WorldWideScience

Sample records for monolayer adsorption measurements

  1. Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements.

    Science.gov (United States)

    Oćwieja, M; Adamczyk, Z; Morga, M

    2015-01-15

    Physicochemical characteristics of tannic acid (tannin) suspensions comprising its stability for a wide range of ionic strength and pH were thoroughly investigated using UV-vis spectrophotometry, dynamic light scattering and microelectrophoretic measurements. These studies allowed to determine the hydrodynamic diameter of the tannic acid that was 1.63 nm for the pH range 3.5-5.5. For pH above 6.0 the hydrodynamic diameter significantly decreased as a result of the tannin hydrolysis. The electrophoretic mobility measurements confirmed that tannic acid is negatively charged for these values of pH and ionic strength 10(-4)-10(-2) M. Therefore, in order to promote adsorption of tannin molecules on negatively charged mica, the poly(allylamine hydrochloride) (PAH) supporting monolayers were first adsorbed under diffusion transport conditions. The coverage of polyelectrolyte monolayers was regulated by changing bulk concentration of PAH and the adsorption time. The electrokinetic characteristics of bare and PAH-covered mica were determined using the streaming potential measurements. The zeta potential of these PAH monolayers was highly positive, equal to 46 mV for ionic strength of 10(-2) M. The kinetics of tannin adsorption on these PAH supporting monolayers was evaluated by the in situ the streaming potential measurements. The zeta potential of PAH monolayers abruptly decreases with the adsorption of tannin molecules that was quantitatively interpreted in terms of the three-dimensional electrokinetic model. The acid-base characteristics of tannin monolayers were acquired via the streaming potential measurements for a broad range of pH. The obtained results indicate that it is possible to control adsorption of tannin on positively charged surfaces in order to designed new multilayer structures of desirable electrokinetic properties and stability.

  2. Adsorption of Ions at Uncharged Insoluble Monolayers

    Science.gov (United States)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  3. Oxygen adsorption on palladium monolayer as a surface catalyst

    Science.gov (United States)

    Shah, Janki; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2017-09-01

    In the recent work, we study on the structural and electronic properties of the graphene like Pd monolayer with the adsorption of oxygen adatoms by using first-principles calculations. The electronic band structure and projected density of states investigate that Pd-surface with oxygen molecule adsorption gives metallic behaviour. We found that the behaviour changed at M-point in the electronic band structure as adding oxygen atoms. The oxygen adsorption was dissociative until the Pd surface immersed with oxygen atoms. The electron charge density increases as the number of oxygen atoms on Pd-surface increases. The noticeable observation is that by adding 7th oxygen atom, they started to ripple from fixed Pd-surface without making a bond due to oxygen coverage increases. The results show that Pd monolayer has different applications as a oxygen catalyst and it can be utilized as the pellet, surface, and film materials to safeguard sustenance from oxidation.

  4. Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption

    Science.gov (United States)

    Jogikalmath, Gangadhar

    Protein adsorption resistant surfaces find use in many biomedical applications, such as catheters, dialysis devices and biosensors that involve blood contacting surfaces. To ensure long-term functioning of a device in an environment containing protein, there is a need to produce homogeneous surfaces that are resistant to protein adsorption. A polymer brush covered surface, produced by either physical adsorption or chemical grafting of hydrophilic polymers to surfaces, is one of the approaches used in creating such surfaces. High grafting densities needed to make an effective barrier are usually not realized in chemical grafting/adsorption from solution, due to self-exclusion of surface grafted molecules. In this dissertation polymer brush surfaces formed by chemically grafted PEO molecules and transferred monolayers of PS-b-PEO diblock copolymers are investigated using atomic force microscopy (AFM), surface plasmon resonance (SPR) and surface pressure measurement techniques. An AFM adhesion mapping technique was used to evaluate the surface heterogeneity of chemically modified PEO and transferred diblock copolymer monolayer surfaces. The behavior of PS-b-PEO molecules at the air-water interface was studied using Langmuir trough. The stability of transferred diblock copolymer monolayers was investigated using AFM. Using SPR, protein adsorption to the diblock copolymer layers was investigated as a function of protein size (using HSA and ferritin) as a function of grafting density of PEO in the monolayer. It was seen that a lower density of the PS-b-PEO monolayer was sufficient to prevent ferritin adsorption (larger protein) while a higher density brush layer was required to achieve complete prevention of HSA adsorption to the surface. The effect of mobility of the polymer brush layer on protein adsorption prevention was analyzed using SPR and surface pressure measurements. It was seen that the copolymer monolayer (at the air-buffer interface) rearranged itself to

  5. Adsorption of anionic polyelectrolytes to dioctadecyldimethylammonium bromide monolayers

    Science.gov (United States)

    Engelking, J.; Menzel, H.

    Monolayers of dioctadecyldimethylammonium bromide (DODA) at the air/water interface were used as model for charged surfaces to study the adsorption of anionic polyelectrolytes. After spreading on a pure water surface the monolayers were compressed and subsequently transferred onto a polyelectrolyte solution employing the Fromherz technique. The polyelectrolyte adsorption was monitored by recording the changes in surface pressure at constant area. For poly(styrene sulfonate) and carboxymethylcellulose the plot of the surface pressure as function of time gave curves which indicate a direct correlation between the adsorbed amount and surface pressure as well as a solely diffusion controlled process. In the case of rigid rod-like poly(p-phenylene sulfonate)s the situation is more complicated. Plotting the surface pressure as function of time results in a curve with sigmoidal shape, characterized by an induction period. The induction period can be explained by a domain formation, which can be treated like a crystallization process. Employing the Avrami expression developed for polymer crystallization, the change in the surface pressure upon adsorption of rigid rod-like poly(p-phenylene sulfonate)s can be described.

  6. Bovine and human insulin adsorption at lipid monolayers: a comparison

    Directory of Open Access Journals (Sweden)

    Sergio eMauri

    2015-07-01

    Full Text Available Insulin is a widely used peptide in protein research and it is utilised as a model peptide to understand the mechanics of fibril formation, which is believed to be the cause of diseases such as Alzheimer and Creutzfeld-Jakob syndrome. Insulin has been used as a model system due to its biomedical relevance, small size and relatively simple tertiary structure. The adsorption of insu lin on a variety of surfaces has become the focus of numerous studies lately. These works have helped in elucidating the consequence of surface/protein hydrophilic/hydrophobic interaction in terms of protein refolding and aggregation. Unfortunately, such model surfaces differ significantly from physiological surfaces. Here we spectroscopically investigate the adsorption of insulin at lipid monolayers, to further our understanding of the interaction of insulin with biological surfaces.In particular we study the effect of minor mutations of insulin’s primary amino acid sequence on its interaction with 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG model lipid layers. We probe the structure of bovine and human insulin at the lipid/water interface using sum frequency generation spectroscopy (SFG. The SFG experiments are complemented with XPS analysis of Langmuir-Schaefer deposited lipid/insulin films. We find that bovine and human insulin, even though very similar in sequence, show a substantially different behavior when interacting with lipid films.

  7. Magneto photoluminescence measurements of tungsten disulphide monolayers

    Science.gov (United States)

    Kuhnert, Jan; Rahimi-Iman, Arash; Heimbrodt, Wolfram

    2017-03-01

    Layered transition-metal dichalcogenides have attracted great interest in the last few years. Thinned down to the monolayer limit they change from an indirect band structure to a direct band gap in the visible region. Due to the monolayer thickness the inversion symmetry of the crystal is broken and spin and valley are coupled to each other. The degeneracy between the two equivalent valleys, K and K‧, respectively, can be lifted by applying an external magnetic field. Here, we present photoluminescence measurements of CVD-grown tungsten disulphide (WS2) monolayers at temperatures of 2 K. By applying magnetic fields up to 7 T in Faraday geometry, a splitting of the photoluminescence peaks can be observed. The magnetic field dependence of the A-exciton, the trion and three bound exciton states is discussed and the corresponding g-factors are determined.

  8. Anion Adsorption on an Au Colloid Monolayer Based Cysteamine-Modified Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anion adsorption behavior on Au colloid surface was investigated in virture of depositing monolayers of Au colloid on the self-assembled monolayers of cysteamine on a gold electrode. Po tential-dependent anion adsorption-desorption waves via the nonfaradaic current were obtained by means of cyclic voltammetry at Au colloid-modified gold electrodes in the potential range of -200-600 mV. The adsorption sequence in the order of adsorption peak potentials(Epa) is OH->citrate3->H2PO4->Cl->SO42->ClO4->NO3-. Among them, citrate3-exhibited an en tirely irreversible adsorption. A rise in temperature can increase the rates of adsorption-desorp tion and improve the reversibility of the adsorption-desorption of CI-, SO24-, CIO4-, NO3- and H2PO4-. The adsorption peak potentials shifted more negatively for ca. 63 mV as the anion con centrations were increased by a decade factor. The change of pH from 7 to 1 slightly affected the adsorption peak potentials of Cl- and NO3-. Au colloids with a smaller size (16 nm) gave rise to a better reversibility of the adsorption-desorption process and lower adsorption currents. The ex perimental results of citrate ions adsorption on Au colloid surface show that Au colloids with a smaller size prepared by sodium citrate method exhibited a higher stability in the solution in com parison to those with larger sizes because of its higher ratio of charge/mass. In other words, the smaller gold nanoparticles are covered with citrate ions monolayer that can also be formed at larg er gold nanoparticles by means of electrochemical scan.

  9. Adsorption of biopolymers human serum albumin and human gamma globulin to well-defined surfaces of self-assembled monolayers

    Science.gov (United States)

    Cregger, Tricia Ann

    The tenacity with which the blood proteins Human Serum Albumin (HSA) and Human Gamma Globulin (HGG) adsorb to a surface modified with a monomolecular coating varies with the packing of the alkyl chains in the coating. The adsorption of proteins onto well-defined surfaces of self-assembled monolayers (SAMs) was studied with X-ray reflectometry (XR), neutron reflectometry (NR), optical reflectometry, and total internal reflection fluorescence (TIRF). NR and XR was used to study adsorption in the absence of flow, while optical reflectometry and TIRF were used to probe the adsorption under flow conditions. In particular, competitive adsorption measurements of binary solutions of HSA, HGG and Fibrinogen (FIB) were performed with TIRE The properties of the surface were varied by altering the alkyl chains' packing density and the chain end functionality of the SAMs. The depth profiles of protein concentration near the adsorbing surface measured by NR were dependent upon the chain packing density in the case of HSA. The concentration depth profile of HGG was unaltered by varying chain packing density. Measurements performed under flow using optical reflectometry showed a different behavior: the surface excess of adsorbed HSA was relatively independent of the surface packing, while the surface excess of HGG depended on the packing density of the SAM. The tenacity with which the proteins adsorbed to different functionalized surfaces was determined by attempting to remove the protein using a strong surfactant, sodium dodecyl sulfate (SDS). Ex situ XR measurements suggested that both HSA and HGG adsorb more tenaciously to a less densely-packed monolayer, almost independent of surface functionality. Two exceptions were a less densely-packed vinyl-terminated monolayer and a less densely-packed bromine-terminated monolayer, from which HSA could not be removed at all.

  10. Structural Properties and Phase Transition of Na Adsorption on Monolayer MoS2.

    Science.gov (United States)

    He, Hai; Lu, Pengfei; Wu, Liyuan; Zhang, Chunfang; Song, Yuxin; Guan, Pengfei; Wang, Shumin

    2016-12-01

    First-principles calculations are performed to investigate the structural stability of Na adsorption on 1H and 1T phases of monolayer MoS2. Our results demonstrate that it is likely to make the stability of distorted 1T phase of MoS2 over the 1H phase through adsorption of Na atoms. The type of distortion depends on the concentration of adsorbed Na atoms and changes from zigzag-like to diamond-like with the increasing of adsorbed Na atom concentrations. Our calculations show that the phase transition from 1H-MoS2 to 1T-MoS2 can be obtained by Na adsorption. We also calculate the electrochemical properties of Na adsorption on MoS2 monolayer. These results indicate that MoS2 is one of potential negative electrodes for Na-ion batteries.

  11. On the adsorption of hexaammineruthenium (III) at anionic self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Steichen, M.; Doneux, Th.; Buess-Herman, C. [Universite Libre de Bruxelles, Faculte des Sciences, Service de Chimie Analytique et Chimie des Interfaces, CP 255, Boulevard du Triomphe 2, B-1050 Bruxelles (Belgium)

    2008-09-01

    The binding of the electroactive hexaammineruthenium (III) complex ions to anionic self-assembled monolayers (SAMs) has been investigated by means of chronocoulometry and ac voltammetry. From chronocoulometric data recorded in 10{sup -2} M LiClO{sub 4} containing different [Ru(NH{sub 3}){sub 6}]{sup 3+} concentrations, we have established the adsorption isotherm of [Ru(NH{sub 3}){sub 6}]{sup 3+} on a compact monolayer of 2-mercaptobenzimidazole-5-sulfonate (MBIS) self-assembled on Au(1 1 1). The data were satisfactorily fitted to the linearized Langmuir adsorption isotherm and a binding constant of 4.0 ({+-}0.4) x 10{sup 6} M{sup -1} has been determined. The electrostatic binding of [Ru(NH{sub 3}){sub 6}]{sup 3+} to a dilute PNA-DNA monolayer formed after hybridization on a PNA-modified gold electrode by self-assembly from a mixed solution of mercaptobutan-1-ol and PNA oligonucleotides has been studied by ac voltammetry. The admittance of the PNA-modified electrode after hybridization with complementary DNA was measured in 0.01 M Tris-HCl buffer containing different [Ru(NH{sub 3}){sub 6}]{sup 3+} concentrations. Based on these data, a binding constant of [Ru(NH{sub 3}){sub 6}]{sup 3+} to the surface-confined PNA-DNA duplex was derived from the Langmuir isotherm and amounts to 2.9 ({+-}0.3) x 10{sup 5} M{sup -1}. As the interactions between [Ru(NH{sub 3}){sub 6}]{sup 3+} and the immobilized PNA-DNA hybrids on the gold surface are essentially electrostatic, the adsorption of the highly charged cationic redox complex at low concentrations to the negatively charged PNA-DNA modified surface is in large competition with other monovalent cations present in the electrolyte at higher concentrations. The influence of competing sodium cations was thus studied by adding different NaCl concentrations in the 0.01 M Tris-HCl electrolyte. (author)

  12. Transport measurement of Li doped monolayer graphene

    Science.gov (United States)

    Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich

    Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.

  13. Self-assembly of Carboxyl Functionalized Polystyrene Nanospheres into Close-packed Monolayers via Chemical Adsorption

    Institute of Scientific and Technical Information of China (English)

    LI,Zhi-Wei(李志伟); ZHOU,Jing-Fang(周静芳); ZHANG,Zhi-Jun(张治军); DANG,Hong-Xin(党鸿辛)

    2004-01-01

    The polyacrylic acid functionalized polystyrene nanospheres were synthesized and self-assembled into irregular,densely packed monolayers in non-aqueous media. The polymer nanoparticles were chemically adhered to substrates. The morphologies of the resulting films were investigated. The impact of the volume fraction of alcohol in the mixed solvents on the particle adsorption and fabrication of nanosphere assembled films was examined.

  14. Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study

    Science.gov (United States)

    Ma, Dongwei; Ju, Weiwei; Li, Tingxian; Yang, Gui; He, Chaozheng; Ma, Benyuan; Tang, Yanan; Lu, Zhansheng; Yang, Zongxian

    2016-05-01

    Based on first-principles calculations, formaldehyde (H2CO) adsorption on the pristine monolayer MoS2 and that doped with Cl, P, or Si was theoretically studied to explore the potential of the MoS2 sheets as H2CO gas sensors. It is found that under Mo-rich conditions it is viable for Cl to be filled into the S vacancies acting as n-type dopant and for P and Si acting as p-type dopants. The results on the H2CO adsorption on the pristine and the Cl-doped monolayer MoS2 indicate that both are insensitive to H2CO. In contrast, H2CO exhibits strong adsorption on the P or Si-doped monolayer MoS2. And there are large electron transfer from the P or Si-doped monolayer MoS2 to the H2CO and obvious change in the electronic densities of states of both systems induced by the H2CO adsorption. These suggest that P and Si can be appropriate dopants filled into MoS2 sheets for detecting H2CO molecule.

  15. Band-gap manipulations of monolayer graphene by phenyl radical adsorptions: a density functional theory study.

    Science.gov (United States)

    Huang, Lin; Sk, Mahasin Alam; Chen, Peng; Lim, Kok Hwa

    2014-08-25

    Phenyl radical (Ph˙) adsorption on monolayer graphene sheets is used to investigate the band-gap manipulation of graphene through density functional theory. Adsorption of a single Ph˙ on graphene breaks the aromatic π-bond and generates an unpaired electron, which is delocalized to the ortho or para position. Adsorption of a second radical at the ortho or para position saturates the radical by electron pairing and results in semiconducting graphene. Adsorption of a second radical at the ortho position (ortho-ortho pairing) is found to be more favorable than adsorption at the para position (ortho-para pairing), and the ortho-ortho pairing has stronger effects on band-gap opening compared with ortho-para pairing. Adsorption of even numbers of Ph˙ on graphene by ortho-ortho and ortho-para pairings, in general, increases the band gap. Our study shows promise of band-gap manipulation in monolayer graphene by Ph˙ adsorption, leading to potential wider applications of graphene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tobacco mosaic virus adsorption on self-assembled and Langmuir–Blodgett monolayers studied by TIRF and SFM

    OpenAIRE

    Britt, David W.; Buijs, Jos; Hlady, V.

    1998-01-01

    The adsorption of tobacco mosaic virus (TMV) on self-assembled and Langmuir–Blodgett monolayers was investigated using total internal reflection fluorescence (TIRF) spectroscopy and scanning force microscopy (SFM). Substrates were chosen to probe electrostatic, hydrophobic and surface fluidity effects on TMV adsorption. Positively charged and hydrophobic surfaces demonstrated similar initial rates of TMV adsorption; however, their respective surface TMV coverages differed greatly. Likewise, p...

  17. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  18. Electronic and optical properties of BxNyCz monolayers with adsorption of hydrogen atoms

    Science.gov (United States)

    Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-03-01

    We apply first-principles calculations, using density functional theory, to analyze the electronic and optical properties of monolayers of graphene with a nanodomain of 2D hexagonal boron nitrite (h-BN). It also investigated the effects of the adsorption of hydrogen atoms in different atoms at the edge of the h-BN nanodomain. We calculate the electronic band structure, the complex dielectric function and the optical conductivity. For such systems, the calculations demonstrate that the compounds exhibit a prominent excitement in the visible and near-infrared regions. In this form, the present study provides physical basis for potential applications of the considered materials in optoelectronic devices at the nanoscale.

  19. Adsorption of gas molecules on Cu impurities embedded monolayer MoS{sub 2}: A first- principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Li, C.Y. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Liu, L.L. [Key Lab for Special Functional Materials of Ministry of Eduaction, Henan Province, Henan University, Kaifeng 475004 (China); Zhou, B.; Zhang, Q.K. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Tang, Z., E-mail: ztang@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China)

    2016-09-30

    Highlights: • Embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2}. • Transition-metal Cu atom can break the chemical inactivation of MoS{sub 2} surface. • MoS{sub 2}-Cu system is a promising for future application in gas molecules sensing. - Abstract: Adsorption of small gas molecules (O{sub 2}, NO, NO{sub 2} and NH{sub 3}) on transition-metal Cu atom embedded monolayer MoS{sub 2} was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2} with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS{sub 2} embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS{sub 2} with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH{sub 3} molecule acts as electron donor after adsorption, which is different from the other gas molecules (O{sub 2}, NO, and NO{sub 2}). The results suggest that MoS{sub 2}-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  20. Enantiopure chiral poly(glycerol methacrylate) self-assembled monolayers knock down protein adsorption and cell adhesion.

    Science.gov (United States)

    Li, Zheng; Köwitsch, Alexander; Zhou, Guoying; Groth, Thomas; Fuhrmann, Bodo; Niepel, Marcus; Amado, Elkin; Kressler, Jörg

    2013-10-01

    Chirality plays a fundamental role not only in biological systems, but also in synthetic materials intended for bio-applications. Self-assembled monolayers (SAMs) are prepared on gold surfaces through a "grafting to" method from racemic or enantiopure chiral poly(glycerol methacrylate)s (PGMA(rac), PGMA(R), and PGMA(S)), having a thiol endgroup. Such SAMs constitute a chemically and structurally well-defined model substrate for studying protein adsorption and cell adhesion as a function of the polymer chirality. Surface plasmon resonance measurements reveal that PGMA SAMs greatly reduce the adsorption of bovine serum albumin (BSA) compared to bare gold surfaces. Interestingly, enantiopure SAMs based on PGMA(R) or PGMA(S) show a significantly larger reduction in BSA adsorption than PGMA(rac)-covered surfaces. Studies with the monocytic cell line THP-1 show a similar relationship between enantiopurity of PGMA SAMs and the extent of cell adhesion. Ellipsometry and Raman spectroscopy measurements indicate that SAMs formed by PGMA(rac) have a higher grafting density compared to SAMs of PGMA(R) and PGMA(S). This seems to be due to the ability of PGMA(rac) to form more intermolecular hydrogen bonds among polymer chains compared to the enantiopure PGMAs. Circular dichroism spectroscopy provide evidence that enantiopure polymers adopt a chiral ordered conformation, most likely helical, in aqueous solutions. It is concluded that a higher water content of SAMs formed by enantiopure PGMA(S) and PGMA(R) SAMs arises from the macromolecular chiral conformation adopted by their enantiopure PGMA chains, and it is the decisive reason for the reduced BSA adsorption and cell adhesion as compared to PGMA(rac) SAMs.

  1. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study

    Science.gov (United States)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.

    2016-09-01

    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  2. Adsorption geometry and electronic properties of flat-lying monolayers of tetracene on the Ag(111) surface

    Science.gov (United States)

    Zaitsev, N. L.; Nechaev, I. A.; Höfer, U.; Chulkov, E. V.

    2016-10-01

    The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of a localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate γ -Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied molecular orbital remains being unoccupied in the case of γ -Tc/Ag(111) as well as in the α phase with increased coverage. The unit cell of the α phase with point-on-line registry was adapted for calculations based on the available experimental data and computed structures of the γ phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.

  3. Anomalous Lithium Adsorption Propensity of Monolayer Carbonaceous Materials: A Density Functional Study

    Indian Academy of Sciences (India)

    SWATI PANIGRAHI; DEIVASIGAMANI UMADEVI; G NARAHARI SASTRY

    2016-10-01

    Interaction between lithium and carbonaceous materials has gained a lot of importance in lithium battery industry as an important source of energy and storage. The size, dimension, curvature and chirality of the carbonaceous materials are found to be very important factors in controlling the sequential binding oflithium. The propensity of lithium binding to the monolayer carbonaceous materials has been studied using Density functional theory (DFT). Structural and energetical parameters of the complexes have been analyzed through interaction energy, sequential energy, Mulliken population analysis and spin density distribution. Spindensity of odd Li doped systems reveals the preferences for addition of further lithium atoms on the surface. Upon analyzing the interaction energy in armchair carbon nanotubes (A-CNTs) and zigzag carbon nanotubes (Z-CNTs), it has been observed that external and internal surfaces of CNTs have contrasting binding preferences for sequential addition of Li atoms. Internal surface is found to be more feasible site for lithium adsorption than the external surface. This current study provides fundamental understanding of the mechanism of lithium adsorption in lithium battery.

  4. Stabilization of Insulin by Adsorption on a Hydrophobic Silane Self-Assembled Monolayer.

    Science.gov (United States)

    Mauri, Sergio; Volk, Martin; Byard, Stephen; Berchtold, Harald; Arnolds, Heike

    2015-08-18

    The interaction between many proteins and hydrophobic functionalized surfaces is known to induce β-sheet and amyloid fibril formation. In particular, insulin has served as a model peptide to understand such fibrillation, but the early stages of insulin misfolding and the influence of the surface have not been followed in detail under the acidic conditions relevant to the synthesis and purification of insulin. Here we compare the adsorption of human insulin on a hydrophobic (-CH3-terminated) silane self-assembled monolayer to a hydrophilic (-NH3(+)-terminated) layer. We monitor the secondary structure of insulin with Fourier transform infrared attenuated total reflection and side-chain orientation with sum frequency spectroscopy. Adsorbed insulin retains a close-to-native secondary structure on both hydrophobic and hydrophilic surfaces for extended periods at room temperature and converts to a β-sheet-rich structure only at elevated temperature. We propose that the known acid stabilization of human insulin and the protection of the aggregation-prone hydrophobic domains on the insulin monomer by adsorption on the hydrophobic surface work together to inhibit fibril formation at room temperature.

  5. DNA adsorption measured with ultra-thin film organic field effect transistors

    NARCIS (Netherlands)

    Stoliar, P.; Bystrenova, E.; Quiroga, S.D.; Annibale, P.; Facchini, M.; Spijkman, M.; Setayesh, S.; Leeuw, D. de; Biscarini, F.

    2009-01-01

    Organic ultra-thin film field effect transistors (FET) are operated as label-free sensors of deoxyribonucleic acid (DNA) adsorption. Linearized plasmid DNA molecules (4361 base pairs) are deposited froma solution on two monolayers thick pentacene FET. The amount of adsorbed DNA is measured by AFM an

  6. Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study.

    Science.gov (United States)

    Li, Hongxing; Huang, Min; Cao, Gengyu

    2016-06-01

    Sulfur vacancy (SV) is one of the most typical defects in two-dimensional monolayer MoS2, leading to reactive sites. We presented a systematic study of the adsorption behaviors of gas molecules, CO2, N2, H2O, CO, NH3, NO, O2, H2 and NO2, on monolayer MoS2 with single SV by first-principles calculations. It was found that CO2, N2 and H2O molecules physisorbed at the proximity of single SV. Our adsorption energy calculations and charge transfer analysis showed that the interactions between CO2, N2 and H2O molecules and defective MoS2 are stronger than the cases of CO2, N2 and H2O molecules adsorbed on pristine MoS2, respectively. The defective MoS2 based gas sensors may be more sensitive to CO2, N2 and H2O molecules than pristine MoS2 based ones. CO, NO, O2 and NH3 molecules were found to chemisorb at the S vacancy site and thus modify the electronic properties of defective monolayer MoS2. Magnetism was induced upon adsorption of NO molecules and the defective states induced by S vacancy can be completely removed upon adsorption of O2 molecules, which may provide some helpful information for designing new MoS2 based nanoelectronic devices in future. The H2 and NO2 molecules were found to dissociate at S vacancy. The dissociation of NO2 molecules resulted in O atoms located at the S vacancy site and NO molecules physisorbed on O-doped MoS2. The calculated results showed that NO2 molecules can help heal the S vacancy of the MoS2 monolayer.

  7. Molecular dynamics simulations of peptide adsorption on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yun; Liu Meifeng [School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640 (China); Zhou Jian, E-mail: jianzhou@scut.edu.cn [School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640 (China)

    2012-08-01

    All-atom molecular dynamics simulations are performed to investigate the neuromedin-B peptide adsorption on the self-assembled monolayers (SAMs) of SH(CH{sub 2}){sub 10}N{sup +}(CH{sub 3}){sub 2}CH{sub 2}CH(OH)CH{sub 2}SO{sub 3}{sup -} (SBT), SH(CH{sub 2}){sub 10}OH and SH(CH{sub 2}){sub 10}CH{sub 3}. The force-distance profiles show that the surface resistance to peptide adsorption is mainly generated by the water molecules tightly bound to surfaces via hydrogen bonds (hydration water molecules); but surfaces themselves may also set an energy barrier for the approaching peptide. For the SBT-SAM, the surface first exerts a relatively high repulsive force and then a rather week attractive force on the approaching peptide; meanwhile the hydration water molecules exert a strong repulsive force on the peptide. Therefore, SBT-SAM has an excellent performance on resisting protein adsorption. For the OH-SAM and CH{sub 3}-SAM, surfaces show low or little energy barrier but strong affinity to the peptide; and the hydration water molecules apply merely a repulsive force within a much narrower range and with lower intensity compared with the case for the SBT-SAM. The analysis of structural and dynamical properties of the peptide, surface and water indicates that possible factors contributing to surface resistance include the hydrogen-bond formation capability of surfaces, mobility of water molecules near surfaces, surface packing density and chain flexibility of SAMs. There are a large number of hydrogen bonds formed between the hydration water molecules and the functional groups of the SBT-SAM, which greatly lowers the mobility of water molecules near the surface. This tightly-bound water layer effectively reduces the direct contact between the surface and the peptide. Furthermore, the SBT-SAM also has a high flexibility and a low surface packing density, which allows water molecules to penetrate into the surface to form tightly-bound networks and therefore reduces the

  8. Molecular dynamics simulations of peptide adsorption on self-assembled monolayers

    Science.gov (United States)

    Xie, Yun; Liu, Meifeng; Zhou, Jian

    2012-08-01

    All-atom molecular dynamics simulations are performed to investigate the neuromedin-B peptide adsorption on the self-assembled monolayers (SAMs) of SH(CH2)10N+(CH3)2CH2CH(OH)CH2SO3- (SBT), SH(CH2)10OH and SH(CH2)10CH3. The force-distance profiles show that the surface resistance to peptide adsorption is mainly generated by the water molecules tightly bound to surfaces via hydrogen bonds (hydration water molecules); but surfaces themselves may also set an energy barrier for the approaching peptide. For the SBT-SAM, the surface first exerts a relatively high repulsive force and then a rather week attractive force on the approaching peptide; meanwhile the hydration water molecules exert a strong repulsive force on the peptide. Therefore, SBT-SAM has an excellent performance on resisting protein adsorption. For the OH-SAM and CH3-SAM, surfaces show low or little energy barrier but strong affinity to the peptide; and the hydration water molecules apply merely a repulsive force within a much narrower range and with lower intensity compared with the case for the SBT-SAM. The analysis of structural and dynamical properties of the peptide, surface and water indicates that possible factors contributing to surface resistance include the hydrogen-bond formation capability of surfaces, mobility of water molecules near surfaces, surface packing density and chain flexibility of SAMs. There are a large number of hydrogen bonds formed between the hydration water molecules and the functional groups of the SBT-SAM, which greatly lowers the mobility of water molecules near the surface. This tightly-bound water layer effectively reduces the direct contact between the surface and the peptide. Furthermore, the SBT-SAM also has a high flexibility and a low surface packing density, which allows water molecules to penetrate into the surface to form tightly-bound networks and therefore reduces the affinity between the peptide and the surface. The results show that the protein

  9. The adsorption of CO and NO on the MoS{sub 2} monolayer doped with Au, Pt, Pd, or Ni: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongwei, E-mail: dwmachina@126.com [School of Physics, Anyang Normal University, Anyang 455000 (China); Ju, Weiwei [College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Li, Tingxian; Zhang, Xiwei [School of Physics, Anyang Normal University, Anyang 455000 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061 (China); Ma, Benyuan [Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061 (China); Lu, Zhansheng; Yang, Zongxian [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China)

    2016-10-15

    Graphical abstract: The MoS{sub 2} monolayers doped with Au, Pt, Pd, or Ni show enhanced adsorption and sensitivity toward CO or NO molecule. - Highlights: • CO and NO adsorption on the doped MoS{sub 2} monolayers is theoretically studied. • CO and NO are chemisorbed on the doped MoS{sub 2} monolayers. • Charge transfer can be observed between the adsorbed molecule and the substrates. • Molecular adsorption can induce the change in electronic structures of the doped MoS{sub 2} monolayers. - Abstract: By performing the first-principles calculation, the adsorption of CO and NO molecules on the Au, Pt, Pd, or Ni doped MoS{sub 2} monolayer has been studied. The interaction between CO or NO with the doped MoS{sub 2} monolayer is strong and belongs to the chemisorption, as evidenced by the large adsorption energy and the short distance between the adsorbed molecules and the dopants. The charge transfer and the electronic property induced by the molecule adsorption are discussed. It is found that for both CO and NO adsorption, for all the cases charge transfer between the substrates and the adsorbed molecules has been observed. For NO, the adsorption obviously induces new impurity states in the band gap or the redistribution of the original impurity states. These can lead to the change of the transport properties of the doped MoS{sub 2} monolayer, by which the adsorbed CO or NO can be detected. The present work shows that introducing appropriate dopants may be a feasible method to improve the performance of MoS{sub 2}-based gas sensors.

  10. Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins

    Directory of Open Access Journals (Sweden)

    Gutsmann Thomas

    2006-05-01

    Full Text Available Abstract Background The first target of antimicrobial peptides (AMPs is the bacterial membrane. In the case of Gram-negative bacteria this is the outer membrane (OM, the lipid composition of which is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is made up solely from lipopolysaccharides (LPSs. LPS, therefore, represents the first target of AMPs. The binding and intercalation of polycationic AMPs is driven by the number and position of negatively charged groups of the LPS. Also, proteins other than cationic AMPs can interact with LPS, e.g. leading eventually to a neutralization of the endotoxic effects of LPS. We compared different biophysical techniques to gain insight into the properties of the electrical surface potentials of lipid monolayers and aggregates composed of LPSs and various phospholipids and their interaction with peptides and proteins. Results The net negative charge calculated from the chemical structure of the phospholipid and LPS molecules is linearly correlated with the adsorption of calcium to two-dimensional lipid monolayers composed of the respective lipids. However, the ζ-potentials determined by the electrophoretic mobility of LPS aggregates can only be interpreted by assuming a dependence of the plane of shear on the number of saccharides and charged groups. Various peptides and proteins were able to displace calcium adsorbed to monolayers. Conclusion To characterize the electrical properties of negatively charged phospholipids and LPSs and their electrostatic interaction with various polycationic peptides/proteins, the adsorption of calcium to and displacement from lipid monolayers is a suitable parameter. Using the calcium displacement method, the binding of peptides to monolayers can be determined even if they do not intercalate. The interpretation of ζ-potential data is difficulty for LPS aggregates, because of the complex three-dimensional structure of

  11. Measurements of monolayer hydrodynamics at an air/water interface

    Science.gov (United States)

    Vogel, Michael James

    2002-09-01

    Growing interest in monomolecular films is driven in part by their numerous applications, which include coating technologies, chemical and bio-sensors, and optoelectronic devices. In the present research, a study involving several different experiments has focused on an improved understanding and quantification of the physics of monolayer-influenced flows. Measurements were made with laser-based nonintrusive techniques, including boundary-fitted digital particle image velocimetry (BFDPIV) to obtain interfacial velocity and shear data, and reflected second-harmonic generation (SHG) to directly measure surfactant concentration at the interface. A simple geometry consisting of uniform bulk flow and a planar surface-piercing barrier which resulted in the phenomenon commonly referred to as a Reynolds ridge was used to study the elasticity of a monolayer. A novel technique was developed in which velocity and surfactant concentration measurements are made simultaneously with a single laser beam which is scanned along the interface. Additionally, a theoretical model balancing surface elasticity and bulk shear at the interface was developed to predict the concentration profile for any insoluble monolayer. The predicted concentration profiles were found to be in agreement with experimental results. Additionally, global predictions from the model for four different insoluble surfactant systems also showed agreement with experimental measurements. In order to study the interfacial dilatational viscosity (kappa s) of a monolayer, for which there are no consistently measured values in the literature, a cavity flow was utilized in which the floor oscillates in the direction parallel to itself. Initially, a baseline study was performed to establish the range of parameters for which the flow is essentially two-dimensional (2D). Three flow regimes were found in the parameter space considered: an essentially 2D time-periodic flow, a time-periodic three-dimensional (3D) flow with a

  12. High precision measurement of electrical resistance across endothelial cell monolayers.

    Science.gov (United States)

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  13. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    Science.gov (United States)

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermodynamics of the adsorption of organic molecules on graphitized carbon black modified with a monolayer of 5-hydroxy-6-methyluracil

    Science.gov (United States)

    Gus'kov, V. Yu.; Ivanov, S. P.; Shaikhitdinova, Yu. F.; Kudasheva, F. Kh.

    2016-10-01

    Thermodynamic characteristics of the adsorption of alkanes, alcohols, arenes, and esters on graphitized carbon black with a deposited monolayer (0.17%) of 5-hydroxy-6-methyluracil are studied by means of inverse gas chromatography at infinite dilution. It is established that size effects (violation of the additivity of molar changes in internal energy and the entropy of adsorption for pairs of molecules of one homologous series that differ by one methyl group) are observed when organic molecules are adsorbed on the surface of the resulting adsorbent. The size effects are similar to those observed when 1% 5-hydroxy-6-methyluracil is deposited on graphitized carbon black. It is concluded that the observed violation of additivity is associated with cavities in the supramolecular structure.

  15. Oxygen and hydroxyl adsorption on MS{sub 2} (M = Mo, W, Hf) monolayers: a first-principles molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Iordanidou, K.; Houssa, M.; Afanas' ev, V.V.; Stesmans, A. [Department of Physics and Astronomy, University of Leuven (Belgium); Pourtois, G. [IMEC, Leuven (Belgium)

    2016-11-15

    In this paper, we study the oxygen and hydroxyl adsorption on both pristine and S deficient MS{sub 2} (M = Mo, W, Hf) monolayers, using first-principles molecular dynamics calculations. Our simulations reveal that single-layer HfS{sub 2} suffers severely from oxidation, which results in the formation of strong Hf-O bonds, likely degrading the transport properties of the material. Oxygen adsorption on S deficient monolayers acts as a passivation mechanism, both ''structurally'' by saturating the dangling bonds of neighboring metal atoms and ''electronically'' by removing the S vacancy induced gap states. Hydroxyl adsorption on pristine monolayers generates spin-polarized gap states, and for HfS{sub 2} in particular, causes the Fermi level pinning close to the conduction band edge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  17. Synthesis and Catalytic Activity of Pt Monolayer on Pd Tetrahedral Nanocrystals with CO-adsorption-induced Removal of Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Gong K.; Vukmirovic M.B.; Ma C.; Zhu Y.; Adzic R.R.

    2011-11-01

    We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O{sub 2} reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermal route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications.

  18. Adsorption and dissociation of H2S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Science.gov (United States)

    Li, Yi; Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai; Su, Wenyue; Zhang, Yongfan

    2016-11-01

    Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H2S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H2S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H2S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first Hsbnd S bond is the rate-determining step for the H2S dissociation. Our results reveal that in most cases, the decomposition of H2S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H2S molecule.

  19. Single-monolayer in situ modulus measurements using a SAW device: Photocrosslinking of a diacetylenic thiol-based monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Ricco, A.J.; Staton, A.W. [Sandia National Labs., Albuquerque, NM (United States); Crooks, R.M. [Texas A& M Univ., College Station, TX (United States). Dept. of Chemistry; Kim, Taisun [Hallym Univ., Kang-Won Do (Korea, Republic of). Dept. of Chemistry

    1997-10-01

    We report direct measurement of the modulus change that accompanies the crosslinking of a single molecular monolayer. We measured a change in elastic modulus of 5 x 10{sup 10} dyn/cm{sup 2} as a result of ultraviolet-induced photocrosslinking of a single surface-confined monolayer of the conjugated diacetylenic thiol HS(CH{sub 2}){sub 10}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 10}COOH, designated {open_quotes}DAT{close_quotes} hereafter. The modulus measurement was made on a monolayer of DAT chemisorbed upon a gold film on the surface of a 97-MHz ST-quartz surface acoustic wave delay line. The ratio of the changes recorded in SAW velocity and attenuation, approximately 4:1, suggests that the measured effect is mainly a change in the elastic (real) component of the complex shear modulus, viscous changes playing a lesser role. In relation to typical polymer modulus values, the change of 5 x 10{sup 10} dyn/cm{sup 2} is consistent with a change from a rubbery material (G{prime} {approximately} 10{sup 7} - 10{sup 8} dyn/cm{sup 2}) to a fairly rigid, glassy material (G{prime} {approximately} 10{sup 10} dyn/cm{sup 2}), reasonable for comparison of the monolayer in its as-adsorbed and crosslinked forms. This report of the direct SAW-based measurement of the modulus change associated with the crosslinking of a single molecular monolayer is complementary to and consistent with previous in-situ measurements of this process using thickness-shear mode resonators.

  20. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers

    Science.gov (United States)

    Brian, R. C.

    1967-01-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential. Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed. The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour. PMID:16656642

  1. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)

    2014-05-01

    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  2. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  3. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong

    2013-08-20

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  4. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study

    Science.gov (United States)

    Ma, Dongwei; Ju, Weiwei; Li, Tingxian; Zhang, Xiwei; He, Chaozheng; Ma, Benyuan; Lu, Zhansheng; Yang, Zongxian

    2016-10-01

    By performing the first-principles calculation, the adsorption of CO and NO molecules on the Au, Pt, Pd, or Ni doped MoS2 monolayer has been studied. The interaction between CO or NO with the doped MoS2 monolayer is strong and belongs to the chemisorption, as evidenced by the large adsorption energy and the short distance between the adsorbed molecules and the dopants. The charge transfer and the electronic property induced by the molecule adsorption are discussed. It is found that for both CO and NO adsorption, for all the cases charge transfer between the substrates and the adsorbed molecules has been observed. For NO, the adsorption obviously induces new impurity states in the band gap or the redistribution of the original impurity states. These can lead to the change of the transport properties of the doped MoS2 monolayer, by which the adsorbed CO or NO can be detected. The present work shows that introducing appropriate dopants may be a feasible method to improve the performance of MoS2-based gas sensors.

  5. Magnetic measurements of monolayer-thickness films of Cr sandwiched by Au

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.; Sill, L.R.; Sowers, C.H.

    1985-06-01

    Calculations show ferromagnetic moments (3.1..mu../sub B/) in Au-Cr-Au sandwiches, for monolayers of Cr. The measured moment (0.41..mu../sub B/ at 2/sup 0/K) is larger in Cr monolayers than for thicker Cr samples. Results are discussed in terms of other studies of this system including those which showed superconductivity.

  6. The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001 surface

    Directory of Open Access Journals (Sweden)

    Moitra A.

    2011-01-01

    Full Text Available We report a first-principles calculations to study the effect of a vanadium-carbon (VC monolayer on the adsorption process of tungsten (W and carbon (C atoms onto tungsten-carbide (WC (0001 surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001 surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001 surface is compared with that of a W and C adatom on a WC (0001 surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.

  7. Modelling and measurements of fibrinogen adsorption on positively charged microspheres

    Directory of Open Access Journals (Sweden)

    P. Zeliszewska

    2016-02-01

    Full Text Available Adsorption of fibrinogen on positively charged microspheres was theoretically and experimentally studied. The structure of monolayers and the maximum coverage were determined by applying the experimental measurements at pH = 3.5 and 9.7 for NaCl concentration in the range of 10^{-3} - 0.15 M. The maximum coverage of fibrinogen on latex particles was precisely determined by the AFM method. Unexpectedly, at pH = 3.5, where both fibrinogen molecule and the latex particles were positively charged, the maximum coverage varied between 0.9 mg m^{-2} and 1.1 mg m^{-2} for 10^{-2} and 0.15 M NaCl, respectively. On the other hand, at pH = 9.7, the maximum coverage of fibrinogen was larger, varying between 1.8 mg m^{-2} and 3.4 mg m^{-2} for 10^{-2} and 0.15 M NaCl, respectively. The experimental results were quantitatively interpreted by the numerical simulations.

  8. Calorimetric measurement of adsorption and adhesion energies of Cu on Pt(111)

    Science.gov (United States)

    James, Trevor E.; Hemmingson, Stephanie L.; Sellers, Jason R. V.; Campbell, Charles T.

    2017-03-01

    The adsorption energies of submonolayer amounts of one metal on the surface of another metal have been measured for decades by temperature programmed desorption. However, that method fails for metals that alloy. We report here the first measurement of the adsorption energy for any such metal-on-metal combination that forms a bulk alloy. The adsorption and interfacial energetics of vapor deposited Cu onto Pt(111) at 300 K has been studied using single crystal adsorption calorimetry (SCAC) and X-ray photoelectron spectroscopy (XPS). The Cu grows as 2D pseudomorphic islands in the first layer and its heat of adsorption decreased linearly from 358 to 339 kJ/mol. This is attributed to increasing lattice strain with island size, associated with the small lattice mismatch (8%). It adsorbs 2 kJ/mol more weakly in the 2nd layer than above 3 ML, where it reaches the bulk heat of sublimation of Cu(solid), 337 kJ/mol. The adhesion energy of multilayer Cu onto Pt(111) is 3.76 J/m2. The extra stability of the first Cu monolayer compared to bulk Cu measured here is 12 kJ/mol, compared to a difference of 83 kJ/mol for underpotential deposition of Cu on a Pt(111) electrode, with the difference attributed to stronger bonding of Cu to the solvent and double layer compared to Pt.

  9. Adsorption Characteristics of DNA Nucleobases, Aromatic Amino Acids and Heterocyclic Molecules on Silicene and Germanene Monolayers

    KAUST Repository

    Hussain, Tanveer

    2017-09-14

    Binding of DNA/RNA nucleobases, aromatic amino acids and heterocyclic molecules on two-dimensional silicene and germanene sheets have been investigated for the application of sensing of biomolecules using first principle density functional theory calculations. Binding energy range for nucleobases, amino acids and heterocyclic molecules with both the sheets have been found to be (0.43-1.16eV), (0.70-1.58eV) and (0.22-0.96eV) respectively, which along with the binding distances show that these molecules bind to both sheets by physisorption and chemisorption process. The exchange of electric charges between the monolayers and the incident molecules has been examined by means of Bader charge analysis. It has been observed that the introduction of DNA/RNA nucleobases, aromatic amino acids and heterocyclic molecules alters the electronic properties of both silicene and germanene nano sheets as studied by plotting the total (TDOS) and partial (PDOS) density of states. The DOS plots reveal the variation in the band gaps of both silicene and germanene caused by the introduction of studied molecules. Based on the obtained results we suggest that both silicene and germanene monolayers in their pristine form could be useful for sensing of biomolecules.

  10. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules

    Science.gov (United States)

    Zhu, Jia; Zhang, Hui; Tong, Yawen; Zhao, Ling; Zhang, Yongfan; Qiu, Yuzhi; Lin, Xianning

    2017-10-01

    Two-dimensional (2D) layered materials are at the forefront of research because of their unique structures and promising catalytic abilities. Here, the structural stability, electronic properties and gas adsorption of metal (V, Nb, Ta)-doped monolayer MoS2 have been investigated by density functional theory calculations. Our results show that the metal (V, Nb, Ta)-doped monolayer MoS2 is a stable catalyst under room temperature, due to the strong interaction between the doped metals (V, Nb, Ta) and S vacancy of monolayer MoS2. Compared with the gas adsorption (CO, NO2, H2O, NH3) on pristine monolayer MoS2, doped metal (V, Nb, Ta) can significantly improve the adsorption properties, chemical activity and the sensitivity of that of adsorbed gas molecules. This effect occurs due to the strong overlap between the metal nd orbitals and gas molecule orbitals, result in activation of the adsorbed gas molecules. Analysis of Bader charge shows that, more charge transfer (-0.66 e to -0.72 e) occur from metal (V, Nb, Ta)-doped monolayer MoS2 to the oxidizing gas molecules (NO2) acting as acceptors. While for the adsorption of CO molecules, the relative less electrons (about -0.24 e - -0.35 e) transfer occuring from substrate to the adsorbed gases. Whereas the direction of charge transfers is reversed for the adsorption of the reducing gas (H2O and NH3) behaving as donors, in which small electrons (0.04 e -0.09 e) transfer from adsorbed gas to metal (V, Nb, Ta)-doped monolayer MoS2. Our results suggested that metal (V, Nb, Ta)-doped monolayer MoS2 might be a good candidate for low-cost, highly active, and stable catalysts and gas sensors, providing an avenue to facilitate the design of high active MoS2-based two dimensional catalysts and gas sensors.

  11. Adsorption and dissociation of H{sub 2}S on monometallic and monolayer bimetallic Ni/Pd(111) surfaces: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: liy99@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005 (China); Huang, Pan; Tao, Dandan; Wu, Juan; Qiu, Mei; Huang, Xin; Ding, Kaining; Chen, Wenkai [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); Su, Wenyue [State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China); Zhang, Yongfan, E-mail: zhangyf@fzu.edu.cn [College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116 (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China)

    2016-11-30

    Highlights: • For the molecular adsorption, the introducing Ni monolayer on Pd(111) can reduce the binding strength between H{sub 2}S and the surface. • The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. • Monolayer Ni-Pd(111) surface may exhibit a good sulfur resistance performance because there is a competition between the desorption and decomposition of H{sub 2}S molecule. - Abstract: Periodic density functional theory calculations have been performed to investigate the adsorption structures and dissociative reaction pathways for H{sub 2}S molecule on Ni(111), Pd(111) and Ni/Pd(111) monolayer bimetallic surfaces with surface monolayer and subsurface monolayer structures. Our results indicate that, for the molecular adsorption mode, the introducing Pd atoms on Ni(111) can enhance the binding strength between H{sub 2}S and the surface, while an opposite effect is achieved when the Ni monolayer is formed on Pd(111) surface. The decompositions of H{sub 2}S molecule on all Ni/Pd(111) surfaces are exothermic, especially for the surfaces that the top layer is composed of Ni atoms. According to the predicted minimum energy paths that connect the molecular and dissociative states, two elementary steps are found for all Ni/Pd(111) metal surfaces, and the breaking of the first H−S bond is the rate-determining step for the H{sub 2}S dissociation. Our results reveal that in most cases, the decomposition of H{sub 2}S molecule on the monometallic and Ni/Pd(111) monolayer bimetallic surfaces is easy to happen. However, on the monolayer Ni-Pd(111) surface, there is a competition between the trapping-desorption channel and activated dissociation channel, which implies that depositing one monolayer Ni on a Pd(111) surface may help reducing sulfur poisoning by hindering the dissociation of H{sub 2}S molecule.

  12. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bøggild, Peter; Grey, Francois; Hassenkam, T.;

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...... demonstrate how microscopic ordering in the polymer domains controls the conductivity....

  13. Mechanisms of fibrinogen adsorption on latex particles determined by zeta potential and AFM measurements.

    Science.gov (United States)

    Adamczyk, Zbigniew; Bratek-Skicki, Anna; Dąbrowska, Paulina; Nattich-Rak, Małgorzata

    2012-01-10

    The adsorption of fibrinogen on polystyrene latex particles was studied using the concentration depletion method combined with the AFM detection of residual protein after adsorption. Measurements were carried out for a pH range of 3.5-11 and an ionic strength range of 10(-3)-0.15 M NaCl. First, the bulk physicochemical properties of fibrinogen and the latex particle suspension were characterized for this range of pH and ionic strength. The zeta potential and the number of uncompensated (electrokinetic) charges on the protein were determined from microelectrophoretic measurements. It was revealed that fibrinogen molecules exhibited amphoteric characteristics, being on average positively charged for pH adsorption of fibrinogen on latex for pH below 11. It was also proven that fibrinogen adsorption was irreversible, with the maximum surface concentration varying between 2.5 and 5 × 10(3) μm(-2) (weight concentration of a bare molecule was 1.4 to 2.8 mg m(-2)). These measurements revealed two main adsorption mechanisms of fibrinogen: (i) the unoriented (random) mechanism prevailing for lower ionic strength, where adsorbing molecules significantly penetrate the fuzzy polymeric layer on the latex core and (ii) the side-on adsorption mechanism prevailing for pH > 5.8 and a higher ionic strength of 0.15 M. It was also shown that in the latter case, variations in the zeta potential with the protein coverage could be adequately described in terms of the electrokinetic model, previously formulated for planar substrate adsorption. On the basis of these experimental data, an efficient procedure of preparing fibrinogen-covered latex particles of controlled monolayer structure and coverage was envisaged.

  14. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  15. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  16. Influence of the molecular-scale structures of 1-dodecanethiol and 4-methylbenzenethiol self-assembled monolayers on gold nanoparticles adsorption pattern.

    Science.gov (United States)

    Mamun, Abdulla Hel Al; Yoon, Sangwoon; Hahn, Jae Ryang

    2014-07-01

    In an effort to understand the effects of the molecular structures of self-assembled monolayers on the patterns formed by immobilized Au nanoparticles (AuNPs), we characterized and compared the morphologies and properties of AuNPs adsorbed onto self-assembled monolayers formed by 1-dodecanethiol (DDT-SAM) or 4-methylbenzenethiol (MBT-SAM) assembled on Au(111) surfaces. The AuNP adsorption pattern on the MBT-SAM surface was well-dispersed and characterized by a low degree of corrugation. By contrast, an aggregated and highly corrugated AuNP pattern was observed on the surface of the DDT-SAM. This difference was attributed to the retention or removal of citrate anions present on the AuNPs during adsorption onto the SAM surface. Direct interactions between the AuNPs and the highly corrugated hydrophobic surfaces of the DDT-SAMs could strip the citrate layers from the AuNP surfaces, leading to aggregated adsorption. The water molecules appeared to mediate the adsorption of the AuNPs by reducing the hydrophobicity of the MBT-SAM surface and promoting a more dispersed adsorption configuration.

  17. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    Science.gov (United States)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  18. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  19. Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude Oscillations.

    Science.gov (United States)

    Lum, Jordan S; Dove, Jacob D; Murray, Todd W; Borden, Mark A

    2016-09-20

    Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 μm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.

  20. Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers

    Science.gov (United States)

    Rouhi, Saeed; Atfi, Amin

    2017-03-01

    Molecular dynamics simulations are used here to study the interactions between BmNn graphyne-like monolayers and four different polymer chains. BN, B1N9, and B2N8 graphyne-like monolayers are selected from the family of BmNn graphyne-like monolayers. It is observed that increasing the number of B atoms in the structure of BmNn graphyne-like monolayers results in larger interaction energies of nanosheet/polymer systems. It is also shown that the polymer chains with the linear adsorbed configurations on the nanosheets have larger interaction energies with the nanosheets. Investigating the effect of number of polymer repeat units on the polymer/nanosheet interaction energy, it is observed that increasing the number of repeat units of polymers leads to enhancing the polymer/nanosheet interaction energy.

  1. DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper.

    Science.gov (United States)

    Klemm, Denis; Hoffmann, Volker; Wetzig, Klaus; Eckert, Jürgen

    2009-11-01

    Our direct current (DC)- and radiofrequency glow discharge optical emission spectroscopy (RF-GD-OES) measurements of adsorbed organic monolayers were inspired by the work of Shimizu et al., who presented the first example of depth profile analysis of an adsorbed monolayer by RF-GD-OES in 2004. The great potential of RF-GD-OES for analyses of layers with thicknesses in the subnanometer range was surprising. Shimizu et al. discussed not only the qualitative detection of atoms of the organic monolayer (C, H, N, S), but also the determination of the different orientation of the molecules relative to the surface due to a significant peak sequence. This latter assumption was questioned in the analytical community. We intend to demonstrate the potential of the GD-OES technique for surface analysis in terms of reliability and reproducibility by using an advanced vacuum instrumentation and presputtering with silicon. It will be shown that comparable measurements can be reproduced not only with RF-GD-OES but, above all, also with DC-GD-OES. The experimental steps to adsorb thiourea molecules on a copper substrate are described in detail. Further experiments with other organic molecules, e.g. benzotriazole (BTA) or benzothiazole (BTH), disprove the predicted correlation between the orientation of the molecules relative to the surface and the occurrence of peak separation. Ultimately, a quantification of compounds of the organic monolayer in the case of adsorbed thiourea is achieved.

  2. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    Science.gov (United States)

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  3. Transport measurements on monolayer and few-layer WSe2

    Science.gov (United States)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  4. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers.

    Science.gov (United States)

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-12-09

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

  5. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    Science.gov (United States)

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10(-4) and 10(-2)M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10(-4) and 10(-2)M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions

  6. Rapid permeation measurement system for the production control of monolayer and multilayer films

    Science.gov (United States)

    Botos, J.; Müller, K.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    Plastics have been used for packaging films for a long time. Until now the development of new formulations for film applications, including process optimization, has been a time-consuming and cost-intensive process for gases like oxygen (O2) or carbon dioxide (CO2). By using helium (He) the permeation measurement can be accelerated from hours or days to a few minutes. Therefore a manometric measuring system for tests according to ISO 15105-1 is coupled with a mass spectrometer to determine the helium flow rate and to calculate the helium permeation rate. Due to the accelerated determination the permeation quality of monolayer and multilayer films can be measured atline. Such a system can be used to predict for example the helium permeation rate of filled polymer films. Defined quality limits for the permeation rate can be specified as well as the prompt correction of process parameters if the results do not meet the specification. This method for process control was tested on a pilot line with a corotating twin-screw extruder for monolayer films. Selected process parameters were varied iteratively without changing the material formulation to obtain the best process parameter set and thus the lowest permeation rate. Beyond that the influence of different parameters on the helium permeation rate was examined on monolayer films. The results were evaluated conventional as well as with artificial neuronal networks in order to determine the non-linear correlation between all process parameters.

  7. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements.

    Science.gov (United States)

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Wasilewska, Monika

    2015-11-01

    Adsorption kinetics of fibrinogen at a silica substrate was thoroughly studied in situ using the QCM-D method. Because of low dissipation, the Sauerbrey's equation was used for calculating the wet mass per unit area (wet coverage of the protein). Measurements were done for various bulk suspension concentrations, flow rates and pHs. These experimental data were compared with the theoretical dry coverage data derived from the solution of the mass transfer equation. In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated for various pHs. In the case of pH 7.4 and ionic strength of 0.15 M, the hydration function changed from 0.75 to 0.6 for the dry coverage Γ(d) equal to 0 and 4 mg m(-2), respectively. Interestingly, for pH 7.4 and 4.5 (ionic strength of 10(-2) M) a minimum of the hydration function appeared at Γ(d) ca. 2 mg m(-2). Analytical polynomial expressions were formulated for the interpolation of the experimental results. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γ(d) vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.2 mg m(-2) at pH 3.5 and 4.2 mg m(-2) at pH 7.4 for ionic strength of 0.15 M. These results agree with theoretical modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data whose validity was also confirmed by the dissipation vs. the dry mass relationships. Beside significance to basic science, these results enable to develop a robust technique, based on the QCM-D measurements, suitable for precisely determining the dry mass of protein monolayers adsorbed under various physicochemical conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Adsorptive

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Gupta

    2017-05-01

    Full Text Available This work explores the feasibility of natural fibers derived from Ficus carica plant as an alternative precursor for the preparation of activated carbon via microwave assisted H3PO4 activation. The properties of activated carbon were investigated by scanning electron microscope (SEM and Fourier transform spectroscopy (FTIR. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. Adsorption performance of Cu(II and Ni(II onto activated carbon was investigated as a function of pH, contact time, initial metal ion concentration and temperature. The adsorption capacity of Cu(II and Ni(II onto the adsorbent was found to be 23.08 and 18.78 mg/g, respectively. Adsorption of metal ions followed second order kinetics with best fit for Fraundlich adsorption isotherm. The values of thermodynamic parameters such as enthalpy change (ΔH°, entropy change (ΔS° and free energy change (ΔG° were evaluated for the adsorption of both the metal ions. Adsorption of metal ions onto activated carbon was spontaneous and endothermic in nature. The results suggested that activated carbon developed from natural fibers successfully improved the metal ions adsorption capacity. On the basis of our findings, the adsorbent could be used as a detoxifying agent for better management of industrial effluents.

  9. Adsorption

    Directory of Open Access Journals (Sweden)

    Denis J.L. Guerra

    2016-09-01

    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  10. Monolayers of poly(amido amine) dendrimers on mica - In situ streaming potential measurements.

    Science.gov (United States)

    Michna, Aneta; Adamczyk, Zbigniew; Sofińska, Kamila; Matusik, Katarzyna

    2017-01-01

    The deposition of poly(amido amine) dendrimers on mica at various pHs was studied by the atomic force microscopy (AFM) and in situ streaming potential measurements. Bulk characteristics of dendrimers were acquired by using the dynamic light scattering (DLS) and the laser Doppler velocimetry (LDV). The hydrodynamic radius derived from DLS measurements was 5.2nm for the ionic strength of 10(-2)M and pH range 4-10. The electrophoretic mobility, the zeta potential and the number of electrokinetic charges per molecule were derived as a function of pH from the LDV measurements. It was revealed that the dendrimers are positively charged for pH up to 10. This promoted their deposition on negatively charged mica substrate whose kinetics was quantitatively evaluated by direct AFM imaging and streaming potential measurements interpreted in terms of the electrokinetic model. The desorption kinetics of dendrimers under flowing conditions from monolayers of various coverage was also studied. It was revealed that dendrimer deposition was partially reversible for pH above 5.8. The acid-base properties of the dendrimer monolayers deposited on mica were characterized.

  11. [Mechanism study of fluoride adsorption by hydrous metal oxides].

    Science.gov (United States)

    Guo, Hui-Chao; Li, Wen-Jun; Chang, Zhi-Dong; Wang, Huan-Ying; Zhou, Yue

    2011-08-01

    Hydrous oxides of cerium, aluminum, nickel and copper were prepared by alkaline precipitation method. Langmuir adsorption isotherm was studied and specific surface area was measured by BET method through N2 adsorption-desorption process. IR characterization of hydrous metal oxides before and after fluoride adsorption was also studied. Results show that different hydrous metal oxides have different specific surface areas and their pore size distributions also are not all the same. Adsorption capacity is not directly dependent on the specific surface area. Isotherm study indicates that the adsorption follows Langmuir model and shows the feature of monolayer adsorption. IR study before and after fluoride adsorption shows that different hydrous metal oxides have similar adsorption sites in the same IR region as well as adsorption sites in the different IR region. The comprehensive interaction of these adsorption sites with fluoride ions results in the different adsorption capacity of different hydrous metal oxides.

  12. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  13. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator.

    Science.gov (United States)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier; Davis, Zachary James

    2012-05-08

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotide for monolayers of single stranded (ss) DNA and after hybridization with the complementary DNA strand. Our results differ from previous data obtained with bulk samples, showing the genuine behavior of these self-assembled monolayers. The hybridization cannot be inferred from the water adsorption isotherms due to the low hybridization efficiency of these highly packed monolayers. Strikingly, we efficiently detect the hybridization by measuring the thermal desorption of water at constant relativity humidity. This finding adds a new nanomechanical tool for developing a label-free nucleic acid sensor based on the interaction between water and self-assembled monolayers of nucleic acids.

  14. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in

  15. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  16. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements.

    Science.gov (United States)

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M; Grainger, David W; Castner, David G; Gamble, Lara J

    2006-05-15

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  17. Functional monolayers for direct electrical biosensing

    Science.gov (United States)

    Clare, Tami Lasseter

    Frequency-dependent electrochemical impedance spectroscopy has been used to characterize changes in electrical response that accompany specific binding of a protein to its substrate, using the biotin-avidin system as a model. This thesis work shows that avidin, at concentrations in the nanomolar range, can be detected electrically in a completely label-free manner under conditions of zero average current flow and without the use of any auxiliary redox agents. Electrical circuit modeling of the interface was used to relate the frequency-dependent electrical response to the physical picture of the interface before and after avidin binding. The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. Investigations into the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption were conducted. Protein adsorption was monitored by fluorescence scanning as a function the length of the ethylene glycol chain (EG3 through EG6) and the terminal functional group (methyl- versus hydroxyl-terminated EG3 monolayer). More quantitative measurements were made by eluting adsorbed avidin from the surface and measuring the intensity of fluorescence in the solution. This thesis work shows that high quality EG monolayers are formed on silicon and diamond and that these EG3 monolayers are as effective as EG3 self-assembled monolayers on gold at resisting nonspecific avidin adsorption. These results show promise for use of silicon and diamond materials in many potential applications such as biosensing and medical implants. Substrate roughness is shown to play a role in nonspecific protein adsorption, where carbon-based surfaces having features less than approximately 5 nm, are highly resistant to protein adsorption. Functionalization of the surfaces with hexaethylene glycol confers additional resistance to protein adsorption. These

  18. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  19. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    Energy Technology Data Exchange (ETDEWEB)

    Uppalapati, Suji [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Kong, Na; Norberg, Oscar [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Ramström, Olof, E-mail: ramstrom@kth.se [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Yan, Mingdi, E-mail: Mingdi_Yan@uml.edu [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden)

    2015-07-15

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pK{sub a} value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  20. Z-scan measurement of the nonlinear refractive index of monolayer WS(2).

    Science.gov (United States)

    Zheng, Xin; Zhang, Yangwei; Chen, Runze; Cheng, Xiang'ai; Xu, Zhongjie; Jiang, Tian

    2015-06-15

    Transition metal dichalcogenides (TMDCs), such as tungsten disulfide (WS(2)), are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Recent advances in nanoscale materials characterization and few layer TMDCs' unique optical properties make them a research hot-spot in nonlinear optics. In this work, the nonlinear refractive index of monolayer WS(2) has been characterized with Z-scan measurement under 800nm femtosecond pulsed laser excitation, and a value of n2 ≃ (8.1 ± 0.41) × 10(-13)m(2)/W is obtained. A shift from saturable absorption to reverse saturable absorption was observed at higher input pump intensities in the experiments. The transition process was analyzed using a phenomenological model based on two photon absorption, and the two photon absorption coefficient was estimated about (3.7±0.28)×10(-6)m/W.

  1. First-leaflet phase effect on properties of phospholipid bilayer formed through vesicle adsorption on LB monolayer.

    Science.gov (United States)

    Park, Jin-Won

    2010-10-01

    Phospholipid bilayers were formed on mica using the Langmuir-Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin-Landau-Verwey-Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.

  2. Planned Monolayer Assemblies by Adsorption

    Science.gov (United States)

    1988-09-01

    tsWaerabas (above 1000 C), 3 si.- lane ucollayses cin ZnSe or Go are usually resistant und5er exposure to, similar treament only at thue amb~ient tauueatue...1h ’ -11-- -nam all species uniderwent a large. irreversible rindlomntion at sard 110 OC. Although heating affected slight disorientation of the... heated copper blocks. Tem- Com e euremens can coplament the FTIR reuls perature was monitored with a thermocouple. For long-chalned ampmlphillc

  3. Multilayer adsorption on fractal surfaces.

    Science.gov (United States)

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  4. Isothermal Adsorption Measurement for the Development of High Performance Solid Sorption Cooling System

    Science.gov (United States)

    Saha, Bidyut Baran; Koyama, Shigeru; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao; Ng, Kim Choon; Chua, Hui Tong

    Interest in low-grade thermal heat powered solid sorption system using natural refrigerants has been increased. However, the drawbacks of these adsorption systems are their poor performance. The objective of this paper is to improve the performance of thermally powered adsorption cooling system by selecting new adsorbent-refrigerant pairs. Adsorption capacity of adsorbent-refrigerant pair depends on the thermophysical properties (pore size, pore volume and pore diameter) of adsorbent and isothermal characteristics of the adsorbent-refrigerant pair. In this paper, the thermophysical properties of three types of silica gels and three types of pitch based activated carbon fibers are determined from the nitrogen adsorption isotherms. The standard nitrogen gas adsorption/desorption measurements on various adsorbents at liquid nitrogen of temperature 77.4 K were performed. Surface area of each adsorbent was determined by the Brunauer, Emmett and Teller (BET) plot of nitrogen adsorption data. Pore size distribution was measured by the Horvath and Kawazoe (HK) method. Adsorption/desorption isotherm results showed that all three carbon fibers have no hysteresis and had better adsorption capacity in comparison with those of silica gels.

  5. A computer-controlled experimental facility for krypton and xenon adsorption coefficient measurements on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Del Serra, Daniele; Aquaro, Donato; Mazed, Dahmane; Pazzagli, Fabio; Ciolini, Riccardo, E-mail: r.ciolini@ing.unipi.it

    2015-07-15

    Highlights: • An experimental test facility for qualification of the krypton and xenon adsorption properties of activated carbons. • The measurement of the adsorption coefficient by using the elution curve method. • The simultaneous on-line control of the main physical parameters influencing the adsorption property of activated carbon. - Abstract: An automated experimental test facility, intended specifically for qualification of the krypton and xenon adsorption properties of activated carbon samples, was designed and constructed. The experimental apparatus was designed to allow an on-line control of the main physical parameters influencing greatly the adsorption property of activated carbon. The measurement of the adsorption coefficient, based upon the elution curve method, can be performed with a precision better than 5% at gas pressure values ranging from atmospheric pressure up to 9 bar and bed temperature from 0 up to 80 °C. The carrier gas flow rate can be varied from 40 up to 4000 N cm{sup 3} min{sup −1} allowing measurement of dynamic adsorption coefficient with face velocities from 0.3 up to 923 cm min{sup −1} depending on the gas pressure and the test cell being used. The moisture content of the activated carbon can be precisely controlled during measurement, through the relative humidity of the carrier gas.

  6. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging

    DEFF Research Database (Denmark)

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan;

    2011-01-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring...... the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action...

  7. Measurement and theoretical analysis of the adsorption of supercritical methane on superactivated carbon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0 10 MPa and 233 333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ±2%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsorbate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.

  8. Measurement and theoretical analysis of the adsorption of supercritical methane on superactivated carbon

    Institute of Scientific and Technical Information of China (English)

    周理; 李明; 周亚平

    2000-01-01

    Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0-10 MPa and 233-333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ?%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsor-bate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.

  9. Adsorption of Ar on individual carbon nanotubes, graphene, and graphite

    Science.gov (United States)

    Dzyubenko, Boris; Kahn, Joshua; Vilches, Oscar; Cobden, David

    2015-03-01

    We compare and contrast results of adsorption measurements of Ar on single-walled carbon nanotubes, graphene, and graphite. Adsorption isotherms on individual suspended nanotubes were obtained using both the mechanical resonance frequency shift (sensitive to mass adsorption) and the electrical conductance. Isotherms on graphene mounted on hexagonal boron nitride were obtained using only the conductance. New volumetric adsorption isotherms on bulk exfoliated graphite were also obtained, paying special attention to the very low coverage region (less than 2% of a monolayer). This allowed us to compare the degree of heterogeneity on the three substrate types, the binding energies, and the van der Waals 2D parameters. Research supported by NSF DMR 1206208.

  10. Fracture Characteristics of Monolayer CVD-Graphene

    Science.gov (United States)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  11. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    Science.gov (United States)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  12. Mapping interfacial chemistry induced variations in protein adsorption with scanning force microscopy.

    Science.gov (United States)

    Ta, T C; McDermott, M T

    2000-06-01

    In this work, we demonstrate the sensitivity of scanning force microscopy (SFM), operated in friction force mode, to adsorbed protein conformation or orientation. We employ patterned films of methyl- and carboxylate-terminated alkanethiolate monolayers on gold as substrates for protein adsorption to observe the effect of each functional group in the same image. Infrared spectroscopic and SFM studies of bovine fibrinogen (BFG) adsorption to single-component monolayers indicate that complete films of BFG that are stable to imaging are formed at each functional group. After adsorption of BFG to a patterned monolayer, we observe a contrast in friction images due to differences in adsorbed BFG conformation or orientation induced by each functional group. We also observe frictional contrast in films of other proteins adsorbed on patterned monolayers. These observations lead to the conclusion that SFM-measured friction is sensitive to adsorbed protein state.

  13. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer.

    Science.gov (United States)

    Taylor, Graham J; Venkatesan, Guru A; Collier, C Patrick; Sarles, Stephen A

    2015-10-14

    Thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow for determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.

  14. Mechanisms of fibrinogen adsorption at solid substrates.

    Science.gov (United States)

    Adamczyk, Zbigniew; Bratek-Skicki, Anna; Żeliszewska, Paulina; Wasilewska, Monika

    2014-01-01

    The aim of this work was to critically review recent results pertinent to fibrinogen adsorption at solid/electrolyte interfaces with the emphasis focused on a quantitative analysis of these processes in terms of the electrostatic interactions. Accordingly, in the first part, the primary chemical structure of fibrinogen is analyzed. Physicochemical data pertinent to the bulk properties derived from hydrodynamic, dynamic light scattering and micro-electrophoretic measurements aided by theoretical modeling are discussed. Possible conformations and the effective charge distribution over the fibrinogen molecule for various pH an ionic strength are defined, especially the semi-collapsed conformation prevailing at physiological conditions. Adsorption kinetics of fibrinogen at hydrophilic and hydrophobic (polymer modified) substrates determined by various techniques is described. Adsorption at polymeric carrier particles, pertinent to immunological assays, studied in terms of electrokinetic and concentration depletion methods, are also considered. The reversibility of adsorption, fibrinogen molecule orientations and maximum coverages are thoroughly discussed. The stability of fibrinogen monolayers formed at these carrier particles in respect to pH and ionic strength cyclic changes is also discussed. In the final section interactions and deposition of model colloid particles on fibrinogen monolayers are analyzed which allows one to derive valuable information about molecule orientations. Based on the physicochemical data, adsorption kinetics and colloid particle deposition measurements, probable adsorption mechanisms of fibrinogen on solid/electrolyte interfaces are defined.

  15. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    Science.gov (United States)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  16. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    Science.gov (United States)

    Poirier, Eric; Dailly, Anne

    2009-05-01

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn4O(1,3,5-benzenetribenzoate)2, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g-1. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g-1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol-1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn4O(1,4-benzenedicarboxylate)3, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  17. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling.

    Science.gov (United States)

    Poirier, Eric; Dailly, Anne

    2009-05-20

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn4O(1,3,5-benzenetribenzoate)2, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g(-1). An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g(-1) at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol(-1) in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn4O(1,4-benzenedicarboxylate)3, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  18. Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements.

    Science.gov (United States)

    Caroni, A L P F; de Lima, C R M; Pereira, M R; Fonseca, J L C

    2012-12-01

    Adsorption phenomena occurring at the solid/liquid interface of chitosan particles are of extreme importance in the kinetics of drug release/upload as well as in effluent treatment by adsorption. In this work, equilibrium and kinetic aspects of protonated tetracycline adsorption on chitosan are explored using classic solution depletion method and zeta potential measurements. Equilibrium experiments showed that for solutions with tetracycline initial concentration of ca. 1.2 g L(-1), corresponding to a pH around 3, chitosan structure disrupted, as indicated by an increase in magnitude of tetracycline sorption. Adsorption and zeta potential isotherms before disruption suggested that the process of adsorption had a Langmuir character up to a point at which subsurface was exposed to adsorption; at this point, a second mode of sorption began: zeta potential tended to an equilibrium value, following Sips isotherm and tetracycline sorption had a linear dependence on its continuous phase concentration. The kinetics of tetracycline sorption suggested that sorption of tetracycline was divided between the sorption of protonated and non-protonated tetracycline; tetracycline in its non-protonated form seemed to rule the sorption of tetracycline.

  19. Self-assembled biomimetic monolayers using phospholipid-containing disulfides.

    Science.gov (United States)

    Chung, Yi Chang; Chiu, Yi Hong; Wu, Yin Wei; Tao, Yu Tai

    2005-05-01

    Several phospholipid-based disulfide molecules were synthesized and attached onto the gold-coated silicon wafer using the self-assembling method. The syntheses of these surface-modifying agents were conducted by introducing bromoethylphosphorate (PBr), phosphorylcholine (PC) or phosphorylethanolamine (PE) groups on the terminals of a dialkyl disulfide. After disulfides adsorption onto gold substrate surfaces, the composition, the film thickness, and the conformational order of self-assembled monolayer surfaces were explored and discussed in detail based on reflection-absorption infrared spectroscopy, contact angle measurement, Auger electron spectroscopy, X-ray photoelectron spectroscopy, and so on. The monolayer having the PBr end group could also be converted to a PC surface by treating with trimethylamine. The model functional surfaces of Au-SC11-PC, -PE, -PBr, -OH or corresponding mixed layers were used to mimic biomembrane surfaces. The monolayer having PC groups was found to reduce fibrinogen adsorption as evaluated from protein adsorption experiments using quartz crystal microbalance. It also showed relatively low platelet adherence compare to the glass, PBr and PE surfaces. The cell viability test also revealed that the PC surface displayed lower cytotoxicity than other surfaces.

  20. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    Science.gov (United States)

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  1. Measurement, by adsorption, of the dispersion of platinum on supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castells, R.C.

    1979-12-01

    A gas chromatographic pulsed adsorption technique similar to that of Freel was used in hydrogen and oxygen chemisorption measurements, and in ''titrating'' adsorbed hydrogen with oxygen pulses (H-O) and adsorbed oxygen with hydrogen pulses (O-H) on the surfaces of a Houdry 3H (0.30-0.70% platinum/alumina) catalyst and of 3.7 and 2.3% Pt/silica catalysts. In successive H-O and O-H titration cycles, hydrogen and oxygen consumption increased, leveling off after 8-10 cycles for Pt/alumina and after 3-4 cycles for the Pt/silica catalyst. The adsorption of hydrogen increased, whereas that of oxygen decreased with increasing number of cycles. The H-O titration sequence was a more accurate method of measuring metal dispersion than hydrogen adsorption or the O-H sequence.

  2. Modeling Stimuli-Responsive Nanoparticle Monolayer

    Science.gov (United States)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  3. Etching of Crystalline ZnO Surfaces upon Phosphonic Acid Adsorption: Guidelines for the Realization of Well-Engineered Functional Self-Assembled Monolayers.

    Science.gov (United States)

    Ostapenko, Alexandra; Klöffel, Tobias; Eußner, Jens; Harms, Klaus; Dehnen, Stefanie; Meyer, Bernd; Witte, Gregor

    2016-06-01

    Functionalization of metal oxides by means of covalently bound self-assembled monolayers (SAMs) offers a tailoring of surface electronic properties such as their work function and, in combination with its large charge carrier mobility, renders ZnO a promising conductive oxide for use as transparent electrode material in optoelectronic devices. In this study, we show that the formation of phosphonic acid-anchored SAMs on ZnO competes with an unwanted chemical side reaction, leading to the formation of surface precipitates and severe surface damage at prolonged immersion times of several days. Combining atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal desorption spectroscopy (TDS), the stability and structure of the aggregates formed upon immersion of ZnO single crystal surfaces of different orientations [(0001̅), (0001), and (101̅0)] in phenylphosphonic acid (PPA) solution were studied. By intentionally increasing the immersion time to more than 1 week, large crystalline precipitates are formed, which are identified as zinc phosphonate. Moreover, the energetics and the reaction pathway of this transformation have been evaluated using density functional theory (DFT), showing that zinc phosphonate is thermodynamically more favorable than phosphonic acid SAMs on ZnO. Precipitation is also found for phosphonic acids with fluorinated aromatic backbones, while less precipitation occurs upon formation of SAMs with phenylphosphinic anchoring units. By contrast, no precipitates are formed when PPA monolayer films are prepared by sublimation under vacuum conditions, yielding smooth surfaces without noticeable etching.

  4. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Mirji, S.A. [Physical Chemistry Division, National Chemical Laboratory, Pune 411008 (India)]. E-mail: mirji@dalton.ncl.res.in; Halligudi, S.B. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Sawant, Dhanashri P. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jacob, Nalini E. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Patil, K.R. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Gaikwad, A.B. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Pradhan, S.D. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India)

    2006-04-15

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m{sup 2}/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH{sub 3}) and methylene (-CH{sub 2}) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C.

  5. Preparation and characterization of alkylphosphonic acid self-assembled monolayers on titanium alloy by chemisorption and electrochemical deposition.

    Science.gov (United States)

    Metoki, Noah; Liu, Liang; Beilis, Edith; Eliaz, Noam; Mandler, Daniel

    2014-06-17

    Ti-6Al-4V alloy is the most commonly used alloy for dental and orthopedic implants. In order to improve osseointegration, different surface modification methods are usually employed, including self-assembled monolayers (SAMs). This study presents an investigation of both active (electroassisted) and passive (adsorption) approaches for the modification of Ti-6Al-4V using alkylphosphonic acid. The monolayers were characterized by cyclic voltammetry, double-layer capacitance, contact angle measurements, X-ray photoelectron spectroscopy, polarization modulation infrared reflection adsorption spectroscopy, electrochemical impedance spectroscopy, and corrosion potentiodynamic polarization measurements. It is shown that the electrochemically assisted monolayers, which are assembled faster, exhibit better control over surface properties, a superior degree of order, and a somewhat higher packing density. The electrosorbed SAMs also exhibit better blockage of electron transfer across the interface and thus have better corrosion resistance.

  6. Human fibrinogen monolayers on latex particles: role of ionic strength.

    Science.gov (United States)

    Bratek-Skicki, Anna; Żeliszewska, Paulina; Adamczyk, Zbigniew; Cieśla, Michał

    2013-03-19

    The adsorption of human serum fibrinogen on polystyrene latex particles was studied using the microelectrophoretic and concentration depletion methods. Measurements were carried out for pH 3.5 and an ionic strength range of 10(-3) to 0.15 M NaCl. The electrophoretic mobility of latex was determined as a function of the amount of adsorbed fibrinogen (surface concentration). A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed, indicating a significant adsorption of fibrinogen on latex for all ionic strengths. No changes in the latex mobility were observed for prolonged time periods, suggesting the irreversibility of fibrinogen adsorption. The maximum coverage of fibrinogen on latex particles was precisely determined using the depletion method. The residual protein concentration after making contact with latex particles was determined by electrokinetic measurements and AFM imaging where the surface coverage of fibrinogen on mica was quantitatively determined. The maximum fibrinogen coverage increased monotonically with ionic strength from 1.8 mg m(-2) for 10(-3) M NaCl to 3.6 mg m(-2) for 0.15 M NaCl. The increase in the maximum coverage was interpreted in terms of the reduced electrostatic repulsion among adsorbed fibrinogen molecules. The experimental data agree with theoretical simulations made by assuming a 3D unoriented adsorption of fibrinogen. The stability of fibrinogen monolayers on latex was also determined in ionic strength cycling experiments. It was revealed that cyclic variations in NaCl concentration between 10(-3) and 0.15 M induced no changes in the latex electrophoretic mobility, suggesting that there were no irreversible molecule orientation changes in the monolayers. On the basis of these experimental data, a robust procedure of preparing fibrinogen monolayers on latex particles of well-controlled coverage was proposed.

  7. Fracture Characteristics of Monolayer CVD-Graphene

    OpenAIRE

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. ...

  8. Decoupling mass adsorption from fluid viscosity and density in quartz crystal microbalance measurements using normalized conductance modeling

    Science.gov (United States)

    Parlak, Z.; Biet, C.; Zauscher, S.

    2013-08-01

    We describe the physical understanding of a method which differentiates between the frequency shift caused by fluid viscosity and density from that caused by mass adsorption in the resonance of a quartz crystal resonator. This method uses the normalized conductance of the crystal to determine a critical frequency at which the fluid mass and fluid loss compensate each other. Tracking the shift in this critical frequency allows us to determine purely mass adsorption on the crystal. We extended this method to Maxwellian fluids for understanding the mass adsorption in non-Newtonian fluids. We validate our approach by real-time mass adsorption measurements using glycerol and albumin solutions.

  9. Adsorption measurements of argon, neon, krypton, nitrogen, and methane on activated carbon up to 650 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Malbrunot, P.; Vidal, D.; Vermesse, J. (Centre Universitaire Paris-Nord, Villetaneuse (France)); Chahine, R.; Bose, T.K. (Universite du Quebec a Trois-Rivieres, Quebec (Canada))

    1992-02-01

    The physisorption of argon, krypton, neon, nitrogen, and methane on GAC activated carbon has been measured in the above critical region by a dielectric method. The measurements were done at room temperature and at pressures up to 650 MPa corresponding to reduced densities of up to 3.25. With the exception of nitrogen, all the measured excess adsorption isotherms show a similar behavior. They exhibit a maximum followed by a downward straight line intercepting the bulk density axis at around the liquid density of the adsorbate in the normal liquid range. The surface excess adsorption isotherms are well represented over the entire density range by Fischer's three-parameter integral equation. The results are also characterized in terms of the critical parameters and the reduced variables of the adsorbates. 21 refs., 2 figs., 3 tabs.

  10. Application of ultrasonic backscattering for level measurement and process monitoring of expanded-bed adsorption columns.

    Science.gov (United States)

    Thelen, T V; Mairal, A P; Thorsen, C S; Ramirez, W F

    1997-01-01

    Expanded-bed adsorption is a newly commercialized technique for the purification of proteins from cellular debris in downstream processing. An expanded bed presents the possibility of protein recovery in a single step, eliminating the often costly clarification processing steps such as ultrafiltration, centrifugation, and precipitation. A major obstacle to the successful commercialization of this technology is the inability to accurately monitor and control the bed height in these systems. Fluctuations in the feedstock viscosity are common during normal operation and tend to make the operation and control of expanded beds for biological applications complex and difficult. We develop a level measurement technique based upon ultrasonics. It is shown that this technique has great promise for bed-height measurement in expanded-bed adsorption systems. Furthermore, the bed-height measurement can be used in feedback control strategies for bed-height regulation. The proposed ultrasonic sensor is also capable of monitoring for plugging and bubbling in the column.

  11. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    Science.gov (United States)

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-01

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher

  12. Adsorption of amylase enzyme on ultrafiltration membranes.

    Science.gov (United States)

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar

    2007-08-28

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 m2.h.bar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 m2.h.bar/L. The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  13. Measurement of Critical Adsorption of Nitrogen near Its Liquid-vapor Critical Point

    Science.gov (United States)

    Chan, Moses

    2003-01-01

    The density profile of a critical fluid near a solid surface is expected to show an universal shape. This is known as critical adsorption. The measurement of this effect, especially close to the critical point, is often obscured by gravity. We were able to separate the gravitational effect from critical adsorption by using two capacitors, one with a large gap and one with a small gap of approximately 2 m. Within the uncertainty in the measurement, our data, which ranges between 10(exp -3) to 2 x 10(exp -6) in reduced temperatures, is consistent with the predicted power law dependence. This work is carried out in collaboration with Rafael Garcia, Sarah Scheidemantel and Klaus Knorr. It is funded by NASA's office of Biological and Physical Researchunder.

  14. Impact of adsorption on scanning electrochemical microscopy voltammetry and implications for nanogap measurements

    OpenAIRE

    Tan, Sze-yin; Zhang, Jie; Bond, Alan M.; Macpherson, Julie V.; Unwin, Patrick R.

    2016-01-01

    Scanning electrochemical microscopy (SECM) is a powerful tool that enables quantitative measurements of fast electron transfer (ET) kinetics when coupled with modeling predictions from finite-element simulations. However, the advent of nanoscale and nanogap electrode geometries that have an intrinsically high surface area-to-solution volume ratio realizes the need for more rigorous data analysis procedures, as surface effects such as adsorption may play an important role. The oxidation of fer...

  15. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface.

    Science.gov (United States)

    Maloney, K M; Grainger, D W

    1993-04-01

    A series of ternary mixed monolayers containing varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and equimolar additions of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LYSO-PC) and palmitic acid (PA) were studied at the air-water interface. These mixed monolayers were used to model phospholipid biomembrane interfaces resulting from phospholipase A2 (PLA2) hydrolysis. Recent work [D.W. Grainger A. Reichert, H. Ringsdorf and C. Salesse (1989) Biochim. Biophys. Acta. 1023, 365-379] has shown that PLA2 hydrolysis of pure phospholipid monolayers results in formation of large PLA2 domains at the air-water interface. These domains are proposed to result from PLA2 adsorption to phase separated regions in the hydrolyzed monolayer. To elucidate the phase behaviour in these monolayer systems, surface pressure-area isotherms were measured for the ternary mixtures on pure water and buffered subphases. Fluorescence microscopy at the air-water interface was used to image fluorescent probe-doped monolayer mixtures during isothermal compressions. A water-soluble cationic carbocyanine dye was used to probe the interfacial properties of the mixed monolayers. Isotherm data do not provide unambiguous evidence for either phase separation or ideal mixing of monolayer components. Fluorescence microscopy is more revealing, showing that lateral phase separation of microstructures containing palmitic acid occurred only when monolayer subphases contained Ca2+ ions at alkaline pH. At either low pH or on Ca(2+)-free subphases, phase separation was not observed.

  16. Industrial surfaces behaviour related to the adsorption and desorption of hydrogen at cryogenic temperature [in LHC vacuum system

    CERN Document Server

    Moulard, G; Saitô, Y

    2001-01-01

    The determination of the hydrogen adsorption capacity on different industrial surfaces has been carried out by measuring isothermal adsorption. First results show that the adsorption capacity is mainly determined by surface porosity. Therefore, the samples may be classified into two categories: smooth and porous surfaces. Thermal desorption spectra reveal two adsorption energy levels for hydrogen physisorbed on porous materials, but only a single one on smooth samples. The value of the lowest energy level seems to be independent of the substrate nature. The physisorption process studied at low coverage, well below a monolayer, shows that these two levels are not well defined but an energy distribution exists for each of them. The influences of the isotherm temperature and an annealing at 7 K of an adsorbed monolayer on hydrogen adsorption capacity have been studied. (16 refs).

  17. Monolayers and mixed-layers on copper towards corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Sinapi, F. [Fonds pour la Formation a la Recherche dans l' Industrie et dans l' Agriculture, Rue d' Egmont 5, B-1000 Brussels (Belgium); Julien, S.; Auguste, D.; Hevesi, L.; Delhalle, J. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium); Mekhalif, Z. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: zineb.mekhalif@fundp.ac.be

    2008-05-01

    In order to improve the protection abilities of (3-mercaptopropy)trimethoxysilane (MPTS) self-assembled monolayers on copper surfaces, mixed monolayers have been formed successfully by successive immersions in MPTS and in n-dodecanethiol (DT). A newly synthesised molecule, (11-mercaptoundecyl)trimethoxysilane (MUTS), has also been employed to form a thicker organic film on copper surfaces and, thereby, enhance the inhibitory action of the coating. The grafting has been confirmed by X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) and water contact angle. The protective efficiency of each protective organic film has been evidenced by cyclic voltammetry (CV) and polarization curve measurements (CP). It was shown that the MUTS and unhydrolyzed MPTS/DT films exhibited significant corrosion protection properties.

  18. Distribution of carbon nanotube sizes from adsorption measurements and computer simulation.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Tanaka, Hideki; Kaneko, Katsumi

    2005-08-04

    The method for the evaluation of the distribution of carbon nanotube sizes from the static adsorption measurements and computer simulation of nitrogen at 77 K is developed. We obtain the condensation/evaporation pressure as a function of pore size of a cylindrical carbon tube using Gauge Cell Monte Carlo Simulation (Gauge Cell MC). To obtain the analytical form of the relationships mentioned above we use Derjaguin-Broekhoff-deBoer theory. Finally, the pore size distribution (PSD) of the single-walled carbon nanohorns (SWNHs) is determined from a single nitrogen adsorption isotherm measured at 77 K. We neglect the conical part of an isolated SWNH tube and assume a structureless wall of a carbon nanotube. We find that the distribution of SWNH sizes is broad (internal pore radii varied in the range 1.0-3.6 nm with the maximum at 1.3 nm). Our method can be used for the determination of the pore size distribution of the other tubular carbon materials, like, for example, multiwalled or double-walled carbon nanotubes. Besides the applicable aspect of the current work the deep insight into the problem of capillary condensation/evaporation in confined carbon cylindrical geometry is presented. As a result, the critical pore radius in structureless single-walled carbon tubes is determined as being equal to three nitrogen collision diameters. Below that size the adsorption-desorption isotherm is reversible (i.e., supercritical in nature). We show that the classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena is a powerful method that can be applied for the determination of the distribution of nanotube sizes.

  19. Using competitive protein adsorption to measure fibrinogen in undiluted human serum

    Science.gov (United States)

    Choi, Seokheun; Wang, Ran; Lajevardi-Khosh, Arad; Chae, Junseok

    2010-12-01

    We report a unique sensing mechanism based on competitive protein adsorption to measure fibrinogen, a cardiovascular biomarker, in undiluted human serum. The method uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. Two fibrinogen concentrations were differentiated in spiked in human serum [3.0 mg/ml (normal concentration) versus 3.2 mg/ml (abnormal concentration with heart disease)]. Real-time surface plasmon resonance signals were monitored as fibrinogen displaced a preadsorbed protein, IgM, on a hydrophobic gold surface. The relatively strong-affinity protein, IgM, was displaced primarily by fibrinogen and much less by other proteins in human serum.

  20. The role of surface Pt on the coadsorption of hydrogen and CO on Pt monolayer film modified Ru(0001) surfaces

    Science.gov (United States)

    Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J.

    2016-10-01

    We have investigated the impact and role of the Pt surface modification on the coadsorption of hydrogen and CO on structurally well defined bimetallic Pt monolayer island/film modified Ru(0001) surfaces with Pt contents up to a complete Pt layer, employing temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS). Kinetic limitations in the surface diffusion are shown to play an important role for adsorption at 90 K, and lead to profound effects of the dosing sequence on the adsorption and desorption characteristics. Furthermore, they are responsible for spill-over effects during the TPD measurements, where COad becomes mobile and can spill-over from weakly bonding Pt monolayer areas to strongly bonding Pt-free Ru(0001) areas, which displaces Dad from these surface areas. The present findings are discussed in comparison with previous results on related metallic and bimetallic adsorption and coadsorption systems.

  1. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  2. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    Science.gov (United States)

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets. Copyright © 2014

  3. Novel SiO2-deposited CaF2 substrate for vibrational sum-frequency generation (SFG) measurements of chemisorbed monolayers in an aqueous environment.

    Science.gov (United States)

    Padermshoke, Adchara; Konishi, Shouta; Ara, Masato; Tada, Hirokazu; Ishibashi, Taka-Aki

    2012-06-01

    A novel SiO(2)-deposited CaF(2) (SiO(2)/CaF(2)) substrate for measuring vibrational sum-frequency generation (SFG) spectra of silane-based chemisorbed monolayers in aqueous media has been developed. The substrate is suitable for silanization and transparent over a broad range of the infrared (IR) probe. The present work demonstrates the practical application of the SiO(2)/CaF(2) substrate and, to our knowledge, the first SFG spectrum at the solid/water interface of a silanized monolayer observed over the IR fingerprint region (1780-1400 cm(-1)) using a back-side probing geometry. This new substrate can be very useful for SFG studies of various chemisorbed organic molecules, particularly biological compounds, in aqueous environments.

  4. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal pla...... where the ballistic approximation to the translational molecular self-correlation function is accurate....

  5. Equilibrium and Kinetic Aspects in the Sensitization of Monolayer Transparent TiO2 Thin Films with Porphyrin Dyes for DSSC Applications

    Directory of Open Access Journals (Sweden)

    Rita Giovannetti

    2014-01-01

    Full Text Available Free base, Cu(II and Zn(II complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-tetramethyl-21H,23H porphyrin (CPI in solution and bounded to transparent monolayer TiO2 nanoparticle films were studied to determine their adsorption on TiO2 surface, to measure the adsorption kinetics and isotherms, and to use the results obtained to optimize the preparation of DSSC photovoltaic cells. Adsorption studies were carried out on monolayer transparent TiO2 films of a known thickness. Langmuir and Frendlich adsorption constants of CPI-dyes on TiO2 monolayer surface have been calculated as a function of the equilibrium concentrations in the solutions. The amount of these adsorbed dyes showed the accordance with Langmuir isotherm. Kinetic data on the adsorption of dyes showed significantly better fits to pseudo-first-order model and the evaluated rate constants linearly increased with the grow of initial dye concentrations. The stoichiometry of the adsorption of CPI-dyes into TiO2 and the influence of presence of coadsorbent (chenodeoxycholic acid have been established. The DSSC obtained in the similar conditions showed that the best efficiency can be obtained in the absence of coadsorbent with short and established immersion times.

  6. Measurement of the adsorption of radiocaesium on clays: factors affecting the extrapolation to in situ conditions

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, S.; Roubaud, M. [INRA-ENSAM, 34 - Montpellier (France)

    1994-12-31

    The aim of the study is to identify the factors most likely to cause discrepancies between measured and true Kd values (distribution coefficient) used for the measure of adsorption of radiocaesium on solid particles. Values of a trace amount of caesium 137 have been measured in dilute suspensions containing clay minerals (clay may be used as barrier for radioactive wastes disposal). Parameters such as clay mineralogy, charge compensating cation, ionic strength and pH of the solution, concentration of caesium and presence of a soil extracted fulvic acid, were varied and their effects analyzed. Only the pH has no effect on Kd. The Kd is always a function of the caesium concentration. 3 figs., 49 refs.

  7. Moisture adsorption desorption characteristics of stainless steel tubing measured by ball surface acoustic wave trace moisture analyzer

    Science.gov (United States)

    Tsuji, Toshishiro; Akao, Shingo; Oizumi, Toru; Takeda, Nobuo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2017-07-01

    A ball surface acoustic wave (SAW) trace moisture analyzer (TMA) was applied to measuring the adsorption and desorption (AD) characteristics of a stainless steel tube. For the first time, two-frequency measurement for precise temperature compensation was attempted at intervals of 3 s using a burst waveform undersampling circuit. We succeeded in measuring the variations of moisture transit time and dry-down dynamics caused by inner surface treatments such as bright annealing (BA), electropolishing (EP), and electrochemical buffing (ECB) using a sample-tube length of only 100 mm at a flow rate of 0.1 L/min. Net moisture adsorption was evaluated from the measured adsorption subtracted by the background adsorption. As a result, it was found that the adsorption on the ECB tube was smaller than those on EP and BA tubes by 1/3 and 1/4, respectively, at a baseline concentration of 13 ppbv. From these results, it was demonstrated that the ball SAW TMA could be used for measuring the AD characteristics of stainless steel tubes with various surface treatments.

  8. Poly(ethylene glycol) monolayer formation and stability on gold and silicon nitride substrates.

    Science.gov (United States)

    Cerruti, Marta; Fissolo, Stefano; Carraro, Carlo; Ricciardi, Carlo; Majumdar, Arun; Maboudian, Roya

    2008-10-07

    Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.

  9. Revealing fibrinogen monolayer conformations at different pHs: electrokinetic and colloid deposition studies.

    Science.gov (United States)

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta

    2015-07-01

    Adsorption mechanism of human fibrinogen on mica at different pHs is studied using the streaming potential and colloid deposition measurements. The fibrinogen monolayers are produced by a controlled adsorption under diffusion transport at pH of 3.5 and 7.4. Initially, the electrokinetic properties of these monolayers and their stability for various ionic strength are determined. It is shown that at pH 3.5 fibrinogen adsorbs irreversibly on mica for ionic strength range of 4×10(-4) to 0.15 M. At pH 7.4, a partial desorption is observed for ionic strength below 10(-2) M. This is attributed to the desorption of the end-on oriented molecules whereas the side-on adsorbed molecules remain irreversibly bound at all ionic strengths. The orientation of molecules and monolayer structure is evaluated by the colloid deposition measurements involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential is observed. At pH 3.5 measurable deposition of latex is observed even at low ionic strength where the approach distance of latex particles exceeded 70 nm. At pH 7.4 this critical distance is 23 nm. This confirms that fibrinogen monolayers formed at both pHs are characterized by the presence of the side-on and end-on oriented molecules that prevail at higher coverage range. It is also shown that positive charge is located at the end parts of the αA chains of the adsorbed fibrinogen molecules. Therefore, it is concluded that the colloid deposition method is an efficient tool for revealing protein adsorption mechanisms at solid/electrolyte interfaces.

  10. Effect of adsorption of charged macromolecules on streaming and membrane potential values measured with a microporous polysulfone membrane

    DEFF Research Database (Denmark)

    Benavente, J.; Jonsson, Gunnar Eigil

    1997-01-01

    Changes in streaming and membrane potentials measured across a commercial microporous polysulfone membrane as a result of the adsorption of differently charged macromolecules were studied. Measurements were carried out with different NaCl solutions (10(-3) M to 5 x 10(-2) M) and their mixtures...

  11. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  12. Self-assembled monolayers of stearic imidazoline on copper electrodes detected using electrochemical measurements, XPS, molecular simulation and FTIR

    Institute of Scientific and Technical Information of China (English)

    LIU XiuYu; MA HouYi; MIAO Shuai; ZHOU Min

    2009-01-01

    A type of imidazoline inhibitor was synthesized using stearic acid and diethylenetriamine (DETA) as raw materials. Self-assembled monolayers (SAMs) of stearic imidazoline (IM) were prepared on copper surface. The copper electrode modified by IM was detected by electrochemical impedance spectros-copy (EIS), Tafel polarization curves, X-ray photoelectron spectroscopy (XPS) and Fourial transform reflection spectroscopy (FTIR). The biggest inhibition efficiency for copper corrosion of IM was 99% in NaCI solution according to EIS results. The XPS results provided evidence that the IM was adsorbed on copper surface. The theoretical calculations of molecular simulation supported the experimental re-sults and showed that the IM molecules were tilted at an angle to the copper surface.

  13. Study of the ability of self-assembled N-vinylcarbazole monolayers to protect copper against corrosion

    Directory of Open Access Journals (Sweden)

    NAI-XING WANG

    2002-10-01

    Full Text Available N-Vinylcarbazole (NVC monolayers were self-assembled on copper surfaces. The electrochemical properties of the copper surfaces modified by NVC self-assembled monolayers (SAMs were investigated using polarization and electrochemical impedance spectroscopic (EIS methods. The polarization measurements indicated that the NVC SAMs could reduce the rates of the anodic and cathodic reaction on the surface of copper electrodes in 0.5 mol dm-3 NaCl solution. The EIS results showed the NVC formed a closely packed film that was able to inhibit copper corrosion. X-Ray photoelectron spectroscopy (XPS analysis of the copper samples and atomic adsorption analysis of the solution showed that the copper surfaces were covered by NVC SAMs, and the adsorption of NVC on the copper surfaces was accompanied with dissolution of Cu into the solution.

  14. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Science.gov (United States)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  15. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  16. Adsorption of cadmium(II) on waste biomaterial.

    Science.gov (United States)

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively.

  17. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    Science.gov (United States)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  18. Simultaneous refractive index and thickness measurement with the transmission interferometric adsorption sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi; Voeroes, Janos [Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich (Switzerland); Balmer, Tobias E [Materials Research Center, ETH Zurich, 8093, Zurich (Switzerland); Heuberger, Manfred, E-mail: sannomiya@biomed.ee.ethz.c, E-mail: tobias.balmer@mat.ethz.c, E-mail: manfred.heuberger@empa.c, E-mail: janos.voros@biomed.ee.ethz.c [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093, Zurich (Switzerland)

    2010-10-13

    Refractive index and thickness of the adlayer are determined simultaneously using the transmission interferometric adsorption sensor (TInAS). Optical biosensors, where both refractive index and thickness of a homogeneous adlayer (thus the adsorbed mass) are determined simultaneously, so-called model-free biosensors, are important tools to investigate the adsorbed mass of biomolecules with unknown conformation. Our proposed calculation method enables model-free biosensing from a single spectrum acquired by a simple TInAS setup, namely using information of peak/dip positions as well as peak/dip intensities. The feasibility of this method was experimentally tested by adsorbing polyelectrolyte multilayer as well as biomolecules. To validate the new method also for the more intricate heterogeneous adlayer, the apparent refractive index and thickness were assessed theoretically by simulating a selection of different adsorbate configurations with the multiple multipole program (MMP). We found that a lateral inhomogeneity of the adsorbate (e.g. islands or adsorbed colloids) results in correct thickness and in reduced refractive index averaged in proportion to their density while vertically inhomogeneous density caused more complex responses. However, the apparent mass was always correct. Measurement errors can lead to significant errors in the apparent refractive index, particularly when the adlayer is very thin (<5 nm). This model-free TInAS technique would be useful not only for the measurement of adsorbed mass but also for the conformational analysis of the adsorbed molecules.

  19. Intermolecular band dispersion of quasi-single crystalline organic semiconductor monolayer measured by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Ohtomo, Manabu; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-03-01

    Band structure of organic semiconductors is important knowledge to improve the molecular design. Angle-Resolved Photoemission Spectroscopy (ARPES) studies using highly conductive single domain samples grown in-situ is the most direct technique. In this study, we developed a novel method to grow quasi-single crystalline monolayer on conductive substrate and electronic structure was investigated. As a template for orientation control, we used a step-bunched Si(111) substrate with dangling bond termination. In case of pentacene, it was confirmed that the crystal is quasi-single crystal with 2.2^o rotated twins. The band dispersion was identical to that of thin-film phase. The effective mass and transfer integrals are evaluated using two-dimensional tight binding fit and compared with band calculations [1]. We also report the growth of 2,7-Dipheny[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT) [2] on Bi-Si substrate and compare discuss its band structure. [4pt] [1] M.Ohtomo et al., APL 95, 123308 (2009).[0pt] [2] K.Takimiya, JACS 128, 3044 (2006).

  20. Mechanism of immunoglobulin G adsorption on polystyrene microspheres.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Barbasz, Jakub

    2016-01-01

    The adsorption of polyclonal immunoglobulin G (IgG) on negatively charged polystyrene microparticle suspension (latex) was studied by using the Laser Doppler Velocimetry (LDV) measurements. Using this technique, the dependence of the electrophoretic mobility of particles on the IgG concentration in the suspension was measured for various ionic strengths and pH 3.5. The increase in the electrophoretic mobility was quantitatively interpreted in terms of the 3D electrokinetic model. On the other hand, the maximum coverage of IgG on latex was determined using the depletion method based on AFM imaging. It was shown that IgG adsorption was irreversible and that its maximum coverage on the microspheres increased from 1.4mgm(-2) for 0.001M NaCl to 2.0mgm(-2) for 0.15M NaCl. This was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. The stability of IgG monolayers on the particles was confirmed in separate experiments where changes in its electrophoretic mobility were monitored over prolonged time periods. Additionally, the acid-base properties of the IgG monolayers on latex were determined in pH cycling experiments. The isoelectric point of the IgG monolayers on the microspheres was 4.8. The results obtained in this work indicate that basic physicochemical characteristics of IgG can be acquired via electrophoretic mobility measurements using microgram quantities of the protein.

  1. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering.

    Science.gov (United States)

    Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne

    2013-11-04

    Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers

  2. Measurement and modeling of single- and multi-component adsorption equilibria of VOC on high-silica zeolites.

    Science.gov (United States)

    Monneyron, Pierre; Manero, Marie-Helene; Foussard, Jean-Noel

    2003-06-01

    From pure and binary gas adsorption equilibria measurements carried out using a volumetric method for three volatile organic compounds (methyl ethyl ketone, toluene (TOL), and 1,4-dioxane) on two high-silica zeolites, desaluminated faujasite Y (Fau Y) and ZSM-5 (Sil Z), co-adsorption was investigated and modeled. Apart from steric exclusion taking place with TOL-containing mixtures on Sil Z, micropore filling was similar to distillation since the component with the lower volatility adsorbed preferentially. At low coverage, chemisorption on specific sites happened in favor of polar or major compound, whereas at saturation the adsorbent was selective for the minor compound. Second, a quantitative prediction of binary equilibria was performed using the ideal adsorbed solution theory (IAST), examining the influence of pure component adsorption fitting model. The efficiency of correlations when extending AST to real mixture behavior was satisfactory in most cases. For engineering purposes, Fau Y is to be considered as a high-adsorption capacity adsorbent, whose selectivity can be described qualitatively by the distillation analogy and predicted quantitatively with the IAST in case of quasi-ideal mixtures.

  3. Aspects of vapor adsorption on solids

    Science.gov (United States)

    Beaglehole, David

    1997-02-01

    The paper describes three unexpected phenomena which were observed during studies of the vapour adsorption onto solids. A quadratic variation of the adsorption of water onto borosilicate glass is found at low pressures. Water films condensed onto mica start to conduct electricity at a thickness of almost exactly one monolayer, with fluctuations in the conductivity in the region of onset. Diffusion through a background atmosphere slows the adsorption process and asymetrical fluctuations in thickness are observed.

  4. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    Science.gov (United States)

    Tegoulia, Vassiliki Apostolou

    SAMs from phosphorylcholine and hydroxyl or methyl thiol solutions were prepared. XPS measurements and ellipsometry verified the presence of a monolayer. Grazing-angle FTIR results indicated that the new SAMs were not very highly ordered. Fibrinogen adsorption on the new surfaces was found to be low and the strength of adsorption was small while no leukocytes adhered under flow.

  5. Human fibrinogen adsorption on positively charged latex particles.

    Science.gov (United States)

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and

  6. Solid-supported monolayers and bilayers of amphiphilic ß-Cyclodextrin

    NARCIS (Netherlands)

    Cristiano, Antonella; Lim, C.W.; Rozkiewicz, D.I.; Reinhoudt, David; Ravoo, B.J.

    2007-01-01

    This paper describes the adsorption and spreading of B-cyclodextrin (CD) vesicles on hydrophobic and hydrophilic substrates, which involves a transition from bilayer vesicles to planar molecular monolayers or bilayers. On substrates that are patterned with self-assembled monolayers by microcontact

  7. Drug induced `softening' in phospholipid monolayers

    Science.gov (United States)

    Basak, Uttam Kumar; Datta, Alokmay; Bhattacharya, Dhananjay

    2015-06-01

    Compressibility measurements on Langmuir monolayers of the phospholipid Dimystoryl Phospatidylcholine (DMPC) in pristine form and in the presence of the Non-steroidal Anti-inflammatory Drug (NSAID) Piroxicam at 0.025 drug/lipid (D/L) molecular ratio at different temperatures, show that the monolayer exhibits large increase (and subsequent decrease) in compressibility due to the drug in the vicinity of the Liquid Expanded - Liquid Condensed (LE-LC) phase transition. Molecular dynamics simulations of the lipid monolayer in presence of drug molecules show a disordering of the tail tilt, which is consistent with the above result.

  8. Basic dye adsorption onto an agro-based waste material--sesame hull (Sesamum indicum L.).

    Science.gov (United States)

    Feng, Yanfang; Yang, Fan; Wang, Yongqian; Ma, Li; Wu, Yonghong; Kerr, Philip G; Yang, Linzhang

    2011-11-01

    The aim of this project was to establish an economical and environmentally benign biotechnology for removing methylene blue (MB) from wastewater. The adsorption process of MB onto abandoned sesame hull (Sesamum indicum L.) (SH) was investigated in a batch system. The results showed that a wide range of pH (3.54-10.50) was favorable for the adsorption of MB onto SH. The Langmuir model displayed the best fit for the isothermal data. The exothermic adsorption process fits a pseudo-second-order kinetic model. The maximum monolayer adsorption capacity (359.88 mg g(-1)) was higher than most previously investigated low-cost bioadsorbents (e.g., peanut hull, wheat straw, etc.). This study indicated that sesame hull is a promising, unconventional, affordable and environmentally friendly bio-measure that is easily deployed for removing high levels of MB from wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hong; Lee, Jay H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Braatz, Richard D. [Massachusetts Institute of Technology (MIT), Cambridge (United States)

    2016-01-15

    This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

  10. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements

    NARCIS (Netherlands)

    Danov, K.D.; Kralchevsky, P.A.; Radulova, G.M.; Basheva, E.S.; Stoyanov, S.D.; Pelan, E.G.

    2015-01-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, Esh and ¿sh,

  11. Wetting transitions of simple liquid films adsorbed on selfassembled monolayer substrates: an ellipsometric study

    Science.gov (United States)

    Batchelder, D. N.; Cheng, Y. L.; Evans, S. D.; Henderson, J. R.

    We report on an ellipsometric experimental study designed to explore the relevance of the wetting phase diagram predicted by liquid state physics of basic models, to the wide class of simple organic liquid films that adsorb from saturated vapour onto planar substrates at room temperature. The wetting properties are explored by measuring adsorption isotherms in the approach to saturation, in particular, for adsorption of n -hexane on a variety of specially constructed substrates (self-assembled monolayers) spanning a wide range of surface energy, and by carrying out the microscopic equivalent of contact angle experiments at saturation. We locate a wetting transition, which in our case is continuous, and then study its properties in detail. The general prediction of the wetting phase diagram, that wetting transitions should be ubiquitous in nature and readily located via control over the substrate field, is supported by our data, but the quantitative nature of the thick film adsorption regime is not in agreement with Lifshitz theory. This conclusion supports the work of a variety of earlier related studies, but contrasts with recent results for adsorption onto the surface of water. In addition, the correlation length determined from our complete wetting adsorption isotherms is mesoscopic, suggesting that equilibrium statistical mechanics of simple models of inhomogeneous fluids cannot explain the data.

  12. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  13. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance.

    Science.gov (United States)

    Xiang, Bo; Fan, Wen; Yi, Xiaowei; Wang, Zuohua; Gao, Feng; Li, Yijiu; Gu, Hongbo

    2016-01-20

    In this work, three types of dithiocarbamate (DTC)-modified starch derivatives including DTC starch (DTCS), DTC enzymolysis starch (DTCES) and DTC mesoporous starch (DTCMS) were developed, which showed the significant heavy metal adsorption performance. The adsorption ability of these three DTC modified starch derivatives followed the sequences: DTCMS>DTCES>DTCS. In single metal aqueous solutions, the uptake amount of heavy metal ions onto the modified starches obeyed the orders: Cu(II)>Ni(II)>Cr(VI)>Zn(II)>Pb(II). The adsorption mechanism was proved by the chelating between DTC groups and heavy metal ions through the pH effect measurements. A monolayer adsorption of Langmuir isotherm model for the adsorption of Cu(II) onto DTCMS was well fitted rather than the multilayer adsorption of Freundlich isotherm model. The adsorption kinetics of Cu(II) onto starch derivatives was found to be fit well with the pseudo-second-order model. Additionally, in the presence of EDTA, the adsorption ability and uptake amount of heavy metal ions onto these three DTC modified starch derivatives is identical with the results obtained in the absence of EDTA.

  14. Characterization of biomaterials polar interactions in physiological conditions using liquid-liquid contact angle measurements: relation to fibronectin adsorption.

    Science.gov (United States)

    Velzenberger, Elodie; El Kirat, Karim; Legeay, Gilbert; Nagel, Marie-Danielle; Pezron, Isabelle

    2009-02-01

    Wettability of biomaterials surfaces and protein-coated substrates is generally characterized with the sessile drop technique using polar and apolar liquids. This procedure is often performed in air, which does not reflect the physiological conditions. In this study, liquid/liquid contact angle measurements were carried out to be closer to cell culture conditions. This technique allowed us to evaluate the polar contribution to the work of adhesion between an aqueous medium and four selected biomaterials widely used in tissue culture applications: bacteriological grade polystyrene (PS), tissue culture polystyrene (tPS), poly(2-hydroxyethyl methacrylate) film (PolyHEMA), and hydroxypropylmethylcellulose-carboxymethylcellulose bi-layered Petri dish (CEL). The contributions of polar interactions were also estimated on the same biomaterials after fibronectin (Fn) adsorption. The quantity of Fn adsorbed on PS, tPS, PolyHEMA and CEL surfaces was evaluated by using the fluorescein-labeled protein. PolyHEMA and CEL were found to be hydrophilic, tPS was moderately hydrophilic and PS was highly hydrophobic. After Fn adsorption on PS and tPS, a significant increase of the surface polar interaction was observed. On PolyHEMA and CEL, no significant adsorption of Fn was detected and the polar interactions remained unchanged. Finally, an inverse correlation between the polarity of the surfaces and the quantity of adsorbed Fn was established.

  15. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Science.gov (United States)

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru

    2016-11-01

    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  16. Fabrication and testing of engineered forms of self-assembled monolayers on mesoporous silica (SAMMS) material

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, S.V.; Liu, J.; Fryxell, G.E.; Baskaran, S.; Gong, M.; Nie, Z. [Pacific Northwest National Lab., Richland, WA (United States); Feng, X. [Ferro Corp., Cincinnati, OH (United States); Klasson, K.T. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    A number of engineered forms such as flexible extrudates, beads, and rods were fabricated using thiol-SAMMS (Self-Assembled Monolayers on Mesoporous Silica) and tested for their mercury adsorption capacities. The flexible extrudate form had a mercury adsorption capacity of 340 mg/g but was found to be structurally unstable. A structurally sound bead form of thiol-SAMMS was fabricated with 5, 10, 25, and 40% by weight clay binder (attapulgite) and successfully functionalized. A structurally stable but non-optimized rod form of thiol-SAMMS was also fabricated. Bench-scale processes were developed to silanize and functionalize mesoporous silica beads made with attapulgite clay binder. Contact angle measurements were conducted to assess the degree of surface coverage by functional groups on mesoporous silica materials.

  17. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    Science.gov (United States)

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen.

  18. Direct measurement of the adsorption kinetics of 2-Mercaptobenzothiazole on a microcrystalline copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Cano, J. A.; Veleva, L.

    2016-05-01

    The adsorption on copper of 2-Mercaptobenzothiazole (2-MBT), a heterocyclic compound member of the tiazole family, has been investigated at different concentrations (1x10{sup -}1 to 1x10{sup -}6 M) in water, employing the Electrochemical Quartz Crystal Microbalance (EQCM). The frequency response over time was obtained for each concentration, showing a defined exponential behavior at higher concentrations (1x10{sup -}1, 1x10{sup -}2 and 1x10{sup -}3 M), which was filed to the Langmuir adsorption isotherm with a good correlation coefficients (R{sup 2}=0.91 to 0.98) Surface coverage (θ) was calculated and found to be in the order of 0.50 to 0.01 for 2-MBT high concentrations. The free energy of adsorption was ΔG{sub a}ds=-5.59 kJ mol{sup -}1, corresponding to physisorption process, probably of electrostatic nature of the interaction between 2-MBT and copper surface in aqueous solution. (Author)

  19. Membrane Insertion by Trichosanthin Using the Monolayer Method

    Institute of Scientific and Technical Information of China (English)

    薛毅; 夏晓峰; 隋森芳

    2003-01-01

    A monolayer technique was used to investigate the interaction between the ribosome inactivating protein trichosanthin (TCS) and phospholipid membrane.The adsorption experiments show that the negatively charged 1,2-dipalmitoyl-sn-glycerol-3-phosphoglycerol (DPPG) causes obvious enrichment of TCS beneath the monolayer, indicating electrostatic attraction between TCS and the negatively charged phospholipid.When TCS was incorporated into the DPPG monolayer at low pH, it could not be completely squeezed out until the monolayer collapsed.The results suggest that the electrostatic attraction and the hydrophobic force are involved in the interaction between TCS and phospholipids at different stages.These findings may be correlated with the membrane translocation mechanism of TCS.

  20. Mass spectrometric analysis of monolayer protected nanoparticles

    Science.gov (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  1. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

  2. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    Science.gov (United States)

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access.

  3. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  4. Using the reversible inhibition of gastric lipase by Orlistat for investigating simultaneously lipase adsorption and substrate hydrolysis at the lipid-water interface.

    Science.gov (United States)

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-06-01

    The lipolysis reaction carried out by lipases at the water-lipid interface is a complex process including enzyme conformational changes, adsorption/desorption equilibrium and substrate hydrolysis. Mixed monomolecular films of the lipase inhibitor Orlistat and 1,2-dicaprin were used here to investigate the adsorption of dog gastric lipase (DGL) followed by the hydrolysis of 1,2-dicaprin. The combined study of these two essential catalysis steps was made possible thanks to the highest affinity of DGL for Orlistat than 1,2-dicaprin and the fact that the inhibition of DGL by Orlistat is reversible. Upon DGL binding to mixed 1,2-dicaprin/Orlistat monolayers, an increase in surface pressure reflecting lipase adsorption was first recorded. Limited amounts of Orlistat allowed to maintain DGL inactive on 1,2-dicaprin during a period of time that was sufficient to determine DGL adsorption and desorption rate constants. A decrease in surface pressure reflecting 1,2-dicaprin hydrolysis and product desorption was observed after the slow hydrolysis of the covalent DGL-Orlistat complex was complete. The rate of 1,2-dicaprin hydrolysis was recorded using the surface barostat technique. Based on a kinetic model describing the inhibition by Orlistat and the activity of DGL on a mixed 1,2-dicaprin/Orlistat monolayer spread at the air-water interface combined with surface pressure measurements, it was possible to monitor DGL adsorption at the lipid-water interface and substrate hydrolysis in the course of a single experiment. This allowed to assess the kcat/KM* ratio for DGL acting on 1,2-dicaprin monolayer, after showing that mixed monolayers containing a low fraction of Orlistat were similar to pure 1,2-dicaprin monolayers.

  5. ELASTICITY OF MONOLAYER OF LINOLEIC ACID AND ITS POLYMER

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The dynamic elasticity of linoleic acid monolayer on a subphase of 10-4mol/L TbCla at various surface pressure has been measured by means of dynamic oscillation method in measuring the change of surface pressure caused by periodic compressionexpansion cycles of the barrier. The elasticity of monolayer increases with increasing of surface pressure linegrly. The linoleic acid polymer monolayer has been obtained under UV-irradiation in situ when keeping a constant surface pressure. But the elasticity of the resulting polymerized monolayer is even smaller than that of its corresponding monomer monolayer. The elasticity of the polymerized linoleic acid monolayer decreases with increasing polymerization time. The explanation based on entropy has been presented.

  6. Volumetric apparatus for hydrogen adsorption and diffusion measurements: sources of systematic error and impact of their experimental resolutions.

    Science.gov (United States)

    Policicchio, Alfonso; Maccallini, Enrico; Kalantzopoulos, Georgios N; Cataldi, Ugo; Abate, Salvatore; Desiderio, Giovanni; Agostino, Raffaele Giuseppe

    2013-10-01

    The development of a volumetric apparatus (also known as a Sieverts' apparatus) for accurate and reliable hydrogen adsorption measurement is shown. The instrument minimizes the sources of systematic errors which are mainly due to inner volume calibration, stability and uniformity of the temperatures, precise evaluation of the skeletal volume of the measured samples, and thermodynamical properties of the gas species. A series of hardware and software solutions were designed and introduced in the apparatus, which we will indicate as f-PcT, in order to deal with these aspects. The results are represented in terms of an accurate evaluation of the equilibrium and dynamical characteristics of the molecular hydrogen adsorption on two well-known porous media. The contribution of each experimental solution to the error propagation of the adsorbed moles is assessed. The developed volumetric apparatus for gas storage capacity measurements allows an accurate evaluation over a 4 order-of-magnitude pressure range (from 1 kPa to 8 MPa) and in temperatures ranging between 77 K and 470 K. The acquired results are in good agreement with the values reported in the literature.

  7. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    Science.gov (United States)

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  8. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework.

    Science.gov (United States)

    Wu, Di; Gassensmith, Jeremiah J; Gouvêa, Douglas; Ushakov, Sergey; Stoddart, J Fraser; Navrotsky, Alexandra

    2013-05-08

    The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior. At near-zero coverage, an irreversible binding event with an enthalpy of -113.5 kJ/mol CO2 is observed, which is followed by a reversible -65.4 kJ/mol binding event. These enthalpies are assigned to adsorption on more and less reactive hydroxyl groups, respectively. Further, a second plateau shows an enthalpy of -40.1 kJ/mol and is indicative of physisorbed CO2. The calorimetric data confirm the presence of at least two energetically distinct binding sites for chemisorbed CO2 on CD-MOF-2.

  9. Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D.

    Science.gov (United States)

    Contreras, Alison E; Steiner, Zvi; Miao, Jing; Kasher, Roni; Li, Qilin

    2011-08-01

    Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.

  10. Methane adsorption-induced coal swelling measured with an optical method

    Institute of Scientific and Technical Information of China (English)

    Tang Shuheng; Wan Yi; Duan Lijiang; Xia Zhaohui; Zhang Songhang

    2015-01-01

    In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile bituminous coal, low-volatile bituminous coal and anthracite, respectively) were collected, and adsorption-induced coal swelling in methane were determined by an optical method at 40 ?C and pressure up to 12 MPa. All three coals showed similar behavior-that swelling increased as a function of pressure up to about 10 MPa but thereafter no further increase in swelling was observed. Swelling in the direction perpendicular to the bedding plane is greater than that parallel to the bedding plane, and the differences are about 7.77–8.33%. The maximum volumetric swelling ranges from 2.73% to 3.21%-increasing with increasing coal rank. The swelling data can be described by a modified DR model. In addition, swelling increases with the amount of adsorption. However, the increase shows a relatively slower stage followed by a relatively faster stage instead of a linear increase. Based on the assumption that sorption-induced swelling/shrinkage of coal in methane is reversible, the permeability increases induced by coal shrinkage during methane desorption was analyzed, and the results indicate that the permeability change is larger for higher rank coal in the same unit of pressure depletion.

  11. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    Science.gov (United States)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  12. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements.

    Science.gov (United States)

    Sedeva, Iliana G; Fetzer, Renate; Fornasiero, Daniel; Ralston, John; Beattie, David A

    2010-05-15

    The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TY), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14°) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

  13. Direct measurement of the adsorption kinetics of 2-Mercaptobenzothiazole on a microcrystalline copper surface

    Directory of Open Access Journals (Sweden)

    Ramírez-Cano, Jorge A.

    2016-03-01

    Full Text Available The adsorption on copper of 2-Mercaptobenzothiazole (2-MBT, a eterocyclic compound member of the tiazole family, has been investigated at different concentrations (1×10−1 to 1×10−6 M in water, employing the Electrochemical Quartz Crystal Microbalance (EQCM. The frequency response over time was obtained for each concentration, showing a defined exponential behavior at higher concentrations (1×10−1, 1×10−2 and 1×10−3 M, which was fitted to the Langmuir adsorption isotherm with a good correlation coefficients (R2=0.91 to 0.98. Surface coverage (θ was calculated and found to be in the order of 0.50 to 0.01 for 2-MBT high concentrations. The free energy of adsorption was ΔGads=−5.59 kJ mol−1, corresponding to physisorption process, probably of electrostatic nature of the interaction between 2-MBT and copper surface in aqueous solution.En el presente trabajo se ha investigado la adsorción del 2-Mercaptobenzotiazol (2-MBT en cobre, un compuesto heterocíclico miembro de la familia de los tiazoles, en solución acuosa a diferentes concentraciones (1×10−1 a 1×10−6 M, empleando la Balanza Electroquímica de Cristal de Cuarzo (BECC. Se midió y analizó el cambio de frecuencia con respecto al tiempo para cada concentración, mostrando un comportamiento exponencial definido en el rango de concentraciones altas (1×10−1, 1×10−2 y 1×10−3 M, los cambios de frecuencia registrados se ajustaron usando la isoterma de adsorción de Langmuir obteniendo buenos coeficientes de correlación (R2=0,91 a 0,98. Se calculó también la fracción de superficie recubierta y se halló que se encuentra en el orden de 0,50 a 0,01 para las concentraciones altas de 2-MBT. La energía libre de adsorción calculada fue de ΔGads=−5,59 kJ mol−1, lo cual corresponde a un proceso de fisisorción.

  14. Construction and Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System

    CERN Document Server

    Street, J; Dunagan, C; Loose, X; Schnee, R W; Stark, M; Sundarnath, K; Tronstad, D

    2015-01-01

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of $\\sim$0.2$\\,$Bq$\\,$m$^{-3}$. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a $>$$\\,$300$\\times$ reduction from an input activity of $58.6\\pm0.7$$\\,$Bq$\\,$m$^{-3}$ to a cleanroom activity of $0.13\\pm0.06$$\\,$Bq$\\,$m$^{-3}$.

  15. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    Science.gov (United States)

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S.

    2013-08-01

    Long-lived alpha and beta emitters in the 222Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ˜20× reduction at its output, from 7.47±0.56 to 0.37±0.12 Bq/m3, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m3.

  16. Construction and measurements of an improved vacuum-swing-adsorption radon-mitigation system

    Science.gov (United States)

    Street, J.; Bunker, R.; Dunagan, C.; Loose, X.; Schnee, R. W.; Stark, M.; Sundarnath, K.; Tronstad, D.

    2015-08-01

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ˜0.2 Bq m-3. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a > 300× reduction from an input activity of 58.6 ± 0.7 Bq m-3 to a cleanroom activity of 0.13 ± 0.06 Bq m-3.

  17. Construction and measurements of an improved vacuum-swing-adsorption radon-mitigation system

    Energy Technology Data Exchange (ETDEWEB)

    Street, J., E-mail: joseph.street@mines.sdsmt.edu; Bunker, R.; Dunagan, C.; Loose, X.; Schnee, R. W.; Stark, M.; Sundarnath, K.; Tronstad, D. [Department of Physics, South Dakota School of Mines & Technology, Rapid City, SD 57701 (United States)

    2015-08-17

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ∼0.2 Bq m{sup −3}. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a > 300× reduction from an input activity of 58.6 ± 0.7 Bq m{sup −3} to a cleanroom activity of 0.13 ± 0.06 Bq m{sup −3}.

  18. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    CERN Document Server

    Schnee, R W; Ghulam, G; Jardin, D; Kos, M; Tenney, A S

    2014-01-01

    Long-lived alpha and beta emitters in the $^{222}$Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the BetaCage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ~20$\\times$ reduction at its output, from 7.47$\\pm$0.56 to 0.37$\\pm$0.12 Bq/m$^3$, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m$^3$.

  19. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    Energy Technology Data Exchange (ETDEWEB)

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ∼20× reduction at its output, from 7.47±0.56 to 0.37±0.12 Bq/m{sup 3}, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m{sup 3}.

  20. Mechanism of chitosan adsorption on silica from aqueous solutions.

    Science.gov (United States)

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  1. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...... biotechnology at the monolayer and toward the single-molecule level....

  2. Hydrogen sorption in Pd monolayers in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.H. [Departement de chimie, Universite de Sherbrooke, 2500 blvd. de l' Universite, Sherbrooke, Quebec, J1K 2R1 (Canada); Lasia, A. [Departement de chimie, Universite de Sherbrooke, 2500 blvd. de l' Universite, Sherbrooke, Quebec, J1K 2R1 (Canada)], E-mail: a.lasia@usherbrooke.ca

    2009-09-01

    Hydrogen adsorption/absorption at palladium monolayers (ML) deposited on monocrystalline Au(1 1 1) electrode was studied in 0.1 M NaOH solution. H charge isotherms demonstrated that adsorption started at potentials more positive than at thicker nanometric Pd/Au(polycrystal) deposits. Due to 3-dimensional deposit growth, absorption could be seen at all deposits thicker than 1 ML. Besides, H sorption at Pd/Au(1 1 1) monolayers was more reversible than at nanometric Pd/Au(polycrystal) deposits. Strong geometric and electronic effects due to the Au substrate were observed up to 5 Pd ML. Influence of benzotriazole (BTA) on H sorption was also investigated. BTA blocked H adsorption above 250 mV vs. RHE. At less positive potentials adsorbed BTA layer seemed to undergo a reorientation allowing H adsorption. Stationary and dynamic electrochemical impedance spectroscopy was used to obtain double layer capacitance and charge transfer resistance. BTA also promoted kinetically H sorption into Pd/Au(1 1 1) monolayer and Pd/Au(polycrystal) nanometric deposits.

  3. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH{sub 3}, OH, and CONHCH{sub 3} functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Cruz, Angel L. [Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00931-3346 (Puerto Rico); Tremont, Rolando [Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00931-3346 (Puerto Rico); Martinez, Ramon [Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00931-3346 (Puerto Rico); Roman-tilde ach, Rodolfo [Chemistry Department, University of Puerto Rico, Mayagueez Campus, Mayagueez 00681-5000 (Puerto Rico); Cabrera, Carlos R. [Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00931-3346 (Puerto Rico)]. E-mail: ccabrera@goliath.cnnet.clu.edu

    2005-03-15

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH{sub 3}-, OH- and CONHCH{sub 3}-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH{sub 3}-functional) and N-methyl-11-mercaptoundecanamide (CONHCH{sub 3}-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO{sup -}Ca{sup 2+} functionalized tip and the CH{sub 3}-, OH-, and CONHCH{sub 3}-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion

  4. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH 3, OH, and CONHCH 3 functionalized self-assembled monolayers

    Science.gov (United States)

    Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.

    2005-03-01

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and

  5. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Öhlén, Kristina; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-04-15

    Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region.

  6. Assembly of organic monolayers on polydicyclopentadiene.

    Science.gov (United States)

    Perring, Mathew; Bowden, Ned B

    2008-09-16

    The first well-defined organic monolayers assembled on polydicyclopentadiene is reported. Commercial grade dicyclopentadiene was polymerized with the Grubbs' second-generation catalyst in a fume hood under ambient conditions at very low monomer to catalyst loadings of 20 000 to 1. This simple method resulted in a polymer that was a hard solid and appeared slightly yellow. Brief exposures of a few seconds of this polymer to Br 2 lead to a surface with approximately half of the olefins brominated as shown by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy. The ATR-IR spectroscopy was carried out with the polymer in contact with a Ge hemisphere housed in a GATR accessory from Harrick. This brominated polydicyclopentadiene was immersed in DMF with 4-(trifluoromethyl)benzylamine to assemble a monolayer. The amines displaced Br on the surface to form a monolayer that exposed a CF 3 group on the surface. The surface was extensively studied by XPS using the method described by Tougaard to find the distribution of F within the surface layer. The ratio for the peak area, Ap, to the background height, B, measured 30 eV below the peak maximum was 109.8 eV. This value clearly indicated that F was found only at the surface and was not found within the polymer. A surface coverage of 1.37 amines per nm (2) was estimated and indicated that the monolayer was 28% as dense as a similar monolayer assembled from thiols on gold. Finally, a simple method to pattern these monolayers using soft lithography is described. This work is critically important because it reports the first monolayers on a relatively new and emerging polymer that has many desirable physical characteristics such as high hardness, chemical stability, and ease of forming different shapes.

  7. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  8. Water adsorption on alpha-Fe2O3(0001) at near ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu; Kendelewicz, Tom; Newberg, John T.; Ketteler, Guido; Starr, David E.; Mysak, Erin R.; Andersson, Klas J.; Ogasawara, Hirohito; Bluhm, Henrik; Salmeron, Miquel; Brown Jr., Gordon E.; Nilsson, Anders

    2009-11-23

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {<=} 34%) using ambient-pressure x-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7}% and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx}4 x 10{sup -2}% RH depending on sample temperature and water vapor pressure. The coverage of water reaches I ML at {approx} 15% RH and increases to 1.5 ML at 34% RH.

  9. Langmuir adsorption study of the interaction of CdSe/ZnS quantum dots with model substrates: influence of substrate surface chemistry and pH.

    Science.gov (United States)

    Park, Jung Jin; Lacerda, Silvia H De Paoli; Stanley, Scott K; Vogel, Brandon M; Kim, Sangcheol; Douglas, Jack F; Raghavan, Dharmaraj; Karim, Alamgir

    2009-01-06

    We investigate the utility of Langmuir adsorption measurements for characterizing nanoparticle-substrate interactions. Spherical CdSe/ZnS core-shell nanoparticles were chosen as representative particles because of their widespread use in biological labeling measurements and their relatively monodisperse dimensions. In particular, the quantum dots were functionalized with 11-mercaptoundecanoic acid, and we utilized an amine-terminated self-assembled monolayer (SAM) as a model substrate. SAMs with different end-groups (-CH(3) and -COOH) were also considered to contrast with the adsorption behavior on the amine-terminated SAM substrates. We followed the kinetics of nanoparticle adsorption on the aminosilane layer by quartz crystal microgravimetry (QCM) over a range of particle concentrations and determined the corresponding Langmuir adsorption isotherms. Analysis of both equilibrium adsorption and kinetic adsorption data allowed us to determine a consistent value of the Langmuir adsorption equilibrium constant for the amine-terminated SAM at room temperature (K(L) approximately 2.7 (micromol/L)(-1)), providing a useful characterization of the nanoparticle-substrate interaction. The effect of varying solution pH on Langmuir adsorption was also investigated in order to gain insight into the role of electrostatic interactions on nanoparticle adsorption. The equilibrium extent of adsorption was found to be maximum at about pH 7. These changes of nanoparticle adsorption were further quantified and validated by X-ray photoelectron spectroscopy (XPS) and confocal fluorescence microscopy measurements. We conclude that Langmuir adsorption measurements provide a promising approach for quantifying nanoparticle-substrate interactions.

  10. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts

    Science.gov (United States)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    -2) corresponds to the detection limit for adsorption of less than 1.5 × 1012 CO molecules cm-2 or less than 0.1% of the monolayer coverage (with respect to the 1.5 × 1015 surface Pt atoms cm-2). The absolute accuracy in energy is within ˜7%-9%. As a test of the new calorimeter, the adsorption heats of CO on Pt(111) at different temperatures were measured and compared to previously obtained calorimetric data at 300 K.

  11. Measuring water adsorption on mineral surfaces in air, CO2, and supercritical CO2 with a quartz-crystal microbalance

    Science.gov (United States)

    Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.

    2011-12-01

    Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the

  12. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  13. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    Science.gov (United States)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  14. Chemical imaging of protein adsorption and crystallization on a wettability gradient surface.

    Science.gov (United States)

    Glassford, Stefanie; Chan, K L Andrew; Byrne, Bernadette; Kazarian, Sergei G

    2012-02-14

    The use of self-assembled monolayers is an established method to study the effect of surface properties on proteins and other biological materials. The generation of a monolayer with a gradient of chemical properties allows for the study of multiple surface properties simultaneously in a high throughput manner. Typically, in order to detect the presence of proteins or biological material on a surface, the use of additional dyes or tags is required. Here we present a novel method of studying the effect of gradient surface properties on protein adsorption and crystallization in situ through the use of ATR-FTIR spectroscopic imaging, which removes the need for additional labeling. We describe the successful application of this technique to the measurement of the growth of a gradient monolayer of octyltrichlorosilane across the surface of a silicon ATR element. ATR-FTIR imaging was also used to study the adsorption of lysozyme, as a model protein, onto the modified surface. The sensitivity of measurements obtained with a focal plane array (FPA) detector were improved though the use of pixel averaging which allowed small absorption bands to be detected with minimal effect on the spatial resolution along the gradient. Study of the effect of surface hydrophobicity on both adsorption of lysozyme to the element and lysozyme crystallization revealed that more lysozyme adsorbed to the hydrophobic side of the ATR element and more lysozyme crystals formed in the same region. These findings strongly suggest a correlation exists between surface protein adsorption and protein crystallization. This method could be applied to the study of other proteins and whole cells.

  15. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption.

    Science.gov (United States)

    Bernsmann, Falk; Frisch, Benoît; Ringwald, Christian; Ball, Vincent

    2010-04-01

    We recently showed the possibility to build dopamine-melanin films of controlled thickness by successive immersions of a substrate in alkaline solutions of dopamine [F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 113 (2009) 8234-8242]. In this work the structure and properties of such films are further explored. The zeta-potential of dopamine-melanin films is measured as a function of the total immersion time to build the film. It appears that the film bears a constant zeta-potential of (-39+/-3) mV after 12 immersion steps. These data are used to calculate the surface density of charged groups of the dopamine-melanin films at pH 8.5 that are mostly catechol or quinone imine chemical groups. Furthermore the zeta-potential is used to explain the adsorption of three model proteins (lysozyme, myoglobin, alpha-lactalbumin), which is monitored by quartz crystal microbalance. We come to the conclusion that protein adsorption on dopamine-melanin is not only determined by possible covalent binding between amino groups of the proteins and catechol groups of dopamine-melanin but that electrostatic interactions contribute to protein binding. Part of the adsorbed proteins can be desorbed by sodium dodecylsulfate solutions at the critical micellar concentration. The fraction of weakly bound proteins decreases with their isoelectric point. Additionally the number of available sites for covalent binding of amino groups on melanin grains is quantified.

  16. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two...

  17. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  18. Adsorption/desorption of Direct Yellow 28 on apatitic phosphate: Mechanism, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    H. El Boujaady

    2014-10-01

    Full Text Available In this study, the adsorption potential of apatitic tricalcium phosphate for the removal of Direct Yellow 28 (DY28 from aqueous solution has been investigated by using batch mode experiments. The effects of different parameters such as pH, adsorbent dosage, initial dye concentration, contact time, addition of ions and temperature have been studied to understand the adsorption behavior of the adsorbent under various conditions. The adsorbent has been characterized by pHzpc measurement, chemical analyses, FTIR, XRD and TEM. The Langmuir and Freundlich models are found to be the best to describe the equilibrium isotherm data, with a maximum monolayer adsorption capacity of 67.02 mg g−1. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of DY28 on the apatitic tricalcium phosphate is feasible, spontaneous and endothermic. Among the kinetic models tested for apatitic tricalcium phosphate, the pseudo-second-order model fits the kinetic data well. The introduction of orthophosphate ions in the medium causes a decrease of adsorption. The addition of Ca2+ ions favors the adsorption. The results of this study have demonstrated the effectiveness and feasibility of the apatitic tricalcium phosphate for the removal of DY28 from aqueous solution.

  19. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    Science.gov (United States)

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions.

  20. Photoresponsive Wettability in Monolayer Films from Sinapinic Acid

    Directory of Open Access Journals (Sweden)

    Cleverson A. S. Moura

    2013-01-01

    Full Text Available Sinapinic acid is an interesting material because it is both antioxidant and antibacterial agent. In addition, when illuminated with ultraviolet light, it can exhibit the so-called photodimerization process. In this paper, we report on the investigation of monolayer films from 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SinA deposited onto poly(allylamine hydrochloride, PAH, films. SinA monolayers were prepared by using the layer-by-layer (LbL self-assembly technique. Adsorption kinetics curves were well fitted by a biexponential function suggesting that the adsorption process is determined by two mechanisms: nucleation and growth of aggregates. By using wetting contact angle analysis, we have found that SinA monolayers exhibit photoresponsive wettability under UV irradiation (365 nm; that is, wettability decreases with increasing UV irradiation time. The photoresponse of wettability was attributed to photodimerization process. This hypothesis was supported by the dependence of surface morphological structure and absorption on UV irradiation time. The mechanism found in the well-known transcinnamic acid crystals is used to explain the photodimerization process in SinA monolayers.

  1. Adsorption and recovery of nonylphenol ethoxylate on a crosslinked beta-cyclodextrin-carboxymethylcellulose polymer.

    Science.gov (United States)

    Bonenfant, Danielle; Niquette, Patrick; Mimeault, Murielle; Hausler, Robert

    2010-01-01

    A study of adsorption/recovery of nonylphenol 9 mole ethoxylate (NP9EO) on a crosslinked beta-cyclodextrin-carboxymethylcellulose (beta-CD-CMC) polymer was carried out by ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies. The adsorption was performed in mixtures containing 500 mg of the beta-CD-CMC polymer and aqueous NP9EO solutions at concentrations 12-82 mg/L, whereas the recovery of NP9EO was effectuated by shaking the beta-CD-CMC polymer loaded with methanol. The assays were made at 25 degrees C and atmospheric pressure under agitation. The results have shown that the adsorption is a rapid process and the beta-CD-CMC polymer exhibits a high NP9EO adsorption capacity of 83-92 w% (1.1-6.8 mg NP9EO/g beta-CD-CMC polymer) dependent of the initial NP9EO concentration in liquid phase. This adsorption may involve the formation of an inclusion complex beta-CD-NP9EO and a physical adsorption in the polymer network. The adsorption equilibrium measurements, which were analyzed using the Langmuir isotherm, have indicated a monolayer coverage and the homogeneous distribution of active sites at the surface of the beta-CD-CMC polymer. Moreover, the negative value obtained for the free energy change (-13.2 kJ/mol) has indicated that the adsorption process is spontaneous. In parallel, the beta-CD-CMC polymer exhibited a high NP9EO recovery efficiency of 97 w% that may occur through a decrease of binding strength between beta-CD-CMC polymer and NP9EO. Together, these results suggest that the beta-CD-CMC polymer could constitute a good adsorbent for removing nonylphenol ethoxylates from wastewater due to its high adsorption capacity and non-toxic character of beta-CD and CMC to environment.

  2. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  3. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  4. Studies about the adsorption on lichen Evernia prunastri by enthalpimetric measurements.

    Science.gov (United States)

    Antonelli, M L; Ercole, P; Campanella, L

    1998-04-01

    Lichens are bioaccumulators of divalent metal ions and the interaction between the lichens and five heavy metals was studied. In order to have a better understanding of the metal-uptake process by the lichens, data from atomic absorption spectroscopy were used to calculate the apparent coordination constants of the lichen-metal ion interactions by means of the Langmuir elaboration and microcalorimetric measurements to obtain enthalpimetric information. The results showed a correlation between the Langmuir constants and enthalpimetric measurements.

  5. STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles.

    Science.gov (United States)

    Kudernac, Tibor; Shabelina, Natalia; Mamdouh, Wael; Höger, Sigurd; De Feyter, Steven

    2011-01-01

    Despite their importance in self-assembly processes, the influence of charged counterions on the geometry of self-assembled organic monolayers and their direct localisation within the monolayers has been given little attention. Recently, various examples of self-assembled monolayers composed of charged molecules on surfaces have been reported, but no effort has been made to prove the presence of counterions within the monolayer. Here we show that visualisation and exact localisation of counterions within self-assembled monolayers can be achieved with scanning tunnelling microscopy (STM). The presence of charges on the studied shape-persistent macrocycles is shown to have a profound effect on the self-assembly process at the liquid-solid interface. Furthermore, preferential adsorption was observed for the uncharged analogue of the macrocycle on a surface.

  6. Water adsorption isotherms on CH3-, OH-, and COOH-terminated organic surfaces at ambient conditions measured with PM-RAIRS.

    Science.gov (United States)

    Tu, Aimee; Kwag, Hye Rin; Barnette, Anna L; Kim, Seong H

    2012-10-30

    The water adsorption isotherms on methyl (CH(3))-, hydroxyl (OH)-, and carboxylic acid (COOH)-terminated alkylthiol self-assembled monolayers (SAMs) on Au were studied at room temperature and ambient pressure with polarization modulation reflection-absorption infrared spectroscopy (PM-RAIRS). PM-RAIRS analysis showed that water does not adsorb at all on the CH(3)-SAM/Au at subsaturation humidity conditions. In a dry Ar environment, the OH-SAM/Au holds at least 2 layer thick strongly bound water molecules which exhibit a broad O-H stretch vibration peak centered at ∼3360 cm(-1). The peak position implies that the strongly bound water layer on the OH SAM is more like a liquid than an ice. The additional uptake of water in humid environments is relatively weak, and the peak position changes very little. Unlike the OH-SAM/Au, the COOH-SAM/Au does not have strongly bound water layer. This seems to be due to the strong hydrogen bonding between terminal COOH groups in dry conditions. The weak interactions between water and carboxyl groups at low relative humidity (RH) and the solvation of dissociated carboxylic groups in high RH lead to a type III isotherm behavior, based on the BET categories, for water adsorption on the COOH-SAM/Au. The water spectra on the COOH-SAM at RH > 45% are centered at ∼3430 cm(-1) and very broad, indicating that the hydrogen-bonding network of water on the COOH-SAM is much different from that on the OH-SAM.

  7. Interactions of gas molecules with monolayer MoSe2: A first principle study

    Science.gov (United States)

    Sharma, Munish; Jamdagni, Pooja; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We present a first principle study of interaction of toxic gas molecules (NO, NO2 and SO2) with monolayer MoSe2. The predicted order of sensitivity of gas molecule is NO2 > SO2 > NO. Adsorbed molecules strongly influence the electronic behaviour of monolayer MoSe2 by inducing impurity levels in the vicinity of Fermi energy. NO and SO2 is found to induce p-type doping effect while semiconductor to metallic transitions occur on NO2 adsorption. Our findings may guide the experimentalist for fabricating sensor devices based on MoSe2 monolayer.

  8. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...

  9. Electrochemical and Photoelectrochemical Study of Self-assembled Monolayer of Phytic Acid on Brass

    Institute of Scientific and Technical Information of China (English)

    XU Qun-Jie; WAN Zong-Yue; ZHOU Guo-Ding; YIN Ren-He; CAO Wei-Min; LIN Chang-Jian

    2008-01-01

    Phytic acid is an environment-friendly reagent for processing metals.The anticorrosion and inhibiting mechanism for phytic acid monolayers self-assembled on a brass (HSn70-1) electrode has been investigated by using electrochemical and photocurrent response methods.The electrochemical measurements indicate that phytic acid is liable to form surface complexes on the brass electrode,and the self-assembled monolayers (SAM) change the structure of the electric double-layer and shift the potential of zero charge positively.The photochemical measurement indicates that the brass electrode shows a p-type photoresponse owing to the formation of a Cu2O layer on its surface,and the presence of SAM weakens significantly the photoresponse,suggesting an excellent effect on anticorrosion,which is consistent with the EIS and polarization curve measurements.Adsorption of phytic acid was found to be typical of chemisorption,which can be reasonably described on the basis of the Langmuir isotherm.

  10. Measurements of procalcitonin facilitate targeting of endotoxin adsorption treatment in febrile neutropenic patients suffering from shock.

    Science.gov (United States)

    Hara, Masaki; Tsuchiya, Ken; Nitta, Kosaku; Ando, Minoru

    2014-01-01

    Immediate initiation of hemoperfusion treatment with polymixin B immobilized fiber (PMX-DHP) is a potent strategy to improve hemodynamics in septic patients with critical circulatory failure. However, it is often difficult to accurately and rapidly differentiate between bacterial infections and non-infectious causes of shock in acutely critically-ill patients. Procalcitonin (PCT) measurements may assist in the early identification of bacterial infection/sepsis and determination of severity in such patients. We present two febrile neutropenic (FN) patients who developed severe shock after chemotherapy for hematological malignancies. PCT levels were markedly elevated in both patients (≥ 10 ng/ml), suggesting a high likelihood of bacterial infectious etiology as the cause of their shock, and thus they were promptly treated with PMX-DHP. Measurements of PCT may facilitate targeting of PMX-DHP treatment among FN patients suffering from shock, which may lead to better prognosis.

  11. Submicro photopatterning of alkanethiolate self-assembled monolayer using a negative mask and its application in the fabrication of biomolecular photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Young; Choi, Hyung Seok; Jie, Hang Sok; Park, Je Kyun

    2004-01-05

    Alkanethiolate self-assembled monolayer (SAM) formed by the adsorption of 11-mercaptoundecanoic acid (11-MUDA) molecules on a gold substrate. The alkanethiolate was oxidized by the irradiation of deep UV light with a 700-nm negative mask and then developed with a deionized water. A uniform submicro-pattern of 11-MUDA SAM was obtained. In order to array cytochrome c molecules along the patterned substrate, the well-characterized cytochrome c was immobilized. Electrochemical properties and morphology of the cytochrome c monolayer were investigated through the measurements of cyclic voltammetry and AFM. In addition, current-voltage characteristics of biomolecular multilayers consisting of cytochrome c and green fluorescent protein (GFP) were studied with a scanning tunneling microscope (STM)

  12. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    Science.gov (United States)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V8C7. The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  13. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    Science.gov (United States)

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  14. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Science.gov (United States)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  15. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Directory of Open Access Journals (Sweden)

    L. H. Renbaum

    2011-07-01

    Full Text Available In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane and supercooled (brassidic acid and 2-octyldodecanoic acid organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  16. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Directory of Open Access Journals (Sweden)

    L. H. Renbaum

    2011-03-01

    Full Text Available In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  17. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Green, John -Bruce [Iowa State Univ., Ames, IA (United States)

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  18. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  19. Interaction of alpha-thrombin and prethrombin 2, with phosphatidylserine-containing monolayers.

    Science.gov (United States)

    Lecompte, M F

    1984-02-01

    Prothrombin activation complex is located at a phospholipid surface on activated platelets. To see whether the thrombin domain of the molecule plays a role in the interaction with lipids, we investigated the direct interaction of human alpha-thrombin and its precursor prethrombin 2 with phospholipid monolayers of various compositions (PS/PC). Adsorption of the labeled proteins was determined by surface radioactivity measurements. Penetration of the proteins in the lipid layer was inferred from capacitance variation of the monolayer, measured by a.c. polarography. Disulfide bridges reduced at the electrode were determined by cyclic voltametry. In all the cases studied, although in different manners thrombin was found both to adsorb and penetrate the lipid layer, whereas prethrombin 2 did not penetrate pure phosphatidylcholine (PC). In the case of thrombin, but not of prethrombin 2, penetration is accompanied by S-S reduction which is maximum at 10 per cent of phosphatidylserine (PS). This indicates a different orientation for prethrombin 2 and thrombin in the lipid layer. This observation might be of importance for the comprehension of the architecture of the prothrombin activation complex and for the regulation of thrombin formation within the complex.

  20. Molecular monolayers on silicon as substrates for biosensors.

    Science.gov (United States)

    Touahir, L; Allongue, P; Aureau, D; Boukherroub, R; Chazalviel, J-N; Galopin, E; Gouget-Laemmel, A C; de Villeneuve, C Henry; Moraillon, A; Niedziółka-Jönsson, J; Ozanam, F; Andresa, J Salvador; Sam, S; Solomon, I; Szunerits, S

    2010-11-01

    (111) silicon surfaces can be controlled down to atomic level and offer a remarkable starting point for elaborating nanostructures. Hydrogenated surfaces are obtained by oxide dissolution in hydrofluoric acid or ammonium fluoride solution. Organic species are grafted onto the hydrogenated surface by a hydrosilylation reaction, providing a robust covalent Si-C bonding. Finally, probe molecules can be anchored to the organic end group, paving the way to the elaboration of sensors. Fluorescence detection is hampered by the high refractive index of silicon. However, improved sensitivity is obtained by replacing the bulk silicon substrate by a thin layer of amorphous silicon deposited on a reflector. The development of a novel hybrid SPR interface by the deposition of an amorphous silicon-carbon alloy is also presented. Such an interface allows the subsequent linking of stable organic monolayers through Si-C bonds for a plasmonic detection. On the other hand, the semiconducting properties of silicon can be used to implement field-effect label-free detection. However, the electrostatic interaction between adsorbed species may lead to a spreading of the adsorption isotherms, which should not be overlooked in practical operating conditions of the sensor. Atomically flat silicon surfaces may allow for measuring recognition interactions with local-probe microscopy.

  1. Effects on the structure of monolayer and submonolayer fluid nitrogen films by the corrugation in the holding potential of nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing

    2001-01-01

    of interactions were indicated by the comparison of the calculated and measured isosteric heats of adsorption in fluid films of nitrogen molecules on graphite. The melting temperatures were lowered by 7K and a region of liquid-gas coexistence was observed for films on the smooth graphite surface indicating......The effects of corrugation in the holding potential of nitrogen molecules on the structure of fluid monolayer and submonolayer films of the molecules on a solid substrate was studied using molecular dynamics simulation. Including McLachlan mediation of the intermolecular potential in a model...

  2. Differential scattering cross-sections, inelastic energy losses and ion fractions in backscattering of keV He sup + ions from monolayer metal adsorbates on solid surfaces measured by means of CAICISS

    CERN Document Server

    Kishi, N

    2002-01-01

    Energy spectra of He atoms and He sup + ions backscattered at an angle of approx 180 deg. by monolayer metal adsorbates (Ag, Sn, Sb, Pb and Bi) on the Si(1 1 1)-sq root 3x sq root 3 surfaces and monolayer Si atoms on the graphite surface have been measured by means of the coaxial impact collision ion scattering spectroscopy technique combined with low energy electron diffraction, Auger electron spectroscopy and Rutherford backscattering spectrometry techniques in the energy range from 0.5 to 3.0 keV. It is found from their data analysis that the ratios of the experimental scattering cross-section to the magic formula of the Thomas-Fermi cross-section for different adsorbates deviate from unity: for instance 1.2 for Si, 0.8 for Ag, 1.5 for Sn, 1.2 for Sb, 1.2 for Pb and 1.6 for Bi. It is also found that the average inelastic energy loss for Si increases monotonically with increasing the incident energy, while those for the other adsorbates increase stepwisely at around 1.0 keV and thereafter gradually. Moreove...

  3. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  4. In situ FT-IR measurements of competitive vapor adsorption into porous thin films containing silica nanoparticles.

    Science.gov (United States)

    Evans, Charles R; Spurlin, Tighe A; Frey, Brian L

    2002-03-01

    Vapor adsorption into porous ultrathin films on a gold surface is investigated with in situ surface plasmon resonance (SPR) and polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The thin films are prepared by the electrostatic self-assembly of oppositely charged poly(L-lysine) (PL) and silica nanoparticles on a chemically modified gold surface. Characterization with ex situ SPR and PM-IRRAS demonstrates the buildup of multiple PL/SiO2 bilayers as well as an excellent correlation between the quantitative results from these two techniques. In situ vapor adsorption experiments with these thin films show evidence of porosity, reproducibility, and rapid reversibility. Exposure to acetone vapor (P/P0 = 0.032) causes the film to adsorb 9% acetone by volume, which corresponds to coverage of approximately one-half of the silica nanoparticle surface area. In situ PM-IRRAS provides much information about the molecular interactions occurring in the film upon adsorption or desorption of vapors. Dosing with a mixture of vapors leads to a competition for adsorption into the film, and PM-IRRAS results show that acetone slightly outcompetes nitromethane. These experiments with nanoparticle thin films demonstrate the advantages of using in situ PM-IRRAS for studying reversible adsorption in the presence of vapor mixtures.

  5. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  6. Control of the molecular density in a chemically adsorbed thiophene system monolayer

    Directory of Open Access Journals (Sweden)

    Tanaka Yosuke

    2013-08-01

    Full Text Available Chemically absorbed monolayers (CAM of thienyl functionalized n-alkyltrichlorosilane 11-(3-thienyl undecyltrichlorosilane (TUTS have been prepared with two methods which are the standard technique (TUTS-STD and the twice adsorption method (TUTS-TAM. The existence of TUTS-CAM was confirmed with water contact angle measurements, calculation of thickness with ellipsometry, fourier transform infrared reflection adsorption spectroscopy (FTIR-RAS. Here are described is the comparison of TUTS-STD and TUTS-TAM characterized by using Electron Spectroscopy for Chemical Analysis (ESCA and ultraviolet visible (UV-vis absorption spectroscopy. TUTS-TAM showed more densely packing than TUTS-STD by these measurements. Moreover, these TUTS-CAM polymerized by chemical oxidative polymerization and UV-Vis absorption spectra was measured to confirm the conjugated bond length of the polymerized thienyl groups. UV-vis spectra of the polymerized TUTS-CAM showed a new broad absorbance band at longer wavelength than 700nm.

  7. Study on the toxicity of inhaled alumina nanoparticles: impact of physicochemical properties and adsorption artifacts on the measurement of biological responses

    Energy Technology Data Exchange (ETDEWEB)

    Pailleux, M; Pourchez, J; Boudard, D; Cottier, M [LINA Laboratoire Interdisciplinaire d' etude des Nanoparticules Aerosolisees, F-42023, Saint-Etienne (France); Grosseau, P, E-mail: pailleux@emse.fr [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN, LPMG, UMR CNRS 5148, F-42023, Saint-Etienne (France)

    2011-07-06

    This work aims at developping a multidisciplinary approach to highlight the correlation between the toxicity of alumina engineered nanoparticles (NP) and their physicochemical characteristics. Accuracy of measurements depends on cell production after contact with particles, but also depends on the ability of biomolecules to get adsorbed on the NP. That's why, mechanisms of biomolecules adsorption on NP must be fully understood to avoid misinterpretation of data.

  8. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: dimakis@utpa.edu [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States); Navarro, Nestor E. [Department of Chemistry, University of Texas-Pan American, Edinburg, TX (United States); Velazquez, Julian; Salgado, Andres [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States)

    2015-04-15

    Highlights: • Periodic density functional calculations were performed on graphene monolayers with and without an iron adatom. • Densities of states, charge transfers, and overlap populations were used to elucidate the effects of weak iron adsorption on graphene compared to CO adsorption on Pt. • Infrared intensities and normal mode analysis verify weak iron adsorption on graphene by studying the shift in prominent vibrational modes and changes in lattice dynamics. - Abstract: Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  9. Monolayer patterning using ketone dipoles.

    Science.gov (United States)

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B

    2013-08-14

    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  10. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier;

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotid...

  11. Self-assembled monolayers on gold of ferrocene-terminated thiols and hydroxyalkanethiols

    NARCIS (Netherlands)

    Auletta, T.; van Veggel, F.C.J.M.; Reinhoudt, David

    2002-01-01

    this paper, a study on the adsorption of mixed self-assembled monolayers (SAMs) for two different combinations of thiols (Fc(CH2)6SH/HO(CH2)2SH and Fc(CH2)16SH/HO(CH2)11SH (Fc = ferrocene)) is presented, to obtain surfaces with single isolated ferrocenylalkanethiols embedded in shorter

  12. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    Science.gov (United States)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  13. Phonons on the clean metal surfaces and in adsorption structures

    Science.gov (United States)

    Rusina, Galina G.; Chulkov, Evgenii V.

    2013-06-01

    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  14. Monolayers and multilayers of conjugated polymers as nanosized electronic components.

    Science.gov (United States)

    Zotti, Gianni; Vercelli, Barbara; Berlin, Anna

    2008-09-01

    Conjugated polymers (CPs) are interesting materials for preparing devices based on nanoscopic molecular architectures because they exhibit electrical, electronic, magnetic, and optical properties similar to those of metals or semiconductors while maintaining the flexibility and ease of processing of polymers. The production of well-defined mono- and multilayers of CPs on electrodes with nanometer-scale, one-dimensional resolution remains, however, an important challenge. In this Account, we describe the preparation and conductive properties of nanometer-sized CP molecular structures formed on electrode surfaces--namely, self-assembled monolayer (SAM), brush-type, and self-assembled multilayer CPs--and in combination with gold nanoparticles (AuNPs). We have electrochemically polymerized SAMs of carboxyalkyl-functionalized terthiophenes aligned either perpendicular or parallel to the electrode surface. Anodic coupling of various pyrrole- and thiophene-based monomers in solution with the oligothiophene-based SAMs produced brush-like films. Microcontact printing of these SAMs produced patterns that, after heterocoupling, exhibited large height enhancements, as measured using atomic force microscopy (AFM). We have employed layer-by-layer self-assembly of water-soluble polythiophene-based polyelectrolytes to form self-assembled multilayers. The combination of isostructural polycationic and polyanionic polythiophenes produced layers of chains aligned parallel to the substrate plane. These stable, robust, and dense layers formed with high regularity on the preformed monolayers, with minimal interchain penetration. Infrared reflection/adsorption spectroscopy and X-ray diffraction analyses revealed unprecedented degrees of order. Deposition of soluble polypyrroles produced molecular layers that, when analyzed using a gold-coated AFM tip, formed gold-polymer-gold junctions that were either ohmic or rectifying, depending of the layer sequence. We also describe the electronic

  15. Electron-induced ammonia adsorption on iron

    CERN Document Server

    Narkiewicz, U; Trybuchowicz, A; Arabczyk, W

    2003-01-01

    The adsorption of ammonia on an iron surface at ambient temperature has been investigated using Auger electron spectroscopy (AES). The effect of the electron beam on the process of the ammonia adsorption has been studied. The polycrystalline iron samples precovered with different amounts of oxygen (0.15-1 ML) or sulphur (1 ML) were used. The initial sticking coefficient of ammonia to oxygen precovered iron surface was estimated as s sub 0 approx 5x10 sup - sup 4 (independently on the oxygen coverage) for the adsorption experiments without the effect of the electron beam. The strong inhibiting effect of sulphur precoverage on the ammonia adsorption has been found (s sub 0 approx 6.5x10 sup - sup 6). The electron beam has favourable effect on the adsorption of ammonia, and this effect increases with the oxygen coverage (one monolayer of adsorbed nitrogen atoms at the saturation state and s sub 0 approx 1 for the iron surface precovered with one monolayer of oxygen). The proposed explanation is the favourable ef...

  16. Unsupported single-atom-thick copper oxide monolayers

    Science.gov (United States)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu

    2017-03-01

    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ∼3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  17. Phenomenological Modeling for Langmuir Monolayers

    Science.gov (United States)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  18. Semiquantitative evaluation of fibronectin adsorption on unmodified and sulfonated polystyrene, as related to cell adhesion.

    Science.gov (United States)

    Kowalczyńska, Hanna M; Nowak-Wyrzykowska, Małgorzata; Kołos, Robert; Dobkowski, Jacek; Kamiński, Jarosław

    2008-12-15

    The process of human fibronectin (FN) adsorption on nonsulfonated and sulfonated polystyrene surfaces was studied in relation to mechanisms of L1210 cell adhesion. Radioisotope assays directed towards FN, as well as ELISA measurements of adsorbed FN and bovine serum albumin (BSA) were carried out. (125)I radioisotope assays led to linear FN adsorption isotherms. When combined to ELISA measurements for FN, they revealed the multilayer adsorption. Results indicated a large difference in the saturating first-layer surface density of FN adsorbed on sulfonated and nonsulfonated polystyrene surfaces: significantly (ca. factor of 5) less FN molecules are necessary to complete a monolayer on sulfonated than on nonsulfonated polystyrene. This suggests an unfolded conformation of FN on sulfonated polystyrene, and a more compact one on the nonsulfonated polymer. Significant conformational changes of FN are also indicated by the following: (1) early phase of cell adhesion to FN adsorbed on sulfonated polystyrene surfaces is significantly (ca. factor of 6) higher than to FN on nonsulfonated surfaces, and in the former case adhesion proceeds mostly via alpha(5)beta(1) integrins; (2) RGD, the crucial fragment within central cell binding domain, seems to be partially hidden in the protein structure adopted on nonsulfonated surfaces; (3) patterns of F-actin organization differ in cells adhering to FN on sulfonated and nonsulfonated surfaces. The ELISA study directed against BSA (this protein always present on the surface after the adsorption of FN), showed the importance of "free area," uncovered by both proteins, which influence the cell adhesion processes.

  19. In-situ investigation of adsorption of dye and coadsorbates on TiO 2 films using QCM-D, fluorescence and AFM techniques

    KAUST Repository

    Harms, Hauke A.

    2013-09-11

    Simultaneous adsorption of dye molecules and coadsorbates is important for the fabrication of high-efficiency dyesensitized solar cells, but its mechanism is not well understood. Herein, we use a quartz crystal microbalance with dissipation technique (QCM-D) to study dynamically and quantitatively the sensitization of TiO2 in situ. We investigate dye loading for a ruthenium(II) polypyridyl complex (Z907), of a triphenylamine-based D-π-A dye (Y123), and of a ullazine sensitizer (JD21), as well as the simultaneous adsorption of the latter two with the coadsorbate chenodeoxycholic acid. By combining the QCM-D technique with fluorescence measurements, we quantify molar ratios between the dye and coadsorbate. Furthermore, we will present first studies using liquid-phase AFM on the adsorbed dye monolayer, thus obtaining complementary microscopic information that may lead to understanding of the adsorption mechanism on the molecular scale. © 2013 SPIE.

  20. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    Science.gov (United States)

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  1. Grafted silane monolayers: reconsideration of growth mechanisms

    Science.gov (United States)

    Ivanov, D. A.; Nysten, B.; Jonas, A. M.; Legras, R.

    1998-03-01

    Chemical force microscopy is a new technique devised to image chemical heterogeneities on surfaces. It requires the chemical modification of Atomic Force Microscopy (AFM) tips in order to create chemical probes. In this respect, self-assembled monolayers (SAM) of alkylchlorosilanes are particularly interesting as modifying agents for AFM tips. We report here our results on the kinetics of silanization and on the structure of such SAM's grafted on model surfaces (hydroxylated Si(100) wafers). AFM, contact angle measurements, X-ray reflectivity and X-ray photoelectron spectroscopy were used to characterize SAM's of octadecyltrichlorosilane (OTS) and octadecyldimethylchlorosilane (ODMS) grown from hexadecane and toluene solutions. The mechanism of grafting of OTS follows two stages. The first rapid stage corresponds to the nucleation and growth of island-like monolayer domains. The second slower stage is related to the densification of the monolayer. SAM's of ODMS were found to form thinner layers as compared to OTS, due to their lower grafting density probably resulting in a more disordered state of grafted alkyl chains. We also address the problems concerning the relationships between the quality of final SAM structures and the water content as well as the nature of the solvent used for silanization.

  2. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  3. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  4. Oligo(ethylene glycol)-terminated monolayers on silicon surfaces and their nanopatterning with a conductive atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Functionalization of silicon substrate surfaces with a stable monolayer for resisting non-specific adsorption of proteins has attracted great interest,since it is directly relevant to the development of miniature,silicon-based biosensors and implantable microdevices,such as silicon-neuron interfaces.This brief review summarizes our contribution to the development of robust monolayers grown by surface hydrosilylation on atomically flat,hydrogen-terminated silicon surfaces.The review also outlines our strategy and progress on the fabrication of single molecule patterns on such monolayer platforms.

  5. Measured and Estimated Sodium-Adsorption Ratios for Tongue River and its Tributaries, Montana and Wyoming, 2004-06

    Science.gov (United States)

    Cannon, M.R.; Nimick, David A.; Cleasby, Thomas E.; Kinsey, Stacy M.; Lambing, John H.

    2007-01-01

    The Tongue River drains an area of about 5,400 square miles and flows northward from its headwaters in the Bighorn National Forest of northeastern Wyoming to join the Yellowstone River at Miles City, Montana. Water from the Tongue River and its tributaries is extensively used for irrigation in both Wyoming and Montana. The Tongue River watershed contains vast coal deposits that are extracted at several surface mines. In some areas of the watershed, the coal beds also contain methane gas (coal-bed methane or natural gas), which has become the focus of intense exploration and development. Production of coal-bed methane requires the pumping of large volumes of ground water from the coal beds to reduce water pressure within the formation and release the stored gas. Water from the coal beds typically is high in sodium and low in calcium and magnesium, resulting in a high sodium-adsorption ratio (SAR). Disposal of ground water with high sodium concentrations into the Tongue River has the potential to increase salinity and SAR of water in the river, and potentially reduce the quality of water for irrigation purposes. This report documents SAR values measured in water samples collected at 12 monitoring sites in the Tongue River watershed and presents regression relations between specific conductance (SC) and SAR at each site for the years 2004-06. SAR in water samples was determined from laboratory-measured concentrations of sodium, calcium, and magnesium. The results of regression analysis indicated that SC and SAR were significantly related (p-values developed for most monitoring sites in the Tongue River watershed were used with continuous SC data to estimate daily SAR during the 2004 and 2005 irrigation seasons and to estimate 2006 provisional SAR values, which were displayed on the Web in real-time. Water samples were collected and analyzed from seven sites on the main stem of the Tongue River located at: (1) Monarch, Wyoming, station 06299980, (2) State line near

  6. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  7. Preparation of Aminated Macroporous Polyvinyl Alcohol Resins and Evaluation for Bilirubin Adsorption

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-chao; ZHANG Sheng-nan; HU Yue-han; XIE Hui; OU Lai-liang; YU Yao-ting; KONG De-ling; GU Han-qing

    2008-01-01

    In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine(HAD) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobic interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.

  8. pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica

    Energy Technology Data Exchange (ETDEWEB)

    Oćwieja, Magdalena, E-mail: ncocwiej@cyf-kr.edu.pl; Adamczyk, Zbigniew, E-mail: ncadamcz@cyf-kr.edu.pl; Morga, Maria, E-mail: ncmorga@cyf-kr.edu.pl [Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry (Poland)

    2015-05-15

    Although the release of silver nanoparticles from various surfaces and coatings plays an important role in many practical applications, the mechanisms of these processes are not fully understood. Therefore, in this work, the charge-stabilized silver particles of well-defined surface properties, with average sizes of 15, 28, and 54 nm, were used to quantitatively study this problem. The silver nanoparticles were obtained by the chemical reduction method using trisodium citrate as the stabilizing agent. Their size distributions and stabilities were determined using dynamic light scattering and transmission electron microscopy. The electrophoretic mobility and zeta potential of nanoparticles were determined for controlled ionic strength as a function of pH. The monolayers were produced on poly(allylamine hydrochloride)-modified mica under diffusion-controlled conditions. The coverage was determined by a direct enumeration of deposited nanoparticles using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Using these well-defined monolayers, the kinetics of the release of nanoparticles was studied under controlled ionic strength and various pH values. The direct AFM and SEM measurements of the monolayer coverage, as a function of desorption time, allowed one to determine the kinetics of the release process. The equilibrium adsorption constant and the binding energy of particles were also determined using the random sequential adsorption model. The experimental results indicated that the release rate of particles is the fastest at lower pH values and for smaller particle sizes. This is confirmed by the binding energy values that at pH 3.5 varied between −15.9 and −18.1 kT for particles of the sizes 15 and 54 nm, respectively. These results were quantitatively interpreted in terms of the ion-pair concept where it was assumed that the binding energy between nanoparticles and the substrate was controlled by electrostatic interactions. Based on the

  9. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics.

    Science.gov (United States)

    Reguera, Javier; Ponomarev, Evgeniy; Geue, Thomas; Stellacci, Francesco; Bresme, Fernando; Moglianetti, Mauro

    2015-03-19

    Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.

  10. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    Science.gov (United States)

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  11. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    Science.gov (United States)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  12. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  13. Adsorption of Helium Atoms on Two-Dimensional Substrates

    Science.gov (United States)

    Burganova, Regina; Lysogorskiy, Yury; Nedopekin, Oleg; Tayurskii, Dmitrii

    2016-01-01

    The study of the adsorption phenomenon of helium began many decades ago with the discovery of graphite as a homogeneous substrate for the investigation of physically adsorbed monolayer films. In particular, helium monoatomic layers on graphite were found to exhibit a very rich phase diagram. In the present work we have investigated the adsorption phenomenon of helium atoms on graphene and silicene substrates by means of density functional theory with Born-Oppenheimer approximation. Helium-substrate and helium-helium interactions were considered from first principles. Vibrational properties of adsorbed monolayers have been used to explore the stability of the system. This approach reproduces results describing the stability of a helium monolayer on graphene calculated by quantum Monte Carlo (QMC) simulations for low and high coverage cases. However, for the moderate coverage value there is a discrepancy with QMC results due to the lack of helium zero point motion.

  14. Adsorption of Helium Atoms on Two-Dimensional Substrates

    Science.gov (United States)

    Burganova, Regina; Lysogorskiy, Yury; Nedopekin, Oleg; Tayurskii, Dmitrii

    2016-12-01

    The study of the adsorption phenomenon of helium began many decades ago with the discovery of graphite as a homogeneous substrate for the investigation of physically adsorbed monolayer films. In particular, helium monoatomic layers on graphite were found to exhibit a very rich phase diagram. In the present work we have investigated the adsorption phenomenon of helium atoms on graphene and silicene substrates by means of density functional theory with Born-Oppenheimer approximation. Helium-substrate and helium-helium interactions were considered from first principles. Vibrational properties of adsorbed monolayers have been used to explore the stability of the system. This approach reproduces results describing the stability of a helium monolayer on graphene calculated by quantum Monte Carlo (QMC) simulations for low and high coverage cases. However, for the moderate coverage value there is a discrepancy with QMC results due to the lack of helium zero point motion.

  15. Adsorption of organic layers over electrodeposited magnetite (Fe{sub 3}O{sub 4}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, M., E-mail: m.cortes@ub.ed [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Gomez, E. [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Sadler, J. [H.H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Valles, E. [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2011-04-15

    Research highlights: {yields} Adherent low roughness magnetite films ranging from 80 nm to 3.75 {mu}m-thick were electrodeposited on Au/glass substrates under galvanostatic control. {yields} X-ray diffraction and magnetic measurements corroborates the purity of the electrodeposited magnetite. {yields} Both dodecanethiol and oleic acid are shown to adsorb on the magnetite prepared at low temperature, significantly inducing the hydrophobicity of the surface. {yields} Contact angle and voltammetric measurements, as well as XPS confirm the monolayers formation. - Abstract: The formation of monolayers of two organic compounds (oleic acid and dodecanethiol) over magnetite films was studied. Magnetite films ranging from 80 nm to 3.75 {mu}m-thick were electrodeposited on Au on glass substrates under galvanostatic control, with deposition parameters optimized for minimum surface roughness. Films were characterised by SEM and AFM, showing granular deposits with a low rms roughness of 5-40 nm measured over an area of 1 {mu}m{sup 2}. The growth rate was estimated by measuring cross-sections of the thin films. Pure magnetite with an fcc structure is observed in XRD diffractograms. The adsorption of both oleic acid and dodecanethiol on the magnetite films was tested by immersing them in ethanol solutions containing the organic molecules, for different deposition time, temperature and cleaning procedure. Monolayer formation in both cases was studied by contact angle and voltammetric measurements, as well as XPS.

  16. Cd adsorption onto bacterial surfaces: A universal adsorption edge?

    Science.gov (United States)

    Yee, Nathan; Fein, Jeremy

    2001-07-01

    In this study, we measure the thermodynamic stability constants for proton and Cd binding onto the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacteria Bacillus megaturium, Streptococcus faecalis, Staphylococcus aureus, Sporosarcina ureae, and Bacillus cereus. Potentiometric titrations and Cd-bacteria adsorption experiments yield average values for the carboxyl site pK a, site concentration, and log stability constant for the bacterial surface Cd-carboxyl complex of 5.0, 2.0 × 10 -3 mol/g and 4.0 respectively. Our results indicate that a wide range of bacterial species exhibit nearly identical Cd adsorption behavior as a function of pH. We propose that metal-bacteria adsorption is not dependent on the bacterial species involved, and we develop a generalized adsorption model which may greatly simplify the task of quantifying the effects of bacterial adsorption on dissolved mass transport in realistic geologic systems.

  17. Effect of H-vacancy defect on the adsorption of CO and NO on graphane: A DFT study

    Science.gov (United States)

    Zhou, Qingxiao; Ju, Weiwei; Yong, Yongliang; Su, Xiangying; Li, Xiaohong; Fu, Zhibing; Wang, Chaoyang

    2017-10-01

    We investigated the adsorption of CO and NO molecules on hydrogenated graphene (graphane) monolayer using density functional theory (DFT) calculations. The geometry, adsorption stability, and electronic properties of CO and NO molecules absorbed on pure and H-vacancy defected graphane sheet were performed. The calculated results suggested that the small adsorption energy indicated the adsorption of CO and NO molecules on pure graphane were physisorption. However, the presence of H-vacancy improved the reactivity of graphane and the adsorption on H-vacnacy defected graphane changed to chemisorption. The adsorption also induced obvious change into the band gaps, which can be seen as signal to detect the CO and NO gas.

  18. Silicon-nitride photonic circuits interfaced with monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guohua [Applied Physics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Stanev, Teodor K. [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Czaplewski, David A.; Jung, Il Woong [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States); Stern, Nathaniel P., E-mail: n-stern@northwestern.edu [Applied Physics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2015-08-31

    We report on the integration of monolayer molybdenum disulphide with silicon nitride microresonators assembled by visco-elastic layer transfer techniques. Evanescent coupling from the resonator mode to the monolayer is confirmed through measurements of cavity transmission. The absorption of the monolayer semiconductor flakes in this geometry is determined to be 850 dB/cm, which is larger than that of graphene and black phosphorus with the same thickness. This technique can be applied to diverse monolayer semiconductors for assembling hybrid optoelectronic devices such as photodetectors and modulators operating over a wide spectral range.

  19. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  20. Adsorption of lipids on silicalite-1

    Science.gov (United States)

    Atyaksheva, L. F.; Ivanova, I. I.; Ivanova, M. V.; Tarasevich, B. N.; Fedosov, D. A.

    2017-05-01

    The adsorption of egg lecithin and cholesterol from chloroform solutions onto silicalite-1 (hydrophobic silica with MFI zeolite structure) is investigated. Adsorption isotherms of the L-type for lecithin and the S-type for cholesterol are obtained in the 0.05-4.5 mg/mL range of equilibrium lipid concentrations. The maximum adsorption for lecithin is 30 mg/g; for cholesterol it is 70 mg/g. Chloroform treatment results in the desorption of no more than 10% of the lecithin and up to 50% of the cholesterol from the silicalite-1 surface. The lecithin molecules in the monolayer on the silicalite-1 are oriented such that their hydrophobic tails are oriented toward the surface and are partially inside the pores of the adsorbent.

  1. Characterization of Formation Kinetics of Self-Assembled Thiol Monolayers on Gold by Electrochemical Impedance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Self-assembled monolayers of octadecanethiol (ODT) on gold have been studied by electrochemical impedance spectroscopy (EIS). The fractional coverage has been examined as a function of immersion time of Au in ODT deposition solution. The fractional coverage exhibits two distinct adsorption steps: an initial rapid step followed by a slow one. The fractional coverage of ODT monolayer increases sharply from zero to more than 99% of its maximum within the first minute. However, it takes a day for the fractional coverage to approach its final value.

  2. Structure of self-assembled monolayer of NPAN on Au(111) electrode

    Institute of Scientific and Technical Information of China (English)

    YANG Guangzheng; ZENG Qingdao; WAN Lijun; BAI Chunli

    2003-01-01

    Adsorption of 4-(4-nitrophenylazo)-1-naphthol (NPAN), an azobenzene derivative, on Au(111) has been investigated in aqueous HClO4 solution by using the cyclic voltammetry and scanning tunneling microscopy (STM). The molecule is found to form a stable monolayer on the electrode with a (6×4) structure relative to the underlying Au(111) lattice. Cyclic voltammograms show that the redox reactions occurring on the electrode are retarded by the formation of the monolayer. A structural model is proposed for the two-dimensional adlayer.

  3. Positional order in Langmuir monolayers

    DEFF Research Database (Denmark)

    Kaganer, V.M.; Brezesinski, G.; Möhwald, H.;

    1998-01-01

    We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered rectangu......We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered...

  4. Electromelting of Confined Monolayer Ice

    CERN Document Server

    Qiu, Hu

    2013-01-01

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  5. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    Science.gov (United States)

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fluidization of a horizontally driven granular monolayer.

    Science.gov (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten

    2015-06-01

    We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.

  7. Induction of homochirality in achiral enantiomorphous monolayers.

    Science.gov (United States)

    Parschau, Manfred; Romer, Sara; Ernst, Karl-Heinz

    2004-12-01

    We report the induction of homochirality in enantiomorphous layers of achiral succinic acid on a Cu(110) surface after doping with tartaric acid (TA) enantiomers. Succinic acid becomes chiral upon adsorption due to symmetry-breaking interactions with the Cu(110) surface. The doubly deprotonated bisuccinate forms mirror domains on the surface, which leads to a superposition of (11,-90) and (90,-11) patterns observed by low-energy electron diffraction (LEED). On average, however, the surface layer is racemic. An amount of 2 mol % of (R,R)- or (S,S)-tartaric acid in the monolayer, corresponding to an absolute coverage of 0.001 tartaric acid molecule per surface copper atom, is sufficient to make the LEED spots of one enantiomorphous lattice disappear. After thermally induced desorption of TA, the succinic acid lattice turns racemic again. In analogy to the "sergeants-and-soldiers" principle described for helical polymers, this effect is explained by a lateral cooperative interaction within the two-dimensional lattice.

  8. Influence of graphene coating on the adsorption and tribology of Xe on Au(1 1 1) substrate.

    Science.gov (United States)

    Zhang, Y N; Bortolani, V; Mistura, G

    2014-11-05

    The adsorption and tribological properties of graphene have received increasing attention for the further development of graphene-based coatings in applications. In this work, we performed first principles calculations with the inclusion of the nonlocal van der Waals correction to study the effect of graphene coating on the adsorption geometries, sliding frictions and electronic properties of Xe monolayer on the Au(1 1 1) substrate. The calculated activation energies indicate that Xe becomes movable on pure Au(1 1 1) surface at a temperature of around 30 K, whereas its motion can be activated only at a high temperature of ~50 K on graphene and on graphene-coated Au(1 1 1) substrates, in good agreement with recent experimental measurements by quartz crystal microbalance technique.

  9. Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng

    2015-12-01

    As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

  10. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    Science.gov (United States)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10(-6)cm(2)/s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10(-6)cm(2)/s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  12. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  13. Surface Shear Viscosity and Phase Transitions of Monolayers at the Air-Water Interface

    Science.gov (United States)

    Relini, A.; Ciuchi, F.; Rolandi, R.

    1995-08-01

    The canal method has been employed to measure the in-plane steady shear viscosity of monolayers of bolaform lipids extracted from the membrane of the thermophilic microorganism Sulfolobus solfataricus. Monolayers were formed with the polar lipid extract (PLE), which is a mixture of several bolaform lipids, each one endowed with two nonequivalent polar headgroups. Viscosities were obtained from the measured flows by using the equation introduced by Joly; this equation contains a semiempirical parameter A, which takes into account the monolayer-subphase mechanical coupling. Measuring the flows for two different substances (PLE and oleic acid) and channel widths, the monolayer viscosities and the parameter A were determined at the same time. The analysis of the viscosity data according to the free area model shows evidences of the molecular conformational changes matching monolayer phase transitions.

  14. Hexadecadienyl monolayers on hydrogen-terminated Si(111): faster monolayer formation and improved surface coverage using the enyne moiety.

    Science.gov (United States)

    Rijksen, Bart; Pujari, Sidharam P; Scheres, Luc; van Rijn, Cees J M; Baio, J E; Weidner, Tobias; Zuilhof, Han

    2012-04-24

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H-Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H-C≡C-HC═CH-R) would be even better reagents for dense monolayer formation. To investigate whether the increased delocalization of β-carbon radicals by the enyne functionality indeed lowers the activation barrier, the kinetics of monolayer formation by hexadec-3-en-1-yne and 1-hexadecyne on H-Si(111) were followed by studying partially incomplete monolayers. Ellipsometry and static contact angle measurements indeed showed a faster increase of layer thickness and hydrophobicity for the hexadec-3-en-1-yne-derived monolayers. This more rapid monolayer formation was supported by IRRAS and XPS measurements that for the enyne show a faster increase of the CH2 stretching bands and the amount of carbon at the surface (C/Si ratio), respectively. Monolayer formation at room temperature yielded plateau values for hexadec-3-en-1-yne and 1-hexadecyne after 8 and 16 h, respectively. Additional experiments were performed for 16 h at 80° to ensure full completion of the layers, which allows comparison of the quality of both layers. Ellipsometry thicknesses (2.0 nm) and contact angles (111-112°) indicated a high quality of both layers. XPS, in combination with DFT calculations, revealed terminal attachment of hexadec-3-en-1-yne to the H-Si surface, leading to dienyl monolayers. Moreover, analysis of the Si2p region showed no surface oxidation. Quantitative XPS measurements, obtained via rotating Si samples, showed a higher surface coverage for C16 dienyl layers than for C16 alkenyl layers (63% vs 59%). The dense packing of the layers was confirmed by IRRAS and NEXAFS results. Molecular mechanics simulations were undertaken to understand the differences in reactivity and surface coverage. Alkenyl layers show more favorable packing energies for surface coverages up to 50-55%. At higher

  15. 溶液吸附法测定硅胶表面分形值%Surface Fractal Measurement for Silica Gel by Adsorption Method

    Institute of Scientific and Technical Information of China (English)

    邱诚; 李玫

    2014-01-01

    The degree of the surface fractal of silica gel is measured by adsorption of methylene blue(MB), crystal violet, Safranin-T, acid red-94 and cresol red.The result of the degree is about 2.002.Adsorption capacity of equilibrium is substituted for that of limit, so the calculating process is simple and clear.%根据一种中孔硅胶对亚甲基蓝、结晶紫、番红花红T、酸性红94和甲酚红等五种染料的吸附数据结果计算了该硅胶表面分形值D。由吸附数据得出的该硅胶表面的分形值D等于2.002。利用平衡吸附量nm取代极限吸附量nl,求得硅胶表面分形值D,计算过程更加简明。

  16. Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness

    Directory of Open Access Journals (Sweden)

    M. Kerbrat

    2008-03-01

    Full Text Available Chemical and physical processes, such as heterogeneous chemical reactions, light scattering, and metamorphism occur in the natural snowpack. To model these processes in the snowpack, the specific surface area (SSA is a key parameter. In this study, two methods, computed tomography and methane adsorption, which have intrinsically different effective resolutions – molecular and 30 μm, respectively – were used to determine the SSA of similar natural snow samples. Except for very fresh snow, the two methods give identical results, with an uncertainty of 3%. This implies that the surface of aged natural snow is smooth up to a scale of about 30 μm and that if smaller structures are present they do not contribute significantly to the overall SSA. It furthermore implies that for optical methods a voxel size of 10 μm is sufficient to capture all structural features of this type of snow; however, fresh precipitation appears to contain small features that cause an under-estimation of SSA with tomography at this resolution. The methane adsorption method is therefore superior to computed tomography for very fresh snow having high SSA. Nonetheless, in addition to SSA determination, tomography provides full geometric information about the ice matrix. It can also be advantageously used to investigate layered snow packs, as it allows measuring SSA in layers of less than 1 mm.

  17. A QCM study on the adsorption of colloidal laponite at the solid/liquid interface.

    Science.gov (United States)

    Xu, Dan; Hodges, Chris; Ding, Yulong; Biggs, Simon; Brooker, Anju; York, David

    2010-06-01

    The adsorption of colloidal laponite at the solid/liquid interface on various substrates and over a range of laponite concentrations (10-1000 ppm) has been investigated. Although a wide range of surfaces were studied, only on a positively charged poly(diallyldimethylammonium chloride) (PDADMAC) surface was any adsorption of the laponite observed. This shows that when fully wetted, laponite adsorption depends primarily on the surface charge rather than the degree of hydrophobicity of the surface. The adsorption of spherical Ludox silica nanoparticles on PDADMAC surfaces was also examined for comparison with the disklike laponite. The QCM data for both laponite and Ludox show strong adsorption on PDADMAC surfaces; however, larger frequency shifts were seen for Ludox than laponite at all concentrations tested. Within the concentration range examined in this work, the dissipation data from the QCM suggested a simple monolayer formation for Ludox but a monolayer to multilayer transition for laponite as the concentration increases.

  18. T1-relaxation of 129Xe on metal single crystal surfaces—multilayer experiments on iridium and monolayer considerations

    Science.gov (United States)

    Stahl, Dirk; Mannstadt, Wolfgang; Gerhard, Peter; Koch, Matthias; Jänsch, Heinz J.

    2002-11-01

    The surface of a typical laboratory single crystal has about 10 15 surface atoms or adsorption sites, respectively, and is thus far out of reach for conventional NMR experiments using thermal polarization. It should however be in reach for NMR of adsorbed laser polarized (hyperpolarized) 129Xe, which is produced by spin transfer from optically pumped rubidium. With multilayer experiments of xenon adsorbed on an iridium surface we do not only demonstrate that monolayer sensitivity has been obtained, we also show that such surface experiments can be performed under ultra high vacuum conditions with the crystal being mounted in a typical surface analysis chamber on a manipulator with far-reaching sample heating and cooling abilities. With only four spectra summed up we present an NMR signal from at most 4×10 14 atoms of 129Xe, four layers of naturally abundant xenon, respectively. The fact that no monolayer signal has been measured so far is explained by a fast Korringa relaxation due to the Fermi contact interaction of the 129Xe nuclei with the electrons of the metal substrate. T1-relaxation times in the order of several ms have been calculated using all electron density functional theory for several metal substrates.

  19. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA

    DEFF Research Database (Denmark)

    Grubb, Mikala; Wackerbarth, Hainer; Wengel, J.;

    2007-01-01

    We describe adsorption and identification of the binding sites of [Ru(NH3)(6)](3+) (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ...

  20. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...

  1. Highly Polymer-Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom

    NARCIS (Netherlands)

    Wang, Zhanhua; Pujari, S.P.; Lagen, van B.; Smulders, M.M.J.; Zuilhof, H.

    2016-01-01

    Organic monolayers or polymer brushes, often in combination with surface structuring, are widely used to prevent nonspecific adsorption of polymeric or biological material on sensor and microfluidic surfaces. Here it is demonstrated for the first time how robust, covalently attached alkyne-derived m

  2. Molecular Dynamic Studies on Langmuir Monolayers of Stearic Acid

    Institute of Scientific and Technical Information of China (English)

    KONG Chui-peng; ZHANG Hong-xing; ZHAO Zeng-xia; ZHENG Qing-chuan

    2013-01-01

    Compression isotherm for stearic acid was obtained by means of molecular dynamic simulation and compared to experimentally measured values for the Langmuir monolayers.Compared to the previous simulation,the present simulation has provided a method to reproduce the compression of the monolayer.The result is consistent with other experimental results.By analyzing the alkyl tails,the configuration of stearic acid molecules during the compression process was studied and a uniform monolayer was obtained after compression.Stearic acid molecules were observed to form fine organized monolayer from completely random structure.Hexatic order of the arrangement has been identified for the distribution of stearic acid molecules in the monolayer.At the end of the compression,the stearic acid molecules were tightly packed in the gap of two other molecules.At last,the hydrogen bonds in the system were analyzed.The main hydrogen bonds were from stearic acid-water interaction and their intensities constantly decreased with the decreased of surface area per molecule.The weak hydrogen bond interaction between stearic acid molecules may be the reason of easy collapse.

  3. Inhibition of copper corrosion by the formation of Schiff base self-assembled monolayers

    Science.gov (United States)

    Zhang, Jing; Liu, Zheng; Han, Guo-Cheng; Chen, Shi-Liang; Chen, Zhencheng

    2016-12-01

    Self-assembled monolayers (SAMs) of 4-((2-thiophenecarboxylic acid hydrazide) methylene) benzoic acid (HD2) (denoted as HD2-SAMs) were formed on copper surface. The SAMs were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Polarization curve and weight loss methods indicated that the highest inhibition efficiency was 93.9% for CO2-saturated simulative oilfield water at a self-assembled time of 3 h. Potential-time curve, electrochemical impedance tests showed that HD2-SAMs on copper surface exhibited excellent inhibition effect at 30 °C. The adsorption behavior of HD2-SAMs on the copper surface followed the Langmuir adsorption isotherm, which was indicative of typically chemical adsorption. Quantum chemistry calculation showed that O and N atoms can interact with Cu atoms by coordination bonds which were the mainly active area of the adsorption of HD2 molecules.

  4. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    Science.gov (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  5. Formation and Stability of Phenylphosphonic Acid Monolayers on ZnO: Comparison of In Situ and Ex Situ SAM Preparation.

    Science.gov (United States)

    Ostapenko, Alexandra; Klöffel, Tobias; Meyer, Bernd; Witte, Gregor

    2016-05-24

    Self-assembled monolayers (SAMs) enable an electronic interface tailoring of conductive metal oxides and offer an alternative to common transparent electrodes in optoelectronic devices. Here, the influence of surface orientation and pretreatment on the formation and stability of SAMs has been studied for the case of phenylphosphonic acid (PPA) on ZnO single crystals. Using thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), near-edge X-ray adsorption fine structure spectroscopy (NEXAFS) and density-functional theory (DFT) calculations, the thermal stability and orientational ordering of PPA-SAMs on the polar and mixed-terminated ZnO surfaces were analyzed. On all surfaces, PPA-SAMs remain stable up to 550 K, while at higher temperatures a C-P bond cleavage and dissociative desorption takes place yielding two distinct desorption peaks. Based on DFT calculations, these desorption channels are attributed to protonated and deprotonated chemisorbed PPA molecules, which can be related to tri- and bidentate species, hence allowing to determine their relative abundance from the intensity ratio. Beside immersion, an alternative monolayer preparation based on vacuum deposition in combination with controlled desorption of excess multilayers is demonstrated. This enables a SAM preparation on bare ZnO surfaces without any precoating due to exposure to ambient air, which is further compared with SAM formation on intentionally hydroxylated substrates. Corresponding TDS data indicate that initial hydroxylation favors the formation of tridentate and deprotonated bidentate, while the OMBD preparation on bare surfaces yields a larger fraction of protonated bidentate species. The orientation of PPA molecules adopted in the SAMs was determined from the dichroism of K-edge NEXAFS measurements and reveals an almost upright orientation for the deprotonated species, while a slight tilting is obtained for monolayer films with a large fraction of protonated

  6. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  7. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  8. Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications.

    Science.gov (United States)

    Carrascosa, Laura G; Martínez, Lidia; Huttel, Yves; Román, Elisa; Lechuga, Laura M

    2010-09-01

    A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.

  9. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  10. Binary functionalization of H:Si(111) surfaces by alkyl monolayers with different linker atoms enhances monolayer stability and packing.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2016-05-14

    Alkyl monolayer modified Si forms a class of inorganic-organic hybrid materials with applications across many technologies such as thin-films, fuel/solar-cells and biosensors. Previous studies have shown that the linker atom, through which the monolayer binds to the Si substrate, and any tail group in the alkyl chain, can tune the monolayer stability and electronic properties. In this paper we study the H:Si(111) surface functionalized with binary SAMs: these are composed of alkyl chains that are linked to the surface by two different linker groups. Aiming to enhance SAM stability and increase coverage over singly functionalized Si, we examine with density functional theory simulations that incorporate vdW interactions, a range of linker groups which we denote as -X-(alkyl) with X = CH2, O(H), S(H) or NH(2) (alkyl = C6 and C12 chains). We show how the stability of the SAM can be enhanced by adsorbing alkyl chains with two different linkers, e.g. Si-[C, NH]-alkyl, through which the adsorption energy is increased compared to functionalization with the individual -X-alkyl chains. Our results show that it is possible to improve stability and optimum coverage of alkyl functionalized SAMs linked through a direct Si-C bond by incorporating alkyl chains linked to Si through a different linker group, while preserving the interface electronic structure that determines key electronic properties. This is important since any enhancement in stability and coverage to give more densely packed monolayers will result in fewer defects. We also show that the work function can be tuned within the interval of 3.65-4.94 eV (4.55 eV for bare H:Si(111)).

  11. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb

    2013-08-14

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  12. Ti-decorated graphitic-C3N4 monolayer: A promising material for hydrogen storage

    Science.gov (United States)

    Zhang, Weibin; Zhang, Zhijun; Zhang, Fuchun; Yang, Woochul

    2016-11-01

    Ti-decorated graphitic carbon nitride (g-C3N4) monolayer as a promising material system for high-capacity hydrogen storage is proposed through density functional theory calculations. The stability and hydrogen adsorption of Ti-decorated g-C3N4 is analyzed by computing the adsorption energy, the charge population, and electronic density of states. The most stable decoration site of Ti atom is the triangular N hole in g-C3N4 with an adsorption energy of -7.58 eV. The large diffusion energy barrier of the adsorbed Ti atom of ∼6.00 eV prohibits the cluster formation of Ti atoms. The electric field induced by electron redistribution of Ti-adsorbed porous g-C3N4 significantly enhanced hydrogen adsorption up to five H2 molecules at each Ti atom with an average adsorption energy of -0.30 eV/H2. The corresponding hydrogen capacity reaches up to 9.70 wt% at 0 K. In addition, the hydrogen capacity is predicted to be 6.30 wt% at 233 K and all adsorbed H2 are released at 393 K according to molecular dynamics simulation. Thus, the Ti-decorated g-C3N4 monolayer is suggested to be a promising material for hydrogen storage suggested by the DOE for commercial applications.

  13. Dimeric configurations of atomic hydrogen adsorbed on a monolayer hexagonal boron nitride

    Science.gov (United States)

    Shi, Jianzhang; Hao, Ruirui; Ji, Linan; Feng, Shujian; Sun, Tianye

    2017-10-01

    Atomic hydrogen adsorbed on the two-dimensional monolayer hexagonal boron nitride is systematically discussed based on dispersion-corrected density function theory (DFT-D). Main emphasis has been placed on aggregation states of two hydrogen atoms, including equal or ectopic adsorption with single side, and double-sided adsorption. The hydrogen atoms are chemisorbed on the top of boron sites, while they are physisorbed on the top of nitrogen or honeycomb sites. Furthermore, two adsorbed hydrogen atoms are most likely to keep close to form meta-TB dimer with single side. Besides, a possible stabilizing mechanism related to the adsorbed performance is investigated.

  14. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    National Research Council Canada - National Science Library

    Michelly C. dos Santos; Aline P. Moraes; Maykon A. Lemes; Emília C. D. Lima; Anselmo E. de Oliveira

    2010-01-01

    An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol...

  15. Langmuir monolayers composed of single and double tail sulfobetaine lipids.

    Science.gov (United States)

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E

    2016-07-15

    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to

  16. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  17. Temperature dependence of atomic vibrations in mono-layer graphene

    NARCIS (Netherlands)

    Allen, C.S.; Liberti, E.; Kim, J.S.; Xu, Q.; Fan, Y.; He, K.; Robertson, A.W.; Zandbergen, H.W.; Warner, J.H.; Kirkland, A.I.

    2015-01-01

    We have measured the mean square amplitude of both in- and out-of-plane lattice vibrations for mono-layer graphene at temperatures ranging from ∼100 K to 1300 K. The amplitude of lattice vibrations was calculated from data extracted from selected area electron diffraction patterns recorded across a

  18. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    OpenAIRE

    Belas, M R; Colwell, R.R.

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral fl...

  19. 2D "soap"-assembly of nanoparticles via colloid-induced condensation of mixed Langmuir monolayers of fatty surfactants.

    Science.gov (United States)

    Babenko, Denis I; Ezhov, Alexander A; Turygin, Dmitry S; Ivanov, Vladimir A; Ivanov, Vladimir K; Arslanov, Vladimir V; Kalinina, Maria A

    2012-01-10

    We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.

  20. Surface modification of glass plates and silica particles by phospholipid adsorption.

    Science.gov (United States)

    Chibowski, Emil; Delgado, Angel V; Rudzka, Katarzyna; Szcześ, Aleksandra; Hołysz, Lucyna

    2011-01-01

    The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration. The results indicate that the phospholipid is adsorbed vertically on the plates, exposing alternately its polar head and non-polar hydrocarbon chains in successive layers. On the other hand, experiments conducted on glass plates prior hydrophobized by contact with n-tetradecane suggest that DPPC molecules may to some extent dissolve in the relatively thick n-alkane film and then expose their polar heads over the film surface thus producing polar electron-donor interactions. The effect of both DPPC and dioleoylphosphatidylcholine (DOPC) on the electrokinetic potential of silica spheres confirms adsorption of the phospholipids, leading to a decrease in the (originally negative) zeta potential of silica and even reversal of its sign to positive at acidic pH. Hydrophobic interactions between phospholipid molecules in the medium and those already adsorbed may explain the overcharging. The adsorption of neutral phospholipids may reduce the zeta potential as a consequence of the shift of the electrokinetic or slip plane. The effect is more evident in the case of DOPC, suggesting a less efficient packing of this phospholipid because of the presence of double bonds in its molecule, which in fact is well known.

  1. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    Science.gov (United States)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H.

    2007-03-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  2. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  3. Influence of preadsorbed oxygen on the sign and magnitude of the chemisorption-induced resistance change for H2 adsorption onto Fe films

    Science.gov (United States)

    Shanabarger, M. R.

    1986-01-01

    Measurements have been made of the chemisorption-induced resistance change for H2 adsorbed onto Fe film substrates predosed with fixed coverages of chemisorbed oxygen. The measurements were made at temperatures from 295 to 340 K and for estimated oxygen coverages of less than 0.1 monolayers. Two distinct resistance change components were observed in both the adsorption kinetics and the equilibrium isotherms: a positive component which is associated with the adsorption of H2 onto a clean Fe surface, and a negative component which was correlated with the presence of the chemisorbed oxygen. The resistance change isotherms can be fit with a model which assumes that each of the resistance change components result from dissociative chemisorbed hydrogen. Possible mechanisms for the chemisorbed-oxygen-induced negative resistance change are discussed.

  4. THERMODYNAMIC STUDY OF HIGH-PRESSURE ADSORPTION OF METHANE AND HEATS OF METHANE ADSORPTION ON MICROPOROUS CARBONS

    Institute of Scientific and Technical Information of China (English)

    杨晓东; 林文胜; 郑青榕; 顾安忠; 鲁雪生; 宋燕

    2002-01-01

    The study was done for high-pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius-Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.

  5. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction.

  6. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    Science.gov (United States)

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-04-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.

  7. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent.

  8. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and scanning electron microscope (SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.

  9. Determination of absolute adsorption in highly ordered porous media

    Science.gov (United States)

    Mertens, Florian O.

    2009-06-01

    Recently developed Metal Organic Frameworks (MOFs) are the materials with the highest intrinsic surface areas to date and their discovery increased the research activity in the field of microporous adsorption materials significantly. In this contribution, a generic method of analysis for volumetrically measured adsorption isotherms is presented that separates absolute adsorption from excess adsorption to the best possible degree by representing the absolute adsorption isotherm by a superposition of in respect to pressure strictly monotonously increasing fitting function. The procedure allows to determine the heat of adsorption at constant gas uptake via implicitly defined quantities. The method was applied to adsorption data of hydrogen on MOF-5 ranging from 40 K to 200 K. Methane adsorption on MOF-5 was used to demonstrate that the common practice of neglecting the difference between excess and absolute adsorption leads to erroneously increased heat of adsorption values at high coverages and temperatures.

  10. Ionic channels and nerve membrane constituents. Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers.

    Science.gov (United States)

    Villegas, R; Barnola, F V

    1972-01-01

    Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

  11. Sequence-specific DNA interactions with calixarene-based langmuir monolayers.

    Science.gov (United States)

    Rullaud, Vanessa; Moridi, Negar; Shahgaldian, Patrick

    2014-07-29

    The interactions of an amphiphilic calixarene, namely p-guanidino-dodecyloxy-calix[4]arene, 1, self-assembled as Langmuir monolayers, with short double stranded DNA, were investigated by surface pressure-area (π-A) isotherms, surface ellipsometry and Brewster angle microscopy (BAM). Three DNA 30mers were used as models, poly(AT), poly(GC) and a random DNA sequence with 50% of G:C base pairs. The interactions of these model DNA duplexes with 1-based Langmuir monolayers were studied by measuring compression isotherms using increasing DNA concentrations (10(-6), 10(-5), 10(-4), and 5 × 10(-4) g L(-1)) in the aqueous subphase. The isotherms of 1 showed an expansion of the monolayer with, interestingly, significant differences depending on the duplex DNA sequence studied. Indeed, the interactions of 1-based monolayers with poly(AT) led to an expansion of the monolayer that was significantly more pronounced that for monolayers on subphases of poly(GC) and the random DNA sequence. The structure and thickness of 1-based Langmuir monolayers were investigated by BAM and surface ellipsometry that showed differences in thickness and structure between a monolayer formed on pure water or on a DNA subphase, with here again relevant dissimilarities depending on the DNA composition.

  12. Moisture Adsorption and Thermodynamic Properties of California Grown Almonds (Varieties: Nonpareil and Monterey

    Directory of Open Access Journals (Sweden)

    Li Zuo Taitano

    2012-04-01

    Full Text Available Moisture adsorption characteristics of California grown almonds (Nonpareil: pasteurized and unpasteurized almonds; Monterey: pasteurized, unpasteurized and blanched almonds were obtained using the gravimetric method over a range of water activities from 0.11 to 0.98 at 7-50ºC. The weights of almonds were measured until samples reached a constant weight. The relationship between equilibrium moisture content and water activity was established using the Guggenheim-Anderson-de Boer model. The diffusion coefficient of water in almond kernels was calculated based on Ficks second law. The monolayer moisture value of almonds ranged from 0.020 to 0.035 kg H2O kg-1 solids. The diffusion coefficient increased with temperature at a constant water activity, and decreased with water activity at a constant temperature. The thermodynamic properties (net isosteric heat, differential enthalpy and entropy were also determined. The net isosteric heat of adsorption decreased with the increasing moisture content, and the plot of differential enthalpy versus entropy satisfied the enthalpy-entropy compensation theory. The adsorption process of almond samples was enthalpy driven over the range of studied moisture contents.

  13. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  14. Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Ilaria Solano

    2016-04-01

    Full Text Available Background: A versatile strategy for protein–surface coupling in biochips exploits the affinity for polyhistidine of the nitrilotriacetic acid (NTA group loaded with Ni(II. Methods based on optical reflectivity measurements such as spectroscopic ellipsometry (SE allow for label-free, non-invasive monitoring of molecule adsorption/desorption at surfaces.Results: This paper describes a SE study about the interaction of hexahistidine (His6 on gold substrates functionalized with a thiolate self-assembled monolayer bearing the NTA end group. By systematically applying the difference spectra method, which emphasizes the small changes of the ellipsometry spectral response upon the nanoscale thickening/thinning of the molecular film, we characterized different steps of the process such as the NTA-functionalization of Au, the adsorption of the His6 layer and its eventual displacement after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode.Conclusion: Our approach to the SE data, exploiting the full spectroscopic potential of the method and basic optical models, was able to provide a picture of the variation of the film thickness along the process. The combination of δΔi+1,i(λ, δΨi+1,i(λ (layer-addition mode and δΔ†i',i+1(λ, δΨ†i',i+1(λ (layer-removal mode difference spectra allowed us to clearly disentangle the adsorption of His6 on the Ni-free NTA layer, due to non specific interactions, from the formation of a neatly thicker His6 film induced by the Ni(II-loading of the NTA SAM.

  15. Ultrafast Transient Terahertz Conductivity of Monolayer MoS 2 and WSe 2 Grown by Chemical Vapor Deposition

    KAUST Repository

    Docherty, Callum J.

    2014-11-25

    We have measured ultrafast charge carrier dynamics in monolayers and trilayers of the transition metal dichalcogenides MoS2 and WSe2 using a combination of time-resolved photoluminescence and terahertz spectroscopy. We recorded a photoconductivity and photoluminescence response time of just 350 fs from CVD-grown monolayer MoS2, and 1 ps from trilayer MoS2 and monolayer WSe2. Our results indicate the potential of these materials as high-speed optoelectronic materials.

  16. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong, E-mail: wzhou@uta.edu [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Piper, Jessica R.; Fan, Shanhui [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Jia, Yichen; Xia, Fengnian [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other two–dimensional materials.

  17. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...... grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...... that the correlation between the effective surface energy components of the heterogeneous Surfaces coated with fluorocarbon self-assembled monolayers is in agreement with the Cassie model....

  18. Langmuir-Blodgett monolayers of InP quantum dots with short chain ligands.

    Science.gov (United States)

    Lambert, K; Wittebrood, L; Moreels, I; Deresmes, D; Grandidier, B; Hens, Z

    2006-08-15

    We demonstrate the organization of nearly monodisperse colloidal InP quantum dots at the air/water interface in Langmuir monolayers. The organization of the particles is monitored in situ by surface pressure-surface area measurements and ex situ by AFM measurements on films transferred to mica by Langmuir-Blodgett deposition. The influence of different ligands on the quality of the monolayer formed has been studied. We show that densely packed monolayers with little holes can be formed using short chain ligands like pyridine and pentamethylene sulfide. The advantage of using short chain ligands for electron tunneling to or from the quantum dots is demonstrated using scanning tunneling spectroscopy.

  19. Impact of supercritical adsorption mechanism on research of hydrogen carrier

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; ZHOU Li; SU Wei; ZHOU YaPing

    2007-01-01

    Hydrogen storage receives the worldwide attention due to its importance in sustainable energy and the solution of greenhouse effect. Adsorption provides an efficient way to compress gases and, therefore,has been applied to the development of hydrogen storage technology. However, hydrogen is a supercritical gas at the temperature of engineering interest and follows a different adsorption mechanism compared to the sub-critical gases. The present work shows why only monolayer coverage mechanism functions at above-critical temperatures and what consequences will result in the application study.Although there are pros and cons to this point of view, understanding the adsorption mechanism is, indeed, essential for the research of hydrogen storage method since it claims that any storage material based on adsorption will not satisfy the practical need of on board storage no matter how novel the material is.

  20. Effect of the β-propiolactone treatment on the adsorption and fusion of influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 virus H1N1 on a dimyristoylphosphatidylcholine/ganglioside GM3 mixed phospholipids monolayer at the air-water interface.

    Science.gov (United States)

    Desbat, Bernard; Lancelot, Eloïse; Krell, Tino; Nicolaï, Marie-Claire; Vogel, Fred; Chevalier, Michel; Ronzon, Frédéric

    2011-11-15

    The production protocol of many whole cell/virion vaccines involves an inactivation step with β-propiolactone (BPL). Despite the widespread use of BPL, its mechanism of action is poorly understood. Earlier work demonstrated that BPL alkylates nucleotide bases, but its interaction with proteins has not been studied in depth. In the present study we use ellipsometry to analyze the influence of BPL treatment of two H1N1 influenza strains, A/Brisbane/59/2007 and A/New Caledonia/20/1999, which are used for vaccine production on an industrial scale. Analyses were conducted using a mixed lipid monolayer containing ganglioside GM3, which functions as the viral receptor. Our results show that BPL treatment of both strains reduces viral affinity for the mixed monolayer and also diminishes the capacity of viral domains to self-assemble. In another series of experiments, the pH of the subphase was reduced from 7.4 to 5 to provoke the pH-induced conformational change of hemagglutinin, which occurs following endocytosis into the endosome. In the presence of the native virus the pH decrease caused a reduction in domain size, whereas lipid layer thickness and surface pressure were increased. These observations are consistent with a fusion of the viral membrane with the lipid monolayer. Importantly, this fusion was not observed with adsorbed inactivated virus, which indicates that BPL treatment inhibits the first step of virus-membrane fusion. Our data also indicate that BPL chemically modifies hemagglutinin, which mediates the interaction with GM3.

  1. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina;

    2016-01-01

    -principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...... shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within...

  2. Measurement of Atrazine Adsorption onto Surficial Sediments (Natural Surface Coatings)——New Evidence for the Importance of Fe Oxides

    Institute of Scientific and Technical Information of China (English)

    LI Yu; WANG Ao; GAO Qian; WANG Xiao-li

    2009-01-01

    To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the com-ponents. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, be-fore and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar ba-sis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in con-trolling the environmental behavior of AT in an aquatic environment.

  3. Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers.

    Science.gov (United States)

    Soikkeli, Miika; Kurppa, Katri; Kainlauri, Markku; Arpiainen, Sanna; Paananen, Arja; Gunnarsson, David; Joensuu, Jussi J; Laaksonen, Päivi; Prunnila, Mika; Linder, Markus B; Ahopelto, Jouni

    2016-03-01

    We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second.

  4. Pathogenic Trichomonas vaginalis cytotoxicity to cell culture monolayers.

    Science.gov (United States)

    Alderete, J F; Pearlman, E

    1984-04-01

    Exposure of monolayer cultures of human urogenital and vaginal (HeLa), human epithelial (HEp-2), normal baboon testicular (NBT), and monkey kidney (Vero) cells to live pathogenic Trichomonas vaginalis resulted in extensive disruption of monolayers. Trypan blue was taken up by all host cells released from cell monolayers, which indicated irreversible damage of these cell types by trichomonads. Time and dose related data on cytotoxicity kinetics were obtained using increasing ratios of parasites to cells. All cell types were most sensitive to trichomonads at a multiplicity of infection of one. Release of tritiated thymidine (3H-thymidine) of the deoxyribonucleic acid (DNA) of prelabelled host cells after incubation with T vaginalis corroborated that extensive cytotoxicity was caused by pathogenic trichomonads in man. Only living parasites were cytotoxic, and no trichomonal toxic products were implicated in disruption of the cell monolayer cultures. A pathogenic bovine trichomonad, Tritrichomonas foetus KV-1, produced half as much cell damage as did T vaginalis. Trichomonas tenax, a non-pathogenic member of the normal flora of the oral cavity in man, produced no measurable cytotoxicity to HeLa cells when compared with the pathogenic human trichomonads.

  5. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming

    2011-01-01

    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.

  6. Self-assembled Monolayers of n-Hexadecanoic Acid and α-Hydroxyl n-Hexadecanoic Acid on Titanium Surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Gang(陈海刚); WU,Xue-Dong(乌学东); YU,Qin-Qin(虞勤琴); YANG,Sheng-Rong(杨生荣); WANG,Da-Pu(王大璞); SHEN,Wen-Zhong(沈文忠)

    2002-01-01

    n-Hexadecanoic acid (HA) and a.hydroxyl n-hexadecanoic acid ( HHA ) are shown to spontaneously assemble on Si-supported titanium surfaces. Contact angle measurements, reflection absorbance IR, AFM and XPS characterizatiions are performed to examine the physical and chenical states of attached monolayers. The results show that the two amphiphiles tend to form disordered monolayers on titanium surfaces. The HHA headgroups are believed to form polydentate coordination with Ti, which is more chemically stable than the bidentate coordination of HA. All the facts of characterization indicate that HHA monolayer has more surface coverage than HA monolayer.

  7. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  8. Self-assembled monolayers of semifluorinated alkaneselenolates on noble metal substrates.

    Science.gov (United States)

    Shaporenko, A; Cyganik, P; Buck, M; Ulman, A; Zharnikov, M

    2005-08-30

    Self-assembled monolayers (SAMs) formed from semifluorinated dialkyldiselenol (CF(3)(CF(2))(5)(CH(2))(2)Se-)(2) (F6H2SeSeH2F6) on polycrystalline Au(111) and Ag(111) were characterized by high-resolution X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near edge X-ray absorption fine structure spectroscopy, scanning tunneling microscopy, and contact angle measurements. The Se-Se linkage of F6H2SeSeH2F6 was found to be cleaved upon the adsorption, followed by the formation of selenolate-metal bond. The resulting F6H2Se SAMs are well-ordered, densely packed, and contamination-free. The packing density of these films is governed by the bulky fluorocarbon part, which exhibits the expected helical conformation. A noncommensurate hexagonal arrangement of the F6H2Se molecules with an average nearest-neighbor spacing of about 5.8 +/- 0.2 A, close to the van der Waals diameter the fluorocarbon chain, was observed on Au(111). The orientation of the fluorocarbon chains in the F6H2Se SAMs does not depend on the substrate-the average tilt angle of these moieties was estimated to be about 21-22 degrees on both Au and Ag.

  9. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition.

    Science.gov (United States)

    Zareie, Hadi M; Boyer, Cyrille; Bulmus, Volga; Nateghi, Ebrahim; Davis, Thomas P

    2008-04-01

    Self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG)-tethered molecules on gold are important for various biorelevant applications ranging from biomaterials to bioanalytical devices, where surface resistance to nonspecific protein adsorption is needed. Incorporation of a stimuli-responsive character to the OEG SAMs enables the creation of nonfouling surfaces with switchable functionality. Here we present an OEG-derived structure that is highly responsive to temperature changes in the vicinity of the physiological temperature, 37 degrees C. The temperature-responsive solution behavior of this new compound was demonstrated by UV-vis and nuclear magnetic resonance spectroscopy. Its chemisorption onto gold(111), and the retention of responsive behavior after chemisorption have been demonstrated by surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and atomic force and scanning tunneling microscopy. The OEG-derived SAMs have been shown to reversibly switch the wettability of the surface, as determined by contact angle measurements. More importantly, SPR and AFM studies showed that the OEG SAMs can be utilized to control the affinity binding of streptavidin to the biotin-tethered surface in a temperature-dependent manner while still offering the nonspecific protein-resistance to the surface.

  10. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.

    Science.gov (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2017-04-07

    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  11. Electrokinetic investigation of surfactant adsorption.

    Science.gov (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  12. Antifouling properties of oligo(lactose)-based self-assembled monolayers.

    Science.gov (United States)

    Nugraha, Roni; Finlay, John A; Hill, Sophie; Fyrner, Timmy; Yandi, Wetra; Callow, Maureen E; Callow, James A; Ederth, Thomas

    2015-01-01

    The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.

  13. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are qual

  14. Single-molecule imaging of protein adsorption mechanisms to surfaces.

    Science.gov (United States)

    Zareh, Shannon Kian; Wang, Yan Mei

    2011-07-01

    Protein-surface interactions cause the desirable effect of controlled protein adsorption onto biodevices as well as the undesirable effect of protein fouling. The key to controlling protein-surface adsorptions is to identify and quantify the main adsorption mechanisms: adsorptions that occur (1) while depositing a protein solution onto dry surfaces and (2) after the deposition onto wet surfaces. Bulk measurements cannot reveal the dynamic protein adsorption pathways and thus cannot differentiate between the two adsorption mechanisms. We imaged the interactions of single streptavidin molecules with hydrophobic fused-silica surfaces in real-time. We observed both adsorbed proteins on surfaces and diffusing proteins near surfaces and analyzed their adsorption kinetics. Our analysis shows that the protein solution deposition process is the primary mechanism of streptavidin adsorption onto surfaces at the subnanomolar to nanomolar protein concentrations. Furthermore, we found that hydrophilic fused-silica surfaces can prevent the adsorption of streptavidin molecules. Copyright © 2010 Wiley-Liss, Inc.

  15. Free exciton emission and vibrations in pentacene monolayers

    Science.gov (United States)

    He, Rui

    2011-03-01

    Pentacene is a benchmark organic semiconductor material because of its potential applications in electronic and optoelectronic devices. Recently we demonstrated that optical and vibrational characterizations of pentacene films can be carried out down to the sub-monolayer limit. These milestones were achieved in highly uniform pentacene films that were grown on a compliant polymeric substrate. Films with thickness ranging from sub- monolayer to tens of monolayers were studied at low temperatures. The intensity of the free exciton (FE) luminescence band increases quadratically with the number of layers N when N is small. This quadratic dependence is explained as arising from the linear dependence of the intensity of absorption and the probability of emission on the number of layers N. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice modes in the monolayers. The measured low- lying modes (in the 20 to 100 cm-1 range) display characteristic changes when going from a single monolayer to two layers. The Raman intensities by high frequency intra-molecular vibrations display resonance enhancement double-peaks when incident or scattered photon energies overlap the FE optical emission. The double resonances are about the same strength which suggests that Franck-Condon overlap integrals for the respective vibronic transitions have the same magnitude. The interference between scattering amplitudes in the Raman resonance reveals quantum coherence of the symmetry-split states (Davydov doublet) of the lowest intrinsic singlet exciton. These results demonstrate novel venues for ultra-thin film characterization and studies of fundamental physics in organic semiconductor structures. In collaboration with Nancy G. Tassi (Dupont), Graciela B. Blanchet (Nanoterra, Cambridge, MA), and Aron Pinczuk (Columbia University).

  16. Differential stress induced by thiol adsorption on facetted nanocrystals.

    Science.gov (United States)

    Watari, Moyu; McKendry, Rachel A; Vögtli, Manuel; Aeppli, Gabriel; Soh, Yeong-Ah; Shi, Xiaowen; Xiong, Gang; Huang, Xiaojing; Harder, Ross; Robinson, Ian K

    2011-09-25

    Polycrystalline gold films coated with thiol-based self-assembled monolayers (SAM) form the basis of a wide range of nanomechanical sensor platforms. The detection of adsorbates with such devices relies on the transmission of mechanical forces, which is mediated by chemically derived stress at the organic-inorganic interface. Here, we show that the structure of a single 300-nm-diameter facetted gold nanocrystal, measured with coherent X-ray diffraction, changes profoundly after the adsorption of one of the simplest SAM-forming organic molecules. On self-assembly of propane thiol, the crystal's flat facets contract radially inwards relative to its spherical regions. Finite-element modelling indicates that this geometry change requires large stresses that are comparable to those observed in cantilever measurements. The large magnitude and slow kinetics of the contraction can be explained by an intermixed gold-sulphur layer that has recently been identified crystallographically. Our results illustrate the importance of crystal edges and grain boundaries in interface chemistry and have broad implications for the application of thiol-based SAMs, ranging from nanomechanical sensors to coating technologies.

  17. Surface viscoelastic properties of spread ferroelectric liquid crystal monolayer on air-water interface

    Science.gov (United States)

    Kaur, Ramneek; Bhullar, Gurpreet Kaur; Raina, K. K.

    2013-06-01

    Ferroelectric Liquid crystal having Smectic C* phase at room temperature was capable of forming Langmuir monolayer due to presence of both hydrophilic and hydrophobic groups in it. Surface viscoelasticity properties of FLC monolayer spread on water surface had been determined by dynamic oscillation method and discussed as a function of surface pressure. Dynamic viscoelastic properties such as G (Elastic modulus), G' (storage (elastic) modulus), G' (Loss (viscous) modulus) and phase change with sinusoidal oscillation had been measured at phase changing surface pressure values. As monolayer was becoming condensed, increasing trend was observed in G' values while G' was decreasing. At higher frequencies, viscous modulus G' had negative values. This relaxation phenomenon was probably caused by conformational rearrangements that acted to fluidize monolayer. Phase change tan θ was positive, response in surface pressure was ahead of the de-formation in area and the monolayer had positive dilatational viscosity. Phase change tan θ was negative, response in surface pressure was hysteretic to the deformation in area, and negative dilatational viscosity had been observed. Studies of monolayer in barrier oscillating mode provided us the surface pressure which was most suitable for Langmuir Blodgett monolayer deposition.

  18. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  19. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    Science.gov (United States)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  20. A New Strategy for Architecture of Robust Monolayer Based on Binuclear Palladium (II) Complex of Calix[4]arene Derivative

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A monolayer which is formed by a binuclear palladium complex of low rim methionine-disubstituted calix[4]arene exhibits extraordinary cohesiveness. Cohesiveness measurement and Brewster Angle Microscopy observation show that the monolayer is uniform and robust. This film is probably formed by self-assembly of precursor complex through strong chloride ion bridge between palladium centers.

  1. Coulomb excitations of monolayer germanene

    Science.gov (United States)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  2. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang-Huei [Department of Medicinal Chemistry, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Wen-Ping, E-mail: mjkr.hsu@msa.hinet.net [Department of Chemical Engineering, National United University, Miao-Li, Taiwan 36063 (China); Chan, Han-Wen [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Lee, Yuh-Lang, E-mail: yllee@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China)

    2014-11-30

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules.

  3. Electron doped C2N monolayer as efficient noble metal-free catalysts for CO oxidation

    Science.gov (United States)

    Chakrabarty, Soubhik; Das, Tisita; Banerjee, Paramita; Thapa, Ranjit; Das, G. P.

    2017-10-01

    Using state-of-the-art density functional theory (DFT) based approach; we investigated the catalytic activity of electron doped C2N monolayer (O → N) for CO oxidation. Large surface-to-volume ratio and uniformly distributed holes of recently synthesized planar 2D C2N have made it a potential candidate as noble metal-free catalyst. However, pristine C2N monolayer is chemically inert and hinders the adsorption of O2 and CO molecule on it. Oxygen doping in C2N brings additional electrons to the system and introduces donor state below EF. Thus the reactivity of O-doped C2N (2OC2N) monolayer gets significantly enhanced, thereby opening up the possibility of its usage as a catalyst. This reactive 2OC2N surface adsorbs an incoming O2 molecule along with the elongation of Osbnd O bond, making it chemically active. Presence of this pre-adsorbed active O2 greatly impedes the adsorption of another incoming CO, favoring Eiley-Rideal (ER) mechanism for CO oxidation.

  4. Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wonseok [Nanoprocess Group, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of)]. E-mail: paul@kimm.re.kr; Choi, Moojin [Nanoprocess Group, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Jaegu [Nanoprocess Group, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Cho, Sunghak [Nanoprocess Group, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Whang, Kyunghyun [Nanoprocess Group, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of)

    2005-02-15

    Standard positive photoresist techniques were adapted to generate sub-micron scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. Self-assembled monolayers formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists. The process underlying photopatterning of SAMs on gold is well-known at the phenomenological level. Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200 nm is necessary for oxidation to occur. In this study, solid state femtosecond laser of wavelength 800 nm is applied for photolithography. The results show that ultrafast laser of near infrared (NIR) range wavelength can replace deep UV laser source for photopatterning using thin organic films. The essential basis of our approach is the photochemical excitation of specific reactions in a particular functional group (in this case a thiolate sulfur atom) distributed with monolayer coverage on a solid surface. Femtosecond laser photolithography could be applied to fabricate the patterning of surface chemical structure and the creation of three-dimensional nanostructures by combination with suitable etching methods.

  5. Effect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers.

    Science.gov (United States)

    Rosenberg, Rachel T; Dan, Nily

    2011-07-19

    Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we develop an equilibrium model that correlates the packing density of charged colloidal particles in an adsorbed shell to the particle dimensions in monodisperse and bidisperse systems. In systems where the molar concentration in solution is fixed, the increase in adsorption energy with increasing particle size leads to a monotonic increase in the monolayer packing density with particle radius. However, in systems where the mass fraction of the particles in the adsorbing solutions is fixed, increasing particle size also reduces the molar concentration of particles in solution, thereby reducing the probability of adsorption. The result is a nonmonotonic dependence of the packing density in the adsorbed layer on the particle radius. In bidisperse monolayers composed of two particle sizes, the packing density in the layer increases significantly with size asymmetry. These results may be utilized to design the properties of colloidal shells and coatings to achieve specific properties such as transport rate and selectivity.

  6. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  7. Patterned Array of Poly(ethylene glycol) Silane Monolayer for Label-Free Detection of Dengue

    OpenAIRE

    Nor Zida Rosly; Shahrul Ainliah Alang Ahmad; Jaafar Abdullah; Nor Azah Yusof

    2016-01-01

    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that...

  8. Optimizing the quality of monoreactive perfluoroalkylsilane-based self-assembled monolayers.

    Science.gov (United States)

    Gong, Yuanyuan; Wang, Michael C P; Zhang, Xin; Ng, Him Wai; Gates, Byron D

    2012-08-14

    Self-assembled monolayers (or SAMs) created from monoreactive perfluoroalkylsilanes by deposition from a toluene solution are investigated for the dependence of their quality on processing conditions. Surface-sensitive spectroscopic techniques are used to provide feedback on the processing conditions in which solution temperature, silane concentration, and reaction time are optimized to improve the quality of these SAMs. For these analyses, monolayers are formed at 20, 40, 60, or 80 °C from solutions containing between 0.5 and 5 mM perfluoroalkylsilane over a period of up to 5 h. Physically adsorbed molecules are removed from these surfaces by extraction to determine the quality of the covalently bound monolayer. Water contact angle measurements, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), respectively, are used in combination to assess the uniformity of the surface hydrophobicity, monolayer thickness, composition of the assembled perfluoroalkylsilane molecules, and topography of these monolayers. A comparison is also presented for two approaches to fill defects within these solvent extracted monolayers with more perfluoroalkylsilane molecules, aiming to improve the quality of these SAMs. A detailed XPS analysis is used to assess both the relative changes in density and average tilt of molecules within the monolayers as the process temperature is increased in increments from 20 to 80 °C. The observed differences in quality of the SAMs are attributed to temperature- and time-dependent organization and reactivity of the silane molecules. Although the assembly of these monoreactive perfluoroalkylsilanes is driven by thermodynamics, the quality of the monolayer is ultimately limited by the kinetics and mass transport during this assembly process. Lessons from these studies can be exploited for improving the quality of monolayers composed of other alkylsilane molecules that are covalently bound to the surfaces

  9. Multivalent host-guest interactions between ss-cyclodextrin self-assembled monolayers and poly (isobutene-alt-maleic acid)s modified with hydrophobic guest moeties

    NARCIS (Netherlands)

    Crespo biel, O.; Péter, M.; Bruinink, C.M.; Ravoo, B.J.; Reinhoudt, David; Huskens, Jurriaan

    2005-01-01

    Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with ß-cyclodextrin self-assembled monolayers (ß-CD SAMs) by inclusion of the hydrophobic substituents in the B-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible.

  10. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  11. Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry.

    Science.gov (United States)

    Xu, Dan; Hodges, Chris; Ding, Yulong; Biggs, Simon; Brooker, Anju; York, David

    2010-12-07

    A quartz crystal microbalance with dissipation (QCM-D) and an optical reflectometer (OR) have been used to investigate the adsorption behavior of Laponite and Ludox silica nanoparticles at the solid-liquid interface. The adsorption of both Laponite and Ludox silica onto poly(diallyldimethylammonium chloride) (PDADMAC)-coated surfaces over the first few seconds were studied by OR. Both types of nanoparticles adsorbed rapidly and obtained a stable adsorbed amount after only a few minutes. The rate of adsorption for both nanoparticle types was concentration dependent. The maximum adsorption rate of Ludox nanoparticles was found to be approximately five times faster than that for Laponite nanoparticles. The QCM data for the Laponite remained stable after the initial adsorption period at each concentration tested. The observed plateau values for the frequency shifts increased with increasing Laponite particle concentration. The QCM data for the Ludox nanoparticles had a more complex long-time behavior. In particular, the dissipation data at 3 ppm and 10 ppm Ludox increased slowly with time, never obtaining a stable value within the duration of the experiment. We postulate here that this is caused by slow structural rearrangements of the particles and the PDADMAC within the surface adsorbed layer. Furthermore, the QCM dissipation values were significantly smaller for Laponite when compared with those for Ludox for all nanoparticle concentrations, suggesting that the Laponite adsorbed layer is more compact and more rigidly bound than the Ludox adsorbed layer.

  12. Electrochemical Deposition Of Thiolate Monolayers On Metals

    Science.gov (United States)

    Porter, Marc D.; Weissharr, Duane E.

    1995-01-01

    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  13. Yeast Cytochrome c adsorption on SiO{sub 2}/Si substrates studied by in situ spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, Chiara, E-mail: toccafondi@fisica.unige.it [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cavalleri, Ornella [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Bisio, Francesco [CNR-SPIN, Corso F.M. Perrone 24 16152, Genova (Italy); Canepa, Maurizio [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2013-09-30

    In situ spectroscopic ellipsometry is employed to investigate the adsorption of Yeast Cytochrome c (YCC) on SiO{sub 2}/Si substrates. In order to highlight the slight variations induced by protein adsorption, difference spectra (δΔ and δΨ) have been considered, following the approach introduced in our previous studies on self-assembled monolayers. The difference spectra show a sharp dip at about 410 nm, the Soret or B band, related to the heme optical absorption, whose fine position is sensitive to the protein environment and to the oxidation state of the iron ion within the heme. Remarkably, the analysis of the difference spectra allowed us to detect two lower intensity dips in the 590–650 nm range, the Q bands, whose position and lineshape provide additional information on protein conformation and redox state. Quantitative reproduction of experimental data obtained by using a simple isotropic optical model, accounting for the molecular absorption spectrum, is presented. Estimates of the film thickness and determination of the position and shape of the heme-related features were obtained from calculations. The results are compared with those previously obtained in a study on YCC adsorption on Au substrates. Complementary ex-situ atomic force microscopy measurements are also presented. - Highlights: • Protein adsorption on SiO{sub 2}/Si was monitored by spectroscopic ellipsometry. • Yeast Cytochrome c (YCC) absorption features were detected in difference spectra. • The features exhibit changes in position and lineshape with respect to native ones. • The variations may be related to changes in YCC conformation upon adsorption.

  14. Adsorption of DOPC vesicles on hydrophobic substrates in the presence of electrolytes: A QCM and reflectometry study

    Indian Academy of Sciences (India)

    G Edward Gnana Jothi; S Kamatchi; A Dhathathreyan

    2010-05-01

    The adsorption of lipid Dioleoylphosphatidylcholine (DOPC) vesicles on a hydrophobic substrate has been investigated in aqueous buffer solution by means of the quartz crystal microbalance (QCM) and reflectometry. DOPC vesicles were prepared by the injection method on a hydrophobic substrate using 1-octadecanethiol (ODT) self-assembled on a gold-coated AT-cut quartz. The reflection spectrometry measurements of the adsorbed vesicles showed nearly monolayer formation in few cases, while in most other experiments, the frequency changes measured suggested multilayer formation assuming the usual Sauerbrey equation to hold in the present system as well. Presence of NaCl, KCl, Na2SO4 and ethanol in the aqueous phase during the formation of vesicles suggest that the multilayer formation can be hastened in some cases. Atomic force microscopic study corroborate the thicknesses that range between 8 and 20 nm for high concentration of electrolytes or ethanol suggesting coalescence of vesicles leading to several bilayers possibly stacked over each other.

  15. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.

    Science.gov (United States)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-15

    Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption-desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg(2+) adsorption ability of samples was investigated. The results show that the Hg(2+) adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.

  16. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  17. SiO{sub x} monolayer overcoating effect on the TiO{sub 2} photocatalytic oxidation of cetylpyridinium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroaki; Kubo, Yasuyuki; Akazawa, Manabu; Ito, Seishiro

    2000-01-15

    The effect of SiO{sub x} monolayer coverage on the rate of TiO{sub 2} photocatalytic oxidation of cetylpyridinium bromide (CPB) in aqueous solutions has been studied. The rate of CPB removal from the solution (5 < pH < 7) increases with the surface modification at concentrations below 4.5 x 10{sup {minus}4} M and its promoting effect is enhanced with decreasing concentration. A modified Langmuir-Hinshelwood model, where the rate of surface reaction is assumed to be proportional to the coverage of CPB at the photostationary state is proposed for dilute reaction systems. As a result of the kinetic analyses, the acceleration of the reaction with the SiO{sub x} monolayer coverage can be attributed to the increase in the rate of adsorption due to the electrostatic attraction of cetylpyridinium ion. The suppression of Br{sup {minus}} adsorption is also suggested as a minor contribution.

  18. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengWu; YI XiZhang

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO-3/CH3(CH2)nN+(CH3)3 as an example, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solution has been studied. εcan be obtained with two methods. One is from the relationship between εand the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  19. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  20. Computational Chemistry Approach to Interpret the Crystal Violet Adsorption on Golbasi Lignite Activated Carbon

    Science.gov (United States)

    Depci, Tolga; Sarikaya, Musa; Prisbrey, Keith A.; Yucel, Aysegul

    2016-10-01

    In this paper, adsorption mechanism of Crystal Violet (CV) dye from the aqueous solution on the activated carbon prepared from Golbasi lignite was explained and interpreted by a computational chemistry approach and experimental studies. Molecular dynamic simulations and Ab initio frontier orbital analysis indicated relatively high energy and electron transfer processes during adsorption, and molecular dynamics simulations showed CV dye molecules moving around on the activated carbon surface after adsorption, facilitating penetration into cracks and pores. The experimental results supported to molecular dynamic simulation and showed that the monolayer coverage occurred on the activated carbon surface and each CV dye ion had equal sorption activation energy.

  1. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  2. Inter-domain dipolar repulsion in lipid monolayers with phase coexistence

    CERN Document Server

    Fiori, Elena Rufeil; Banchio, Adolfo J

    2015-01-01

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in a long-range ordered phase state dispersed in a continuous, disordered phase. Because of the difference in surface densities the domains possess an excess dipolar density with respect to the surrounding liquid phase. In this work we propose an alternative method to measure the dipolar repulsion for neutral lipid monolayers. The procedure is based on the comparison of the radial distribution function, g(r), from experiments and Brownian dynamic (BD) simulations. The domains were modeled as disks with surface dipolar density, whose strength was varied to best describe the experimentally determined monolayer structure. For comparison, the point dipole approximation was also studied. As an example, we applied the method for mixed monolayers with different proportions of distearoylphosphatidylcholine (DSPC) and dimyristoylphosphatidylcholine (DMPC) and obtained the excess dipolar density, whic...

  3. Removal of phase transfer agent leads to restricted dynamics of alkyl chains in monolayer protected clusters

    Indian Academy of Sciences (India)

    V R Rajeev Kumar; R Mukhopadhyay; T Pradeep

    2008-11-01

    The effect of phase transfer agent in the dynamics of monolayer protected gold nanoparticles has been investigated by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies. The experiments were performed with octadecane thiol and dodecane thiol protected gold nanoparticles. The materials prepared were characterized by UV-Visible spectroscopy, transmission electron microscopy and IR spectroscopy. Repeated purification of the monolayer protected gold clusters made the alkyl chains defect-free. Such effects are reflected in the infrared spectra. Interdigitation of the monolayers that followed the purification leads to alkyl chains with limited mobility. This was reflected in 13C and 1H NMR linewidths. The NMR measurements indicate that the removal of phase transfer agent affects the dynamics of isolated clusters and those with interdigitated monolayers in different ways.

  4. Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity.

    Science.gov (United States)

    López-Montero, Iván; Catapano, Elisa R; Espinosa, Gabriel; Arriaga, Laura R; Langevin, Dominique; Monroy, Francisco

    2013-06-04

    The present work addresses the fundamental question of membrane elasticity of ceramide layers with a special focus on the plastic regime. The compression and shear viscoelasticity of egg-ceramide Langmuir monolayers were investigated using oscillatory surface rheology in the linear regime and beyond. High compression and shear moduli were measured at room temperature-a clear signature for a solid behavior. At deformations larger than one per mill, egg-ceramide monolayers display plastic features characterized by a decrease of the storage modulus followed by a viscous regime typical of fluid lipids. This behavior is accompanied by a marked decrease of the loss modulus with increasing stress above a yield point. The results permit to univocally classify ceramide monolayers as 2D solids able to undergo plastic deformations, at the difference of typical fluid lipid monolayers. These unusual features are likely to have consequences in the mechanical behavior of ceramide-rich emplacements in biological membranes.

  5. Photosystem I in Langmuir-Blodgett and Langmuir-Schaefer monolayers.

    Science.gov (United States)

    Yan, Xun; Faulkner, Christopher J; Jennings, G Kane; Cliffel, David E

    2012-10-23

    Photosystem I (PSI) is a membrane protein complex that generates photoinduced electrons and transfers them across the thylakoid membrane during photosynthesis. The PSI complex, separated from spinach leaves, was spread onto the air-water interface as a monolayer and transferred onto a gold electrode surface that was precoated with a self-assembled monolayer (SAM). The electrochemical properties of the transferred PSI monolayer, including cyclic voltammetry and photoinduced chronoamperometry, were measured. The results showed that PSI retained its bioactivity after the manipulation. Its capability of converting photoenergy into electrical potential was demonstrated by its reducing an electron acceptor, dichloroindophenol (DCIP), and by oxidizing an electron donor, sodium ascorbate (ASC). We have shown that the protein has two possible orientations at the water interface. The orientation distribution was determined by comparing the controlled reductive and oxidative photocurrents generated from Langmuir-Blodgett and Langmuir-Schaefer monolayers.

  6. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters

    Science.gov (United States)

    Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F.; Bao, D. L.; Li, L. F.; Wang, Y. Q.; Liu, Z. L.; Sun, J. T.; Lei, T.; Liu, C.; Wang, J. O.; Ibrahim, K.; Leonard, D. N.; Zhou, W.; Guo, H. M.; Wang, Y. L.; Du, S. X.; Pantelides, S. T.; Gao, H.-J.

    2017-07-01

    Two-dimensional (2D) materials have been studied extensively as monolayers, vertical or lateral heterostructures. To achieve functionalization, monolayers are often patterned using soft lithography and selectively decorated with molecules. Here we demonstrate the growth of a family of 2D materials that are intrinsically patterned. We demonstrate that a monolayer of PtSe2 can be grown on a Pt substrate in the form of a triangular pattern of alternating 1T and 1H phases. Moreover, we show that, in a monolayer of CuSe grown on a Cu substrate, strain relaxation leads to periodic patterns of triangular nanopores with uniform size. Adsorption of different species at preferred pattern sites is also achieved, demonstrating that these materials can serve as templates for selective self-assembly of molecules or nanoclusters, as well as for the functionalization of the same substrate with two different species.

  7. Pulsed laser deposition for the synthesis of monolayer WSe2

    Science.gov (United States)

    Mohammed, A.; Nakamura, H.; Wochner, P.; Ibrahimkutty, S.; Schulz, A.; Müller, K.; Starke, U.; Stuhlhofer, B.; Cristiani, G.; Logvenov, G.; Takagi, H.

    2017-08-01

    Atomically thin films of WSe2 from one monolayer up to 8 layers were deposited on an Al2O3 r-cut ( 1 1 ¯ 02 ) substrate using a hybrid-Pulsed Laser Deposition (PLD) system where a laser ablation of pure W is combined with a flux of Se. Specular X-ray reflectivities of films were analysed and were consistent with the expected thickness. Raman measurement and atomic force microscopy confirmed the formation of a WSe2 monolayer and its spatial homogeneity over the substrate. Grazing-incidence X-ray diffraction uncovered an in-plane texture in which WSe2 [ 10 1 ¯ 0 ] preferentially aligned with Al2O3 [ 11 2 ¯ 0 ]. These results present a potential to create 2D transition metal dichalcogenides by PLD, where the growth kinetics can be steered in contrast to common growth techniques like chemical vapor deposition and molecular beam epitaxy.

  8. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  9. Formation of octadecyltrichlorosilane (OTS) self-assembled monolayers on amorphous alumina

    Science.gov (United States)

    Kelkar, Sanket S.; Chiavetta, David; Wolden, Colin A.

    2013-10-01

    The kinetics and thermodynamics of octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on vapor deposited alumina were quantified. Ozone cleaning serves to create well-defined hydrophilic surfaces for OTS attachment, and the use of heptane as a solvent enables the formation of high quality SAMs under ambient conditions. The kinetics was characterized as a function of OTS concentration using contact angle goniometry, ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The kinetics of SAM formation and the saturation contact angle (∼100̊) on alumina are comparable to what has been observed for OTS on silicon. The free energy of adsorption with ΔGads values ranged from -7.5 to -5.4 kcal/mol, and the SAMs were stable up to 230 ̊C. The critical surface tension of the OTS monolayer was found to be 21.4 dyne/cm.

  10. Formation of octadecyltrichlorosilane (OTS) self-assembled monolayers on amorphous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Sanket S.; Chiavetta, David; Wolden, Colin A., E-mail: cwolden@mines.edu

    2013-10-01

    The kinetics and thermodynamics of octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on vapor deposited alumina were quantified. Ozone cleaning serves to create well-defined hydrophilic surfaces for OTS attachment, and the use of heptane as a solvent enables the formation of high quality SAMs under ambient conditions. The kinetics was characterized as a function of OTS concentration using contact angle goniometry, ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The kinetics of SAM formation and the saturation contact angle (∼100{sup o}) on alumina are comparable to what has been observed for OTS on silicon. The free energy of adsorption with ΔG{sub ads} values ranged from −7.5 to −5.4 kcal/mol, and the SAMs were stable up to 230 {sup o}C. The critical surface tension of the OTS monolayer was found to be 21.4 dyne/cm.

  11. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    Science.gov (United States)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  12. Scanning conductive probe microscopy of thiophen molecules incorporated into chemically adsorbed monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S-I [Department of Electrical Engineering, Kobe City College of Technology, 8-3, Gakuenhigashi-machi, Nishi-ku, Kobe 651-2194 (Japan); Ogawa, K [Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20, Hayashi-cho, Takamatsu 761-0396 (Japan)], E-mail: shin1@kobe-kosen.ac.jp

    2008-03-15

    We will describe a technique for acquiring the current-voltage characteristics of a metal-molecule-metal probe junction in the lateral direction using a conducting probe atomic force microscopy (CP-AFM) technique. To conduct a repetitive experiment efficiently, we have utilized the current imaging mode of the CP-AFM system. We have prepared a chemically adsorbed monolayer (CAM) of 3-{l_brace}6-{l_brace}11-(Trichlorosilyl)undecanoyl{r_brace}hexyl{r_brace} thiophene (TEN) on a glass substrate. The samples with the electric path were prepared by a chemical adsorption technique with TEN on a glass substrate, followed by an electro-oxidative polymerization with pure water. The conductivity of a polythiophene derivative monolayer was investigated for its application as a wire. The corresponding I-V curves have exhibited stability and are steep in current.

  13. Scanning conductive probe microscopy of thiophen molecules incorporated into chemically adsorbed monolayer

    Science.gov (United States)

    Yamamoto, S.-I.; Ogawa, K.

    2008-03-01

    We will describe a technique for acquiring the current-voltage characteristics of a metal-molecule-metal probe junction in the lateral direction using a conducting probe atomic force microscopy (CP-AFM) technique. To conduct a repetitive experiment efficiently, we have utilized the current imaging mode of the CP-AFM system. We have prepared a chemically adsorbed monolayer (CAM) of 3-{6-{11-(Trichlorosilyl)undecanoyl}hexyl} thiophene (TEN) on a glass substrate. The samples with the electric path were prepared by a chemical adsorption technique with TEN on a glass substrate, followed by an electro-oxidative polymerization with pure water. The conductivity of a polythiophene derivative monolayer was investigated for its application as a wire. The corresponding I-V curves have exhibited stability and are steep in current.

  14. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    CERN Document Server

    Shi, Li; Ouyang, Yixin; Wang, Jinlan

    2016-01-01

    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  15. Method to synthesize metal chalcogenide monolayer nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  16. Adsorption of atomic S and C on Mg(0001) surface

    Institute of Scientific and Technical Information of China (English)

    HU Yu-lin; ZHANG Wei-bing; TANG Bi-yu; DING Wen-jiang; ZENG Xiao-qin

    2006-01-01

    First-principle calculations based on density functional theory were used to study the adsorption of atomic sulfur and carbon on the Mg(0001) surface in a wide range of coverages from 1/4 ML(monolayer) to 1 ML. It is found that the adsorption of atomic S and C on the high coordinate hollow site is more energetically favorable than that on other adsorption sites. S atom is favorable to be adsorbed at on-surface site and C atom is favorable to be adsorbed at subsurface site. The results suggest that when the coverage increases,the binding energy for S and C atoms will decrease and the interaction between adsorbed atoms tends to be stronger. It indicates that as coverage increases,S-Mg and C-Mg interaction weakens.

  17. Vapor phase adsorption of organic compounds on octyl silicas

    Science.gov (United States)

    Roshchina, T. M.; Shoniya, N. K.; Tayakina, O. Ya.; Fadeev, A. Y.

    2011-02-01

    The influence of the modification of silica by octyltrichlorosilane with the formation of an oligomeric grafted layer (sample C8(II)) and additional silanization (sample C8(III)) on the thermodynamic adsorption characteristics (TACs) of different classes of organic compounds was investigated by gas chromatography. It was shown that the modification leads to decreased adsorption values for most of the investigated compounds (with the exception of alkanes, for which TACs on sample C8(II) approach the values observed on the initial support, due probably to additional interactions with silanol groups formed in modifying the surface with octyltrichlorosilane). It was established that blocking these silanol groups during additional silanization with trimethylsilane resulted in inert surfaces whose adsorption properties with respect to many compounds (including some capable of participating in strong specific interactions) approaches to the properties of octyl-silica with a close-packed grafted monolayer.

  18. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    Science.gov (United States)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  19. Interaction of curcumin with lipid monolayers and liposomal bilayers.

    Science.gov (United States)

    Karewicz, Anna; Bielska, Dorota; Gzyl-Malcher, Barbara; Kepczynski, Mariusz; Lach, Radosław; Nowakowska, Maria

    2011-11-01

    Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26×10(4)M(-1) and 3.79×10(4)M(-1), respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.

  20. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics

    Science.gov (United States)

    Reguera, Javier; Ponomarev, Evgeniy; Geue, Thomas; Stellacci, Francesco; Bresme, Fernando; Moglianetti, Mauro

    2015-03-01

    Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were

  1. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli

    Directory of Open Access Journals (Sweden)

    Atef S. ALzaydien

    2009-01-01

    of the MB dye solution at specified concentrations was continuously stirred at 160 rpm with 0.5 g of Tripoli at 25◦C. Samples were withdrawn at appropriate time intervals and then centrifuged at 4000 rpm for 15 min and the absorbance of the supernatant was measured. The concentration of the residual dye was measured using UV/visible spectrometer at a λmax corresponding to the maximum absorption for the dye solution (λmax= 661 nm. Results: Four kinetic models are the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion equations, were selected to interpret the adsorption data. The kinetic parameters were calculated from the experimental data and it was shown that they could be fitted well to the pseudo-second-order kinetic and intra-particle diffusion models. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms The adsorption data obtained were well described by the Langmuir adsorption isotherm model. The maximum adsorption capacity was found to be 16.6 mg g−1 from the Langmuir isotherm model at 25 °C. The Langmuir isotherm constant, KL, was used to evaluate the changes of free energy . The negative value of free energy change indicated the spontaneous nature of sorption and confirmed affinity of natural Jordanian tripoli for the methylene blue basic dye .Conclusion: The present study shows that the natural Jordanian tripoli, an abundant low-cost clay, can be used as sorbent for the removal of methylene blue dye from aqueous solutions. The amount of dye sorbed was found to vary with initial pH, tripoli dose, methylene blue concentration and contact time. The value of The monolayer saturation capacity of tripoli was comparable to the adsorption capacities of some other adsorbent materials for MB dye .

  2. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  3. INTERFACIAL FREE-ENERGY CHANGES OCCURRING DURING BSA ADSORPTION IN SOLUTION DROPLETS ON FEP-TEFLON SURFACES AS MEASURED BY ADSA-P

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERVEGT, W; SCHAKENRAAD, JM; VANDERMEI, HC

    1991-01-01

    Axisymmetric drop shape analysis by profile (ADSA-P) was employed to determine the interfacial free energy changes occurring during bovine serum albumin (BSA) adsorption from solution droplets on fluoroethylenepropylene-Teflon (FEP-Teflon). 100-mu-l droplets of BSA solutions on FEP-Teflon were follo

  4. INTERFACIAL FREE-ENERGY CHANGES OCCURRING DURING BSA ADSORPTION IN SOLUTION DROPLETS ON FEP-TEFLON SURFACES AS MEASURED BY ADSA-P

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERVEGT, W; SCHAKENRAAD, JM; VANDERMEI, HC

    1991-01-01

    Axisymmetric drop shape analysis by profile (ADSA-P) was employed to determine the interfacial free energy changes occurring during bovine serum albumin (BSA) adsorption from solution droplets on fluoroethylenepropylene-Teflon (FEP-Teflon). 100-mu-l droplets of BSA solutions on FEP-Teflon were follo

  5. Albumin adsorption on CoCrMo alloy surfaces

    Science.gov (United States)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  6. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  7. Adsorption of methyl orange onto protonated cross-linked chitosan

    Directory of Open Access Journals (Sweden)

    Ruihua Huang

    2017-01-01

    Full Text Available The adsorption of methyl orange (MO from aqueous solutions on protonated cross-linked chitosan was studied in a batch system. The results showed that the adsorption of MO onto protonated cross-linked chitosan was affected significantly by initial MO concentration, adsorbent dosage, adsorption temperature, and contact time. The pH value of solution had a minor impact on the adsorption of MO in a pH range of 1.0–9.1. The equilibrium isotherms at different temperatures (293, 303, and 313 K and pH values (4.5, 6.7, and 9.1 were investigated. Langmuir model was able to describe these Equilibrium data fitted perfectly. The maximum monolayer adsorption capacities obtained from the Langmuir model were 89.29, 130.9, and 180.2 mg/g at 293, 303, and 313 K, respectively. Adsorption kinetics at different concentrations (100, 200 and 300 mg/L and pH values (4.5, 6.7 and 9.1 were also studied. The kinetics was correlated well with the pseudo second-order model.

  8. Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction

    Science.gov (United States)

    Mao, Jianjun; Li, Shasha; Zhang, Yanxing; Chu, Xingli; Yang, Zongxian

    2016-05-01

    The adsorption, diffusion, and dissociation of O2 on the palladium monolayer supported on TiC(001) surface, MLPd/TiC(001), are investigated using ab initio density functional theory calculations. Strong adhesion of palladium monolayer to the TiC(001) support, accompanied by a modification of electronic structure of the supported palladium, is evidenced. Compared with Pt(111) surface, the MLPd/TiC(001) can enhance the adsorption of O2, leading to comparable dissociation barrier and a smaller diffusion barrier of O2. Whilst the adsorption strength of atomic O (the dissociation product of O2) on MLPd/TiC(001) is similar to that on the Pt(111) surface, possessing high mobility, our theoretical results indicate that MLPd/TiC(001) may serve as a good catalyst for the oxygen reduction reaction.

  9. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady...... of adsorption is discussed. Hydrophobic and reversed phase chromatography are useful techniques for measuring solute activity coefficients at infinite dilution....

  10. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms.

    Science.gov (United States)

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability.

  11. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL(-1) NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg(-1), respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO4(3-) significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    Science.gov (United States)

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  13. A Study of the Adsorption of Molecular Deposition Filming Flooding Agent MD-1 on Quartz Sand

    Institute of Scientific and Technical Information of China (English)

    GaoManglai; LiuYong; MengXiuxia; WangJianshe

    2004-01-01

    Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-I, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-I on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.

  14. Influence of temperature on the adsorption of α-tocopherol from ethanol solutions on acid-activated clinoptilolite tuff

    Science.gov (United States)

    Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.

    2014-08-01

    Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.

  15. Thermodynamics of 4,4'-stilbenedicarboxylic acid monolayer self-assembly at the nonanoic acid-graphite interface.

    Science.gov (United States)

    Song, W; Martsinovich, N; Heckl, W M; Lackinger, M

    2014-07-14

    A direct calorimetric measurement of the overall enthalpy change associated with self-assembly of organic monolayers at the liquid-solid interface is for most systems of interest practically impossible. In previous work we proposed an adapted Born-Haber cycle for an indirect assessment of the overall enthalpy change by using terephthalic acid monolayers at the nonanoic acid-graphite interface as a model system. To this end, the sublimation enthalpy, dissolution enthalpy, the monolayer binding enthalpy in vacuum, and a dewetting enthalpy are combined to yield the total enthalpy change. In the present study the Born-Haber cycle is applied to 4,4'-stilbenedicarboxylic acid monolayers. A detailed comparison of these two aromatic dicarboxylic acids is used to evaluate and quantify the contribution of the organic backbone for stabilization of the monolayer at the nonanoic acid-graphite interface.

  16. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  17. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  18. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    KAUST Repository

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  19. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar

    2011-02-22

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  20. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    Science.gov (United States)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  1. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  2. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  3. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Vikholm-Lundin, Inger, E-mail: inger.vikholm-lundin@uta.fi [University of Tampere, BioMediTech, Tampere (Finland); Fimlab Laboratories Ltd., Tampere (Finland); Rosqvist, Emil; Ihalainen, Petri [Abo Akademi University, Center for Functional Materials, Laboratory of Physical Chemistry (Finland); Munter, Tony [VTT Technical Research Centre of Finland, Process Chemistry end Environmental Engineering, Tampere (Finland); Honkimaa, Anni [University of Tampere, Department of Virology, School of Medicine, Tampere (Finland); Marjomäki, Varpu [University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä (Finland); Albers, Willem M. [BioNavis Oy Ltd., Ylöjärvi, Tampere (Finland); Peltonen, Jouko [Abo Akademi University, Center for Functional Materials, Laboratory of Physical Chemistry (Finland)

    2016-08-15

    Highlights: • The self-assembled layers were all hydrophilic with Lipa-pTHMMAA exhibiting close to full wetting. • The polyacrylamide layers smoothen the gold surface to a higher extent than the polyethylene glycol and lipoic acid terminated with an amino group. • SPR resonance curves shift to higher angles and become increasingly damped when large nanoparticles assembled on the surface. • Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. • By increasing the interaction time more particles could be assembled on the surface. - Abstract: Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more

  4. Adsorption of arsenazo (III due by phosphorus-containing polymer sorbent

    Directory of Open Access Journals (Sweden)

    Alosmanov Rasim M.

    2016-01-01

    Full Text Available Phosphorus-containing polymer sorbent was employed for removal hazardous Arsenazo (III dye from water. The adsorption characteristics were determined by the study at different parameters such as effect of solution pH, effect of initial dye concentration, sorbent dose, phase contact time, and temperature. The equilibrium data were analyzed on the basis of various adsorption isotherm models, namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The highest monolayer adsorption capacity has been obtained (24.75 mg g-1 at 55°C. Different thermodynamic parameters such as free energy, enthalpy, and entropy have been calculated and it was concluded that when temperature rises, adsorption increases, indicating the endothermic nature of the process. Kinetic parameters were derived by pseudo-first-order, pseudo-second-order and intraparticle kinetic models. Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy were used to characterize the sorbent and also to validate the adsorption mechanism.

  5. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium.

    Science.gov (United States)

    Park, Sangjin; Chi, Young Shik; Choi, Insung S; Seong, Jiehyun; Jon, Sangyong

    2006-11-01

    Self-assembled polymeric monolayers (PMs) on Si/SiO2 wafers were prepared in water from a series of random copolymers of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(trimethoxysilyl)propyl methacrylate (TMSMA), denoted as poly(TMSMA-r-PEGMA). Four polymers of poly(TMSMA-r-PEGMA) were synthesized by free radical polymerization with a systematic variation of co-monomer feed ratios. Regardless of PEG grafting density in the copolymers, all PMs formed approximately 1 nm-thick film as measured by ellipsometry. However, the PMs with a higher grafting density of PEG resulted in more hydrophilic surfaces in terms of water contact angle. The protein resistance of the PMs was evaluated using bovine serum albumin (BSA) as a model protein. Analyses by ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) showed that the PMs of the copolymers markedly reduced the nonspecific adsorption of proteins compared to the unmodified Si/SiO2 wafers. The study also revealed that the PMs prepared from the copolymers with a higher PEG grafting density were more effective in resisting the nonspecific protein adsorption.

  6. Plaque morphology of Teschen disease viruses and certain pig enteroviruses in primary pig kidney monolayer cultures.

    Science.gov (United States)

    Dardiri, A H

    1968-04-01

    Plaque patterns and diameters of four virulent strains and one tissue culture mutant of Teschen disease virus were compared with six pig enteroviruses isolated in the United States. They are described as they were produced in primary pig kidney monolayer cultures. Reproducible plaques, with similar characteristics and class-types of each of the viruses tested were obtained with the application of a 45-minute virus adsorption time. Their morphologic characteristics and the proportion in which the plaque types appeared may assist in the differentiation of these virus strains.

  7. Origin of the Instability of Octadecylamine Langmuir Monolayer at Low pH.

    Science.gov (United States)

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Phan, Minh Dinh; Shin, Kwanwoo; Vaknin, David; Kim, Doseok

    2015-12-29

    It has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284-285, 166-174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure-area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl(-) counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.

  8. Coverage dependent adsorption and co-adsorption of CO and H₂ on the CdI₂-antitype metallic Mo₂C(001) surface.

    Science.gov (United States)

    Wang, Tao; Tian, Xinxin; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Beller, Matthias; Jiao, Haijun

    2015-01-21

    The adsorption and co-adsorption of CO and H2 at different coverage on the CdI2-antitype metallic Mo2C(001) surface termination have been systematically computed at the level of periodic density functional theory. Only molecular CO adsorption is possible and the monolayer coverage (1 ML) can have 16CO adsorbed at the top sites. Dissociative H2 adsorption is favored thermodynamically and the monolayer coverage (1 ML) can have 16H adsorbed at the hollow sites. Since CO has much stronger adsorption energy than H2, pre-adsorption of CO is possible. CO pre-adsorption strongly affects atomic hydrogen co-adsorption at a high CO/H2 ratio, while hardly affects that at a low CO/H2 ratio. Under ultra-high vacuum conditions (200 K, 10(-12) atm and CO/H2 = 1/1), the most stable adsorbed surface state has CO/H2 = 15/1. Comparison among the metallic terminations of the CdI2-antitype Mo2C(001), eclipsed Mo2C(001) and orthorhombic Mo2C(100) surfaces shows their different CO and hydrogen adsorption as well as activation properties, which reveals that the CdI2-antitype Mo2C(001) surface is least active. These differences come from their surface bonding properties; the CdI2-antitype Mo2C(001) surface is saturated and less metallic, while the eclipsed Mo2C(001) and orthorhombic Mo2C(100) surfaces are unsaturated and more metallic.

  9. Thiol-yne adsorbates for stable, low-density, self-assembled monolayers on gold.

    Science.gov (United States)

    Stevens, Christopher A; Safazadeh, Leila; Berron, Brad J

    2014-03-04

    We present a novel approach toward carboxylate-terminated, low-density monolayers on gold, which provides exceptional adsorbate stability and conformational freedom of interfacial functional groups. Adsorbates are synthesized through the thiol-yne addition of two thiol-containing head groups to an alkyne-containing tail group. The resulting monolayers have two distinct phases: a highly crystalline head phase adjacent to the gold substrate, and a reduced density tail phase, which is in contact with the environment. The ellipsometric thickness of 27 Å is consistent with the proposed structure, where a densely packed decanedithiol monolayer is capped with an 11 carbon long, second layer at 50% lateral chain density. The Fourier transform infrared peak at 1710 cm(-1) supports the presence of the carbonyl group. Further, the peaks associated with asymmetric and symmetric methylene stretching are shifted toward higher wavenumbers compared to those of well-packed self-assembled monolayers (SAMs), which shows a lower average crystallinity of the thiol-yne monolayers compared to a typical monolayer. Contact angle measurements indicate an intermediate surface energy for the thiol-yne monolayer surface, owing to the contribution of exposed methylene functionality at the surface in addition to the carbonyl terminal group. The conformational freedom at the surface was demonstrated through remodeling the thiol-yne surface under an applied potential. Changes in the receding contact angle in response to an external potential support the capacity for reorientation of the surface presenting groups. Despite the low packing at the solution interface, thiol-yne monolayers are resistant to water and ion transport (R(f) ~ 10(5)), supporting the presence of a densely structured layer at the gold surface. Further, the electrochemical stability of the thiol-yne adsorbates exceeded that of well-packed SAMs, requiring a more reductive potential to desorb the thiol-yne monolayers from the

  10. Pressure-induced K-Λ crossing in monolayer WSe2

    Science.gov (United States)

    Ye, Yanxia; Dou, Xiuming; Ding, Kun; Jiang, Desheng; Yang, Fuhua; Sun, Baoquan

    2016-05-01

    . Electronic supplementary information (ESI) available: Sample fabrication, diamond anvil cell (DAC) device, micro-PL measurements under pressure and excitation power dependence of the PL of monolayer WSe2. See DOI: 10.1039/c6nr02690g

  11. Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion.

    Science.gov (United States)

    Zhang, F; Kang, E T; Neoh, K G; Huang, W

    2001-01-01

    Gold surfaces were first treated in an alkanethiol solution to form self-assembled monolayers (SAMs). The thiolated Au surface was then subjected to Ar plasma pretreatment, followed by air exposure and UV-induced graft polymerization of poly(ethylene glycol) methacrylate (PEGMA) macromonomer. In comparison with the 3-mercaptopropionic acid-2-ethylhexyl ester (MPAEE) SAM, the (3-mercaptoproply)trimethoxysilane (MPTMS) SAM on Au exhibited higher stability under the conditions of Ar plasma pretreatment. The graft concentration of the PEGMA polymer on SAM-modified Au surface increased with increasing PEGMA macromonomer concentration and UV-graft polymerization time. The modified-Au surfaces were characterized by X-ray spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurement. The Au surface with a high concentration of grafted PEGMA polymer could completely repel protein adsorption and platelet adhesion.

  12. Functional group effects on the enthalpy of adsorption for self-assembly at the solution/graphite interface.

    Science.gov (United States)

    Barnard, Rachel A; Matzger, Adam J

    2014-07-01

    The thermodynamics of self-assembly have long been explored by either experimental or theoretical investigations which are often unable to account for all the factors influencing the assembly process. This work interrogates the thermodynamics of self-assembly at a liquid/solid interface by measuring the enthalpy of adsorption encompassing analyte-analyte, analyte-solvent, analyte-substrate, and solvent-substrate interactions. Comparison of the experimental data with computed lattice energies for the relevant monolayers across a series of aliphatic analytes reveals similar ordering within the series, with the exceptions of the fatty acid and bromoalkane adsorbates. Such a discrepancy could arise when the lattice energies do not account for important interactions, such as analyte-analyte interactions in solution. Flow microcalorimetry provides a uniquely inclusive view of the thermodynamic events relevant to self-assembly at the liquid/solid interface.

  13. Orientation and charge transfer upon adsorption of ethanethiol on Cu(1 1 1) surface at 85 K

    CERN Document Server

    Sardar, S A; Ikenaga, E; Yagi, S; Sekitani, T; Wada, S; Taniguchi, M; Tanaka, K

    2003-01-01

    Orientation and charge transfer upon adsorption of ethanethiol on Cu(1 1 1) surface at 85 K has been investigated by S K-edge near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) techniques. Exposure-dependent S K-edge NEXAFS identified the monolayer saturation at approx 0.8 L exposure. Polarization-dependent NEXAFS spectra of submonolayer ethanethiol shows that S-C bond is tilted 37+-7 deg. from the surface. Temperature-dependent NEXAFS spectra shows that ethyl thiolate starts breaking at 300-350 K and atomic sulfur creates. A significant amount of charge transfer (1.4 electrons) from copper to ethanethiol molecules has measured by S 1s XPS technique.

  14. Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene

    Science.gov (United States)

    Khan, Imran; Hong, Jisang

    2016-09-01

    We studied the geometries, electronic structure and magnetic properties of substitutional doping and adsorption of transition metal (Mn, Fe and Co) dimers on phosphorene monolayer in the framework of the generalized gradient approximation (GGA) and GGA + U. Electronic band structures and magnetic properties were dependent on the doping type and dopant materials. For Mn and Fe substitutional and adsorption dimers, we obtained semiconducting band structures with spin polarization. However, we found a half-metallic feature in Co substitutional dimer while the Co adsorption dimer showed a semiconducting behavior without any spin polarization. With GGA + U, all the systems showed spin polarized semiconducting band structures except Co adsorption dimer which remained unaffected. The hybridization between transition metal (TM) and phosphorene sheet contributed to suppressing the magnetic moment of TM dimers. For instance, the total magnetic moments of -2.0, 4.24 and 1.28 μ B/cell for Mn, Fe and Co substitutional dimers were obtained while the Mn and Fe adsorption dimers showed magnetic moments of -1.69 and 0.46 μ B/cell. These magnetic moments were enhanced with GGA + U. The same magnetic ground states were obtained both from GGA and GGA + U approaches except for the Mn dimers. We observed that the Mn and Fe substitutional dimers showed an out-of-plane magnetization while an in-plane magnetization was observed in Co substitutional dimer. The Mn adsorption dimer still displayed a perpendicular magnetization whereas the Fe adsorption dimer had an in-plane magnetization. We found that the both GGA and GGA + U showed the same magnetization direction in all the systems.

  15. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    Science.gov (United States)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  16. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    Science.gov (United States)

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution.

  17. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    Science.gov (United States)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  18. A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M.D., E-mail: ganji_md@yahoo.com [Department of Chemistry, Qaemshahr branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Jameh-Bozorgi, S. [Department of Chemistry, Faculty of Science, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of); Rezvani, M. [Department of Chemistry, Faculty of Science, Arak branch, Islamic Azad university, Arak (Iran, Islamic Republic of)

    2016-10-30

    Graphical abstract: The adsorption of formaldehyde molecule on the monolayer honeycomb structure was investigated by using first-principles calculations with the vdW-DF method. Display Omitted - Highlights: • The meaningful enhancement in binding energy values and electrical conductivity of h-AlN nanosheet can be potential candidate for detection of formaldehydemolecule. • The adsorption of formaldehyde molecule changed the conductivity of monolayer honeycomb structure especially h-AlN nanosheet. • The favorable adsorption sites of formaldehyde molecule depend on binding energy, HOMO-LUMO gap, Mulliken, Hirshfeld and Voronoi population. - Abstract: In order to develop the potential applications of monolayer sheets as gas sensors, the adsorption of formaldehyde (H{sub 2}CO) molecule on graphene, hexagonal silicon carbide (h-SiC) as well as hexagonal aluminum nitride (h-AlN) monolayer sheets have been investigated. In this work we have used the so-called van der Waals density functional (vdW-DF) method. It was found that H{sub 2}CO molecule adsorption on h-AlN nanosheet had relatively higher adsorption energy and shorter binding distance and finally much more reactive in the adsorption of H{sub 2}CO compared with the h-SiC and graphene sheets. The density of states (DOS) was calculated and the results show that the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of h-AlN and h-SiC sheets is significantly reduced upon the H{sub 2}CO adsorption compared to the graphene which leads to an enhancement in the electrical conductivity of respective systems. We have evaluated these findings by well-known Mulliken as well as Hirshfeld and Voronoi charges analyses for aforementioned systems. The purpose of this work is to achieve deep insights into the influence of H{sub 2}CO molecule on the electronic properties of h-AlN and h-SiC monolayer sheets, and how these effects could be used to design more sensitive gas sensing

  19. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Thermal transport in monolayer InSe

    Science.gov (United States)

    Nissimagoudar, Arun S.; Ma, Jinlong; Chen, Yani; Li, Wu

    2017-08-01

    Two-dimensional InSe, a recently synthesized semiconductor having a moderate band gap, has gained attention due to its ultra high mobility and high photo-responsivity. In this work, we calculate the lattice thermal conductivity (κ) of monolayer InSe by solving the phonon Boltzmann transport equation (BTE) with first-principles calculated inter atomic force constants. κ of monolayer InSe is isotropic and found to be around 27.6 W m K-1 at room temperature along the in-plane direction. The size dependence of κ shows the size effect can persist up to 20 μm. Further, κ can be reduced to half by tuning the sample size to 300 nm. This low value suggests that κ might be a limiting factor for emerging nanoelectronic applications of monolayer InSe.

  1. Elastic bending modulus of monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2009-05-21

    An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)

  2. Fullerene monolayer formation by spray coating.

    Science.gov (United States)

    Cervenka, J; Flipse, C F J

    2010-02-10

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  3. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Science.gov (United States)

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  4. EFFECTS OF CAPTOPRIL, DILTIAZEM AND DOBUTAMINE ON PERMEABILITY OF RAT AORTIC ENDOTHELIAL CELL MONOLAYERS

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 由广旭; 皮绍文; 秦永文

    2001-01-01

    To investigate the effects of angiotensin converting enzyme inhibitor captopril, calcium channel blocker diltiazem and β-adrenoceptor antagonist dobutamine on the permeability of rat aortic endothelial monolayers.Methods Trauma-free isolation by Chen et al was adopted in the culture of rat aortic endothelial cells. Rat aortic endothelial cells were seeded on the nitrocellulose microporous filters. Eight days after seeding, the monolayers could be used for measuring the permeability. Before being perfused, monolayers were treated with captopril, diltiazem and dobutamine for 4 hours successively. The prepared filters were mounted on the Boydon chambers and perfused with hyperlipemia containing FITC-labeled albumin. The fluid filtering through the monolayers and the filter was collected and the albumin concentration was measured. At the same time, cholesterol, triglyceride, lipoprotein A and lipoprotein B concentrations of the collected fluid were also measured by ELISA.Results The above three drugs decreased the permeability of aortic endothelial cell monolayers to water, cholesterol, triglyceride lipoprotein A and lipoprotein B significantly. Dobutamine had more significant effects than the other two drugs. But diltiazem worked well in the clearance of albumin, while the other two drugs had no obvious effect.Conclusion Captopril, diltiazem and dobutamine may decrease the infiltration of lipids and lipoproteins into the subendothelial space, thus they can be used to prevent and ameliorate atherosclerosis.

  5. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}adsorption geometries of C4 molecules on Au(111). The ex situ preparation scheme produced samples in p x {radical}(3) and p(4 x 4) phases, the high coverage ({radical}(3) x {radical}(3))R30 phase was not observed. The focus of the spectroscopy of C4/Au was on the samples of the p x {radical}(3) phase using two-photon photoemission spectroscopy (2PPE). The spectra revealed clear signatures of two unoccupied resonance states at energies E-E{sub F}=3.7 eV and 3.9 eV. The low-energy state was assigned to the characteristic {sigma}*-resonance associated with the Au-S bond of the thiolate. The energy of the other resonance state agreed well with an interface state reported before for SAMs of an other alkanethiol on Au(111) in a densely packed phase. Furthermore the 2PPE data indicated that the high quality of the ex situ prepared SAMs supported the formation of image potential states. The reversible photo- and thermally activated isomerization of the molecular switch 3-(4-(4-Hexyl-phenylazo)-phenoxy)-propane-1-thiol (ABT), deposited by self-assembly from solution on Au(111), was examined using laser-based photoelectron spectroscopy. Differences in the molecular dipole moment characteristic for the trans and the cis isomer of ABT were observed via changes in the sample work function, accessible by detection of the threshold energy for photoemission. A quantitative

  6. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  7. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  8. Surface adsorption of poisonous Pb(II) ions from water using chitosan functionalised magnetic nanoparticles.

    Science.gov (United States)

    Christopher, Femina Carolin; Anbalagan, Saravanan; Kumar, Ponnusamy Senthil; Pannerselvam, Sundar Rajan; Vaidyanathan, Vinoth Kumar

    2017-06-01

    In this study, chitosan functionalised magnetic nano-particles (CMNP) was synthesised and utilised as an effective adsorbent for the removal of Pb(II) ions from aqueous solution. The experimental studies reveal that adsorbent material has finer adsorption capacity for the removal of heavy metal ions. Parameters affecting the adsorption of Pb(II) ions on CMNP, such as initial Pb(II) ion concentration, contact time, solution pH, adsorbent dosage and temperature were studied. The adsorption equilibrium study showed that present adsorption system followed a Freundlich isotherm model. The experimental kinetic studies on the adsorption of Pb(II) ions exhibited that present adsorption process best obeyed with pseudo-first order kinetics. The maximum monolayer adsorption capacity of CMNP for the removal of Pb(II) ions was found to be 498.6 mg g(-1). The characterisation of present adsorbent material was done by FTIR, energy disperse X-ray analysis and vibrating sample magnetometer studies. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have declared that the adsorption process was feasible, exothermic and spontaneous in nature. Sticking probability reported that adsorption of Pb(II) ions on CMNP was favourable at lower temperature and sticking capacity of Pb(II) ions was very high.

  9. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    Science.gov (United States)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  10. A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese Diatomite

    Directory of Open Access Journals (Sweden)

    Bui Hai Dang Son

    2016-01-01

    Full Text Available In the present paper, the adsorption of Astrazon Black AFDL dye onto Vietnamese diatomite has been demonstrated. The diatomite was characterized by XRD, SEM, TEM, EDS, and nitrogen adsorption/desorption isotherms. The results show that diatomite mainly constituted centric type frustules characterized by pores as discs or as cylindrical shapes. The adsorption kinetics and isotherms of dye onto Vietnam diatomite were investigated. The experimental data were fitted well to both Freundlich and Langmuir in the initial concentration range of 400–1400 mg L−1. The average value of maximum adsorption capacity, qm, calculated from Freundlich equation is statistically similar to the average value of maximum monolayer adsorption capacity calculated from Langmuir equation. The thermodynamic parameters evaluated from the temperature dependent on adsorption isotherms in the range of 303–343 K show that the adsorption process was spontaneous and endothermic. The Webber and pseudo-first/second-order kinetic models were used to analyze the mechanism of adsorption. The piecewise linear regression and Akaike’s Information Criterion were used to analyze experimental data. The results show that the dye adsorption onto diatomite was film diffusion controlled and the goodness of fit of experimental data for kinetics modes was dependent on the initial concentration.

  11. Characteristic Evaluation of Graphene Oxide for Bisphenol A Adsorption in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thatchaphong Phatthanakittiphong

    2016-07-01

    Full Text Available This paper investigates the characteristics of graphene oxide (GO for Bisphenol A (BPA adsorption in water. Batch experiments on the influence of significant parameters were performed. While an improvement of the adsorption capacity of BPA was obtained by the increment of contact time and the initial BPA concentration, the increment of pH above 8, GO dosage, and temperature showed the reverse results. The thermodynamic study suggested that BPA adsorption on GO was an exothermic and spontaneous process. The kinetics was explained by the pseudo-second-order model which covers all steps of adsorption. The fit of the results with the Langmuir isotherm indicated the monolayer adsorption. At 298 K, the adsorption reached equilibrium within 30 min with the maximum adsorption capacity of 49.26 mg/g. The low BPA adsorption capacity of GO can be interpreted by the occurrence of oxygen-containing functional groups (OCFGs that are able to form hydrogen bonds with the surrounding OCFGs and water molecules. This effect inhibited the role of π–π interactions that are mainly responsible for the adsorption of BPA.

  12. Periodic Density Functional Theory Study of Water Adsorption on the a-Quartz (101) Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University

    2011-01-01

    Plane wave density functional theory (DFT) calculations have been performed to study the atomic structure, preferred H2O adsorption sites, adsorption energies, and vibrational frequencies for water adsorption on the R-quartz (101) surface. Surface energies and atomic displacements on the vacuum-reconstructed, hydrolyzed, and solvated surfaces have been calculated and compared with available experimental and theoretical data. By considering different initial positions of H2O molecules, the most stable structures of water adsorption at different coverages have been determined. Calculated H2O adsorption energies are in the range -55 to -65 kJ/mol, consistent with experimental data. The lowest and the highest O-H stretching vibrational bands may be attributed to different states of silanol groups on the watercovered surface. The dissociation energy of the silanol group on the surface covered by the adsorption monolayer is estimated to be 80 kJ/mol. The metastable states for the protonated surface bridging O atoms (Obr), which may lead to hydrolysis of siloxane bonds, have been investigated. The calculated formation energy of a Q2 center from a Q3 center on the (101) surface with 2/3 dense monolayer coverage is equal to 70 kJ/mol which is in the range of experimental activation energies for quartz dissolution.

  13. Specific binding of avidin to biotin containing lipid lamella surfaces studied with monolayers and liposomes.

    Science.gov (United States)

    Liu, Z; Qin, H; Xiao, C; Wen, C; Wang, S; Sui, S F

    1995-01-01

    The interaction of avidin (from egg white) with phospholipid (monolayer and bilayer) model membranes containing biotin-conjugated phospholipids has been studied. In the first part, using surface sensitive techniques (ellipsometry and surface plasmon resonance) we demonstrated that the nonspecific adsorption of avidin to phospholipid lamella could be abolished by adding an amount of Ca2+, Mg2+ or Ba2+ that led to an electrostatic interaction. The specific binding of avidin to lipid mixtures containing biotin-conjugated phospholipids was obviously composition dependent. The ratio 1:12 of a B-DPPE/DPPE mixture was found to be the optimum molar ratio. When we compared the results from the surface sensitive techniques with those from the electron micrographs of a two dimensional crystal of avidin (obtained in our laboratory), the optimum ratio was found to be determined by the effect of lateral steric hindrance. In the second part, we observed the pattern of the layers of fluorescently labeled phospholipid and adsorbed proteins with a home-made micro fluorescence film balance. The fluorescence images showed that avidin was preferentially bound to the receptors that were in the fluid domains. Further, with a sensitive fluorescence assay method, the effect of the phase behavior of liposomes on the specific binding of avidin was measured. This showed that avidin interacted with biotinlipid more weakly in the gel state liposome than in the liquid state liposome. The major conclusion was that the binding of avidin to a membrane bound model receptor was significantly restricted by two factors: one was the lateral steric hindrance and the other was the fluidity of the model membrane.

  14. Stiffness of lipid monolayers with phase coexistence.

    Science.gov (United States)

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  15. Investigation of the Adsorption and Self Assembly of Isocyanide Derivatives on Au(111) Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Jun-Hong; SHI,Liang-Wei; ZHANG,Tao; CHEN,Min-Bo

    2007-01-01

    The adsorption and self-assembly of isocyanide derivatives on Au(111) surface were investigated by density functional theory (DFT) and molecular dynamics simulation. The calculation for phenyl isocyanide by DFT was based on cluster and slab models. The self-assembled monolayers of 2-isocyanoazulene and 1,3-diethoxycarbonyl2-isocyanoazulene on Au(111) were simulated using Au-C force field parameters developed by us. It was found that the top site was the most preferred position, and the isocyanoazulene and its derivatives could form the ordered face to edge self-assembled monolayer on gold surface indeed, and the molecules stood on the gold surface vertically.

  16. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    Science.gov (United States)

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  17. BSA adsorption on aliphatic and aromatic acid SAMs: investigating the effect of residual surface charge and sublayer nature.

    Science.gov (United States)

    Vallée, Anne; Humblot, Vincent; Al Housseiny, Rana; Boujday, Souhir; Pradier, Claire-Marie

    2013-09-01

    In this work, the influence of surface charge and layer rigidity on Bovin Serum Albumin (BSA) adsorption has been investigated. To this aim, Self Assembled Monolayers (SAMs) bearing terminal COOH or COO(-) groups were built on gold surfaces. The rigidity of the acid terminated SAMs was modified using either an aliphatic, mercaptoundecanoic acid (MUA), or an aromatic, mercaptobenzoic acid (MBA) thiol. X-Ray Photoelectron Spectroscopy (XPS), Polarization Modulation Reflection Absorption Infrared Spectroscopy (PM-RAIRS) and contact angle measurements, were used to deeply characterize the so-built layers. The surface charge was successfully modified by varying the pH of the rinsing solution. Indeed, COOH were the dominating species upon rinsing at pH 2 and COO(-) species dominated upon rinsing at pH 11. Rinsing at an intermediate pH, 5.5, led to the coexistence of both carboxylic and carboxylate moieties. The hydrophilic character of the surface was also found to depend on the rinsing pH, with a minimum after rinsing at intermediate pH. Using aromatic or aliphatic thiols did not affect the speciation but led to considerable differences in the hydrophilic character of these surfaces. Eventually, the adsorption of BSA on the acidic layers was investigated using PM-RAIRS. The results showed interesting differences between the charged layers. Thus, for both MUA and MBA -based SAMs, the amount of adsorbed proteins decreased when the amount of COO(-) on the surface increased. Interestingly, these effects were totally annihilated when the adsorption was carried out in PBS buffer. Moreover, for similar surface charges, the aromatic layers were able to bind higher amounts of proteins than the aliphatic ones. This work points out the key role of both surface charge and rigidity on protein adsorption. The influence of additional parameters, such as hydrophilicity and SAMs' rigidity is also established.

  18. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  19. Nonlinear optical studies of organic monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.

  20. Preparation and Characterization of Covalently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface

    Directory of Open Access Journals (Sweden)

    Lv Zhengjian

    2009-01-01

    Full Text Available Abstract The 16-mercaptohexadecanoic acid (MHA film and rat anti-human IgG protein monolayer were fabricated on gold substrates using self-assembled monolayer (SAM method. The surface properties of the bare gold substrate, the MHA film and the protein monolayer were characterized by contact angle measurements, atomic force microscopy (AFM, grazing incidence X-ray diffraction (GIXRD method and X-ray photoelectron spectroscopy, respectively. The contact angles of the MHA film and the protein monolayer were 18° and 12°, respectively, all being hydrophilic. AFM images show dissimilar topographic nanostructures between different surfaces, and the thickness of the MHA film and the protein monolayer was estimated to be 1.51 and 5.53 nm, respectively. The GIXRD 2θ degrees of the MHA film and the protein monolayer ranged from 0° to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p or N1s, respectively. Taken together, these results indicate that MHA film and protein monolayer were successfully formed with homogeneous surfaces, and thus demonstrate that the SAM method is a reliable technique for fabricating protein monolayer.

  1. Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication.

    Science.gov (United States)

    Saini, Gaurav; Gates, Richard; Asplund, Matthew C; Blair, Steve; Attavar, Sachin; Linford, Matthew R

    2009-06-21

    The selective adsorption of reagents is often essential for bioarray and lab-on-a-chip type devices. As the starting point for a bioarray, alkyl monolayer terminated silicon shards were photopatterned in a few nanoseconds with thousands of wells (spots) using an optical element, a microlens array. Polyallylamine (PAAm), a primary amine containing polymer, adsorbed with little selectivity to the spots, i.e., silicon oxide, over the hydrophobic background. However, at appropriate concentrations, addition of a cationic surfactant to the PAAm deposition solution, cetyltrimethylammonium chloride, prevented the nonspecific adsorption of PAAm onto the hydrophobic monolayer, while directing it effectively to the active spots on the device. A nonionic surfactant was less effective in preventing the nonspecific adsorption of PAAm onto the hydrophobic monolayer. The localized reactions/interactions of adsorbed PAAm with four species that are useful for bioconjugate chemistry: glutaric anhydride, phenylenediisothiocyanate, biotin NHS ester, and an oligonucleotide (DNA) were shown in the spots of an array. The reactivity of PAAm was further demonstrated with an isocyanate. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) played an important role in confirming selective surface reactivity and adsorption. X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, and wetting confirmed PAAm reactivity on planar substrates.

  2. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    Science.gov (United States)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  3. High-Quality Alkyl Monolayers on Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Linke, R.; Zuilhof, H.; Sudh"lter, E.J.R.

    2000-01-01

    Covalent attachment of functionalized monolayers onto silicon surfaces (see Figure for examples) is presented here as a strategy for surface modification. The preparation and structure of both unfunctionalized and functionalized alkyl-based monolayers are described, as are potential applications,

  4. Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(1 1 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Zuilhof, Han, E-mail: Han.Zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-12-15

    This study reports on fluorine-containing alkyne-derived monolayers onto Si(1 1 1) substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear properties were measured using atomic force microscopy (AFM). The presence of the fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, with a decrease of the depth of wear scratches of up to 120 times as compared to the unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-alkyl based monolayer for scratching normal forces as high as 38 μN.

  5. Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Alkyl Chain

    Science.gov (United States)

    1989-05-01

    Methyl- terminated thiols generate surfaces that are composed of densely packed methyl groups and are both hydrophobic (Oa(H20) = 1120) and oleophobic ...together with monolayers of the two pure thiols. Both pure monolayers were autophobic and oleophobic : Oa(HD) = 470 for HS(CH2)2 1CH 3, 0a(HD) = 460 for...would be oleophobic , and we would expect Oa(HD) to be independent of the composition of the monolayer. The contact angles in Fig. 3 were measured

  6. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa

    2010-01-01

    Full Text Available We synthesized the novel nanocomposite consisting alternately of a stacked single graphene sheet and a C60 monolayer by using the graphite intercalation technique in which alkylamine molecules help intercalate large C60 molecules into the graphite. Moreover, it is found that the intercalated C60 molecules can rotate in between single graphene sheets by using C13 NMR measurements. This preparation method provides a general way for intercalating huge fullerene molecules into graphite, which will lead to promising materials with novel mechanical, physical, and electrical properties.

  7. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    OpenAIRE

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-01-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force mi...

  8. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    Science.gov (United States)

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  9. Correlation between wetting, adhesion and adsorption in the polymer-aqueous solutions of ternary surfactant mixtures-air systems

    Science.gov (United States)

    Szymczyk, Katarzyna; Zdziennicka, Anna; Krawczyk, Joanna; Jańczuk, Bronisław

    2014-01-01

    The correlation between the wettability of polymers and adsorption of ternary mixtures including CTAB, TX-100 and TX-114 at the polymer-aqueous solution interface as well as the adhesion of aqueous solution of these mixtures to apolar polytetrafluoroethylene (PTFE), monopolar polymethyl methacrylate (PMMA) and nylon 6 was considered on the basis of the contact angle measurements and the literature data of the solutions surface tension. From these considerations it appeared that the efficiency and effectiveness of the adsorption at the PTFE-water interface are comparable to those at the water-air one, but for the PMMA-water and nylon 6-water interfaces they are lower than those for the water-air one for a given series of solutions. The efficiency and effectiveness are reflected in the composition of the mixed monolayer at the polymer-solution interface which even for the PTFE-solution interface is somewhat different from the water-air interface. The properties of the mixed monolayer at these interfaces influence the critical surface tension of polymer wetting which for PTFE is somewhat higher but for PMMA and nylon 6 considerably lower than their surface tension. From these considerations it also appeared that the work of adhesion of aqueous solutions of ternary mixtures of surfactants to the PTFE surface does not depend on the composition and concentration of solution contrary to PMMA and nylon 6. The adhesion work of these solutions to the PMMA and nylon 6 surface can be determined on the basis of van Oss et al. and Neumann et al. equations.

  10. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  11. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    Science.gov (United States)

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification.

  12. Improving catalytic selectivity through control of adsorption orientation

    Science.gov (United States)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a

  13. Chern insulators without band inversion in Mo S2 monolayers with 3 d adatoms

    Science.gov (United States)

    Wei, Xinyuan; Zhao, Bao; Zhang, Jiayong; Xue, Yang; Li, Yun; Yang, Zhongqin

    2017-02-01

    Electronic and topological properties of Mo S2 monolayers endowed with 3 d transition metal (TM) adatoms (V-Fe) are explored by using ab initio methods and k .p models. Without the consideration of the Hubbard U interaction, the V, Cr, and Fe adatoms tend to locate on the top of the Mo atoms, while the most stable site for the Mn atom is at the hollow position of the Mo-S hexagon. After the Hubbard U is applied, the most stable sites of all the systems become the top of the Mo atoms. Chern insulators without band inversion are achieved in these systems. The V and Fe adsorption systems are the best candidates to produce the topological states. The k .p model calculations indicate that these topological states are determined by the TM magnetism, the C3 v crystal field from the Mo S2 substrate, and the TM atomic spin-orbit coupling (SOC). The special two-meron pseudospin texture is found to contribute to the topology. The apparent difference between the Berry curvatures for the V and Fe adsorption systems is also explored. Our results widen the understanding of the Chern insulators and are helpful for the applications of the Mo S2 monolayers in the future electronics and spintronics.

  14. Bilirubin adsorption on nanocrystalline titania films

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhengpeng [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Si Shihui [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)]. E-mail: sishihui@mail.csu.edu.cn; Fung Yingsing [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2007-02-26

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO{sub 2} films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO{sub 2} films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO{sub 2} films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO{sub 2} films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO{sub 2} films can be easily regenerated when it is used as adsorbent for the removal of bilirubin.

  15. Modelling and simulation of affinity membrane adsorption.

    Science.gov (United States)

    Boi, Cristiana; Dimartino, Simone; Sarti, Giulio C

    2007-08-24

    A mathematical model for the adsorption of biomolecules on affinity membranes is presented. The model considers convection, diffusion and adsorption kinetics on the membrane module as well as the influence of dead end volumes and lag times; an analysis of flow distribution on the whole system is also included. The parameters used in the simulations were obtained from equilibrium and dynamic experimental data measured for the adsorption of human IgG on A2P-Sartoepoxy affinity membranes. The identification of a bi-Langmuir kinetic mechanisms for the experimental system investigated was paramount for a correct process description and the simulated breakthrough curves were in good agreement with the experimental data. The proposed model provides a new insight into the phenomena involved in the adsorption on affinity membranes and it is a valuable tool to assess the use of membrane adsorbers in large scale processes.

  16. Adsorption of nisin and pediocin on nanoclays.

    Science.gov (United States)

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption.

  17. Growth of epitaxial Pt1-xPbx alloys by surface limited redox replacement and study of their adsorption properties.

    Science.gov (United States)

    Mercer, M P; Plana, D; Fermίn, D J; Morgan, D; Vasiljevic, N

    2015-10-06

    The surface limited redox replacement (SLRR) method has been used to design two-dimensional Pt-Pb nanoalloys with controlled thickness, composition, and structure. The electrochemical behavior of these alloys has been systematically studied as a function of alloy composition. A single-cell, two-step SLRR protocol based on the galvanic replacement of underpotentially deposited monolayers of Pb with Pt was used to grow epitaxial Pt1-xPbx (x galvanic replacement step, the Pb atomic content can be controlled in the films. Electrochemical analysis of the alloys showed that the adsorption of both H and CO exhibits similar, and systematic, decreases with small increases in the Pb content. These measurements, commonly used in electrocatalysis for the determination of active surface areas of Pt, suggested area values much lower than those expected based on the net Pt composition in the alloy as measured by XPS. These results show that Pb has a strong screening effect on the adsorption of both H and CO. Moreover, changes in alloy composition result in a negative shift in the potential of the peaks of CO oxidation that scales with the increase of Pb content. The results suggest electronic and bifunctional effects of incorporated Pb on the electrochemical behavior of Pt. The study illustrates the potential of the SLRR methodology, which could be employed in the design of 2-dimensional bimetallic Pt nanoalloys for fundamental studies of electrocatalytic behavior in fuel cell reactions dependent on the nature of alloying metal and its composition.

  18. Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer.

    Science.gov (United States)

    Harrison, Katharine L; Biedermann, Laura B; Zavadil, Kevin R

    2015-09-15

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  19. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite clays

    Science.gov (United States)

    Hatch, C. D.; Greenaway, A.; Christie, M. J.; Baltrusaitis, J.

    2013-12-01

    Recently, fresh, unprocessed mineral aerosol has been found to contribute to the number of available cloud condensation nuclei (CCN) and cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on montmorillonite and illite clay to determine empirical adsorption parameters for a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) used to calculate CCN activities of clay minerals. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to experimental water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98×22 and 1.79×0.11 for Na-montmorillonite and 75×17 and 1.77×0.11 for illite, respectively. The AFHH and BFHH values obtained for these clays are significantly different from FHH adsorption parameters derived from CCN activation measurements reported previously for similar clay minerals. Differences in FHH adsorption parameters were attributed to the different approaches used, the hydratable nature of the clays and the relative difficulty in measuring CCN activation of hydratable clays due to relatively long adsorption and desorption equilibration times. However, despite these differences, the calculated CCN activities of montmorillonite and illite are quite similar and are in excellent agreement with experimental CCN activation measurements reported previously for similar clays. The different FHH adsorption parameters, however, translate to lower sc-Ddry CCN activation curve exponents (xFHH = -0.61 and -0.64 for montmorillonite and illite, respectively) than have been reported previously. The lower exponent suggests that the CCN activity of hydratable clay aerosol is less sensitive to changes in dry particle diameter (Ddry) and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. This study illustrates that FHH-AT using adsorption

  20. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  1. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  2. Non-rotator phases in phospholipid monolayers?

    DEFF Research Database (Denmark)

    Kenn, R.M.; Kjær, K.; Möhwald, H.

    1996-01-01

    Monolayers of diacylphosphatidylethanolamines at the air/water interface are studied by grazing incidence X-ray diffraction. The results prove the existence of phases which show analogies with the rotator phases of single-chain surfactants: hexagonal tail lattice with no tilt; rectangular lattice...

  3. Statistical mechanics of a lipid monolayer

    NARCIS (Netherlands)

    Kox, A.J.; Wiegel, F.W.

    1978-01-01

    We calculate from first principles the equation of state of a simple type of membrane: a monolayer consisting of lipid chain molecules with short-range repulsive and long-range attractive forces. An approximate solution to the packing problem of the hydrocarbon chains is obtained by using a mathemat

  4. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  5. Edge conduction in monolayer WTe2

    Science.gov (United States)

    Fei, Zaiyao; Palomaki, Tauno; Wu, Sanfeng; Zhao, Wenjin; Cai, Xinghan; Sun, Bosong; Nguyen, Paul; Finney, Joseph; Xu, Xiaodong; Cobden, David H.

    2017-07-01

    A two-dimensional topological insulator (2DTI) is guaranteed to have a helical one-dimensional edge mode in which spin is locked to momentum, producing the quantum spin Hall effect and prohibiting elastic backscattering at zero magnetic field. No monolayer material has yet been shown to be a 2DTI, but recently the Weyl semimetal WTe2 was predicted to become a 2DTI in monolayer form if a bulk gap opens. Here, we report that, at temperatures below about 100 K, monolayer WTe2 does become insulating in its interior, while the edges still conduct. The edge conduction is strongly suppressed by an in-plane magnetic field and is independent of gate voltage, save for mesoscopic fluctuations that grow on cooling due to a zero-bias anomaly, which reduces the linear-response conductance. Bilayer WTe2 also becomes insulating at low temperatures but does not show edge conduction. Many of these observations are consistent with monolayer WTe2 being a 2DTI. However, the low-temperature edge conductance, for contacts spacings down to 150 nm, never reaches values higher than ~20 μS, about half the predicted value of e2/h, suggesting significant elastic scattering in the edge.

  6. Penetration of lipid monolayers by psychoactive drugs

    NARCIS (Netherlands)

    Demel, R.A.; Deenen, L.L.M. van

    1966-01-01

    The ability of a number of psychoactive drugs to penetrate lipid monolayers of varying composition was examined, and the following observation were made: (1) The increase in surface pressure of a monomolecular film appeared to depend on the chemical nature of the lipid as well as on the initial film

  7. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska

    2014-06-01

    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  8. Feasibility of using gravimetry to measure excess adsorption effects of a binary solvent system in a reversed-phase high-performance liquid chromatography column.

    Science.gov (United States)

    Loeser, Eric; Babiak, Stanislaw; Liu, Zhaoxia; Girgis, Michael; Drumm, Patrick

    2009-05-01

    A modified method for weighing HPLC columns filled with solvent is described. The method prevents the loss of traces of solvent from within the threads of the column. The method was tested by obtaining the weights of a C18 column filled with 10 different organic solvents, showing a standard deviation on the order of 0.1%. A plot of gross column weight versus solvent density showed excellent linearity. The method was then used to weigh a column filled with several acetonitrile-water mixtures. The gross column weights were lower than would have been predicted from the density of the acetonitrile-water mixtures. A likely explanation is the existence of an adsorbed acetonitrile-rich liquid on the surface of the C18 adsorbent, which caused the lower than expected weights due to the lower density of pure acetonitrile relative to the bulk mixtures. The volume of pure acetonitrile required for the observed weight discrepancy was calculated. Based on the surface area of the column adsorbent, values of micromoles acetonitrile per square meter of surface area were determined. The values showed reasonable agreement with values obtained from published adsorption isotherm studies. This suggests that pycnometry may be a useful technique for adsorption studies. The limitations of the technique are discussed.

  9. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  10. Adsorption of Procion Red on Natural Bentonite : Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Tarmizi Taher

    2016-12-01

    Full Text Available Abstract: Adsorption of procion red on natural bentonite was studied by kinetic study to know the reactivity of procion red. Kinetic adsorption was determined using batch adsorption system at various times in several concentrations of procion red. Time of adsorption was investigated at 5, 10, 20, 30, 45, 60, 90, and 120 minutes in 10, 25, 50, and 75 mg/L of procion red. The data was calculated using Langmuir-Hinshelwood kinetic equation. The diffusions process of procion red into bentonite at lower concentration was faster than at higher concentration in general with fit correlation between [(ln(Co/C/C] vs t/C from Langmuir-Hinshelwood data. The adsorption procion red on bentonite data at various times shows Langmuir monolayer adsorption process in the surface of bentonite. Keyword: adsorption, procion red, natural bentonite, kinetic Abstrak (Indonesian: Adsorpsi procion merah pada bentonit alam telah dipelajari melalui studi kinetik untuk mengetahui reaktivitas procion merah. Kinetika adsorpsi ditentukan menggunakan sistem adsorpsi simultan pada berbagai waktu dalam beberapa konsentrasi procion merah. Waktu adsorpsi dipelajari pada 5, 10, 20, 30, 45, 60, 90, dan 120 menit pada konsentrasi procion merah 10, 25, 50, dan 75 mg/L. Data dihitung menggunakan persamaan kinetika Langmuir-Hinshelwood. Proses difusi procion merah ke dalam bentonit pada konsentrasi rendah lebih cepat dibanding pada konsentrasi lebih tinggi secara umum dengan hubungan korelasi yang lurus antara [(ln(Co/C/C] versus t/C dari data Langmuir-Hinshelwood. Adsorpsi procion merah pada bentonit dengan berbagai variasi waktu adsorpsi menunjukkan proses adsorpsi satu lapisan pada permukaan bentonit. Katakunci: adsorpsi, procion merah, bentonit alam, kinetik

  11. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH); Adsorcion de iones Pb(II) presentes en solucion acuosa sobre los oxihidroxidos: boehmita (γ-AlOOH), goetita (α-FeOOH) y manganita (γ-MnOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Arreola L, J. E.

    2013-07-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N{sub 2} physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead

  12. Fabrication of molecular nanopatterns at aluminium oxide surfaces by nanoshaving of self-assembled monolayers of alkylphosphonates.

    Science.gov (United States)

    El Zubir, Osama; Barlow, Iain; Leggett, Graham J; Williams, Nicholas H

    2013-11-21

    Nanoshaving, by tracing an atomic force microscope probe across a surface at elevated load, has been used to fabricate nanostructures in self-assembled monolayers of alkylphosphonates adsorbed at aluminium oxide surfaces. The simple process is implemented under ambient conditions. Because of the strong bond between the alkylphosphonates and the oxide surface, loads in excess of 400 nN are required to pattern the monolayer. Following patterning of octadecylphosphonate SAMs, adsorption of aminobutyl phosphonate yielded features as small as 39 nm. Shaving of monolayers of aryl azide-terminated alkylphosphonates, followed by attachment of polyethylene glycol to unmodified regions in a photochemical coupling reaction, yielded 102 nm trenches into which NeutrAvidin coated, dye-labelled, polymer nanospheres could be deposited, yielding bright fluorescence with little evidence of non-specific adsorption to other regions of the surface. Structures formed in alkylphosphonate films by nanoshaving were used to etch structures into the underlying metal. Because of the isotropic nature of the etch process, and the large grain size, some broadening was observed, but features 25-35 nm deep and 180 nm wide were fabricated.

  13. Determination of Surface pKa of Pure Mercaptoacetic Acid and 2- Mercaptobenzothiazole Mixed Monolayers by Impedance Titration

    Institute of Scientific and Technical Information of China (English)

    Guang Han LU; Chuan Yin LIU; Hong Yan ZHAO; Wei LIU; Li Ping JIANG; Ling Yan JIANG

    2004-01-01

    Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.

  14. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    Science.gov (United States)

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-01

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.

  17. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2

    Institute of Scientific and Technical Information of China (English)

    Vladan Milovic; Lyudmila Turchanowa; Jurgen Stein; Wolfgang F. Caspary

    2001-01-01

    AIM To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption.METHODS The transepithelial transport and the cellular accumulation of putrescine was measured using Caco 2 cell monolayers grown on permeable filters.RESULTS Transepithelial transport of putrescine in physiological concentrations (>0.5 mM)from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical-to-basolateral direction. EGF enhanced putrescine accumulation in Caco-2 cells by four-fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of Sadenosylmethionine decarboxylase. However,EGF did not have any significant influence on putrescine flux across the Caco-2 cell monolayers. Excretion of putrescine from Caco-2cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber,contributed hundreds of micromoles polyamines to the basolateral chamber.CONCLUSION Transepithelial transport of putrescine across Caco-2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF.

  18. Monolayer suppression of transport imaged in annealed PbSe nanocrystal arrays.

    Science.gov (United States)

    Fischbein, Michael D; Puster, Matthew; Drndic, Marija

    2010-06-09

    We use correlated electrostatic force, transmission electron, and atomic force microscopy (EFM, TEM, and AFM) to visualize charge transport in monolayers and up to five layers of PbSe nanocrystal arrays drop-cast on electrode devices. Charge imaging reveals that current paths are dependent on the locally varying thickness and continuity of an array. Nanocrystal monolayers show suppressed conduction compared to bilayers and other multilayers, suggesting a departure from linear scaling of conductivity with array thickness. Moreover, multilayer regions appear electrically isolated if connected solely by a monolayer. Partial suppression is also observed within multilayer regions that contain narrow junctions only several nanocrystals wide. High-resolution TEM structural imaging of the measured devices reveals a larger reduction of inter-nanocrystal spacing in multilayers compared to monolayers upon vacuum-annealing, offering a likely explanation for the difference in conductivity between these two cases. This restriction of transport by monolayers and narrow junctions is an important factor that must be addressed in future designs of optoelectronic devices based on nanocrystals.

  19. Tight-binding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Corral, I.; German, E.; Brizuela, G.P.; Juan, A. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Volpe, M.A. [Planta Piloto de Ingenieria Quimica, Universidad Nacional del Sur-CONICET, camino de La Carrindanga Km. 7, 8000 Bahia Blanca (Argentina)

    2010-03-15

    In this work we report a theoretical study on the atomic and molecular hydrogen adsorption onto Pd-decorated graphene monolayer and carbon nanotubes by a semi-empirical tight-binding method. We first investigated the preferential adsorption geometry, considering different adsorption sites on the carbon surface, and then studied the evolution of the chemical bonding by evaluation of the overlap population (OP) and crystal orbital overlap population (COOP). Our results show that strong C-Pd and H-Pd bonds are formed during atomic hydrogen adsorption, with an important role in the bonding of C 2p{sub z} and Pd 5s, 5p{sub z} and 4d{sub z}{sup 2} orbitals. The hydrogen storage mechanism in Pd-doped carbon-based materials seems to involve the dissociation of H{sub 2} molecule on the decoration points and the bonding between resultant atomic hydrogen and the carbon surface. (author)

  20. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    Science.gov (United States)

    Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai

    2017-08-01

    A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  1. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  2. Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM.

    Science.gov (United States)

    Guo, Quanmin; Li, Fangsen

    2014-09-28

    The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.

  3. Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers.

    Science.gov (United States)

    Sun, Qiao; Qin, Gangqiang; Ma, Yingying; Wang, Weihua; Li, Ping; Du, Aijun; Li, Zhen

    2017-01-07

    Developing new materials and technologies for efficient CO2 capture, particularly for separation of CO2 post-combustion, will significantly reduce the CO2 concentration and its impacts on the environment. A challenge for CO2 capture is to obtain high performance adsorbents with both high selectivity and easy regeneration. Here, CO2 capture/regeneration on MoS2 monolayers controlled by turning on/off external electric fields is comprehensively investigated through a density functional theory calculation. The calculated results indicate that CO2 forms a weak interaction with MoS2 monolayers in the absence of an electric field, but strongly interacts with MoS2 monolayers when an electric field of 0.004 a.u. is applied. Moreover, the adsorbed CO2 can be released from the surface of MoS2 without any energy barrier once the electric field is turned off. Compared with the adsorption of CO2, the interactions between N2 and MoS2 are not affected significantly by the external electric fields, which indicates that MoS2 monolayers can be used as a robust absorbent for controllable capture of CO2 by applying an electric field, especially to separate CO2 from the post-combustion gas mixture where CO2 and N2 are the main components.

  4. Self-assembling Process of Alkanethiol Monolayers on Gold Surface via Underpotential Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

  5. A new ethylene glycol-silane monolayer for highly-specific DNA detection on Silicon Chips

    Science.gov (United States)

    Carrara, Sandro; Cavallini, Andrea; Maruyama, Yuki; Charbon, Edoardo; De Micheli, Giovanni

    2010-11-01

    Monolayer thin films with ethylene-glycol function onto gold surfaces by using thiols have been extensively investigated. They have been proposed as precursors for applications to bio-detection, where their hydrophilic character improves both specificity and sensitivity. The aim of this letter is to characterize ethylene-glycol monolayer precursors formed onto silicon chips by using silanes. The importance of the ethylene-glycol function is demonstrated by comparing with the well known 3-Aminopropyltriethoxysilane. The different nano-scale structures of the two precursor monolayers are investigated by using atomic force microscopy (AFM). Longer, wider, and deeper grooves were measured in the images acquired on 3-Aminopropyltriethoxysilane. Fluorescence investigation demonstrates that the presence of ethylene-glycol function improves target hybridization onto silicon chips, assuring highly-specific detection of DNA.

  6. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes

    Science.gov (United States)

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K.; Meskers, Stefan C. J.; Chiechi, Ryan C.

    2016-06-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (~1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width.

  7. Screening effect of graphite and bilayer graphene on excitons in MoSe2 monolayer

    Science.gov (United States)

    Wang, Yuan; Zhang, Shuai; Huang, Di; Cheng, Jingxin; Li, Yingguo; Wu, Shiwei

    2017-03-01

    Excitons in transition metal dichalcogenide monolayer have recently attracted great interest due to their extremely large binding energy, causing giant bandgap renormalization. In this work, we examined the screening effect of graphite and bilayer graphene on the excitons in molybdenum diselenide (MoSe2) monolayer grown by molecular beam epitaxy (MBE). Through the combinational study of scanning tunneling spectroscopy (STS) and photoluminescence (PL) measurements, we determined the binding energy of ~0.58 eV for MoSe2 monolayer on both substrates at 16 K, and no obvious difference between them. Our result is consistent with a previous report [Zhang et al 2015 Nano Letters 15, 6494], but is contradictory to another one [Ugeda 2014 Nature Materials 13, 1091]. Physical picture for no noticeable difference on screening effect between bilayer graphene and graphite substrate is discussed. Possible reasons for causing the discrepancy are also mentioned.

  8. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.

    Science.gov (United States)

    Jin, Zhong; Yao, Jun; Kittrell, Carter; Tour, James M

    2011-05-24

    In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. Doping with electron-donor nitrogen heteroatoms can modulate the electronic properties of graphene to produce an n-type semiconductor. Here we demonstrate the growth of monolayer nitrogen-doped graphene in centimeter-scale sheets using a chemical vapor deposition process with pyridine as the sole source of both carbon and nitrogen. High-resolution transmission microscopy and Raman mapping characterizations indicate that the nitrogen-doped graphene sheets are uniformly monolayered. The existence of nitrogen-atom substitution in the graphene planes was confirmed by X-ray photoelectron spectroscopy. Electrical measurements show that the nitrogen-doped graphene exhibits an n-type behavior, different from pristine graphene. The preparation of large-area nitrogen-doped graphene provides a viable route to modify the properties of monolayer graphene and promote its applications in electronic devices.

  9. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide.

    Science.gov (United States)

    van den Berg, Sebastiaan A; Alonso, Jose Maria; Wadhwa, Kuldeep; Franssen, Maurice C R; Wennekes, Tom; Zuilhof, Han

    2014-09-09

    The rate of formation of covalently linked organic monolayers on HF-etched silicon carbide (SiC) is greatly increased by microwave irradiation. Upon microwave treatment for 60 min at 100 °C (60 W), 1-alkenes yield densely packed, covalently attached monolayers on flat SiC surfaces, a process that typically takes 16 h at 130 °C under thermal conditions. This approach was extended to SiC microparticles. The monolayers were characterized by X-ray photoelectron spectroscopy and static water contact angle measurements. The microwave-assisted reaction is compatible with terminal functionalities such as alkenes that enable subsequent versatile "click" chemistry reactions, further broadening the range and applicability of chemically modified SiC surfaces.

  10. Functionalizable self-assembled trichlorosilyl-based monolayer for application in biosensor technology

    Science.gov (United States)

    De La Franier, Brian; Jankowski, Alexander; Thompson, Michael

    2017-08-01

    This paper describes the design and synthesis of 3-(3-(trichlorosilyl)propoxy)propanoyl chloride (MEG-Cl), a compound capable of forming functionalizable monolayers on hydroxylated surfaces. The compound was synthesized in high purity, as suggested by nuclear magnetic resonance analysis, and in moderate overall yield. Contact angle measurement and X-ray photoelectron spectroscopy confirm the binding of MEG-Cl to an amorphous glass substrate and the further modification of the monolayer with a nickel (II)-binding ligand for the purpose of binding polyhistidine-tagged proteins. The compound will be useful in biosensing applications due to its ability to be easily modified with any number of nucleophilic functional groups subsequent to substrate monolayer formation.

  11. The cooling effect by adsorption-desorption cycles

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2017-01-01

    Full Text Available Adsorption appliances may turn out to be an alternative to compression-type refrigerators. The adsorption refrigeration machine may be driven by a low-grade heat source, especially solar energy. Solar adsorption cooling systems are environment-friendly and have zero ozone depletion potential. Therefore, the adsorption refrigeration is one kind of energy saving refrigeration methods. The merits of the adsorption refrigeration systems will be more significant especially when it is used in vehicles (automobiles, ships and locomotives, to preserve food and medicines and in air-conditioning. The paper presents the advantages and disadvantages as well as the evolution of the technology of adsorptive refrigeration systems. The methods of improving of adsorption refrigeration systems through improvements in adsorbents properties, use of advanced cycles and hybrid systems is also presented. Possible applications and perspectives for development of adsorption cooling systems are also analyzed. The paper describes a test stand of the adsorption-desorption refrigeration. The present investigations have been carried out utilizing the activated carbon granules as an adsorbent and methanol as an adsorbate. The paper demonstrates the measurement of temperature changes in the adsorbent bed and condenser during adsorption-desorption cycles.

  12. Adsorption of Halogenated Hydrocarbons from Gaseous Streams by Amberlite XAD-4 Resin and Activated Carbon: Equilibria

    NARCIS (Netherlands)

    Rexwinkel, G.; Heesink, A.B.M.; Swaaij, van W.P.M.

    1999-01-01

    Single-solute adsorption equilibria have been measured for the adsorption of the gaseous solutes chloroform, chlorobenzene, and 1,1,1-trichloroethane onto Amberlite XAD-4 resin. For 1,1,1-trichloroethane the adsorption equilibrium has also been measured with activated carbon Norit ROW 0.8 SUPRA as a

  13. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli

    Directory of Open Access Journals (Sweden)

    Atef S. ALzaydien

    2009-01-01

    Full Text Available Problem statement: It is well documented that lead is one of contaminants of industrial wastewaters and its pollution exists in the wastewater of many industries. As a result, recent research has focused on the development of cost effective alternatives using various natural sources and industrial wastes. In this setting, the use of low-cost agricultural materials, waste and residues for recovering heavy metals from contaminated industrial effluent has emerged as a potential alternative method to high cost adsorbents. In the present study, adsorption of lead(II ions onto Orange Peel (OP, a typical agricultural byproduct, was investigated systematically with the variation in the parameters of pH, sorbent dosage, contact time and the initial concentration of adsorbate. Langmuir and Freundlich isotherms were used to analyze the equilibrium data. Kinetic and thermodynamic parameters were also calculated to describe the adsorption mechanism. Approach: The Orange Peel (OP was obtained from a local market in the south of Jordan. The orange peel was cut into small pieces using scissors. Then OP was dried at 100°C for 24 h using hot air oven. Qualitative analyses of the main functional groups involved in metal adsorption were performed using a Fourier transformed infrared spectrometer (Perkin-Elmer FTIR 1605, ¨Uberlingen, Germany. Biosorption experiments were carried out in a thermostatic shaker at 180 rpm and at an ambient temperature (20±2°C using 250 mL shaking flasks containing 100 mL of different concentrations and initial pH values of Pb(II solutions, prepared from reagent grade salt Pb(NO32 (Merck. The initial pH values of the solutions were previously adjusted with 0.1 M HNO3 or NaOH and measured using a hand held pH meters (315i/SET. The sorbent (0.2-1.0 g was added to each flask and then the flasks were sealed up to prevent change of volume of the solution during the experiments. After shaking the flasks for

  14. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  15. A Molecular Dynamics Investigation of the Physical-Chemical Properties of Calicivirus Capsid Protein Adsorption to Fomites

    Science.gov (United States)

    Peeler, David; Matysiak, Silvina

    2013-03-01

    Any inanimate object with an exposed surface bears the possibility of hosting a virus and may therefore be labeled a fomite. This research hopes to distinguish which chemical-physical differences in fomite surface and virus capsid protein characteristics cause variations in virus adsorption through an alignment of in silico molecular dynamics simulations with in vitro measurements. The impact of surface chemistry on the adsorption of the human norovirus (HNV)-surrogate calicivirus capsid protein 2MS2 has been simulated for monomer and trimer structures and is reported in terms of protein-self assembled monolayer (SAM) binding free energy. The coarse-grained MARTINI forcefield was used to maximize spatial and temporal resolution while minimizing computational load. Future work will investigate the FCVF5 and SMSVS4 calicivirus trimers and will extend beyond hydrophobic and hydrophilic SAM surface chemistry to charged SAM surfaces in varying ionic concentrations. These results will be confirmed by quartz crystal microbalance experiments conducted by Dr. Wigginton at the University of Michigan. This should provide a novel method for predicting the transferability of viruses that cannot be studied in vitro such as dangerous foodborne and nosocomially-acquired viruses like HNV.

  16. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    Science.gov (United States)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [sbnd Cdbnd O] and [Csbnd Osbnd C]. CH4 distributed in the distance of 0.99-16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [sbnd Cdbnd O] (1.64 Å) < [Csbnd Osbnd C] (1.89 Å) < [sbnd COOH] (3.78 Å) < [-CH3] (4.11 Å) according to the average RDF curves. CH4 enriches around [sbnd Cdbnd O] and [Csbnd O-C] whereas is rather dispersed about [-COOH] and [CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D-A isothermal adsorption model and the D-A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are

  17. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments.

    Science.gov (United States)

    Tsanova, A; Jordanova, A; Dzimbova, T; Pajpanova, T; Golovinsky, E; Lalchev, Z

    2014-05-01

    Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.

  18. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    Science.gov (United States)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simple