    Science.gov (United States)

    Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-05-01

    Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.

  4. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  5. Coexistence of multiple conformations in cysteamine monolayers on Au(111)

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Bilic, A; Reimers, JR

    2005-01-01

    The structural organization, catalytic function, and electronic properties of cysteamine monolayers on Au(111) have been addressed comprehensively by voltammetry, in situ scanning tunneling microscopy (STM) in anaerobic environment, and a priori molecular dynamics (MD) simulation and STM image si...

  6. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting; Lu, Li-Syuan; Wang, Dean; Huang, Jing-Kai; Li, Ming-Yang; Chang, Tay-Rong; Chou, Yi-Chia; Juang, Zhen-Yu; Jeng, Horng-Tay; Li, Lain-Jong; Chang, Wen-Hao

    2017-01-01

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties

  7. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  8. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  9. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  10. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  11. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  12. Atomic defects and doping of monolayer NbSe2

    OpenAIRE

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J.P.; Lawlor, Sean; Sanchez, Ana M.; Sloan, Jeremy; Gorbachev, Roman; Grigorieva, Irina; Krasheninnikov, Arkady V.; Haigh, Sarah

    2017-01-01

    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reve...

  13. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  14. The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l-Ascorbic Acid Alkyl Esters.

    Science.gov (United States)

    Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura

    2016-01-19

    In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.

  15. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  16. Electrical Contacts in Monolayer Arsenene Devices.

    Science.gov (United States)

    Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing

    2017-08-30

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

  17. Optical absorption in disordered monolayer molybdenum disulfide

    Science.gov (United States)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  18. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  19. Technique for etching monolayer and multilayer materials

    Science.gov (United States)

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  20. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  1. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  3. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  4. Ear canal collapse prevalence and associated factors among users of a center of prevention and rehabilitation for disabilities

    Directory of Open Access Journals (Sweden)

    Elisana Costa Dourado

    Full Text Available ABSTRACT Purpose: to investigate the prevalence of the ear canal collapse when using supra-aural earphones and to verify if this event is influenced by sex, age, color of the skin and prominent ear. Methods: the collapse was assessed by a visual inspection after the positioning of a detached cushion, pressured against the external ear. Results: a total of 436 individuals, aged 3 to 97 years, participated in the study. Ear canal collapse was observed in 11.4% of the subjects, being mostly bilateral (90.0%. The prevalence ranged from 6.3% to 36.6% across age groups. Males, aged 65 years or above and presence of prominent ear were independently identified as associated factors for the occurrence of ear canal collapse (p<0.05. Despite a higher prevalence for those self-identified as white skinned when compared to non-whites, the difference was not statistically significant. Conclusion: the ear canal collapse, when supra-aural earphones are used, is more likely to occur in men, in elderly people, and among those with prominent ears. The prevalence of the event in this population raises the necessity of a careful examination, previous to any evaluation using supra-aural earphones.

  5. Oxygen Issue in Core Collapse Supernovae

    Science.gov (United States)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  6. Tulsa Oklahoma Oktoberfest Tent Collapse Report

    Directory of Open Access Journals (Sweden)

    Kelly E. Deal

    2012-01-01

    Full Text Available Background. On October 17, 2007, a severe weather event collapsed two large tents and several smaller tents causing 23 injuries requiring evacuation to emergency departments in Tulsa, OK. Methods. This paper is a retrospective analysis of the regional health system’s response to this event. Data from the Tulsa Fire Department, The Emergency Medical Services Authority (EMSA, receiving hospitals and coordinating services were reviewed and analyzed. EMS patient care reports were reviewed and analyzed using triage designators assigned in the field, injury severity scores, and critical mortality. Results. EMT's and paramedics from Tulsa Fire Department and EMSA provided care at the scene under unified incident command. Of the 23 patients transported by EMS, four were hospitalized, one with critical spinal injury and one with critical head injury. One patient is still in ongoing rehabilitation. Discussion. Analysis of the 2007 Tulsa Oktoberfest mass casualty incident revealed rapid police/fire/EMS response despite challenges of operations at dark under severe weather conditions and the need to treat a significant number of injured victims. There were no fatalities. Of the patients transported by EMS, a minority sustained critical injuries, with most sustaining injuries amenable to discharge after emergency department care.

  7. Flux-driven simulations of turbulence collapse

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CASS and Department of Physics, University of California, San Diego, La Jolla, California 92093-0429 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  8. Colony collapse disorder: a descriptive study.

    Directory of Open Access Journals (Sweden)

    Dennis Vanengelsdorp

    Full Text Available BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L. colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels, no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.

  9. Tourism's collapse puts Gambian women at risk.

    Science.gov (United States)

    Coker, M S

    1995-06-01

    Despite efforts of the Gambian government, which established a ministry in 1981 that would tackle gender issues, improve women's health, and promote empowerment, women are underrepresented in government and business, and 84% are illiterate. Child mortality is among the highest in Africa; 134 children per 1000 die before their fifth birthday. In the mid-1980s austerity measures adopted by the World Bank and IMF left the ministry without funds. Rice and vegetable production, the main source of income for women, fell in the 1990s. In 1994, paddy production dropped 23% from the previous year; this was due to a lack of technical and financial assistance. The collapse of tourism with Capt. Yahya Jammeh's seizure of power has put prostitutes catering to tourists out of work, but women who have lost jobs in the hotel industry may be pushed into local prostitution to survive. The impact of this on the HIV/AIDS epidemic is unclear. Although Gambia is one of the world's most aid-dependent countries (more than a quarter of the GNP before the coup), corruption and mismanagement in the nongovernmental sector is widespread. The director of the Women in Development Programme, a $15m World Bank project, was forced to resign over allegations of fraud. The political process sidelines women; only village chiefs, who are traditionally men, are allowed to vote when new heads are elected.

  10. Adsorption of helium gas near Tλ at low pressures

    International Nuclear Information System (INIS)

    Kachalin, G.V.; Kryukov, A.P.; Nesterov, S.B.

    1998-01-01

    Cryosorption of helium isotopes ( 4 He and 3 He) on thin argon cryo layers is studied experimentally in the temperature range 4.2-2 K at low pressures. It is shown that the sorption iso stere 4 He is anomalous at temperatures close to be temperature of the phase transition in the bulk of 4 He, T λ . An abrupt pressure change is observed for a 4 He film thickness approximately equal to two monolayers. The experiments on cryosorption of 3 He gas on an argon layer with a 3 He film thickness of approximately one monolayer display monotonous changes in the pressure within the whole temperature range

  11. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors

    Science.gov (United States)

    Jiang, Xiang; Liu, Hanlong; Main, Ian G.; Salje, Ekhard K. H.

    2017-08-01

    The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability distribution function of radiated energy P ˜E-ɛ , with exponent ɛ =1.5 . Impending major collapse is preceded by a reduction of the energy exponent to the mean-field value ɛ =1.32 . Concurrently, the crackling noise increases in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment of previously collected extensive collapse data sets using "record-breaking analysis," based on the statistical appearance of "superjerks" within a smaller spectrum of collapse events. Superjerks are defined as avalanche signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but other "near collapse" events equally qualify. In this way a very large data set of events is reduced to a sparse sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence Es j˜nδ with δ =1.79 . They are less robust in identifying the precise time of the final collapse, however, than the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.

  12. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  13. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  14. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  15. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  16. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Science.gov (United States)

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  17. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  18. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  19. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  20. Search for stellar gravitational collapses with the MACRO detector

    CERN Document Server

    Ambrosio, M; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Raino, J A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1140/epjc/s2004-01981-3

    2004-01-01

    We present the final results of the search for stellar gravitational collapses obtained by the MACRO experiment. The detector was active for a stellar collapse search for more than 11 years and it was sensitive to collapses occurring all over in our galaxy for 8.6 years. A real time system for a prompt recognition of neutrino bursts was developed and was operating on-line for almost the whole life of the experiment. No signal compatible with a neutrino burst from a galactic supernova was observed.