WorldWideScience

Sample records for monolayer adsorption capacity

  1. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-12-22

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  2. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo; Fu, Yong Qing

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristin...

  3. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  4. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Reyhaneh; Saadi, Zahra; Fazaeli, Reza; Fard, Narges Elmi [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Industrial wastewater polluted with various contaminants, including heavy metals, dyes, etc., endangers human health and the environment. Various separation techniques have been developed for the removal of pollutants from aqueous solutions. Adsorption process has drawn considerable attention due to its simplicity of design, high removal efficiency, even at dilute concentration, and economical aspect. We reviewed the most common two, three, four, and five parameter adsorption isotherm models corresponding to monolayer and multilayer adsorption on the basis of parameters that can be used for exploring novel adsorbents. Thermodynamic assumptions of the models give information about the surface properties, capacity of the adsorbent and adsorption mechanism. Seven error functions were investigated to evaluate the fitness quality of isotherm models with the experimental equilibrium data.

  5. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.

    1987-01-01

    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of 14 C-labelled apolipoprotein. At a given initial film pressure (π/sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at π/sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m 2 for egg PC and distearoyl PC, respectively, with 3 x 10 -4 mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL 3 surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles

  6. Metal adsorption on monolayer blue phosphorene: A first principles study

    Science.gov (United States)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  7. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  8. Adsorption of gas molecules on graphene-like InN monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiang; Yang, Qun [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Meng, Ruishen [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Tan, Chunjian [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Liang, Qiuhua [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Jiang, Junke [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Ye, Huaiyu [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Chen, Xianping, E-mail: xianpingchen@cqu.edu.cn [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China)

    2017-05-15

    Highlights: • A comprehensive adsorption mechanism of InN monolayer is theoretical studied to distinguish the physic/chemi-sorption. • Different adsorption sites for different gases are systematically discussed. • The influence (enhanced or weakened) of external electric field to InN-gas system is well investigated. • The influences of gas adsorption to the optical properties (work function and light adsorption ability) of InN monolayer are also researched. - Abstract: Using first-principles calculation within density functional theory (DFT), we study the gas (CO, NH{sub 3}, H{sub 2}S, NO{sub 2}, NO, SO{sub 2}) adsorption properties on the surface of single-layer indium nitride (InN). Four different adsorption sites (Bridge, In, N, Hollow) are chosen to explore the most sensitive adsorption site. On the basis of the adsorption energy, band gap and charge transfer, we find that the most energetic favourable site is changeable between In site and N site for different gases. Moreover, our results reveal that InN is sensitive to NH{sub 3}, SO{sub 2}, H{sub 2}S and NO{sub 2}, by a physisorption or a chemisorption nature. We also perform a perpendicular electric field to the system and find that the applied electric field has a significant effect for the adsorption process. Besides, we also observed the desorption effects on NH{sub 3} adsorbed at the hollow site of InN when the electric field applied. In addition, the optical properties of InN monolayer affected by different gases are also discussed. Most of the gas adsorptions will cause the inhibition of light adsorption while the others can reduce the work function or enhance the adsorption ability in visible region. Our theoretical results indicate that monolayer InN is a promising candidate for gas sensing applications.

  9. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    Science.gov (United States)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  10. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  11. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  12. Headgroup effects of template monolayers on the adsorption behavior and conformation of glucose oxidase adsorbed at air/liquid interfaces.

    Science.gov (United States)

    Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang

    2011-06-21

    Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society

  13. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  14. Electric field enhanced adsorption and diffusion of adatoms in MoS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenwu [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Li, Zhijie [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-11-01

    A new phenomenon, electric field enhanced adsorption and diffusion of lithium, magnesium and aluminum ions in a MoS{sub 2} monolayer, was investigated using density functional theory in this study. With the electric field increased from 0 to 0.8 V/Å, the adsorption energies of the Li, Mg and Al atoms in the MoS{sub 2} monolayer were decreased from −2.01 to −2.49 eV, from −0.80 to −1.28 eV, and −2.71 to −3.01 eV, respectively. The corresponding diffusion barriers were simultaneously decreased from 0.23 to 0.08 eV, from 0.15 to 0.10 eV, and 0.24 to 0.21 eV for the Li, Mg and Al ions, respectively. We concluded that the external electric field can increase the charging speed of rechargeable ion batteries based on the MoS{sub 2} anode materials. - Highlights: • Effect of electric field on the adsorption and diffusion were investigated. • Adsorption energies of the adatoms in the MoS{sub 2} monolayer were enhanced. • Diffusion barriers of the adatoms in the MoS{sub 2} monolayer were decreased. • Electric field can be used to realize a fast charging rate of rechargeable ion batteries.

  15. Adsorption of gas molecules on Cu impurities embedded monolayer MoS{sub 2}: A first- principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Li, C.Y. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Liu, L.L. [Key Lab for Special Functional Materials of Ministry of Eduaction, Henan Province, Henan University, Kaifeng 475004 (China); Zhou, B.; Zhang, Q.K. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Tang, Z., E-mail: ztang@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China)

    2016-09-30

    Highlights: • Embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2}. • Transition-metal Cu atom can break the chemical inactivation of MoS{sub 2} surface. • MoS{sub 2}-Cu system is a promising for future application in gas molecules sensing. - Abstract: Adsorption of small gas molecules (O{sub 2}, NO, NO{sub 2} and NH{sub 3}) on transition-metal Cu atom embedded monolayer MoS{sub 2} was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2} with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS{sub 2} embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS{sub 2} with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH{sub 3} molecule acts as electron donor after adsorption, which is different from the other gas molecules (O{sub 2}, NO, and NO{sub 2}). The results suggest that MoS{sub 2}-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  16. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    Science.gov (United States)

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  17. Data reduction and analysis programs for neutron reflection studies of monolayer adsorption at interfaces

    International Nuclear Information System (INIS)

    Penfold, J.

    1992-07-01

    Data reduction and analysis programs for neutron reflectivity data from monolayer adsorption at interfaces are described. The application of model fitting to the reflectivity data, and the determination of partial structure factors within the kinematic approximation are discussed. Recent data for the adsorption of surfactants at the air-solution interface are used to illustrate the programs described. (author)

  18. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  19. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    Science.gov (United States)

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  20. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. D.; Fang, Y. M.; Wu, S. Q., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Zhu, Z. Z., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005 (China)

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  1. Cadmium Adsorption on HDTMA Modified Montmorillionite

    Directory of Open Access Journals (Sweden)

    Mohd. Elmuntasir I. Ahmed

    2009-06-01

    Full Text Available In this paper the possibility of cadmium removal from aqueous solutions by adsorption onto modified montmorillonite clay is investigated. Batch adsorption experiments performed revealed an enhanced removal of cadmium using HDTMA modified montmorillonite to 100% of its exchange capacity. Modified montmorillonite adsorption capacity increases at higher pHs suggesting adsorption occurs as a result of surface precipitation and HDTMA complex formation due to the fact that the original negatively charged montmorillonite is now covered by a cationic layer of HDTMA. Adsorption isotherms generated followed a Langmuir isotherm equation possibly indicating a monolayer coverage. Adsorption capacities of up to 49 mg/g and removals greater than 90% were achieved. Anionic selectivity of the HDTMA modified monmorillonite is particularly advantageous in water treatment applications where high concentrations of less adsorbable species are present, and the lack of organoclay affinity for these species may allow the available capacity to be utilized selectively by the targeted species.

  2. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  3. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  4. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  5. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    2017-12-01

    Full Text Available Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te. The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  6. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX 2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX 2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX 2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS 2 and 2H-WSe 2 , which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX 2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX 2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  7. DNA adsorption characteristics of hollow spherule allophane nano-particles

    International Nuclear Information System (INIS)

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-01-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5′-monophosphate (5′-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5′-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al–OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. - Highlights: • The interaction between phosphate groups of ss-DNA and Al–OH groups • Higher energy barrier for the adsorption of ss-DNA • The individual ss-DNA with mono-layer coverage of the allophane clustered particle

  8. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  9. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  10. First-principles study of adsorption-induced magnetic properties of InSe monolayers

    Science.gov (United States)

    Fu, Zhaoming; Yang, Bowen; Zhang, Na; Ma, Dongwei; Yang, Zongxian

    2018-04-01

    In this work we studied the adsorption-induced magnetic behaviors on the two-dimensional InSe monolayer. Six kinds of adatoms (H, B, C, N, O and F) are taken into account. It is found that the InSe with adsorbing C and F have nonzero magnetic moments and good stability. Importantly, the magnetism of C and F modified InSe monolayers completely comes from p electrons of adatoms and substrates. The strength of magnetic exchange interaction can be controlled by changing the coverage of adsorbates. This p-electron magnetic material is thought to have obvious advantages compared to conventional d- or f-electron magnets. Our research is meaningful for practical applications in spintronic electronics and two dimensional magnetic semiconductors.

  11. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  12. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chunsheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Xiaofeng [College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Bicheng; Jiang, Chuanjia; Le, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-05

    Highlights: • Ni/Mg/Al layered double hydroxides (NMA-LDHs) synthesized. • NMA-LDHs with hierarchically hollow microsphere structure. • Calcined NMA-LDHs have large adsorption capacities for CR and Cr(VI) ions. - Abstract: The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600 °C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption−desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4 mg/g at 30 °C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO{sub 3}{sup 2−} > SO{sub 4}{sup 2−} > H{sub 2}PO{sub 4}{sup −} > Cl{sup −}. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  13. Changes in work function due to NO2 adsorption on monolayer and bilayer epitaxial graphene on SiC(0001)

    Science.gov (United States)

    Caffrey, Nuala M.; Armiento, Rickard; Yakimova, Rositsa; Abrikosov, Igor A.

    2016-11-01

    The electronic properties of monolayer graphene grown epitaxially on SiC(0001) are known to be highly sensitive to the presence of NO2 molecules. The presence of small areas of bilayer graphene, on the other hand, considerably reduces the overall sensitivity of the surface. We investigate how NO2 molecules interact with monolayer and bilayer graphene, both free-standing and on a SiC(0001) substrate. We show that it is necessary to explicitly include the effect of the substrate in order to reproduce the experimental results. When monolayer graphene is present on SiC, there is a large charge transfer from the interface between the buffer layer and the SiC substrate to the molecule. As a result, the surface work function increases by 0.9 eV after molecular adsorption. A graphene bilayer is more effective at screening this interfacial charge, and so the charge transfer and change in work function after NO2 adsorption is much smaller.

  14. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  15. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  16. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M = Mo, W; X = O, S, Se, Te) monolayers

    Science.gov (United States)

    Ersan, F.; Ozaydin, H. D.; Gökoğlu, G.; Aktürk, E.

    2017-12-01

    It is important to improve the high-efficient anode materials for Li batteries, which require the large capacity, high stability and mobility. In this work, we present the adsorption and diffusion properties of lithium atom on MX2 (M = Mo, W; X = O, S, Se, Te) transition metal dichalcogenide structures using first principles calculations within density functional theory. All the MX2 systems considered are semiconductor in bare state with band gaps between 0.93 eV (MoO2) and 1.79 eV (WS2). They turn into metal upon single Li adsorption. Li atom is adsorbed on MoO2 and WO2 rather stronger than other systems. The energy barrier for diffusion of single Li on MX2 varies between 0.15 eV and 0.28 eV which are lower or comparable to that of graphene or silicene. Two Li atoms are preferably adsorbed on MX2 monolayer symmetrically at opposite sides with high adsorption energy. The increasing number of Li atoms does not remarkably affect the adsorption energy per Li atom. This can be attributed to that Li atoms do not accumulate on certain regions of the surface. The systems under investigation provide insights into exploring electronic properties which are rather adequate for possible applications in Li-ion batteries.

  17. Evaluation of adsorption capacity of acetaminophen on activated ...

    African Journals Online (AJOL)

    Purpose: To investigate varying dosage forms of activated charcoal obtained from community pharmacy outlets in Nigeria for their adsorption capacity when challenged with acetaminophen. Methods: Equilibruim kinetics of acetaminophen adsorption onto activated charcoal surface was determined via batch studies at ...

  18. An in situ study of the adsorption behavior of functionalized particles on selfassembled monolayers via different chemical interactions

    NARCIS (Netherlands)

    Ling, X.Y.; Malaquin, Laurent; Reinhoudt, David; Wolf, Heiko; Huskens, Jurriaan

    2007-01-01

    The formation of particle monolayers by convective assembly was studied in situ with three different kinds of particle-surface interactions: adsorption onto native surfaces, with additional electrostatic interactions, and with supramolecular host-guest interactions. In the first case

  19. Isotope effect in monolayer, localised, immobilised adsorption with special reference to neon adsorption on porous glass at cryogenic temperatures

    International Nuclear Information System (INIS)

    Srisaila, S.; Bajpai, M.B.

    1980-01-01

    Using statistical mechanics, a general formula for the separation factor of two isotopes between gas and adsorbate phases in a monolayer, localised, immobile adsorption on a heterogeneous surface, is derived. Special forms of this are discussed for which the familiar Bigeleisen form is one. Purer, Kalplan and Smith, in their work on neon isotopes separation by gas chromatography through porous glass column at cryogenic temperatures, have reported that the separation factor first increased and then decreased as the temperature was decreased, whereas monotonic increase was the normally expected behaviour. Moiseyev has attempted to explain the anomaly after assuming two types of adsorption sites. The present theory gives the conditions in which monotonic and nonmonotonic variations can occur and after making some assumptions, the experimental curve of Purer et al could be reproduced computationally using one form of the general expression. This theoretical treatment highlights the importance of both potential energy and force constant in isotope effect whereas it is only the potential energy that is much involved in most adsorption studies. (auth.)

  20. Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon.

    Science.gov (United States)

    Maghsoodloo, Sh; Noroozi, B; Haghi, A K; Sorial, G A

    2011-07-15

    In this work, equilibrium and kinetic adsorption of humic acid (HA) onto chitosan treated granular activated carbon (MGAC) has been investigated and compared to the granular activated carbon (GAC). The adsorption equilibrium data showed that adsorption behaviour of HA could be described reasonably well by Langmuir adsorption isotherm for GAC and Freundlich adsorption isotherm for MGAC. It was shown that pre-adsorption of chitosan onto the surface of GAC improved the adsorption capacity of HA changing the predominant adsorption mechanism. Monolayer capacities for the adsorption of HA onto GAC and MGAC were calculated 55.8 mg/g and 71.4 mg/g, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process for MGAC. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study

    Science.gov (United States)

    Chen, Guo-Xiang; Li, Han-Fei; Yang, Xu; Wen, Jun-Qing; Pang, Qing; Zhang, Jian-Min

    2018-03-01

    We study the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (Cr, Mn, Fe, Co, Ni and Cu) adsorbed GaN monolayer (GaN-ML) using first-principles calculations. The results show that, for 6 different TM adatoms, the most stable adsorption sites are the same. The adsorption of TM atoms results in significant lattice distortions. A covalent chemical bonding character between TM adatom and GaN-ML is found in TM adsorbed systems. Except for Ni adsorbed system, all TM adsorbed systems show spin polarization implying that the adsorption of TM induces magnetization. The magnetic moments of the adsorbed systems are concentrated on the TM adatoms and the nearest-neighbor N atoms of the adsorption site contributed slightly. Our analysis shows that the GaN-ML properties can be effectively modulated by TM adsorption, and exhibit various electronic and magnetic properties, such as magnetic metals (Fe adsorption), half-metal (Co adsorption), and spin gapless semiconductor (Cu adsorption). These present properties of TM adsorbed GaN-ML may be of value in electronics and spintronics applications.

  2. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  3. Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Madrakian, Tayyebeh; Amini, Azadeh; Karimi, Ziba

    2008-01-01

    Effect of loading of C-cloth with ethylenediaminetetraacetic acid (EDTA) on the adsorption capacity for the adsorption of several metal cations was studied. The concentration of ions in the solution was monitored using atomic absorption spectrometry. The adsorption isotherm data for the cations were derived at 25 deg. C and treated according to Langmuir and Freundlich models and was found that for most of the investigated cations Langmuir model was more successful. Adsorption capacities determined from Langmuir isotherms. Loading of the adsorbent with EDTA increased the adsorption capacity for the adsorption of all of the investigation ions

  4. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  5. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  6. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries

    Science.gov (United States)

    Lv, Xingshuai; Wei, Wei; Sun, Qilong; Huang, Baibiao; Dai, Ying

    2017-06-01

    There is a great desire to search for suitable anodes with good performance for rechargeable metal-ion batteries, which require not only large capacity but excellent rate performance and cycling stability. In this work, the electronic properties of NbSe2 monolayer were explored based on first-principles calculations. We performed a full geometry optimization for Li/Na-adsorbed structures and obtained favorable adsorption sites. The metallic character for both pristine NbSe2 monolayer and the Li/Na-adsorbed NbSe2 ensures good electrical conduction. In addition, we find that NbSe2 monolayer is more inclined to adsorb Li and Na atoms with smaller adsorption energy under Li/Na-rich condition, indicating the superiority of NbSe2 monolayer as an electrode. Then, we obtained a relatively low diffusion barrier of approximately 0.205 eV for Li and, in particular, a significantly small diffusion barrier of about 0.086 eV for Na, which ensures excellent cycling performance of NbSe2 monolayer as a battery electrode. Most importantly, the Li and Na adsorption density in NbSe2 monolayer can be as high as Li2NbSe2 and Na4NbSe2, corresponding to theoretical specific capacities of 203 and 312 mAh·g-1, respectively. And the average electrode potentials were predicted to be 0.51 V for the chemical stoichiometry of Li2NbSe2 and 0.22 V for Na4NbSe2. In view of these excellent properties, our work predicts that NbSe2 monolayer can be a promising anode material for the development of low-cost high-performance Li- and Na-ion batteries.

  7. EVALUTION OF MONOLAYER MOISTURE CAPACITY AND THE ENERGY CONSTANT OF SOME POEDERED SPICES BY USING BET AND GAB MODELS

    Directory of Open Access Journals (Sweden)

    E.Nurlela2

    2004-08-01

    Full Text Available BET equation (IUPAC standard and GAB equation (European Project Group on physical properties of food recommendation standard for monolayer capacity value evaluations were used for testing the moisture adsorption experimental data of powdered white and black papper, cloves, nutmeg and cinnamon. The BET equation fits only up to aw = 0.44, while the GAB isotherm fits and covers a much wider range (0.06monolayer, expressed as the mass of water adsorbed on 100 gram dry-matter of sample, obtained by the GAB equation were higher than those obtained by the BET model but the energy constant value of BET that were higher than the GAB vakue was observed only for black pepper sample.

  8. Improvement of gas-adsorption performances of Ag-functionalized monolayer MoS2 surfaces: A first-principles study

    Science.gov (United States)

    Song, Jian; Lou, Huan

    2018-05-01

    Investigations of the adsorptions of representative gases (NO2, NH3, H2S, SO2, CO, and HCHO) on different Ag-functionalized monolayer MoS2 surfaces were performed by first principles methods. The adsorption configurations, adsorption energies, electronic structure properties, and charge transfer were calculated, and the results show that the adsorption activities to gases of monolayer MoS2 are dramatically enhanced by the Ag-modification. The Ag-modified perfect MoS2 (Ag-P) and MoS2 with S-vacancy (Ag-Vs) substrates exhibit a more superior adsorption activity to NO2 than other gases, which is consistent with the experimental reports. The charge transfer processes of different molecules adsorbed on different surfaces exhibit various characteristics, with potential benefits to gas selectivity. For instance, the NO2 and SO2 obtain more electrons from both Ag-P and Ag-Vs substrates but the NH3 and H2S donate more electrons to materials than others. In addition, the CO and HCHO possess totally opposite charge transfer directs on both substrates, respectively. The BS and PDOS calculations show that semiconductor types of gas/Ag-MoS2 systems are more determined by the metal-functionalization of material, and the directs and numbers of charge transfer process between gases and adsorbents can cause the increase or decline of material resistance theoretically, which is helpful to gas detection and distinction. The further analysis indicates suitable co-operation between the gain-lost electron ability of gas and metallicity of featuring metal might adjust the resistivity of complex and contribute to new thought for metal-functionalization. Our works provide new valuable ideas and theoretical foundation for the potential improvement of MoS2-based gas sensor performances, such as sensitivity and selectivity.

  9. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  10. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  11. Adsorption studies of alcohol molecules on monolayer MoS_2 nanosheet—A first-principles insights

    International Nuclear Information System (INIS)

    Nagarajan, V.; Chandiramouli, R.

    2017-01-01

    Highlights: • The adsorption of methanol, ethanol & 1-propanol on MoS_2 nanosheet are studied. • The PDOS & band structure confirms adsorption of alcohol vapors on MoS_2 nanosheet. • The adsorption of 1-propanol vapor on MoS_2 nanosheet is more favorable. • The alcohol molecules adsorption on MoS_2 nanosheet is explored in atomistic level. - Abstract: The electronic and adsorption properties of three different alcohol molecules namely methanol, ethanol and 1-propanol vapors on MoS_2 nanosheet is investigated using DFT method. The structural stability of MoS_2 nanosheet is ascertained with formation energy. The adsorption properties of alcohol molecules on MoS_2 base material is discussed in terms of average energy gap variation, Mulliken charge transfer, energy band gap and adsorption energy. The prominent adsorption sites of methanol, ethanol and 1-propanol vapors on MoS_2 nanosheet are studied in atomistic level. The projected density of states (PDOS) spectrum gives the clear insights on the electronic properties of MoS_2 nanosheet. The PDOS and energy band structure confirmed the adsorption of alcohol vapors on MoS_2 nanosheet. The variation in the band structure and PDOS is noticed upon adsorption of methanol, ethanol and 1-propanol molecules on MoS_2 nanosheet. The PDOS spectrum also reveals the variation in peak maxima owing to transfer of electron between alcohol molecules and MoS_2 base material. The adsorption of 1-propanol vapor on MoS_2 nanosheet is observed to be more favorable than other alcohol molecules. The findings confirm that monolayer MoS_2 nanosheet can be used to detect the presence of alcohol vapors in the environment.

  12. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  13. Adsorption of hydrophobin on different self-assembled monolayers: the role of the hydrophobic dipole and the electric dipole.

    Science.gov (United States)

    Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian

    2014-09-30

    In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.

  14. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in bot...

  15. Bovine and human insulin adsorption at lipid monolayers: a comparison

    Science.gov (United States)

    Mauri, Sergio; Pandey, Ravindra; Rzeznicka, Izabela; Lu, Hao; Bonn, Mischa; Weidner, Tobias

    2015-07-01

    Insulin is a widely used peptide in protein research and it is utilised as a model peptide to understand the mechanics of fibril formation, which is believed to be the cause of diseases such as Alzheimer and Creutzfeld-Jakob syndrome. Insulin has been used as a model system due to its biomedical relevance, small size and relatively simple tertiary structure. The adsorption of insu lin on a variety of surfaces has become the focus of numerous studies lately. These works have helped in elucidating the consequence of surface/protein hydrophilic/hydrophobic interaction in terms of protein refolding and aggregation. Unfortunately, such model surfaces differ significantly from physiological surfaces. Here we spectroscopically investigate the adsorption of insulin at lipid monolayers, to further our understanding of the interaction of insulin with biological surfaces. In particular we study the effect of minor mutations of insulin’s primary amino acid sequence on its interaction with 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) model lipid layers. We probe the structure of bovine and human insulin at the lipid/water interface using sum frequency generation spectroscopy (SFG). The SFG experiments are complemented with XPS analysis of Langmuir-Schaefer deposited lipid/insulin films. We find that bovine and human insulin, even though very similar in sequence, show a substantially different behavior when interacting with lipid films.

  16. p-Chlorophenol adsorption on activated carbons with basic surface properties

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width water molecule adsorption on the PCP uptake is discussed.

  17. Adsorption and the initial stages of samarium condensation on iridium coated by graphite monolayer

    International Nuclear Information System (INIS)

    Abdullaev, R.M.; Tontegode, A.Ya.; Yusifov, F.K.

    1978-01-01

    Adsorption and the initial stages of vacuum samarium condensation on iridium coated by graphite monolayer (valent-saturated neutral substrate) were studied by the thermodesorption mass-spectrometry and thermoemission methods, and were compared with samarium adsorption and condensation on iridium. Desorption heat of samarium atoms with thin coating of Ir-C, equal to E approximately 1.9 eV has been determined. For desorption with Ir E is approximately 6 eV. Such a great difference in desorption heats is connected with the reduction of covalent constituent of adsorption bond in a neutral substrate. Samarium on Ir-C is found to be condensated in two states: loosely bound and tightly bound which sharply differ in properties. The tightly bound state is characterized by abnormally low vapour pressure. Possible nature of this state is discussed. Double effect on the condensation of the substrate valent saturation is noted. On the one hand, the reduction of the particle bond with the substrate decreases their concentration on the surface, preventing condensation. On the other hand, the release of the valent eloctrons of adatous brings about strong lateral interaction between them, which in its turn, promotes condensation during eased migration on the neutral substrate

  18. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  19. Adsorption studies of alcohol molecules on monolayer MoS{sub 2} nanosheet—A first-principles insights

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, V.; Chandiramouli, R., E-mail: rcmoulii@gmail.com

    2017-08-15

    Highlights: • The adsorption of methanol, ethanol & 1-propanol on MoS{sub 2} nanosheet are studied. • The PDOS & band structure confirms adsorption of alcohol vapors on MoS{sub 2} nanosheet. • The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is more favorable. • The alcohol molecules adsorption on MoS{sub 2} nanosheet is explored in atomistic level. - Abstract: The electronic and adsorption properties of three different alcohol molecules namely methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet is investigated using DFT method. The structural stability of MoS{sub 2} nanosheet is ascertained with formation energy. The adsorption properties of alcohol molecules on MoS{sub 2} base material is discussed in terms of average energy gap variation, Mulliken charge transfer, energy band gap and adsorption energy. The prominent adsorption sites of methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet are studied in atomistic level. The projected density of states (PDOS) spectrum gives the clear insights on the electronic properties of MoS{sub 2} nanosheet. The PDOS and energy band structure confirmed the adsorption of alcohol vapors on MoS{sub 2} nanosheet. The variation in the band structure and PDOS is noticed upon adsorption of methanol, ethanol and 1-propanol molecules on MoS{sub 2} nanosheet. The PDOS spectrum also reveals the variation in peak maxima owing to transfer of electron between alcohol molecules and MoS{sub 2} base material. The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is observed to be more favorable than other alcohol molecules. The findings confirm that monolayer MoS{sub 2} nanosheet can be used to detect the presence of alcohol vapors in the environment.

  20. Ti-decorated graphitic-C{sub 3}N{sub 4} monolayer: A promising material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weibin [Department of Physics, Dongguk University, Seoul 04620 (Korea, Republic of); Zhang, Zhijun [Department of Physics, Dongguk University, Seoul 04620 (Korea, Republic of); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhang, Fuchun [College of Physics and Electronic Information, Yan’an University, Yan’an 716000 (China); Yang, Woochul, E-mail: wyang@dongguk.edu [Department of Physics, Dongguk University, Seoul 04620 (Korea, Republic of)

    2016-11-15

    Highlights: • Ti atoms are stably decorated at the triangular N hole in g-C{sub 3}N{sub 4} with an adsorption energy of −7.58 eV. • Electron redistribution of Ti-adsorbed porous g-C{sub 3}N{sub 4} significantly enhanced hydrogen adsorption up to five H{sub 2} molecules at each Ti atom. • The hydrogen capacity of the Ti-decorated g-C{sub 3}N{sub 4} system reaches up to 9.70 wt%. • All H{sub 2} absorbed in the Ti/g-C{sub 3}N{sub 4} system can be released at 393 K according to the molecular dynamic analysis. • Ti/g-C{sub 3}N{sub 4} as a hydrogen storage system is suitable and reversible at the temperature range required for practical applications. - Abstract: Ti-decorated graphitic carbon nitride (g-C{sub 3}N{sub 4}) monolayer as a promising material system for high-capacity hydrogen storage is proposed through density functional theory calculations. The stability and hydrogen adsorption of Ti-decorated g-C{sub 3}N{sub 4} is analyzed by computing the adsorption energy, the charge population, and electronic density of states. The most stable decoration site of Ti atom is the triangular N hole in g-C{sub 3}N{sub 4} with an adsorption energy of −7.58 eV. The large diffusion energy barrier of the adsorbed Ti atom of ∼6.00 eV prohibits the cluster formation of Ti atoms. The electric field induced by electron redistribution of Ti-adsorbed porous g-C{sub 3}N{sub 4} significantly enhanced hydrogen adsorption up to five H{sub 2} molecules at each Ti atom with an average adsorption energy of −0.30 eV/H{sub 2}. The corresponding hydrogen capacity reaches up to 9.70 wt% at 0 K. In addition, the hydrogen capacity is predicted to be 6.30 wt% at 233 K and all adsorbed H{sub 2} are released at 393 K according to molecular dynamics simulation. Thus, the Ti-decorated g-C{sub 3}N{sub 4} monolayer is suggested to be a promising material for hydrogen storage suggested by the DOE for commercial applications.

  1. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  2. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    Science.gov (United States)

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  3. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese Diatomite

    Directory of Open Access Journals (Sweden)

    Bui Hai Dang Son

    2016-01-01

    Full Text Available In the present paper, the adsorption of Astrazon Black AFDL dye onto Vietnamese diatomite has been demonstrated. The diatomite was characterized by XRD, SEM, TEM, EDS, and nitrogen adsorption/desorption isotherms. The results show that diatomite mainly constituted centric type frustules characterized by pores as discs or as cylindrical shapes. The adsorption kinetics and isotherms of dye onto Vietnam diatomite were investigated. The experimental data were fitted well to both Freundlich and Langmuir in the initial concentration range of 400–1400 mg L−1. The average value of maximum adsorption capacity, qm, calculated from Freundlich equation is statistically similar to the average value of maximum monolayer adsorption capacity calculated from Langmuir equation. The thermodynamic parameters evaluated from the temperature dependent on adsorption isotherms in the range of 303–343 K show that the adsorption process was spontaneous and endothermic. The Webber and pseudo-first/second-order kinetic models were used to analyze the mechanism of adsorption. The piecewise linear regression and Akaike’s Information Criterion were used to analyze experimental data. The results show that the dye adsorption onto diatomite was film diffusion controlled and the goodness of fit of experimental data for kinetics modes was dependent on the initial concentration.

  5. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  6. Bovine serum albumin adsorption onto functionalized polystyrene lattices: A theoretical modeling approach and error analysis

    Science.gov (United States)

    Beragoui, Manel; Aguir, Chadlia; Khalfaoui, Mohamed; Enciso, Eduardo; Torralvo, Maria José; Duclaux, Laurent; Reinert, Laurence; Vayer, Marylène; Ben Lamine, Abdelmottaleb

    2015-03-01

    The present work involves the study of bovine serum albumin adsorption onto five functionalized polystyrene lattices. The adsorption measurements have been carried out using a quartz crystal microbalance. Poly(styrene-co-itaconic acid) was found to be an effective adsorbent for bovine serum albumin molecule adsorption. The experimental isotherm data were analyzed using theoretical models based on a statistical physics approach, namely monolayer, double layer with two successive energy levels, finite multilayer, and modified Brunauer-Emmet-Teller. The equilibrium data were then analyzed using five different non-linear error analysis methods and it was found that the finite multilayer model best describes the protein adsorption data. Surface characteristics, i.e., surface charge density and number density of surface carboxyl groups, were used to investigate their effect on the adsorption capacity. The combination of the results obtained from the number of adsorbed layers, the number of adsorbed molecules per site, and the thickness of the adsorbed bovine serum albumin layer allows us to predict that the adsorption of this protein molecule can also be distinguished by monolayer or multilayer adsorption with end-on, side-on, and overlap conformations. The magnitudes of the calculated adsorption energy indicate that bovine serum albumin molecules are physisorbed onto the adsorbent lattices.

  7. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  8. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    International Nuclear Information System (INIS)

    Karim, A. Bennani; Mounir, B.; Hachkar, M.; Bakasse, M.; Yaacoubi, A.

    2009-01-01

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  9. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Po-Hsiang [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Geosciences, University of Wisconsin – Parkside, 900 Wood Road, Kenosha, WI 53144 (United States); Kuo, Chung-Yih [Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110, Sec. 1, Chien-kuo N Road, Taichung 40242, Taiwan (China); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chen, Wan-Ru [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lv, Guocheng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-07-30

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d{sub 0} {sub 0} {sub 1} spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  10. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    International Nuclear Information System (INIS)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-01-01

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d 0 0 1 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater

  11. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  12. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  13. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    Science.gov (United States)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  14. Thiol-functionalized polysilsesquioxane as efficient adsorbent for adsorption of Hg(II) and Mn(II) from aqueous solution

    International Nuclear Information System (INIS)

    Niu, Yuzhong; Qu, Rongjun; Liu, Xiguang; Mu, Lei; Bu, Baihui; Sun, Yuting; Chen, Hou; Meng, Yangfeng; Meng, Lina; Cheng, Lin

    2014-01-01

    Highlights: • PMPSQ was promising adsorbent for the removal of Hg(II) and Mn(II). • The adsorption kinetics followed the pseudo-second-order model. • The adsorption isotherms can be described by the monolayer Langmuir model. • The adsorption was controlled by film diffusion and chemical ion-exchange mechanism. - Abstract: Thiol-functionalized polysilsesquioxane was synthesized and used for the adsorption of Hg(II) and Mn(II) from aqueous solution. Results showed that the optimal pH was about 6 and 5 for Hg(II) and Mn(II), respectively. Adsorption kinetics showed that the adsorption equilibriums were established within 100 min and followed pseudo-second-order model. Adsorption isotherms revealed that the adsorption capacities increased with the increasing of temperature. The adsorption was found to be well described by the monolayer Langmuir isotherm model and took place by chemical ion-exchange mechanism. The thermodynamic properties indicated the adsorption processes were spontaneous and endothermic nature. Selectively adsorption showed that PMPSQ can selectively adsorb Hg(II) from binary ion systems in the presence of the coexistent ions Mn(II), Cu(II), Pb(II), Co(II), and Ni(II). Based on the results, it is concluded that PMPSQ had comparable high adsorption efficiency and could be potentially used for the removal of Hg(II) and Mn(II) from aqueous solution

  15. AUSTRALIAN PINE CONES-BASED ACTIVATED CARBON FOR ADSORPTION OF COPPER IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    MUSLIM A.

    2017-02-01

    Full Text Available The Australian Pine cones (APCs was utilised as adsorbent material by physical and chemical activation for the adsorption Cu(II in aqueous solution. FTIR and SEM analysis were conducted to obtain the active site and to characterise the surface morphology of the APCs activated carbon (APCs AC prepared through pyrolysis at 1073.15 K and alkaline activation of NaOH. The independent variables effect such as contact time, Cu(II initial concentration and the activator ratio in the ranges of 0-150 min, 84.88-370.21 mg/l and 0.2-0.6 (NaOH:APCs AC, respectively on the Cu(II adsorption capacity were investigated in the APCs activated carbon-solution (APCs ACS system with 1 g the APCs AC in 100 mL Cu(II aqueous solution with magnetic stirring at 75 rpm, room temperature of 298.15 K (± 2 K, 1 atm and pH 5 (±0.25. As the results, Cu(II adsorption capacity dramatically increased with increasing contact time and Cu(II initial concentration. The optimal Cu(II adsorption capacity of 26.71 mg/g was obtained in the APCs ACS system with 120-min contact time, 340.81 m/l initial Cu(II and 0.6 activator ratio. The kinetics study showed the Cu(II adsorption kinetics followed the pseudo-second-order kinetics with 27.03 mg/g of adsorption capacity, 0.09 g/mg.min of rate constant and 0.985-R2. In addition, the Cu(II adsorption isotherm followed the Langmuir model with 12.82 mg/g of the mono-layer adsorption capacity, 42.93 l/g of the over-all adsorption capacity and 0.954-R2.

  16. Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass.

    Science.gov (United States)

    Ur Rehman, Muhammad Saif; Kim, Ilgook; Han, Jong-In

    2012-10-15

    This study was aimed at using sugar extracted spent rice biomass (SRB) as a potential adsorbent to remove methylene blue (MB) dye from aqueous solution. The SRB was used without any modification. A three factor full factorial experimental design (2(3)) was employed to investigate the effect of factors (adsorbent dose, dye concentration, temperature) and their interaction on the adsorption capacity and color removal. Two levels for each factor were used; adsorbent dose (0.25-0.5g/100mL), dye concentration (25-50mg/L), and temperature (25-45°C). Initial dye concentration and adsorbent dosage were found as significant factors for the adsorption of MB dye. Langmuir isotherm (R(2)>0.998) best explained the equilibrium of MB adsorption on SRB with monolayer adsorption capacity of 8.13mg/g. The pseudo-second order model (R(2)>0.999) was best fitted to explain the adsorption kinetics. Thermodynamic investigation revealed that the adsorption process was spontaneous, endothermic, and was feasible to treat dyeing wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Weakly-bound adsorption states and low-temperature adsorption kinetiks of oxygen on tungsten (100) and (110) faces

    International Nuclear Information System (INIS)

    Zhukov, V.V.; Osovskij, V.D.; Ptushnikov, Yu.G.; Sukretnyj, V.G.; Chujkov, B.A.

    1986-01-01

    A molecular beam technique with an effusion source operating at T=200 K is used to study the adsorption interaction of oxygen with W(100) and (110) faces in the range of the simple temperatures from 5 to 340 K. Three weakly-bound adsorption states of oxygen are detected corresponding to adsorption in the second, third and forth monolayer. These states are characterized by adsorption energies of 0.13, 0.08 and 0.07 eV and desorption temperatures of 45, 27 and 25 K, respectively. The kinetics of filling of these states is almost similar for both faces, whereas the adsorption kinetics in the first monolayer is essentially different. A dissociative nature of adsorption at T >or approx. 5 K and a jump migration mechanism of the admolecules in the precursor state to the stationary adsorption sites are suggested

  18. Humic acid provenance influence to the adsorption capacity in uranium and thorium removal

    Science.gov (United States)

    Prasetyo, E.

    2018-01-01

    It is common knowledge that humic acid is organic compound without certain chemical composition since it is derived from different organic materials. Further this raises question whether the different humic acid sample used could lead to different adsorbent properties e.g. adsorption capacity. To address the problem, this paper is aimed to clarify the relation between the provenances of humic acid and synthesized adsorbent properties especially adsorption capacities by quantitative and qualitative functional groups determination including discussion on their effect to the metal ion adsorption mechanism using three humic acid samples. Two commercial samples were derived from recent compost while the other extracted from tertiary carbonaceous mudstone strata.

  19. Removal of Phenol and o-Cresol by Adsorption onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available A commercial activated carbon was utilized for the adsorptive removal of phenol and o-cresol from dilute aqueous solutions. Batch mode adsorption studies were performed by varying parameters such as concentration of phenol solution, time, pH and temperature. The well known Freundlich, Langmuir and Redlich-Peterson isotherm equations were applied for the equilibrium adsorption data and the various isotherm parameters were evaluated. The Langmuir monolayer adsorption capacities were found to be 0.7877 and 0.5936 mmole/g, respectively, for phenol and o-cresol. Kinetic studies performed indicate that the sorption processes can be better represented by the pseudo-second order kinetics. The processes were found to be endothermic and the thermodynamic parameters were evaluated. Desorption studies performed indicate that the sorbed phenol molecules can be desorbed with dil. HCl.

  20. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  1. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    International Nuclear Information System (INIS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-01-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  2. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water

    Science.gov (United States)

    Bo, Shaoguo; Ren, Wenjing; Lei, Chao; Xie, Yuanbo; Cai, Yurong; Wang, Shunli; Gao, Junkuo; Ni, Qingqing; Yao, Juming

    2018-06-01

    The low cost of adsorption treatment of heavy metal ions in water has been extensively studied. In this paper, we have demonstrated a facile method of combining two emerging materials cellulose aerogels (CA) and metal-organic frameworks (MOFs) into one highly functional aerogel to adsorption removal of heavy metal ions from water, by entrapping MOF particles into a flexible and porous CA. The resultant hybrid cellulose aerogels had a highly porous structure with zeolitic imidazolate framework-8 (ZIF-8) loadings can reach 30 wt%. The hybrid cellulose aerogels (named as ZIF-8@CA) show good adsorption capacity for Cr(Ⅵ). The adsorption process of ZIF-8@CA is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacity of 41.8 mg g-1 for Cr(Ⅵ), whose adsorption capacity has greatly improved when compared with a single CA or ZIF-8. Thus, such a flexible and durable hybrid cellulose aerogel is a very prospective material for metal ions cleanup and industrial wastewater purification.

  3. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    Science.gov (United States)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  4. Molecular dynamics simulations of peptide adsorption on self-assembled monolayers

    International Nuclear Information System (INIS)

    Xie Yun; Liu Meifeng; Zhou Jian

    2012-01-01

    All-atom molecular dynamics simulations are performed to investigate the neuromedin-B peptide adsorption on the self-assembled monolayers (SAMs) of SH(CH 2 ) 10 N + (CH 3 ) 2 CH 2 CH(OH)CH 2 SO 3 - (SBT), SH(CH 2 ) 10 OH and SH(CH 2 ) 10 CH 3 . The force-distance profiles show that the surface resistance to peptide adsorption is mainly generated by the water molecules tightly bound to surfaces via hydrogen bonds (hydration water molecules); but surfaces themselves may also set an energy barrier for the approaching peptide. For the SBT-SAM, the surface first exerts a relatively high repulsive force and then a rather week attractive force on the approaching peptide; meanwhile the hydration water molecules exert a strong repulsive force on the peptide. Therefore, SBT-SAM has an excellent performance on resisting protein adsorption. For the OH-SAM and CH 3 -SAM, surfaces show low or little energy barrier but strong affinity to the peptide; and the hydration water molecules apply merely a repulsive force within a much narrower range and with lower intensity compared with the case for the SBT-SAM. The analysis of structural and dynamical properties of the peptide, surface and water indicates that possible factors contributing to surface resistance include the hydrogen-bond formation capability of surfaces, mobility of water molecules near surfaces, surface packing density and chain flexibility of SAMs. There are a large number of hydrogen bonds formed between the hydration water molecules and the functional groups of the SBT-SAM, which greatly lowers the mobility of water molecules near the surface. This tightly-bound water layer effectively reduces the direct contact between the surface and the peptide. Furthermore, the SBT-SAM also has a high flexibility and a low surface packing density, which allows water molecules to penetrate into the surface to form tightly-bound networks and therefore reduces the affinity between the peptide and the surface. The results show that

  5. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    Science.gov (United States)

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  6. Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

    Directory of Open Access Journals (Sweden)

    Konicki Wojciech

    2016-12-01

    Full Text Available The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD, High-Resolution Transmission Electron Microscopy (HRTEM, Fourier Transform-Infrared Spectroscopy (FTIR, BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1, pH (4–11 and temperature (20–60°C on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

  7. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  8. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  9. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  10. Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons.

    Science.gov (United States)

    Chen, Ho-Wen; Chuang, Yen Hsun; Hsu, Cheng-Feng; Huang, Winn-Jung

    2017-09-19

    This study was undertaken to investigate the adsorption kinetics and isotherms of bromate (BrO 3 - ) on bamboo charcoals that are activated with nitrogen and water vapor. Bamboo-based activated carbon (AC) was dipped in acid and oxidized in a mixture of potassium permanganate and sulfuric acid. Oxidation treatment considerably improved the physicochemical properties of AC, including purity, pore structure and surface nature, significantly enhancing BrO 3 - adsorption capacity. AC with many oxygenated groups and a high mesopore volume exhibited a particularly favorable tendency for BrO 3 - adsorption. Its adsorption of BrO 3 - is best fitted using Langmuir isotherm, and forms a monolayer. A kinetic investigation revealed that the adsorption of BrO 3 - by the ACs involved chemical sorption and was controlled by intra-particle diffusion. The competitive effects of natural organic matter (NOM) on AC were evaluated, and found to reduce the capacity of carbon to adsorb BrO 3 - . Residual dissolved ozone reacted with AC, reducing its capacity to absorb BrO 3 - . Proper dosing and staging of the ozonation processes can balance the ozone treatment efficiency, BrO 3 - formation, and the subsequent removal of BrO 3 - .

  11. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  12. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  13. Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans

    International Nuclear Information System (INIS)

    Chen, Arh-Hwang; Huang, Yao-Yi

    2010-01-01

    The templated crosslinked-chitosan microparticles prepared using the imprinting method with the Remazol Black5 (RB5) dye as a template, epichlorohydrin (ECH) as a crosslinker, and sodium hydroxide (NaOH) solution used for the microparticle formation showed the highest adsorption capacity for the RB5 dye compared with those that used other methods with or without a template, three crosslinkers, and two microparticle formations. The results showed that the adsorption of the RB5 dye on the microparticles was affected by the microparticle size, the initial dye concentration, the initial pH value, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments fitted well the Langmuir isotherm model, and the maximum monolayer adsorption capacity for the RB5 dye was 2941 mg/g. The competition study showed that the adsorption of the RB5 dye on the microparticles in the mixture solution was much less affected by the existence of the 3R dye than the other way around. Furthermore, the microparticles could be regenerated through the desorption of the dye in pH 10.0 of NaOH solution and could be reused to adsorb the dye again.

  14. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  15. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  16. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  17. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.

    Science.gov (United States)

    Rostamian, Rahele; Behnejad, Hassan

    2018-01-01

    The adsorption behavior of tetracycline (TCN), doxycycline (DCN) as the most common antibiotics in veterinary and ciprofloxacin (CPN) onto graphene oxide nanosheets (GOS) in aqueous solution was evaluated. The four factors influencing the adsorption of antibiotics (initial concentration, pH, temperature and contact time) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 100 - 200min are optimum for each drug. The monolayer adsorption capacity was reduced with the increasing temperature from 25°C to 45°C. Non-linear regressions were carried out in order to define the best fit model for every system. To do this, eight error functions were applied to predict the optimum model. Among various models, Hill and Toth isotherm models represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by pseudo second-order (PSO) kinetic model (DCN and TCN) and Elovich (CPN) models. The maximum adsorption capacity (q max ) is found to be in the following order: CPN > DCN > TCN, obtained from sips equation at the same temperature. The GOS shows highest adsorption capacity towards CPN up to 173.4mgg -1 . The study showed that GOS can be removed more efficiently from water solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adsorption behavior of ammonium by a bioadsorbent - Boston ivy leaf powder

    Institute of Scientific and Technical Information of China (English)

    Haiwei Liu; Yuanhua Dong; Haiyun Wang; Yun Liu

    2010-01-01

    The adsorption behaviors of ammonium ions from aqueous solution by a novel bioadsorbent,the Boston ivy (Parthenocissus tricuspidata) leaf powder (BPTL) were investigated.The SEM images and FT-IR spectra were used to characterize BPTL.The mathematical models were used to analyze the adsorption kinetics and isotherms.The optimum pH range for ammonium adsorption by BPTL was found to be 5-10.The adsorption reached equilibrium at 14 hr,and the kinetic data were well fitted by the Logistic model.The intraparticle diffusion was the main rate-controlling step of the adsorption process.The high temperature was favorableto the ammonium adsorption by BPTL,indicating that the adsorption was endothermic.The adsorption equilibrium fitted well to both the Langrnuir model and Freundlich model,and the maximum monolayer adsorption capacities calculated from Langmuir model were 3.37,5.28 and 6.59 mg N/g at 15,25 and 35℃,respectively,which were comparable to those by reported minerals.Both the separation factor (RL) from the Langmuir model and Freundlich exponent (n) suggested that the ammonium adsorption by BPTL was favorable.Therefore,the Boston ivy leaf powder could be considered a novel bioadsorbent for ammonium removal from aqueous solution.

  19. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    Science.gov (United States)

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, Pretention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  20. Enhanced electronic and magnetic properties by functionalization of monolayer GaS via substitutional doping and adsorption

    Science.gov (United States)

    Rahman, Altaf Ur; Rahman, Gul; Kratzer, Peter

    2018-05-01

    The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F–Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

  1. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO{sub 3} layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Peng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zheng, Hong, E-mail: zhengh@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Wang, Chong; Ma, Hongwen; Hu, Jianchao; Pu, Yubing; Liang, Peng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The influences of pH, contact time and order of addition of the anions were obtained. Black-Right-Pointing-Pointer The kinetic data were found to fit very well the pseudo second-order kinetic model. Black-Right-Pointing-Pointer Data of equilibrium experiments were fitted well to Langmuir isotherm. Black-Right-Pointing-Pointer The competitive monolayer adsorption capacities obviously decreased. Black-Right-Pointing-Pointer ATR-FTIR proofs of competitive adsorption were obtained. - Abstract: With synthetic wastewater, competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO{sub 3} layered double hydroxides (CLDH) were investigated. A series of batch experiments were performed to study the influence of various experimental parameters, such as pH, contact time, and order of addition of the anions on the competitive adsorption of fluoride and phosphate on CLDH. It was found that the optimal pH is around 6 and it took 24 h to attain equilibrium when fluoride and phosphate were simultaneous added. The order of addition of anions influenced the adsorption of fluoride and phosphate on CLDH. The kinetic data were analyzed using the pseudo first-order and pseudo second-order models and they were found to fit very well the pseudo second-order kinetic model. Data of equilibrium experiments were fitted well to Langmuir isotherm and the competitive monolayer adsorption capacities of fluoride and phosphate were found to be obviously lower than those of single anion at 25 Degree-Sign C. The results of X-ray diffraction, Scanning Electron Microscopy with energy-dispersive X-ray analyses, and ATR-FTIR demonstrate that the adsorption mechanism involves the rehydration of mixed metal oxides and concomitant intercalation of fluoride and phosphate ions into the interlayer to reconstruct the initial LDHs structure.

  2. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue.

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  3. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available A series of superporous carboxymethylcellulose-graft-poly(acrylamide/palygorskite (CMC-g-PAM/Pal polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM in the oil-in-water (O/W Pickering-medium internal phase emulsions (Pickering-MIPEs composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20 on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV and 1,625 mg/g of methylene blue (MB. After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV and 93.5% (for MB of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  4. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  5. Stability of defects in monolayer MoS_2 and their interaction with O_2 molecule: A first-principles study

    International Nuclear Information System (INIS)

    Zhao, B.; Shang, C.; Qi, N.; Chen, Z.Y.; Chen, Z.Q.

    2017-01-01

    Highlights: • Defects can exist steadily in monolayer MoS_2 and break surface chemical inertness. • Activated surfaces are beneficial to the adsorption of O_2 through the introduction of defect levels. • Adsorbed O_2 on defective surface can dissociate with low activation energy barrier. • Defective system may be a potential substrate to design MoS_2-based gas sensor or catalysts. - Abstract: The stability of various defects in monolayer MoS_2, as well as their interactions with free O_2 molecules were investigated by density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. The defects including S vacancy (monosulfur and disulfue vacancies), antisite defect (Mo_S) and external Mo atom can exist steadily in monolayer MoS_2, and introduce defect levels in these defective systems, which breaks the surface chemical inertness and significantly enhances the adsorption capacity for free O_2. The adsorption energy calculations and electronic properties analysis suggest that there is a strong interaction between O_2 molecule and defective system. The adsorbed O_2 on the defective surface can dissociate with a lower activation energy barrier, which produce two active oxygen atoms. Especially, two Mo atoms can occupy one Mo lattice site, and adsorbed O_2 on the top of the Mo atom can then dissociate directly with the lowest activation energy barrier. Hence, our work may provide useful information to design MoS_2-based gas sensor or catalysts.

  6. Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

    Science.gov (United States)

    Fukuda, A.; Terasawa, D.; Fujimoto, A.; Kanai, Y.; Matsumoto, K.

    2018-03-01

    The surface of graphene is easily accessible from outside, and thus it is a suitable material to study the effects of molecular adsorption on the electric transport properties. We investigate the magnetotransport of inert-gas-adsorbed monolayer graphene at a temperature of 4.4 K under a magnetic field ranging from 0 to 7 T. We introduce 4He or Ar gas at low temperature to graphene kept inside a sample cell. The magnetoresistance change ΔRxx and Hall resistance change ΔRxy from the pristine graphene are measured as a function of gate voltage and magnetic field for one layer of adsorbates. ΔRxx and ΔRxy show oscillating patterns related to the constant filling factor lines in a Landau-fan diagram. Magnitudes of these quantities are relatively higher around a charge neutral point and may be mass-sensitive. These conditions could be optimized for development of a highly sensitive gas sensor.

  7. Adsorption Isotherm of Chromium (Vi) into Zncl2 Impregnated Activated Carbon Derived by Jatropha Curcas Seed Hull

    Science.gov (United States)

    Mohammad, M.; Yakub, I.; Yaakob, Z.; Asim, N.; Sopian, K.

    2017-12-01

    Hexavalent chromium is carcinogenic and should be removed from industrial wastewater before discharged into water resources. Adsorption by using activated carbon from biomass is an economic and conventional way on removing the heavy metal ions from wastewater. In this research, activated carbon is synthesized from Jatropha curcas L. seed hull through chemical activation with ZnCl2 and carbonized at 800 °C (JAC/ZnCl2). The activated carbon has been characterized using FTIR, SEM-EDX, BET and CHNS-O analyzer. Adsorption isotherms have been analysed using Langmuir and Freundlich models to determine its removal mechanism. The maximum adsorption capacity of Cr (VI) metal ions onto JAC/ZnCl2 activated carbon is 25.189 mg/g and following Langmuir isotherm model which is monolayer adsorption.

  8. Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang, Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe CD ), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe CD , DOC and total arsenic in soils. Fe CD exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al OX ), citrate-dithionite extractable Al (Al CD ), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils. - Citrate-dithionite extractable Fe has the most important positive influence on arsenate adsorption on soils

  9. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    Science.gov (United States)

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    International Nuclear Information System (INIS)

    Iwanade, Akio; Umeno, Daisuke; Saito, Kyoichi; Sugo, Takanobu

    2013-01-01

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group. - Highlights: ► A DMGABA membrane was immobilized by irradiation induced graft polymerization. ► The DMGABA was immobilized in a mixture of dioxane and water of various compositions. ► Lysozyme adsorptivity of DMGABA-immobilized membranes evaluated in the permeation mode. ► The composition of the DMGABA immobilized solvent can control adsorptivity

  11. Adsorption behavior of magnetite nanoparticles into the DPPC model membranes

    International Nuclear Information System (INIS)

    Hao, Changchun; Li, Junhua; Mu, Wenning; Zhu, Lingqing; Yang, Jiaxiang; Liu, Hongwei; Li, Bin; Chen, Shi; Sun, Runguang

    2016-01-01

    Graphical abstract: A represents the state when DPPC was spread on air/water interface at 5 mN/m surface pressures. DPPC is in the liquid expanded state at the interface. B represents 15 mN/m surface pressures and DPPC monolayer is in the liquid condensed state at the interface. - Highlights: • The adsorption of Fe 3 O 4 nanoparticles on DPPC monolayer has been investigated. • The lifting area/molecule of DPPC monolayers increased with Fe 3 O 4 increasing. • The π–t curves were well fitted by single exponential association equation. • AFM images depended on surface pressure and concentration in subphase. - Abstract: In this report, we have studied the adsorption behavior of Fe 3 O 4 nanoparticles into dipalmitoylphosphatidylcholine (DPPC) monolayer. Adsorption kinetics (π–t) process as well as the surface pressure (π–A) isotherms were monitored by Langmuir Wilhelmy plate. The measurement data indicated the Fe 3 O 4 nanoparticles incorporated into the monolayer at the air–water interface. The lifting area/molecule isotherms of DPPC monolayers increased with the increasing concentration of Fe 3 O 4 in the subphase, however, the values of elasticity reduced. The curves of π–t were well fitted by single exponential association equation. Observation by atomic force microscopy (AFM) on monolayers extracted at 5 mN/m and 15 mN/m suggested that the different interaction of Fe 3 O 4 with DPPC monolayer depended on surface pressure of monolayers and concentration in the subphase. The results of observations were in agreement with the fitted results.

  12. Fugitive gas adsorption capacity of biomass and animal-manure derived biochars

    Science.gov (United States)

    This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...

  13. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.; Ramdani, Amina; Taleb, Safia; Gaigneaux, E. M.; Batis, Narjè s Harrouch; Ghaffour, NorEddine

    2013-01-01

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  14. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.

    2013-11-19

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  15. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    International Nuclear Information System (INIS)

    Qi, Wenfang; Zhao, Yingxin; Zheng, Xinyi; Ji, Min; Zhang, Zhenya

    2016-01-01

    Graphical abstract: The main chemical components of Sakura leaves are cellulose 16.6%, hemicellulose 10.4%, lignin 18.3%, ash 11.4%, and others 43.3%. The adsorption capacity of Cr(VI) onto Sakura leaves can achieve 435.25 mg g"−"1, much higher than other similar agroforestry wastes. - Highlights: • Sakura leaves were prepared to remove Cr(VI) from aqueous solution. • The maximum adsorption capacity of Cr(VI) reached 435.25 mg g"−"1. • Cr(VI) adsorption fitted pseudo-second-order kinetic model. • Isotherm models indicated Cr(VI) adsorption occurred on a monolayer surface. • The influence order of coexisting ions followed PO_4"3"− > SO_4"2"− > Cl"−. - Abstract: A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich–Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g"−"1 at pH 1.0. The presence of Cl"−, SO_4"2"− and PO_4"3"− would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO_4"3"− > SO_4"2"− > Cl"−. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  16. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions

    International Nuclear Information System (INIS)

    Demirbas, E.; Kobya, M.; Konukman, A.E.S.

    2008-01-01

    In this study, the preparation of activated carbon from almond shell with H 2 SO 4 activation and its ability to remove toxic hexavalent chromium from aqueous solutions are reported. The influences of several operating parameters such as pH, particle size and temperature on the adsorption capacity were investigated. Adsorption of Cr(VI) is found to be highly pH, particle size and temperature dependent. Four adsorption isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich were used to analyze the equilibrium data. The Langmuir isotherm provided the best correlation for Cr(VI) onto the almond shell activated carbon (ASC). Adsorption capacity was calculated from the Langmuir isotherm as 190.3 mg/g at 323 K. Thermodynamic parameters were evaluated and the adsorption was endothermic showing monolayer adsorption of Cr(VI). Five error functions were used to treat the equilibrium data using non-linear optimization techniques for evaluating the fit of the isotherm equations. The highest correlation for the isotherm equations in this system was obtained for the Freundlich isotherm. ASC is found to be inexpensive and effective adsorbent for removal of Cr(VI) from aqueous solutions

  18. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hai, E-mail: linhai@ces.ustb.edu.cn [School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083 (China); Han, Shaoke; Dong, Yingbo; He, Yinhai [School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083 (China)

    2017-08-01

    Highlights: • An anion adsorbent was synthesized by hyperbranched polyamide modified corncob (HPMC). • The surface characteristics of samples (RCC, HPMC, HPMC-Cr) were studied. • Langmuir isotherm provided more fit and maximum adsorption capacity was 131.6 mg/g. • The adsorption process was chemisorption, controlled by intra-particle diffusion and film diffusion. • Adsorption is fast, stable, spontaneous and endothermic. - Abstract: A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25–45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, q{sub max}, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  19. Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

    Science.gov (United States)

    Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang

    2018-08-01

    Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

  20. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  1. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  2. Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution.

    Science.gov (United States)

    Guo, Na; Su, Shi-Jun; Liao, Bing; Ding, Sang-Lan; Sun, Wei-Yi

    2017-06-01

    In this study, novel macro porous Ni 2+ -imprinted chitosan foam adsorbents (F-IIP) were prepared using sodium bicarbonate and glycerine to obtain a porogen for adsorbing nickel ions from aqueous solutions. The use of the ion-imprinting technique for adsorbents preparation improved the nickel ion selectivity and adsorption capacity. We characterised the imprinted porous foam adsorbents in terms of the effects of the initial pH value, initial metal ion concentration, and contact time on the adsorption of nickel ions. The adsorption process was described best by Langmuir monolayer adsorption models, and the maximum adsorption capacity calculated from the Langmuir equation was 69.93mgg -1 . The kinetic data could be fitted to a pseudo-second-order equation. Our analysis of selective adsorption demonstrated the excellent preference of the F-IIP foams for nickel ions compared with other coexisting metal ions. Furthermore, tests over five cycle runs suggested that the F-IIP foam adsorbents had good durability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  4. Adsorption Capacity of a Volcanic Rock—Used in ConstructedWetlands—For Carbamazepine Removal, and Its Modification with Biofilm Growth

    Directory of Open Access Journals (Sweden)

    Allan Tejeda

    2017-09-01

    Full Text Available In this study, the aim was to evaluate the adsorption capacity of a volcanic rock commonly used in Mexico as filter medium in constructed wetlands (locally named tezontle for carbamazepine (CBZ adsorption, as well as to analyze the change in its capacity with biofilm growth. Adsorption essays were carried out under batch conditions by evaluating two particle sizes of tezontle, two values of the solution pH, and two temperatures; from these essays, optimal conditions for carbamazepine adsorption were obtained. The optimal conditions (pH 8, 25 °C and 0.85–2.0 mm particle-size were used to evaluate the adsorption capacity of tezontle with biofilm, which was promoted through tezontle exposition to wastewater in glass columns, for six months. The maximum adsorption capacity of clean tezontle was 3.48 µg/g; while for the tezontle with biofilm, the minimum value was 1.75 µg/g (after the second week and the maximum, was 3.3 µg/g (after six months with a clear tendency of increasing over time. The adsorption kinetic was fitted to a pseudo-second model for both tezontle without biofilm and with biofilm, thus indicating a chemisorption process. On clean tezontle, both acid active sites (AAS and basic active sites (BAS were found in 0.087 and 0.147 meq/g, respectively. The increase in the adsorption capacity of tezontle with biofilm, along the time was correlated with a higher concentration of BAS, presumably from a greater development of biofilm. The presence of biofilm onto tezontle surface was confirmed through FTIR and FE-SEM. These results confirm the essential role of filter media for pharmaceutical removal in constructed wetlands (CWs.

  5. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  6. Complexes of DOTA-bisphosphonate conjugates: probes for determination of adsorption capacity and affinity constants of hydroxyapatite.

    Science.gov (United States)

    Vitha, Tomas; Kubícek, Vojtech; Hermann, Petr; Kolar, Zvonimir I; Wolterbeek, Hubert Th; Peters, Joop A; Lukes, Ivan

    2008-03-04

    The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.

  7. Monolayer Adsorption of Ar and Kr on Graphite: Theoretical Isotherms and Spreading Pressures

    Science.gov (United States)

    Mulero; Cuadros

    1997-02-01

    The validity of analytical equations for two-dimensional fluids in the prediction of monolayer adsorption isotherms and spreading pressures of rare gases on graphite is analyzed. The statistical mechanical theory of Steele is used to relate the properties of the adsorbed and two-dimensional fluids. In such theory the model of graphite is a perfectly flat surface, which means that only the first order contribution of the fluid-solid interactions are taken into account. Two analytical equations for two-dimensional Lennard-Jones fluids are used: one proposed by Reddy-O'Shea, based in the fit on pressure and potential energy computer simulated results, and other proposed by Cuadros-Mulero, based in the fit of the Helmholtz free energy calculated from computer simulated results of the radial distribution function. The theoretical results are compared with experimental results of Constabaris et al. (J. Chem. Phys. 37, 915 (1962)) for Ar and of Putnam and Fort (J. Phys. Chem. 79, 459 (1975)) for Kr. Good agreement is found using both equations in both cases.

  8. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption

    International Nuclear Information System (INIS)

    Li, Jia; Ng, Dickon H.L.; Song, Peng; Kong, Chao; Song, Yi; Yang, Ping

    2015-01-01

    Herein, we report the preparation of activated carbon fibers from silkworm cocoon waste via the combination of (NH 4 ) 2 HPO 4 -pretreatment and KOH activation. The morphology, phase structure and surface chemistry constitute of the obtained ACFs were characterized by X-ray diffraction, IR spectroscopy, Micro Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and N 2 adsorption–desorption isotherm. The effects of various factors such as the concentration of (NH 4 ) 2 HPO 4 and the activation time of KOH were also evaluated. These results demonstrated that the synthesized ACFs retained the fibrous morphology of silkworm cocoon waste, and exhibited highly defective graphite layer structure. A large amount of surface oxygen-containing functional groups were found on the ACFs surface. The obtained samples exhibited high BET surface areas ranging from 1153 to 2797 m 2  g −1 , total pore volumes of 0.64–1.74 cm 3  g −1 with micropore volume fractions between 75.2 and 93.6%. In addition, we also evaluated the congo red (CR) adsorption performance of the obtained ACFs. The CR adsorption fitted well to the pseudo-second-order kinetic model. Adsorption isotherm data indicated that the adsorption of CR onto ACFs was monolayer adsorption which followed well the Langmuir isotherm model. The maximum adsorption capacity of CR was 512 g kg −1 . The mechanism of the adsorption process was also described from the intraparticle diffusion model. - Highlights: • A new biomass fibroin precursor for activated carbon fibers (ACFs) was proposed. • High specific surface area (2797 m 2  g −1 ) and total pore volume (1.74 cm 3  g −1 ) were obtained. • The original fibrous structure of raw silkworm cocoons was retained in the ACF product. • Congo red maximum monolayer adsorption capacity of our ACF product was up to 1100 g kg −1

  9. Effects of carbon nanotubes on phosphorus adsorption behaviors on aquatic sediments.

    Science.gov (United States)

    Qian, Jin; Li, Kun; Wang, Peifang; Wang, Chao; Shen, Mengmeng; Liu, Jingjing; Tian, Xin; Lu, Bianhe

    2017-08-01

    Aquatic sediments are believed to be an important sink for carbon nanotubes (CNTs). With novel properties, CNTs can potentially disturb the fate and mobility of the co-existing contaminants in the sediments. Only toxic pollutants have been investigated previously, and to the best of our knowledge, no data has been published on how CNTs influence phosphorus (P) adsorption on aquatic sediments. In this study, multi-walled carbon nanotubes (MWCNTs) were selected as model CNTs. Experimental results indicated that compared to pseudo-first order and intraparticle diffusion models, the pseudo-second-order model is better for describing the adsorption kinetics of sediments and MWCNT-contaminated sediments. Adsorption isotherm studies suggested that the Langmuir model fits the isotherm data well. With the increase in the MWCNT-to-sediment ratio from 0.0% to 5.0%, the theoretical maximum monolayer adsorption capacity (Q max ) for P increased from 0.664 to 0.996mg/g. However, the Langmuir isotherm coefficient (K L ) significantly decreased from 4.231L/mg to 2.874L/mg, indicating the decrease in the adsorption free energy of P adsorbed on the sediments after MWCNT contamination. It was suggested that P was released more easily to the overlying water after the re-suspension of sediments. Moreover, the adsorption of sediments and sediment-MWCNT mixture was endothermic and physical in nature. Results obtained herein suggested that the change in the specific surface area and zeta potential of sediments is related to MWCNT contamination, and the large adsorption capacity of MWCNTs is probably the main factor responsible for the variation in the adsorption of P on aquatic sediments. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Strain enhanced lithium adsorption and diffusion on silicene.

    Science.gov (United States)

    Wang, Xiao; Luo, Youhua; Yan, Ting; Cao, Wei; Zhang, Meng

    2017-03-01

    The performance of Li-ion batteries relies heavily on the capacity and stability of constituent electrodes. Recently synthesized 2D silicene has demonstrated excellent Li-ion capacity with high charging rates. To explore the external influences for battery performance, in this work, first-principles calculations are employed to investigate the effect of external strain on the adsorption and diffusion of Li on silicene monolayers. It was found that tensile strain could enhance Li binding on silicene. The diffusion barrier is also calculated and the results show that Li diffusion through silicene is facilitated by tensile strain, whereas the strain has a limited effect on the energy barrier of diffusion parallel to the plane of pristine silicene. Our results suggest that silicene could be a promising electrode material for lithium ion batteries.

  11. Evaluation and modeling of methyl green adsorption from aqueous solutions using loofah fibers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaonan; Li, Yueyun; Chen, Runhai; Min, Fanlian; Yang, Juanjuan; Dong, Yunhui [Shandong University of Technology, Zibo (China)

    2015-01-15

    Loofah fiber, an economical adsorbent material, was first developed for the methyl green (MG) removal from aqueous solutions. The loofah fibers were characterized by SEM, FTIR, N{sub 2}-BET and the potentiometric titration. The pH, contact time and temperature were examined extensively. The adsorption of MG on loofah fiber increased very quickly in the pH range 3.0 to 7.0, remaining a high level at pH>7.0. The kinetics of adsorption of MG on the loofah fiber was proved to coincide with pseudo-second-order kinetic models (r{sup 2}>0.99) very well. Langmuir isotherm was demonstrated to fit the experimental data better than Freundlich isotherm model. Monolayer adsorption capacity increased with the increase of temperature. Thermodynamic constants were evaluated, and the results indicated that MG adsorption onto loofah fiber was feasible, spontaneous and endothermic. The high removal efficiency of MG on loofah fiber suggested that the loofah fiber was suitable material in MG pollution cleanup.

  12. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  13. Influence of diatomite microstructure on its adsorption capacity for Pb(II

    Directory of Open Access Journals (Sweden)

    Nenadović S.

    2009-01-01

    Full Text Available The effect of microstructural changes caused by mechanical modification on adsorption properties of diatomite samples were investigated. The microstructure has been characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM while the degree of metal adsorption was evaluated by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP AES. The results show that metal sorption capacity of diatomite is considerably improved after mechanical modification and it can be attributed to amorphysation of the material. Immobilization efficiency increased from 22% for untreated to 81% for the treated sample after 5h at BPR 4.This qualifies natural diatomite as a material for wastewater remediation.

  14. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    , the reductions compared to control (Hoegberg et al. 2002) varied between 11% and 26%. Even though a reduction in drug adsorption to activated charcoal was observed when food mixture or ice cream was added, the remaining adsorption capacity of both types of activated charcoal theoretically was still able......The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...

  15. The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads.

    Science.gov (United States)

    Xia, Meng; Zheng, Xianming; Du, Mingyang; Wang, Yingying; Ding, Aizhong; Dou, Junfeng

    2018-07-01

    The increasing nuclear energy consumption has posed serious environmental concerns (e.g. nuclear leakage), and the removal of radionuclides such as cesium becomes an urgent issue to be solved currently. In this research, a novel non-toxic adsorbent lithium-modified montmorillonite clay encapsulated in calcium alginate microbeads (MCA/Li) was fabricated by using ion-exchange method and then used successfully in the remediation of cesium-contaminated wastewater. Analyses of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of adsorbent MCA/Li, such as internal crystal structure, constituent elements, and functional groups. The effects of concentration ratios (sodium alginate/montmorillonite), solution pH, contacting time and initial Cs + concentration on the adsorption behavior were carefully investigated via batch adsorption experiments. The adsorbent MCA/Li exhibited higher selectivity and removal efficiency towards Cs + with the maximum adsorption capacity of 100.25 mg/g. In the kinetics study, the pseudo-first-order fitted the cesium adsorption data of MCA/Li better than the pseudo-second-order. The adsorption mechanism studies revealed the process followed the Langmuir isotherm model, which suggested that Cs + adsorption onto MCA/Li is a monolayer homogeneous adsorption process. The research findings indicated this novel adsorbent MCA/Li demonstrated great potential in radioactive wastewater treatment due to its convenience in synthesis, high adsorption capacity, and low cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  17. Stability of defects in monolayer MoS{sub 2} and their interaction with O{sub 2} molecule: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Shang, C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 (China); Qi, N. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Chen, Z.Y. [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China)

    2017-08-01

    Highlights: • Defects can exist steadily in monolayer MoS{sub 2} and break surface chemical inertness. • Activated surfaces are beneficial to the adsorption of O{sub 2} through the introduction of defect levels. • Adsorbed O{sub 2} on defective surface can dissociate with low activation energy barrier. • Defective system may be a potential substrate to design MoS{sub 2}-based gas sensor or catalysts. - Abstract: The stability of various defects in monolayer MoS{sub 2}, as well as their interactions with free O{sub 2} molecules were investigated by density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. The defects including S vacancy (monosulfur and disulfue vacancies), antisite defect (Mo{sub S}) and external Mo atom can exist steadily in monolayer MoS{sub 2}, and introduce defect levels in these defective systems, which breaks the surface chemical inertness and significantly enhances the adsorption capacity for free O{sub 2}. The adsorption energy calculations and electronic properties analysis suggest that there is a strong interaction between O{sub 2} molecule and defective system. The adsorbed O{sub 2} on the defective surface can dissociate with a lower activation energy barrier, which produce two active oxygen atoms. Especially, two Mo atoms can occupy one Mo lattice site, and adsorbed O{sub 2} on the top of the Mo atom can then dissociate directly with the lowest activation energy barrier. Hence, our work may provide useful information to design MoS{sub 2}-based gas sensor or catalysts.

  18. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  19. Molecular monolayers and interfacial electron transfer of pseudomonas aeruginosa azurin on Au(111)

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Nielsen, Jens Ulrik

    2000-01-01

    disulfide group to form a monolayer. The adsorption of this protein on Au(111) via a gold-sulfur binding mode is further supported by XPS measurements. In situ STM images with molecular resolution have been recorded and show a dense monolayer organization of adsorbed azurin molecules. Direct electron......We provide a comprehensive approach to the formation and characterization of molecular monolayers of the blue copper protein Pseudomonas aeruginosa azurin on Au(111) in aqueous ammonium acetate solution. Main issues are adsorption patterns, reductive desorption, properties of the double layer......, and long-range electrochemical electron transfer between the electrode and the copper center. Voltammetry, electrochemical impedance spectroscopy (EIS), in situ scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) have been employed to disclose features of these issues. Zn...

  20. Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies.

    Science.gov (United States)

    Manera, Christian; Tonello, Andrezza Piroli; Perondi, Daniele; Godinho, Marcelo

    2018-03-23

    In this work, the adsorption of Acid Black 210 (AB210) and Acid Red 357 (AR357) onto activated carbon prepared from leather shaving wastes (ACLW) was investigated. The activated carbon presented a surface area of 800.4 m²/g with an average pore size of 1.27 nm. The kinetic study showed that the adsorption of both dyes followed the Elovich kinetic model while the AB210 and AR357 isotherm data were well described by the Langmuir and BET models, respectively. Furthermore, the Boyd plot revealed that the adsorption of the leather dyes on activated carbon was mainly governed by film diffusion. The pH had a strong influence on the adsorption, and the higher amounts of dye adsorbed were obtained at pH 2. The obtained activated carbon exhibited a high monolayer adsorption capacity of 573.9 and 204.4 mg/g for AB210 and AR357, respectively. Its high capacity is mainly attributed to its basicity (0.17 mmol/g) and high surface area. Desorption efficiency of the spent activated carbon was found to be 54.3% and 43.0% for AB210 and AR357, respectively. The spontaneity of the process was demonstrated by the negative values of the Gibbs free energy change.

  1. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  2. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  3. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  4. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  5. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenfang [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Yingxin, E-mail: yingxinzhao@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zheng, Xinyi [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Ji, Min [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zhang, Zhenya [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2016-01-01

    Graphical abstract: The main chemical components of Sakura leaves are cellulose 16.6%, hemicellulose 10.4%, lignin 18.3%, ash 11.4%, and others 43.3%. The adsorption capacity of Cr(VI) onto Sakura leaves can achieve 435.25 mg g{sup −1}, much higher than other similar agroforestry wastes. - Highlights: • Sakura leaves were prepared to remove Cr(VI) from aqueous solution. • The maximum adsorption capacity of Cr(VI) reached 435.25 mg g{sup −1}. • Cr(VI) adsorption fitted pseudo-second-order kinetic model. • Isotherm models indicated Cr(VI) adsorption occurred on a monolayer surface. • The influence order of coexisting ions followed PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. - Abstract: A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich–Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g{sup −1} at pH 1.0. The presence of Cl{sup −}, SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−} would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  6. Effect of carbonation temperature on CO_2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO_3

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-01-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO_2 capture mainly due to their high CO_2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO_3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO_3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO_2 adsorption capacity of CaO derived from aragonite CaCO_3 sample. At 300 °C, the sample reached the CO_2 adsorption capacity of 0.098 g-CO_2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO_2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO_2 adsorption capacity of the CaO derived from aragonite CaCO_3.

  7. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  8. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  9. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita; Ojha, Priyanka

    2008-01-01

    Physical and chemical properties of activated carbons prepared from coconut shells (SAC and ATSAC) were studied. The adsorption equilibria and kinetics of phenol and 2,4-dichlorophenol from aqueous solutions on such carbons were then examined at three different temperatures (10, 25 and 40 deg. C). Adsorption of both phenol and 2,4-dichlorophenol increased with an increase in temperature. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. Both the isotherm models adequately fit the adsorption data for both the phenols. The carbon developed through the acid treatment of coconut shells (ATSAC) exhibited relatively higher monolayer adsorption capacity for phenol (0.53 mmol g -1 ) and 2,4-dichlorophenol (0.31 mmol g -1 ) as compared to that developed by thermal activation (SAC) with adsorption capacity of 0.36 and 0.20 mmol g -1 , for phenol and 2,4-dichlorophenol, respectively. The equilibrium sorption and kinetics model parameters and thermodynamic functions were estimated and discussed. The thermodynamic parameters (free energy, enthalpy and entropy changes) exhibited the feasibility and spontaneous nature of the adsorption process. The sorption kinetics was studied using the pseudo-first-order and second-order kinetics models. The adsorption kinetics data for both the phenol and 2,4-dichlorophenol fitted better to the second-order model. An attempt was also made to identify the rate-limiting step involved in the adsorption process. Results of mass transfer analysis suggested the endothermic nature of the reaction and change in the mechanism with time and initial concentration of the adsorbate. The results of the study show that the activated carbons derived from coconut shells can be used as potential adsorbent for phenols in water/wastewater

  10. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions

    International Nuclear Information System (INIS)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-01

    Highlights: • Activated carbons with different pore structure and surface chemical properties were prepared by modification process. • HgCl 2 as a pollution target to evaluate the adsorption performance. • Influence of pore structure and surface chemical properties of activated carbon on adsorption of mercury was investigated. -- Abstract: Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg 2+ adsorption ability of samples was investigated. The results show that the Hg 2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction

  11. Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling

    Science.gov (United States)

    Magdy, Yehia M.; Altaher, Hossam; ElQada, E.

    2018-03-01

    In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.

  12. Adsorption kinetics of WS2 quantum dots onto a polycrystalline gold surface.

    Science.gov (United States)

    Ozhukil Valappil, Manila; Roopesh, Mekkat; Alwarappan, Subbiah; Pillai, Vijayamohanan K

    2018-04-18

    In this work, we report the adsorption kinetics of electrochemically synthesized WS2 quantum dots (ca. 3 nm) onto a polycrystalline gold electrode. Langmuir adsorption isotherm approach was employed to explore the temperature and adsorbate concentration dependence of experimentally calculated equilibrium constant of adsorption (Keq) and free energy for adsorption (ΔGads). Subsequently, we extract other thermodynamic parameters such as adsorption rate constant (Kads), desorption rate constant (Kd), the enthalpy of adsorption (ΔHads) and the entropy of adsorption (ΔSads). Our findings indicate that ΔGads is temperature dependent and ca. -1.74 kcal mol-1, ΔHads = -10.697 kcal mol-1 and ΔSads = -30 cal/(mol.K). These investigations on the contribution of the enthalpic and entropic forces to the total free energy of this system underscore the role of entropic forces on the stability of the WS2 QDs monolayer and provide new thermodynamic insights into other TMDQDs monolayers as well.

  13. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  14. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay

    International Nuclear Information System (INIS)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-01-01

    The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 deg. C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics

  15. Adsorption and desorption properties of macroporous resins for anthocyanins from the calyx extract of roselle (Hibiscus sabdariffa L.).

    Science.gov (United States)

    Chang, Xiu-Lian; Wang, Dong; Chen, Bi-Yun; Feng, Yong-Mei; Wen, Shao-Hong; Zhan, Peng-Yuan

    2012-03-07

    Adsorption of roselle anthocynins, a natural pigment, onto various macroporous resins was optimized to develop a simple and efficient process for industrial separation and purification of roselle anthocyanins. Nine different macroporous resins (AB-8, X-5, HPD-100, SP-207, XAD-4, LS-305A, DM-21, LS-610B, and LS-305) were evaluated for the adsorption properties of the anthocyanins extracted from the calyx extract of Hibiscus sabdariffa L. The influences of phase contact time, solution pH, initial anthocyanin concentration, and ethanol concentration with different citric acid amounts were studied by the static adsorption/desorption method. The adsorption isotherm data were fitted well to the Langmuir isotherm, and according to this model, LS-610B and LS-305 exhibited the highest monolayer sorption capacities of 31.95 and 38.16 mg/g, respectively. The kinetic data were modeled using pseudo-first-order, pseudo-second-order, and intraparticle diffusion equations. The experimental data were well described by the pseudo-second-order kinetic model. Continuous column adsorption-regeneration cycles indicated negligible capacity loss of LS-305 during operation. The overall yield of pigment product was 49.6 mg/g dried calyces. The content of roselle anthocynins in the pigment product was 4.85%.

  16. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL -1 NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg -1 , respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO 4 3- significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Adsorption performance of silver-loaded activated carbon fibers

    Directory of Open Access Journals (Sweden)

    Yan Xue-Feng

    2018-01-01

    Full Text Available Silver-loaded activated carbon fiber is prepared, and its adsorption performance is studied experimentally using five methylene blue solutions with different concentrations under three different temperature conditions. The adsorption tests show that fibers adsorption increase as the increase of temperature, and there is an optimal value for solution concentration, beyond which its adsorption will de-crease. Fibers isothermal adsorption to methylene blue is different from those by the monolayer adsorption by Langmuir model and the multilayer adsorption by Freundlich model. Through the analysis of thermodynamic parameters, Gibbs free energy, standard entropy, and standard enthalpy, it is found that the fibers adsorption to methylene blue is an exothermic process of physical adsorption.

  18. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    International Nuclear Information System (INIS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-01-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  19. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing, E-mail: hbdeng@whu.edu.cn

    2017-03-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  20. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  1. Monolayer Cu2Si as a potential gas sensor for NOx and COx (x = 1, 2): A first-principles study

    Science.gov (United States)

    Zhu, Hao-Hao; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Although the metal-decoration can enhance the sensing properties of two-dimensional (2D) materials, the cyclic utilization of materials is hindered by the clustering tendency of metal atoms. Furthermore, there exists a risk of explosion of combustible gases with the electrical measure. Based on first-principles calculations, we investigate the adsorption of various gas molecules (O2, NO, NO2, NH3, N2, CO, CH4 and CO2) on the 2D Cu-Si extended system (Cu2Si). The NOx molecules are chemisorbed on the Cu2Si monolayer, while other gas molecules (except CH4 and N2) are held by an interaction intermediating between the physisorbed and chemisorbed states. The strong hybridizations between N 2p and Si 3p (Cu 4p) orbitals lead to the large adsorption energies. Interestingly, the adsorption of NOx (1 μB) and CO2 (2 μB) can induce magnetic moments on the intrinsically nonmagnetic Cu2Si monolayer. The magnetic moment of NO-Cu2Si mainly arises from the molecule, while the magnetic moments for the NO2 and CO2 adsorption almost origin from the monolayer. In addition, an antiferromagnetic coupling is found in CO-Cu2Si. The changes in magnetization upon the gas adsorption may be detected sensitively and safely, suggesting the Cu2Si monolayer is potential for gas sensing.

  2. Irreversible adsorption of particles on heterogeneous surfaces.

    Science.gov (United States)

    Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria

    2005-12-30

    Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was evaluated by direct particle counting using the optical and electron microscopy. Adsorption kinetics was quantitatively interpreted in terms of numerical solutions of the governing diffusion equation with the non-linear boundary condition derived from Monte-Carlo simulations. It was proven that for site coverage as low as a few percent the initial flux at heterogeneous surfaces attained the maximum value pertinent to homogeneous

  3. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  4. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes.

    Science.gov (United States)

    Puthusseri, Divya; Babu, Deepu J; Okeil, Sherif; Schneider, Jörg J

    2017-10-04

    Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO 2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO 2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

  5. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    Science.gov (United States)

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P. [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India)], E-mail: kpsingh_52@yahoo.com; Malik, Amrita [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India); Sinha, Sarita [National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001 (India); Ojha, Priyanka [Environmental Chemistry Section, Industrial Toxicology Research Centre, Post Box 80, MG Marg, Lucknow 226001 (India)

    2008-02-11

    Physical and chemical properties of activated carbons prepared from coconut shells (SAC and ATSAC) were studied. The adsorption equilibria and kinetics of phenol and 2,4-dichlorophenol from aqueous solutions on such carbons were then examined at three different temperatures (10, 25 and 40 deg. C). Adsorption of both phenol and 2,4-dichlorophenol increased with an increase in temperature. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. Both the isotherm models adequately fit the adsorption data for both the phenols. The carbon developed through the acid treatment of coconut shells (ATSAC) exhibited relatively higher monolayer adsorption capacity for phenol (0.53 mmol g{sup -1}) and 2,4-dichlorophenol (0.31 mmol g{sup -1}) as compared to that developed by thermal activation (SAC) with adsorption capacity of 0.36 and 0.20 mmol g{sup -1}, for phenol and 2,4-dichlorophenol, respectively. The equilibrium sorption and kinetics model parameters and thermodynamic functions were estimated and discussed. The thermodynamic parameters (free energy, enthalpy and entropy changes) exhibited the feasibility and spontaneous nature of the adsorption process. The sorption kinetics was studied using the pseudo-first-order and second-order kinetics models. The adsorption kinetics data for both the phenol and 2,4-dichlorophenol fitted better to the second-order model. An attempt was also made to identify the rate-limiting step involved in the adsorption process. Results of mass transfer analysis suggested the endothermic nature of the reaction and change in the mechanism with time and initial concentration of the adsorbate. The results of the study show that the activated carbons derived from coconut shells can be used as potential adsorbent for phenols in water/wastewater.

  7. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  8. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye

    International Nuclear Information System (INIS)

    Tan, K.B.; Salamatinia, B.

    2016-01-01

    The adsorption mechanism of pure cellulose is yet to be explored. Thus, in this study, the adsorption mechanism of Microcrystalline Cellulose (MCC), a polysaccharide which is renewable, low cost and non-toxic, was studied on the adsorption of model dye Methylene blue (MB). It was found that the main adsorption mechanism of MB on MCC was due to the electrostatic attraction between the positively charged MB dye and negatively charged MCC. Thus, physical adsorption was the dominant effect, since electrostatic attraction is categorized as physical adsorption. This was verified by Dubinin-Radushkevich isotherm, whereby mean free energy adsorption value was found to be less than 8 kJ/mol. The values of Gibbs free energy for thermodynamics studies were found to be within the range of -20 kJ/mol and 0 kJ/mol, which also indicated physical adsorption. It was due to the electrostatic attraction as adsorption mechanism of this adsorption process which resulted rapid adsorption of MB dye. It was found that equilibrium dye concentration was achieved between 1-3 minutes, depending on the adsorption temperature. The rapid adsorption, as compared to a lot of materials, showed the potential of MCC as the future of green adsorbent. The adsorption of Methylene Blue on MCC fitted well in Langmuir Isotherm, with R2 values of higher than 0.99, while fitted moderately in Freundlich Isotherm, with R2 values between 0.9224 and 0.9223. Comparatively, the adsorption of MB on MCC fitted best Langmuir Isotherm as compared to Freundlich Isotherm which monolayer adsorption occurred at the homogenous surface of MCC. This also indicated adsorbed MB molecules do not interact with each other at neighboring adsorption sites. The maximum adsorption capacity calculated from Langmuir Isotherm was found to be 4.95 mg/g. Despite the potential of MCC as green adsorbent, the challenge of low adsorption capacity has to be addressed in the future. (author)

  9. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  10. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  11. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  12. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications. Copyright © 2014. Published by Elsevier B.V.

  13. Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water

    Science.gov (United States)

    Deniz, Fatih

    2013-01-01

    The capability of Prunus amygdalus L. (almond) shell for dye removal from aqueous solutions was investigated and methyl orange was used as a model compound. The effects of operational parameters including pH, ionic strength, adsorbent concentration and mesh size, dye concentration, contact time, and temperature on the removal of dye were evaluated. The adsorption kinetics conformed to the pseudo-second-order kinetic model. The equilibrium data pointed out excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 41.34 mg g−1 at 293 K. Thermodynamic analysis proved a spontaneous, favorable, and exothermic process. It can be concluded that almond shell might be a potential low-cost adsorbent for methyl orange removal from aqueous media. PMID:23935442

  14. Adsorption of phosphate from municipal effluents using cryptocrystalline magnesite: complementing laboratory results with geochemical modelling

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-11-01

    Full Text Available chemisorption. Adsorption isotherms fitted well to Langmuir adsorption isotherm than Freundlich adsorption isotherms, demonstrating monolayer adsorption. PHREEQC geochemical model showed Mg(sub3)(PO(sub4))(sub2) and MgHPO(sub4):3H(sub2)O as the phosphatebearing...

  15. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb

    2013-08-14

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  16. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano

    2013-01-01

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  17. Morphology and adsorption of chromium ion on uranium 1,2,4,5-benzenetetracarboxylic acid metal organic framework (MOF

    Directory of Open Access Journals (Sweden)

    Vala Remy M.K.

    2016-01-01

    Full Text Available In this paper, we report the synthesis of metal organic framework of uranium 1,2,4,5-benzene tetracarboxylic acid (U-H4btec MOF by solvothermal method. The obtained MOF was characterized by Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, Energy dispersive spectroscopy (EDS, thermogravimetric and differential thermogravimetric analysis (TGA/DTA. The morphology of the uranium 1,2,4,5-benzene tetracarboxylic acid MOF observed by SEM, revealed the presence of flaky porous structure. Adsorption of Cr3+ from aqueous solution onto the uranium 1,2,4,5-benzene tetracarboxylic acid MOF was systematically studied. Langmuir and Freundlich adsorption isotherms were applied to determine the adsorption capacity of the MOF to form a monolayer. Kinetic determination of the adsorption of Cr3+ suggested both chemisorption and physisorption probably due to the presence of carbonyl groups within the MOF and its porous structure.

  18. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions.

    Science.gov (United States)

    Mnisi, Robert Londi; Ndibewu, Peter Papoh

    2017-11-04

    The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.

  20. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface......-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage. The static adsorption is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms the maximum static permeability drops...... and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75 % and the maximum static adsorption resistance is 0.014 m2hbar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23...

  1. Gallium adsorption on (0001) GaN surfaces

    International Nuclear Information System (INIS)

    Adelmann, Christoph; Brault, Julien; Mula, Guido; Daudin, Bruno; Lymperakis, Liverios; Neugebauer, Joerg

    2003-01-01

    We study the adsorption behavior of Ga on (0001) GaN surfaces combining experimental specular reflection high-energy electron diffraction with theoretical investigations in the framework of a kinetic model for adsorption and ab initio calculations of energy parameters. Based on the experimental results we find that for substrate temperatures and Ga fluxes typically used in molecular-beam epitaxy of GaN, finite equilibrium Ga surface coverages can be obtained. The measurement of a Ga/GaN adsorption isotherm allows the quantification of the equilibrium Ga surface coverage as a function of the impinging Ga flux. In particular, we show that a large range of Ga fluxes exists, where 2.5±0.2 monolayers (in terms of the GaN surface site density) of Ga are adsorbed on the GaN surface. We further demonstrate that the structure of this adsorbed Ga film is in good agreement with the laterally contracted Ga bilayer model predicted to be most stable for strongly Ga-rich surfaces [Northrup et al., Phys. Rev. B 61, 9932 (2000)]. For lower Ga fluxes, a discontinuous transition to Ga monolayer equilibrium coverage is found, followed by a continuous decrease towards zero coverage; for higher Ga fluxes, Ga droplet formation is found, similar to what has been observed during Ga-rich GaN growth. The boundary fluxes limiting the region of 2.5 monolayers equilibrium Ga adsorption have been measured as a function of the GaN substrate temperature giving rise to a Ga/GaN adsorption phase diagram. The temperature dependence is discussed within an ab initio based growth model for adsorption taking into account the nucleation of Ga clusters. This model consistently explains recent contradictory results of the activation energy describing the critical Ga flux for the onset of Ga droplet formation during Ga-rich GaN growth [Heying et al., J. Appl. Phys. 88, 1855 (2000); Adelmann et al., J. Appl. Phys. 91, 9638 (2002).

  2. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    Science.gov (United States)

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  3. Adsorption of charged albumin subdomains on a graphite surface.

    Science.gov (United States)

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2006-03-01

    We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.

  4. Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication.

    Science.gov (United States)

    Saini, Gaurav; Gates, Richard; Asplund, Matthew C; Blair, Steve; Attavar, Sachin; Linford, Matthew R

    2009-06-21

    The selective adsorption of reagents is often essential for bioarray and lab-on-a-chip type devices. As the starting point for a bioarray, alkyl monolayer terminated silicon shards were photopatterned in a few nanoseconds with thousands of wells (spots) using an optical element, a microlens array. Polyallylamine (PAAm), a primary amine containing polymer, adsorbed with little selectivity to the spots, i.e., silicon oxide, over the hydrophobic background. However, at appropriate concentrations, addition of a cationic surfactant to the PAAm deposition solution, cetyltrimethylammonium chloride, prevented the nonspecific adsorption of PAAm onto the hydrophobic monolayer, while directing it effectively to the active spots on the device. A nonionic surfactant was less effective in preventing the nonspecific adsorption of PAAm onto the hydrophobic monolayer. The localized reactions/interactions of adsorbed PAAm with four species that are useful for bioconjugate chemistry: glutaric anhydride, phenylenediisothiocyanate, biotin NHS ester, and an oligonucleotide (DNA) were shown in the spots of an array. The reactivity of PAAm was further demonstrated with an isocyanate. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) played an important role in confirming selective surface reactivity and adsorption. X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, and wetting confirmed PAAm reactivity on planar substrates.

  5. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    International Nuclear Information System (INIS)

    Bastos-Neto, M.; Canabrava, D.V.; Torres, A.E.B.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Azevedo, D.C.S.; Cavalcante, C.L.

    2007-01-01

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N 2 adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage

  6. Effect of carbonation temperature on CO{sub 2} adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi, E-mail: hinode@ide.titech.ac.jp; Kurniawan, Winarto, E-mail: Kurniawan.w.ab@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Thant, Aye Aye, E-mail: a2thant@gmail.com [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salime, Chris, E-mail: chris.salim@surya.ac.id [Environmental Engineering, Surya University, Tangerang, 15810 Banten (Indonesia)

    2016-07-06

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.

  7. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  8. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    Science.gov (United States)

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes.

  9. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Saif Ali Chaudhry

    2017-06-01

    Full Text Available This paper reports zirconium oxide-coated sand preparation, characterization by SEM, EDX, XRD, FT-IR and thermoanalytical techniques, and use as an adsorbent for the removal of most toxic form of arsenic, As(III, from aqueous solution in both batch and column methods. Batch experimental parameters such as contact time, concentration, dose of adsorbent, pH of As(III solution and temperature were optimized. The adsorption data was fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms at 303, 308 and 313 K. The maximum Langmuir monolayer adsorption capacity was found to be 136.98 μg/g at 313 K. Values of ΔH°, ΔG° and ΔS° were found to be −12.90, −8.74 to –8.28 and 0.014 kJ/mol, suggesting exothermic and spontaneous adsorption process with slight increase in entropy. The adsorption process followed pseudo-second order kinetics and was controlled by film diffusion step. The column studies showed that when flow rate was increased from 3.0 to 5.0 mL/min, the arsenic adsorption capacity of ZrOCS increased from 33.104 to 42.231 μg/g and breakthrough, and exhaustion times got reduced reduced. The results indicated that zirconium oxide-coated sand (ZrOCS is an excellent adsorbent for the removal of As(III from water.

  10. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite.

    Science.gov (United States)

    Habiba, Umma; Joo, Tan Chin; Siddique, Tawsif A; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-11-01

    The chitosan/polyvinyl alcohol/TiO 2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO 2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO 2 composite can be a very useful material for dye removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Langmuir and Freundlich Isotherm Adsorption Equations for Chromium (VI) Waste Adsorption by Zeolite

    International Nuclear Information System (INIS)

    Murni Handayani; Eko Sulistiyono

    2009-01-01

    The research of chromium (VI) waste adsorption by zeolite has done. Wastes which are produced by Industries, both radioactive waste and heavy metal waste need done more processing so that they are not endanger environment and human health. Zeolite has very well-ordered crystal form with cavity each other to way entirely so that cause surface wide of zeolite become very big and very good as adsorbents. This research intends to know appropriate isotherm adsorption method to determine maximum capacity of zeolite to chromium (VI) waste. The equations which used in adsorption process are Langmuir and Freundlich isotherm Adsorption equations. The instrument was used in adsorption process by using Atomic Adsorption Spectroscopy (AAS). The experiment result showed that the biggest mass of chromium (VI) metal ion which was absorb by zeolite in 20 ppm concentration was 7.71 mg/gram zeolite. Adsorption process of Chromium (VI) waste by zeolite followed Langmuir and Freundlich isotherm equations with R 2 >0,9 . Appropriate equation to determine maximum adsorption capacity of zeolite for chromium (VI) waste adsorption is Langmuir equation. The maximum adsorption capacity of zeolite is 52.25 mg/gram. (author)

  12. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  13. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    Science.gov (United States)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  14. Effect of the both texture and electrical properties of activated carbon on the CO{sub 2} adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Djeridi, W. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Ouederni, A. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Mansour, N.Ben [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); Llewellyn, P.L. [Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Alyamani, A. [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); El Mir, L., E-mail: djeridiwahid@yahoo.fr [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, Gabes (Tunisia); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, 11623 Riyadh (Saudi Arabia)

    2016-01-15

    Highlights: • A series of activated carbon pellet without binder was prepared by chemical activation. • Carbon dioxide storage isotherm at 30 °C and up to 25 bars was measured for the microporous carbon. • Adsorption enthalpies have been correlated with the carbon dioxide uptake. • Pyrolysis temperature effect on the electrical conductivity of the samples. • Impact of the both texture and electrical properties on CO{sub 2} adsorption capacity have been deducted - Abstract: A series of activated carbon pellets (ACP) based on olive stones were studied for CO{sub 2} storage application. The surface area, pore volume, and pore diameter were evaluated from the analysis of N{sub 2} adsorption isotherm data. The characterization of carbon materials was performed by scanning electron microscopy (SEM), the powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The adsorption enthalpies were obtained by microcalorimetry. The effect of pyrolysis temperature on textural, electrical conductivity and gas adsorption capacities of the ACP were investigated by adsorbing CO{sub 2} at 303 K in the pressure range of 0–2.3 MPa. In fact the electrical conductivity is strongly affected by the microporosity of the samples and the size of the micropore. It increases when the pore size decreases which affect the CO{sub 2} adsorption. Also with increases temperature the free electrons concentration on the surface increases which affect the interaction of the adsorbed gas molecules.

  15. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    Science.gov (United States)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  16. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    International Nuclear Information System (INIS)

    Gill, Gary A.; Das, Sadananda; Mayes, Richard; Saito, Tomonori; Brown, Suree S.; Tsouris, Constantinos; Tsouris, Costas; Wai, Chien M.; Pan, Horng-Bin

    2016-01-01

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL's Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includes other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL's Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980's (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U/kg adsorbent for a 180

  17. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Janke, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, Sadananda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saito, Tomonori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Suree S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsouris, Constantinos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); LCW Supercritical Technologies, Seattle, WA (United States); Pan, Horng-Bin [Univ. of Idaho, Moscow, ID (United States)

    2016-09-29

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL’s Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includes other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL’s Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980’s (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U/kg adsorbent for a

  18. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...

  19. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH)

    International Nuclear Information System (INIS)

    Arreola L, J. E.

    2013-01-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N 2 physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead solution

  20. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  1. Tellurium adsorption on tungsten and molybdenum field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1977-01-01

    Studies of the adsorption of tellurium onto tungsten and molybdenum field emitters are described and the results obtained are compared with those obtained in previous work on the adsorption of silicon and selenium. The adsorption of Te onto W was found to be much more uniform than in the case of Se. Although Te is metallic in many of its properties its adsorptive behavior on field emitters is found to be similar to that of selenium and these adsorptive properties are basically common to all semiconductors. The most evident property of these adsorbates is that the work function and emission current decrease simultaneously at coverages of less than half a monolayer and the work function subsequently increases. (B.D.)

  2. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells

    Energy Technology Data Exchange (ETDEWEB)

    Donat, Ramazan [Pamukkale Univ., Denizli (Turkey). Dept. of Chemistry; Erden, Kadriye Esen [Pamukkale Univ., Kinikli-Denizli (Turkey). Denizli Vocational School of Technical Sciences

    2017-08-01

    Antep pistachio (Pistacia vera L.) shells an abundant and low cost natural resource in Turkey was used to prepare activated carbon by physiochemical activation and carbon dioxide (CO{sub 2}) atmosphere as the activating agents at 700 C for 2 h. The adsorption equilibrium of U(VI) from aqueous solutions on such carbon has been studied using a batch system. The parameters that affect the U(VI) adsorption, such as particle size of adsorbent, contact time, of pH of the solution, and temperature, have been investigated and conditions have also been optimized. The equilibrium data for U(VI) ions' adsorption onto activated carbon well fitted to the Langmuir equation, with a maximum monolayer adsorption capacity of 8.68 mg/g, The Freundlich and Dubinin-Radushkevich (D-R) isotherms have been applied and the data correlated well with Freundlich model and that the adsorption is physical in nature (E{sub a}=15.46 kJ/mol). Thermodynamic parameters [ΔH{sub s}=11.33 kJ/mol, ΔS=0.084 kJ/molK, ΔG (293.15 K)=-13.29 kJ/mol] showed the endothermic heat of adsorption and the feasibility of the process.

  3. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells

    International Nuclear Information System (INIS)

    Donat, Ramazan; Erden, Kadriye Esen

    2017-01-01

    Antep pistachio (Pistacia vera L.) shells an abundant and low cost natural resource in Turkey was used to prepare activated carbon by physiochemical activation and carbon dioxide (CO_2) atmosphere as the activating agents at 700 C for 2 h. The adsorption equilibrium of U(VI) from aqueous solutions on such carbon has been studied using a batch system. The parameters that affect the U(VI) adsorption, such as particle size of adsorbent, contact time, of pH of the solution, and temperature, have been investigated and conditions have also been optimized. The equilibrium data for U(VI) ions' adsorption onto activated carbon well fitted to the Langmuir equation, with a maximum monolayer adsorption capacity of 8.68 mg/g, The Freundlich and Dubinin-Radushkevich (D-R) isotherms have been applied and the data correlated well with Freundlich model and that the adsorption is physical in nature (E_a=15.46 kJ/mol). Thermodynamic parameters [ΔH_s=11.33 kJ/mol, ΔS=0.084 kJ/molK, ΔG (293.15 K)=-13.29 kJ/mol] showed the endothermic heat of adsorption and the feasibility of the process.

  4. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  5. The corrosive influence of chloride ions preference adsorption on α-Al{sub 2}O{sub 3} (0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn; Liu, Min; Jin, Ying; Sun, Dong-Bai, E-mail: dbsun@mater.ustb.edu.cn

    2015-08-30

    Graphical abstract: - Highlights: • The preference adsorption and interaction of Cl{sup −} at increasing monolayer coverage on Al{sub 2}O{sub 3} in solution environment are modeling by DFT with COSMO. • A redefinition critical one plane monolayer of Cl{sup −} is 3/7, and the adsorption energy decrease in three steps, each adsorption energy step only relate to the adsorption site and the morphology. • The weaker interaction between Cl{sup −} and Al{sub 2}O{sub 3} surface but stronger interactions between three Cl{sup −} make the electrons uniformly occupy on the energy levels of three ions. - Abstract: Conductor-like screening model (COSMO), Periodic DFT calculations have been performed on a Al{sub 2}O{sub 3} surface to model the influence of preference adsorption and interaction of chloride ions at increasing monolayer coverage on undefective passive film on Aluminum in solution environment. The results evidence that the critical monolayer of Cl{sup −} is 3/7, which is redefined. With increasing Cl{sup −} adsorption, both the first and second Cl{sup −} move from Al(1) atop and bridge10 sites to O(5) sites, suggesting that the weaker interaction between Cl{sup −} and Al{sub 2}O{sub 3} surface but stronger interactions between three ions make the electrons uniformly occupy on the energy levels of them. More calculations shows that the preference adsorption sites of Cl{sup −} are independent of the surface area of oxide, and the adsorption energy decrease in three steps, each adsorption energy step only relate to the adsorption site and the morphology. On undefective oxide film, low coverage Cl{sup −} adsorption would restrain surface breakdown to happen which is consistent with the experiment results.

  6. Synthesis of alumina nano-sheets via supercritical fluid technology with high uranyl adsorptive capacity

    International Nuclear Information System (INIS)

    Jing Yu; Jun Wang; Zhanshuang Li; Qi Liu; Milin Zhang; Hongbin Bai; Caishan Jiao; Jun Wang; Lianhe Liu

    2012-01-01

    Supercritical carbon dioxide is beneficial to the synthesis of superior ultrafine and uniform materials due to its high chemical stability, low viscosity, high diffusivity, and 'zero' surface tension. γ-Alumina nano-sheets were obtained by a simple hydrothermal route in the presence of supercritical carbon dioxide. XRD, FTIR, SEM, TEM and nitrogen sorption isotherm were employed to characterize the samples. Alumina as-prepared has a high specific surface area of up to 200 ± 6 m 2 g -1 , which presents a high adsorption capacity (4.66 ± 0.02 mg g -1 ) for uranyl ions from aqueous solution. Furthermore, the adsorption process was found to be endothermic and spontaneous in nature. (authors)

  7. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-12-15

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g{sup -1}. Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R{sup 2} > 0.99). Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 {sup o}C.

  8. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-01-01

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g -1 . Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R 2 > 0.99). Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 o C.

  9. Adsorption behavior of 99Mo using AG1-X8 anionic resin

    International Nuclear Information System (INIS)

    Santos, Jacinete L. dos; Yamaura, Mitiko; Damasceno, Marcos O.; Forbicini, Christina A.L.G.O.

    2013-01-01

    The significant growth in demand of 99 Mo in developed and developing countries, like Brazil, requires large production capacity and availability of this radioisotope. With the global crisis on its supply to Brazil rethought the need to become independent in their production and the solution was to start the Brazilian Multipurpose Reactor (RMB) project, which aims to meet the national demand of 99 Mo for the medical field. This work aims to study the 99 Mo adsorption in AG1-X8 strong anion resin, which is one of the intermediate steps of separation and purification, retaining it in the form of molybdate ions. In process evaluated the resin properties with respect to pH and concentration of 99 Mo in the solution. The adsorbed amount of 99 Mo was determined indirectly by the amount in the supernatant after adsorption and the data fitted to the Langmuir and Freundlich isotherms. Among the models, the Langmuir showed a closer relationship with the experimentally obtained data. This suggests the occurrence of monolayer adsorption and heterogeneous conditions at the surface, where both phenomena can coexist in the experimental conditions tested. (author)

  10. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water

    International Nuclear Information System (INIS)

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-01-01

    Highlights: → Hierarchical Zn-Al LDHs hollow microspheres were first synthesized by a simple hydrothermal method using urea as precipitating agent. → The morphology of Zn-Al LDHs can be tailored from irregular platelet to hollow microspheres by simply varying concentrations of urea. → The as-prepared samples exhibit high adsorption capacity (54.1-232 mg/g) for phosphate from aqueous solution. - Abstract: Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas.

  11. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  12. Kinetics, Equilibrium, and Thermodynamic Studies on Adsorption of Methylene Blue by Carbonized Plant Leaf Powder

    Directory of Open Access Journals (Sweden)

    V. Gunasekar

    2013-01-01

    Full Text Available Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9, dye concentration (50, 100, 150, and 200 mg/dm3, adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3, and temperature (303, 313, and 323 K were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with high R2 and low chi2 values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔS values for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.

  13. [Blood plasma protein adsorption capacity of perfluorocarbon emulsion stabilized by proxanol 268 (in vitro and in vivo studies)].

    Science.gov (United States)

    Sklifas, A N; Zhalimov, V K; Temnov, A A; Kukushkin, N I

    2012-01-01

    The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.

  14. An insight into the removal of Cu (II) and Pb (II) by aminopropyl-modified mesoporous carbon CMK-3: Adsorption capacity and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Hussein, E-mail: hussein.hamad@ul.edu.lb [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon); Ezzeddine, Zeinab; Lakis, Fatima; Rammal, Hassan [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon); Srour, Mortada [Lebanese University, Faculty of Sciences (I), Hadath, Beirut (Lebanon); Hijazi, Akram [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon)

    2016-08-01

    In this study, the adsorption of heavy metal ions onto ordered mesoporous carbon CMK-3 was investigated. CMK-3 has been synthesized using SBA-15 as the hard template and then directly amino-functionalized by the treatment with 3-aminopropyltrimethoxysilane (APTMS) without the need of oxidation before. The thus obtained modified mesoporous carbon has been characterized by nitrogen sorption, X-ray diffraction and infrared spectroscopy. Its adsorption efficiency for the removal of Cu{sup 2+} and Pb{sup 2+} from aqueous solutions was tested. The effects of contact time, pH and initial metal ions concentration were investigated as well. The adsorption capacities were very high (3.5 mmol g{sup −1} and 8.6 mmol g{sup −1} for Pb{sup 2+} and Cu{sup 2+} respectively). These values depend largely on the speciation of metal ions as a function of pH. The selectivity was also dependent on the nature of metal ions rather than the adsorbent used. The mechanism of adsorption is complex where several types of interaction between metal ions and the adsorbent surface are involved. - Highlights: • Mesoporous carbon CMK-3 was successfully synthesized and functionalized. • No oxidation treatment was done prior to aminopropyl functionalization. • The adsorbent adsorption capacity is high (3.5 mmol g{sup −1} for Cu{sup 2+} and 8.6 mmol g{sup −1} for Pb{sup 2+}). • The maximum Cu{sup 2+} adsorption capacity is related to its speciation as a function of pH. • The mechanism of adsorption is complex including different types of interaction.

  15. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-01-01

    Highlights: • Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO 2 NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO 2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO 2 NSs possess high surface area up to 378 m 2 g −1 . The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO 2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO 2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  16. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chbassim@eng.usm.my

    2008-06-15

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 {sup o}C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy ({delta}H{sup o}), standard entropy ({delta}S{sup o}) and standard free energy ({delta}G{sup o}) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.

  17. Evaluation of Adsorption Capacity of Chitosan-Citral Schiff Base for Wastewater Pre-Treatment in Dairy Industries

    Directory of Open Access Journals (Sweden)

    Desislava K. Tsaneva

    2017-06-01

    Full Text Available In this study, we aimed to evaluate the adsorption capacity of the Schiff base chitosan-citral for its application in dairy wastewater pre-treatment. Chemical oxygen demand (COD reduction was the factor used to evaluate the adsorption efficiency. The maximum COD percentage reduction of 35.3% was obtained at 40.0 °C, pH 9.0, adsorbent dose 15 g L-1, contact time 180 min and agitation speed 100 rpm. It was found that the Langmuir isotherm fitted well the equilibrium data of COD uptake (R2 = 0.968, whereas the kinetic data were best fitted by the pseudo-second order model (R2=0.999. Enhancement of the adsorption efficiency up to 29.8% in dependence of the initial COD concentration of the dairy wastewater was observed by adsorption with the Schiff base chitosan-citral adsorbent compared to the non-modified chitosan at the same experimental conditions. The results indicated that the Schiff base chitosan-citral can be used for dairy wastewater physicochemical pretreatment by adsorption, which might be applied before the biological unit in the wastewater treatment plant to reduce the load.

  18. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    International Nuclear Information System (INIS)

    Chen, Liang-Huei; Hsu, Wen-Ping; Chan, Han-Wen; Lee, Yuh-Lang

    2014-01-01

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules

  19. First-principle study of hydrogenation on monolayer MoS2

    International Nuclear Information System (INIS)

    Xu, Yong; Li, Yin; Chen, Xi; Zhang, Ru; Zhang, Chunfang; Lu, Pengfei

    2016-01-01

    The structural and electronic properties of hydrogenation on 1H-MoS 2 and 1T-MoS 2 have been systematically explored by using density functional theory (DFT) calculations. Our calculated results indicate an energetically favorable chemical interaction between H and MoS 2 monolayer for H adsorption when increasing concentration of H atoms. For 1H-MoS 2 , single H atom adsorption creates midgap approaching the Fermi level which increases the n-type carrier concentration effectively. As a consequence, its electrical conductivity is expected to increase significantly. For 1T-MoS 2 , H atoms adsorption can lead to the opening of a direct gap of 0.13 eV compared to the metallic pristine 1T-MoS 2 .

  20. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  1. Adsorption behavior of {sup 99}Mo using AG1-X8 anionic resin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jacinete L. dos; Yamaura, Mitiko; Damasceno, Marcos O.; Forbicini, Christina A.L.G.O., E-mail: jlsantos@ipen.br, E-mail: myamaura@ipen.br, E-mail: marcos956@bol.com.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The significant growth in demand of {sup 99}Mo in developed and developing countries, like Brazil, requires large production capacity and availability of this radioisotope. With the global crisis on its supply to Brazil rethought the need to become independent in their production and the solution was to start the Brazilian Multipurpose Reactor (RMB) project, which aims to meet the national demand of {sup 99}Mo for the medical field. This work aims to study the {sup 99}Mo adsorption in AG1-X8 strong anion resin, which is one of the intermediate steps of separation and purification, retaining it in the form of molybdate ions. In process evaluated the resin properties with respect to pH and concentration of {sup 99}Mo in the solution. The adsorbed amount of {sup 99}Mo was determined indirectly by the amount in the supernatant after adsorption and the data fitted to the Langmuir and Freundlich isotherms. Among the models, the Langmuir showed a closer relationship with the experimentally obtained data. This suggests the occurrence of monolayer adsorption and heterogeneous conditions at the surface, where both phenomena can coexist in the experimental conditions tested. (author)

  2. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    International Nuclear Information System (INIS)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Park, Jiyeon; Bonheyo, George T.; Jeters, Robert T.; Schlafer, Nicholas J.; Wood, Jordana R.

    2015-01-01

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  3. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.

    2015-08-31

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  4. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2017-10-01

    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier

  5. Assessment of the adsorptive capacity of the Kaolin deposit targeting its use on the removal of colors in aqueous solution

    International Nuclear Information System (INIS)

    Matos, S.C.; Hildebrando, E.A.

    2016-01-01

    The Amazonic region has large and valuable kaolin deposits. The state of Para by itself comprises three large industries which process kaolin. It has been noticed that the waste resulting from the processing of kaolin is rich in silico-aluminate, presenting potential in adsorption processes. Thus, this research's objective is to assess the kaolin waste produced during the processing phase, aiming at its application as low cost adsorbent material. For that, the kaolin waste has been characterized by X-ray diffraction and chemical analysis (XRF), and then sieved and calcined at 700 ° C, being then subjected to the adsorption process and observed qualitatively its capacity of retention by methylene blue (AM). Preliminary results show that the kaolin waste has satisfactory adsorption capacity at concentrations of up to 50.0 mg / MP, demonstrating the potential that it be used in the removal of dyes in wastewater treatment. (author)

  6. Effective Microporosity for Enhanced Adsorption Capacity of Cr (VI) from Dilute Aqueous Solution: Isotherm and Kinetics

    OpenAIRE

    Lloyd Mukosha; Maurice S. Onyango; Aoyi Ochieng; John Siame

    2017-01-01

    The adsorbent pore structure significant to enhanced adsorption capacity of Cr (VI) from dilute aqueous solution is evaluated. As reference, low-cost micro-mesoporous activated carbon (AC) of high basicity, mesoporosity centred about 2.4 nm, and effective microporosity centred about 0.9 nm was tested for removal of Cr (VI) from dilute aqueous solution in batch mode. At pH 2 the low-cost AC exhibited highly improved Langmuir Cr (VI) capacity of 115 mg/g which was competitive to high performanc...

  7. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release.

    Science.gov (United States)

    Giammarco, James; Mochalin, Vadym N; Haeckel, James; Gogotsi, Yury

    2016-04-15

    The unique properties and tailorable surface of detonation nanodiamonds have given rise to an abundance of potential biomedical applications. Very little is known about the details of adsorption/desorption equilibria of drugs on/from nanodiamonds with different purity, surface chemistry, and agglomeration state. The studies presented here delve into the details of adsorption and desorption of tetracycline (TET) and vancomycin (VAN) on nanodiamond, which are critically important for the rational design of the nanodiamond drug delivery systems. The nanodiamonds studied in these experiments were as-received (ND), purified and carboxyl terminated (ND-COOH), and aminated (ND-NH2). The monolayer capacities of the drugs loaded onto the nanodiamonds are reported herein using Langmuir and Freundlich isotherm models. The results from the desorption studies demonstrate that, by changing the pH environment of drug loaded nanodiamond using buffers of pH 4.09, 7.45, 8.02, and a phosphate buffered saline (PBS) solution, the drug release can effectively be triggered. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  10. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  11. Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack

    Directory of Open Access Journals (Sweden)

    Kashefi Sepideh

    2018-01-01

    Full Text Available Zeolite beta nanoparticles were used as a new asphaltene adsorbent for reducing asphaltene deposition during fluid injection into a silica sand pack. At first, the asphaltene adsorption efficiency and capacity of zeolite beta nanoparticles were determined by UV-Vis spectrophotometer. It was found that the proper concentration of nanoparticles for asphaltene adsorption was 10 g/L and the maximum asphaltene adsorption onto zeolite beta was 1.98 mg/m2. Second, two dynamic experiments including co-injection of crude oil and n-heptane (as an asphaltene precipitant with and without use of zeolite beta nanoparticles in the sand pack was carried out. The results showed that the use of zeolite beta nanoparticles increased the permeability ratio and outlet fluid's asphaltene content about 22% and 40% compared to without use of nanoparticles, respectively. Moreover, a model based on monolayer asphaltene adsorption onto nanoparticles and asphaltene deposition mechanisms including surface deposition, entrainment and pore throat plugging was developed to determine formation damage during co-injection of crude oil and n-heptane into the sand pack. The proposed model presented good prediction of permeability and porosity ratios with AAD% of 1.07 and 0.07, respectively.

  12. A one-step thermal decomposition method to prepare anatase TiO{sub 2} nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Shang, Chunli; Li, Xue, E-mail: chm_lix@ujn.edu.cn

    2015-12-01

    Highlights: • Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO{sub 2} NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO{sub 2} NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO{sub 2} NSs possess high surface area up to 378 m{sup 2} g{sup −1}. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO{sub 2} NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO{sub 2} NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  13. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong

    2013-08-20

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  14. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo

    2013-01-01

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  15. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotid...

  16. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  18. Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Mao, Jianjun; Zhang, Yanxing; Chu, Xingli; Li, Shasha; Yang, Zongxian

    2016-01-01

    The adsorption, diffusion, and dissociation of O 2 on the palladium monolayer supported on TiC(001) surface, MLPd/TiC(001), are investigated using ab initio density functional theory calculations. Strong adhesion of palladium monolayer to the TiC(001) support, accompanied by a modification of electronic structure of the supported palladium, is evidenced. Compared with Pt(111) surface, the MLPd/TiC(001) can enhance the adsorption of O 2 , leading to comparable dissociation barrier and a smaller diffusion barrier of O 2 . Whilst the adsorption strength of atomic O (the dissociation product of O 2 ) on MLPd/TiC(001) is similar to that on the Pt(111) surface, possessing high mobility, our theoretical results indicate that MLPd/TiC(001) may serve as a good catalyst for the oxygen reduction reaction.

  19. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    Science.gov (United States)

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  20. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  1. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves.

    Science.gov (United States)

    Beltrame, Karla K; Cazetta, André L; de Souza, Patrícia S C; Spessato, Lucas; Silva, Taís L; Almeida, Vitor C

    2018-01-01

    The present work reports the preparation of activated carbon fibers (ACFs) from pineapple plant leaves, and its application on caffeine (CFN) removal from aqueous solution. The preparation procedure was carried out using the H 3 PO 4 as activating agent and slow pyrolysis under N 2 atmosphere. The characterization of materials was performed from the N 2 adsorption and desorption isotherms, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Boehm titration and pH pzc method. ACFs showed high BET surface area value (S BET = 1031m 2 g -1 ), well-developed mesoporous structure (mesopore volume of 1.27cm³ g -1 ) and pores with average diameter (D M ) of 5.87nm. Additionally, ACFs showed features of fibrous material with predominance of acid groups on its surface. Adsorption studies indicated that the pseudo-second order kinetic and Langmuir isotherm models were that best fitted to the experimental data. The monolayer adsorption capacity was found to be 155.50mgg -1 . thermodynamic studies revealed that adsorption process is spontaneous, exothermic and occurs preferably via physisorption. The pineapple leaves are an efficient precursor for preparation of ACFs, which were successful applied as adsorbent material for removal of caffeine from the aqueous solutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field.

    Science.gov (United States)

    Fan, Kaimin; Tang, Jing; Wu, Shiyun; Yang, Chengfu; Hao, Jiabo

    2016-12-21

    The adsorption and diffusion behaviors of lithium (Li) in a graphene/blue-phosphorus (G/BP) heterostructure have been investigated using a first principles method based on density functional theory (DFT). The effect of an external electric field on the adsorption and diffusion behaviors has also been investigated. The results show that the adsorption energy of Li on the graphene side of the G/BP heterostructure is higher than that on monolayer graphene, and Li adsorption on the BP side of the G/BP/Li system is slightly stronger than that on monolayer BP (BP/Li). The adsorption energy of Li reaches 2.47 eV, however, the energy barriers of Li diffusion decrease in the interlayer of the G/BP heterostructure. The results mentioned above suggest that the rate performance of the G/BP heterostructure is better than that of monolayer graphene. Furthermore, the adsorption energies of Li atoms in the three different most stable sites, i.e., H G , T P and H 1 sites, increase by about 0.49 eV, 0.26 eV, and 0.13 eV, respectively, as the electric field intensity reaches 0.6 V Å -1 . The diffusion energy barrier is significantly decreased by an external electric field. It is demonstrated that the external electric field can not only enhance the adsorption but can also modulate the diffusion barriers of Li atoms in the G/BP heterostructure.

  3. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    International Nuclear Information System (INIS)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk; Jeong, Woochang

    2013-01-01

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter

  5. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk [Korea Water Resources Corporation, Daejeon (Korea, Republic of); Jeong, Woochang [Kyungnam University, Changwon (Korea, Republic of)

    2013-04-15

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter.

  6. Reservoir capacity estimates in shale plays based on experimental adsorption data

    Science.gov (United States)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  7. Tellurium adsorption on single crystal faces of molybdenum and tungsten field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1978-01-01

    The purpose of this letter is to report the extension of previous studies of Te adsorption on Mo and W field emitters to measurements on single crystal planes. The adsorption of semiconductors on metallic emitters has been found to be characterized by simultaneous decreases in emission current and the Fowler-Nordheim work function for adsorbate coverages of less than a monolayer. (Auth.)

  8. Adsorption of xenon and krypton on shales

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  9. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  10. Molecular simulation of methane adsorption characteristics on coal macromolecule

    Science.gov (United States)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  11. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    Science.gov (United States)

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Angel Fernandez, J

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Surface cleaning and adsorbate layer formation: Dual role of alkylamines in the formation of self-assembled monolayers on cuprate superconductors

    International Nuclear Information System (INIS)

    Ritchie, J.E.; Murray, W.R.; Kershan, K.; Diaz, V.; Tran, L.; McDevitt, J.T.

    1999-01-01

    The development of monolayer adsorption chemistry for superconductor surfaces is particularly important for a number of practical and fundamental reasons. As high-T c superconductors begin to approach the marketplace in areas of communications, power industries, medical applications, and scientific instrumentation, the development of new soft chemistry approaches for the surface modification of these technologically relevant electronic materials becomes increasingly important. Monolayer adsorption chemistry has been developed extensively for electronic materials such as metals, semiconductors, and insulators. These methodologies have been expanded recently to include a variety of high-temperature superconductors (HTSCs). The authors describe a series of new X-ray photoelectron spectroscopy (XPS), four-point conductivity, critical current, atomic absorption spectroscopy (AAS), grazing angle infrared spectroscopy, and GE--MS experiments, which lead the suggestion that an entirely different mechanism is involved in the formation of HTSC-localized monolayers. According to the new model, the amine reagents serve two chemically distinct roles. In the initial phase, the degraded superconductor exteriors is etched away with the help of the amine compounds. The etching process proceeds to the point where fresh YBa 2 Cu 3 O 7 is exposed, and only at this point do the amines adsorb and remain at the YBa 2 Cu 3 O 7 surface. As the adsorption process continues, there is an accumulation of an organized monolayer at the surface, which prevents further etching of the YBa 2 Cu 3 O 7 material

  13. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces.

    Science.gov (United States)

    Hayashi, Tomohiro; Tanaka, Yusaku; Koide, Yuki; Tanaka, Masaru; Hara, Masahiko

    2012-08-07

    The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.

  14. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States); Knesting, Kristina M. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Bulusu, Anuradha [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sigdel, Ajaya K. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Giordano, Anthony J.; Marder, Seth R. [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Berry, Joseph J. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Graham, Samuel [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Ginger, David S. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Pemberton, Jeanne E., E-mail: pembertn@email.arizona.edu [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States)

    2016-12-15

    Highlights: • Deposition of phosphonic acid monolayers on oxides from ethanol solutions occurs by rapid adsorption within 10 s with slower equilibration complete in 48 h. • The slower equilibration step involves molecular reorientation and vacancy filling on the oxide surface. • Soak-free deposition by spray coating and microcontact printing do not provide reproducible, fully-covered, uniform monolayers without substrate etching. • Adjustments to exposure time, substrate temperature, and solution/substrate contact efficiency are necessary to optimize soak-free methods. - Abstract: Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F{sub 5}BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F{sub 13}-octylphosphonic acid (F{sub 13}OPA), and pentafluorinated benzyl phosphonic acid (F{sub 5}BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48–168 h solution

  15. First-principle study of hydrogenation on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yong; Li, Yin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Chen, Xi; Zhang, Ru [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 102209 (China); Zhang, Chunfang [Beijing Computational Science Research Center, Beijing 100094 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    The structural and electronic properties of hydrogenation on 1H-MoS{sub 2} and 1T-MoS{sub 2} have been systematically explored by using density functional theory (DFT) calculations. Our calculated results indicate an energetically favorable chemical interaction between H and MoS{sub 2} monolayer for H adsorption when increasing concentration of H atoms. For 1H-MoS{sub 2}, single H atom adsorption creates midgap approaching the Fermi level which increases the n-type carrier concentration effectively. As a consequence, its electrical conductivity is expected to increase significantly. For 1T-MoS{sub 2}, H atoms adsorption can lead to the opening of a direct gap of 0.13 eV compared to the metallic pristine 1T-MoS{sub 2}.

  16. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  17. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    Science.gov (United States)

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  18. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Rocha Junior, Carlos da; Caseli, Luciano

    2017-01-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  19. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Rocha Junior, Carlos da; Caseli, Luciano, E-mail: lcaseli@unifesp.br

    2017-04-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  20. Improving catalytic selectivity through control of adsorption orientation

    Science.gov (United States)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a

  1. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  2. Adsorption of Amido Black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite

    International Nuclear Information System (INIS)

    Zhang, Lujie; Hu, Pan; Wang, Jing; Huang, Ruihua

    2016-01-01

    Graphical abstract: - Highlights: • Zr-CCB was prepared and characterized. • The adsorption of AB10B followed the Langmuir isotherm model. • The pseudo-second-order model described the kinetic behavior. - Abstract: Zr(IV) surface-immobilized cross-linked chitosan/bentonite composite was synthesized by immersing cross-linked chitosan/bentonite composite in zirconium oxychloride solution, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy techniques. The adsorption of an anionic dye, Amido Black 10B, from aqueous solution by Zr(IV) loaded cross-linked chitosan/bentonite composite was investigated as a function of loading amount of Zr(IV), adsorbent dosage, pH value of initial dye solution, and ionic strength. The removal of Amido Black 10B increased with an increase in loading amount of Zr(IV) and adsorbent dosage, but decreased with an increase in pH or ionic strength. The adsorption of AB10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite was favored at lower pH values and higher temperatures. The Langmuir isotherm model fitted well with the equilibrium adsorption isotherm data and the maximum monolayer adsorption capacity was 418.4 mg/g at natural pH value and 298 K. The pseudo-second-order kinetic model well described the adsorption process of Amido Black 10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite. The possible mechanisms controlling Amido Black 10B adsorption included hydrogen bonding and electrostatic interactions.

  3. Adsorption of Amido Black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lujie; Hu, Pan; Wang, Jing; Huang, Ruihua, E-mail: hrh20022002@163.com

    2016-04-30

    Graphical abstract: - Highlights: • Zr-CCB was prepared and characterized. • The adsorption of AB10B followed the Langmuir isotherm model. • The pseudo-second-order model described the kinetic behavior. - Abstract: Zr(IV) surface-immobilized cross-linked chitosan/bentonite composite was synthesized by immersing cross-linked chitosan/bentonite composite in zirconium oxychloride solution, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy techniques. The adsorption of an anionic dye, Amido Black 10B, from aqueous solution by Zr(IV) loaded cross-linked chitosan/bentonite composite was investigated as a function of loading amount of Zr(IV), adsorbent dosage, pH value of initial dye solution, and ionic strength. The removal of Amido Black 10B increased with an increase in loading amount of Zr(IV) and adsorbent dosage, but decreased with an increase in pH or ionic strength. The adsorption of AB10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite was favored at lower pH values and higher temperatures. The Langmuir isotherm model fitted well with the equilibrium adsorption isotherm data and the maximum monolayer adsorption capacity was 418.4 mg/g at natural pH value and 298 K. The pseudo-second-order kinetic model well described the adsorption process of Amido Black 10B onto Zr(IV) loaded cross-linked chitosan/bentonite composite. The possible mechanisms controlling Amido Black 10B adsorption included hydrogen bonding and electrostatic interactions.

  4. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  5. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  7. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  8. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    Science.gov (United States)

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Potassium adsorption behaviour of three Malaysian rice soils

    International Nuclear Information System (INIS)

    Choudhury, A.T.M.A.; Khanif, Y.M.

    2003-01-01

    Potassium (K) deficiency exists in different rice growing areas of Malaysia. A study on K adsorption was carried out in three Malaysian rice soils (Guar, Hutan and Kangar series) using six levels of K (0.00,28.77, 33.57, 38.37, 43.16 and 47.96 mmol kg/sup -1/). The data on K adsorption were fitted into Langmuir, Freundlich, and Temkin adsorption equations. Adsorption data were also correlated with pH, cation exchange capacity and organic matter content of the soils. Potassium adsorption increased linearly with increasing level of added K in all the three soils. The rate of increase was the highest in Guar series followed by Kangar and Hutan series, respectively. Potassium adsorption in two soils (Hutan and Kangar) fitted into Langmuir equation while he adsorption data in Guar series did not fit into this equation. Adsorption data in none of the soils fitted well in Freundlich and Temkin adsorption equations. Correlation between K adsorption and pH was significant (r = 0.881,), whereas, correlation of K adsorption with either organic matter content or cation exchange capacity was non-significant. The results of this study indicated that K adsorption is mainly dependent on soil pH. In soils with higher adsorption capacity, more K fertilizer may be needed to get immediate crop response. (author)

  10. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Kim, Im-Soon [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Yang, Jae-Kyu [Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Koduru, Janardhan Reddy, E-mail: reddyjchem@gmail.com [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Chang, Yoon-Young, E-mail: yychang@kw.ac.kr [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Novel porous Ferromagnetic, GONF and Superparamagnetic, rGONF preparation. • The nanosize particles GONF (41.14 nm) and rGONF (32.16 nm) preparation. • Adsorption mechanism and modeling developments for radionuclides. • Zeta potential and surface site density of nanocomposites for comparison. - Abstract: For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41 nm and 32.16 nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333 ± 2 K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

  11. Computational studies at the density functional theory (DFT) level about the surface functionalization of hexagonal monolayers by chitosan monomer

    Science.gov (United States)

    Ebrahimi, Javad; Ahangari, Morteza Ghorbanzadeh; Jahanshahi, Mohsen

    2018-05-01

    Theoretical investigations based on density functional theory have been carried out to understand the underlying interactions between the chitosan monomer and several types of hexagonal monolayers consisting of pristine and defected graphene and boron-nitride nanosheets. Based on the obtained results, it was found that the type of the interaction for all the systems is of non-covalent nature and the chitosan monomer physically interacts with the surface of mentioned nanostructures. The interaction strength was evaluated by calculating the adsorption energies for the considered systems and it was found that the adsorption of chitosan monomer accompanies by the release of about -0.67 and -0.66 eV energy for pristine graphene and h-BN monolayer, respectively. The role of structural defect has also been considered by embedding a Stone-Wales defect within the structure of mentioned monolayers and it was found that the introduced defect enhances the interactions between the chitosan monomer and nanostructures. The role of dispersion interactions has also been taken into account and it was found that these long-range interactions play the dominating role in the attachment of chitosan monomer onto the graphene sheet, while having strong contribution together with the electrostatic interactions for the stabilization of chitosan onto the surface of h-BN monolayer. For all the cases, the adsorption of chitosan monomer did not change the inherent electronic properties of the nanostructures based on the results of charge transfer analysis and energy gap calculations. The findings of the present work would be very useful in future investigations to explore the potential applications of these hybrid materials in materials science and bio-related fields.

  12. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuexin [College of Chemistry, Beijing Normal University, Beijing 100875 (China); School of Pharmacy, North China University of Science and Technology, Tangshan 063000 (China); Jia, Zhiqian, E-mail: zhqjia@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-11-05

    Highlights: • Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared. • The removal efficiency for 4-nitrotoluene is greater than 95% after five recycles. • The membrane showed higher adsorption capacity than that of mixed matrix membrane. - Abstract: Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles.

  13. Adsorption of lysozyme unto silica and polystyrene surfaces in ...

    African Journals Online (AJOL)

    The adsorption capacity of lysozyme (chicken egg white) from aqueous solutions unto silica and polystyrene interfaces was studied at varying lysozyme concentrations and ionic strength. The studies revealed an increase in adsorption capacity with increase in concentration and with maximum adsorption densities of 1.34 ...

  14. Adsorption of antibiotics on microplastics.

    Science.gov (United States)

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    Science.gov (United States)

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Simulation of the adsorption capacity of polar organic compounds and dyes from water onto activated carbons: Model development and validation

    Directory of Open Access Journals (Sweden)

    Warisa Bunmahotama

    2018-03-01

    Full Text Available A model approach is developed to simulate the adsorption isotherms of low-molecular-weight polar organic compounds (LMWPOCs, halogenated LMWPOCs, and dye molecules onto activated carbons (AC. The models were based on the Dubinin–Astakhov equation, with the limiting pore volume of adsorbent estimated from the pore size distribution data, and the adsorption affinity of the adsorbate described by the molecular connectivity index. The models were used to simulate the adsorption data of 87 LMWPOCs onto six ACs, 25 halogenated LMWPOCs onto two ACs and 22 dyes onto three ACs. The developed models follow the experimental data fairly well, with errors of 49, 33 and 43% for the tested LMWPOCs, halogenated LMWPOCs, and dyes, respectively. This study shows that the developed model approach may provide a simple means for the estimation of adsorption capacity for LMWPOCs and dyes onto ACs in water.

  17. Fibrinogen adsorption on blocked surface of albumin.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Synthesis and granulation of a titanosilicate with adsorption capacity for Cs to be used for treating de ILLW of the Ezeiza Radioisotope Production Plant

    International Nuclear Information System (INIS)

    Curi, Rodrigo; Bianchi, Hugo L; Luca, Vittorio

    2012-01-01

    The sitinakite structured titanosilicate is widely used for treating ILLW thanks to its capacity for adsorbing both Cs-137 and Sr-90. Its effectiveness lies in its incredibly high selectivity for such radioisotopes, which makes it useful in complex isotope solutions and even in strong acid and alkaline conditions. In Argentina, an off-the-shelve titanosilicate was used in Ezeiza's radioisotope production plant. Because of commercial restrictions, it is no longer available so an inhouse production is being developed. The aim of this project consists of the following: 1. Synthesis of titanosilicate and structural characterization 2. Adsorption kinetics of Cs + 3. Upscale of the synthesis process 4. Assessment of the influence of synthesis temperature and time on product crystallinity 5. Measurement of adsorption capacity of commercial titanosilicates IE910, IE911 and novel RC15H 6. Separative performance column essay and breakthrough plot 7. Chemical and radiolysis resistance of the adsorbent powder binder Polyacrylonitrile (PAN) in contact with the actual waste Throughout this work we have studied the optimum synthesis conditions capable of rendering a sitinakite structured titanosilicate, assessed its Cs + adsorption kinetics, adsorption capacity, crystal phase and purity via DRX, particle size with Laser Light Scattering technique. We have also conducted column breakthrough experiments and tried the chemical and radiolysis resistance of the final product (author)

  19. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA

    DEFF Research Database (Denmark)

    Grubb, Mikala; Wackerbarth, Hainer; Wengel, J.

    2007-01-01

    We describe adsorption and identification of the binding sites of [Ru(NH3)(6)](3+) (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ...

  20. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  1. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    Science.gov (United States)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    Science.gov (United States)

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  3. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X = -NH2, -OH, -N, -F).

    Science.gov (United States)

    Liu, Xiao-le; Chen, Guang-Hui; Wang, Xiu-Jun; Li, Peng; Song, Yi-Bing; Li, Rui-Yan

    2017-11-15

    The adsorption capacities of a heterometallic metal-organic framework (CPM-200-In/Mg) to VOCs (HCHO, C 2 H 4 , CH 4 , C 2 H 2 , C 3 H 8 , C 2 H 6 , C 2 H 3 Cl, C 2 H 2 Cl 2 , CH 2 Cl 2 and CHCl 3 ) and some inorganic gas molecules (HCN, SO 2 , NO, CO 2 , CO, H 2 S and NH 3 ), as well as its selectivity in ternary mixture systems of natural gas and post-combustion flue gas are theoretically explored at the grand canonical Monte Carlo (GCMC) and density functional theory (DFT) levels. It is shown that CPM-200-In/Mg is suitable for the adsorption of VOCs, particularly for HCHO (up to 0.39 g g -1 at 298 K and 1 bar), and the adsorption capacities of some inorganic gas molecules such as SO 2 , H 2 S and CO 2 match well with the sequence of their polarizability (SO 2 > H 2 S > CO 2 ). The large adsorption capacities of HCN and HCHO in the framework result from the strong interaction between adsorbates and metal centers, based on analyzing the radial distribution functions (RDF). Comparing C 2 H 4 and CH 4 molecules interacting with CPM-200-In/Mg by VDW interaction, we speculate that the high adsorption capacities of their chlorine derivatives in the framework could be due to the existence of halogen bonding or strong electrostatic and VDW interactions. It is found that the basic groups, including -NH 2 , -N and -OH, can effectively improve both the adsorption capacities and selectivity of CPM-200-In/Mg for harmful gases. Note that the adsorption capacity of CPM-200-In/Mg-NH 2 (site 2) (245 cm 3 g -1 ) for CO 2 exceeded that of MOF-74-Mg (228 cm 3 g -1 ) at 273 K and 1 bar and that for HCHO can reach 0.41 g g -1 , which is almost twice that of 438-MOF and nearly 45 times of that in active carbon. Moreover, for natural gas mixtures, the decarburization and desulfurization abilities of CPM-200-In/Mg-NH 2 (site 2) have exceeded those of the MOF-74 series, while for post-combustion flue gas mixtures, the desulfurization ability of CPM-200-In/Mg-NH 2 (site 2) is still

  4. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  5. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  6. Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2014-01-01

    Full Text Available Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2 adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.

  7. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Directory of Open Access Journals (Sweden)

    Valquíria Campos

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol–1 is thermally more stable than 3,6 ionene (E = 115.52 kJ mol–1 complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  8. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    Science.gov (United States)

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  9. A Novel Absorbent of Nano-Fe Loaded Biomass Char and Its Enhanced Adsorption Capacity for Phosphate in Water

    Directory of Open Access Journals (Sweden)

    Hongguang Zhou

    2013-01-01

    Full Text Available A novel composite adsorbent of Fe loaded biomass char (Fe-BC was fabricated to treat phosphorus in water. Fe-BC was prepared by a procedure including metal complex anion incorporation and precipitation with the pyrolysis char of corn straw as supporting material. The abundant porous structures of the as-prepared sample can be easily observed from its scanning electron microscopy (SEM images. Observations by X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses show that inorganic nanoiron oxides deposited in the composite could be amorphous hydrous iron oxide α-FeOOH. Adsorption of phosphate onto the Fe-BC composite and its precursor (BC from aqueous solutions were investigated and discussed. The equilibrium adsorption data of phosphate was described by Langmuir and Freundlich models, and Langmuir isotherm was found to be better fitted than Freundlich isotherm. The maximum phosphate adsorption capacity for phosphate of Fe-BC was as high as 35.43 mg/g, approximately 2.3 times of BC at 25°C. The adsorption kinetics data were better fitted by pseudo-second-order model and intraparticle diffusion model, indicating that the adsorption process was complex. The Fe-BC composite has been proved as an effective adsorbent of phosphate from aqueous solutions owing to its unique porous structures and the greater Lewis basicity of the α-FeOOH.

  10. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanhui, E-mail: liyanhui@tsinghua.org.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Yanzhi, E-mail: xiayzh@qdu.edu.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Linhua; Wang, Zonghua [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai [Key Laboratory for Advanced Manufacturing by Material Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  11. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    International Nuclear Information System (INIS)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-01-01

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m 2 /g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  12. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Anandkumar, J. [Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Mandal, B., E-mail: bpmandal@iitg.ernet.in [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2011-02-28

    In this study, various activation methods have been employed to examine the potential reuse of tannery residual biomass (TRB) obtained from vegetable tanning process for the removal of Cr(VI) and Rhodamine B (RB) from aqueous solution. The maximum BET surface area (10.42 m{sup 2}/g), honey comb pore distribution and uptake of both Cr(VI) and RB were achieved when only 3-fold volume of HCl was used to activate the biomass. The pH and temperature experiment showed that they have considerable impact on the adsorption capacity of the used adsorbent. The presence of other ions (Na{sup +}, Ca{sup 2+} and NH{sub 4}{sup +}) significantly reduces the metal uptake but marginal enhancement in the dye removal was observed when Na{sup +} and NH{sub 4}{sup +} ions were present in the solution. The equilibrium data fitted satisfactorily with the Langmuir model and monolayer sorption capacity obtained as 177-217 and 213-250 mg/g for Cr(VI) and RB at 30-50 deg. C, respectively. The sorption kinetics was found to follow the pseudo-second-order kinetic model. The increase in adsorption capacity for both metal and dye with increase in temperature indicates that the uptake was endothermic in nature. The results indicate that the HCl modified TRB (A-TRB) could be employed as a low cost adsorbent for the removal of both Cr(VI) and RB from the aqueous solution including industrial wastewater.

  13. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y., E-mail: yamada@bk.tsukuba.ac.jp; Sasaki, M. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  14. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  15. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  16. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  17. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  18. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    Science.gov (United States)

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  19. Water adsorption by a sensitive calibrated gold plasmonic nanosensor.

    Science.gov (United States)

    Demirdjian, Benjamin; Bedu, Frédéric; Ranguis, Alain; Ozerov, Igor; Henry, Claude R

    2018-04-20

    We demonstrate in this work that using nanoplasmonic sensing it is possible to follow the adsorption/desorption of water molecules on gold nanodisks nanofabricated by electron beam lithography. This quantitative method is highly sensitive allowing the detection of a few hundredths of adsorbed monolayers. Disk parameters (height, diameter, inter-disk distance) have been optimized after finite-difference time-domain (FDTD) simulations in order to obtain the best localized surface plasmon resonance (LSPR) signal-to-noise ratio. Finally, we have precisely measured the adsorption kinetics of water on gold as a function of the relative humidity of the surrounding medium.

  20. Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas

    Science.gov (United States)

    Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini

    2018-04-01

    Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.

  1. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    of these problems could be due to the fact that the original MPTA assumes that a given adsorbent has the same adsorption capacity (for example, porous volume) for all the adsorbed substances and is adjusted simultaneously to many data. This is a simplified picture, as experimental data indicate that the adsorption......-Radushkevich-Astakhov potentials and the potentials directly restored from experimental data by solving the inverse problem. Application of the latter potentials Clearly demonstrates the importance of the difference in adsorption capacities. However, the quality of prediction of binary adsorption is similar for both potentials...

  2. Adsorption of volatile organic compounds by polytetra-fluor ethylene

    International Nuclear Information System (INIS)

    Martinet, J.M.

    1958-01-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N 2 adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [fr

  3. Behaviour of cetyltrimethylammonium bromide, Triton X-100 and Triton X-114 in mixed monolayer at the (water–air) interface

    International Nuclear Information System (INIS)

    Szymczyk, Katarzyna; Zdziennicka, Anna; Krawczyk, Joanna; Jańczuk, Bronisław

    2014-01-01

    Graphical abstract: Synergetic effect of the binary and ternary mixtures of surfactants at their concentration equal to 1 · 10 −5 M in the reduction of the water surface tension. -- Highlights: • Joos equation modified by us is useful for the ternary mixtures of surfactant. • Composition of the CTAB + TX-100 + TX-114 monolayer is not proportional to the bulk phase. • Synergetic effect of the TX-100, TX-114 and CTAB mixtures is confirmed by the adsorption efficiency. • Adsorption efficiency of ternary mixtures is not related to their effectiveness. -- Abstract: The measured values of the surface tension of aqueous solution of binary and ternary mixtures including CTAB, TX-100 and TX-114 were compared to those calculated from the Joos equation modified by us. It appeared that it is possible to predict, at the first approximation, the changes of the surface tension of aqueous solutions studied as a function of concentration of all possible binary and ternary mixtures in the range from 0 to the minimal value of their surface tension. However, the deviations of the calculated values of surface tension from those measured depend on the synergetic effect in the reduction of water surface tension. This effect was established by the values of the molecular interaction parameter calculated from the Rosen and Hua equations. From these equations the relative mole fraction of three surfactants in the mixed monolayer at the (water–air) interface was also determined and compared to that obtained by using surface excess concentrations of particular surfactants in this monolayer. As follows from this comparison the Rosen and Hua equations give the proper relation between the mole fraction of TX-100, TX-114 and CTAB in the monolayer but on the condition it is determined at the same concentration of each surfactant in the mixture. The synergetic effect of ternary mixture in the reduction of the water surface tension is also reflected in the changes of the values of the

  4. Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yuanyuan [Department of Chemistry, Shandong University, Jinan 250100 (China); Chen Shenhao [Department of Chemistry, Shandong University, Jinan 250100 (China) and State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)]. E-mail: shchen@sdu.edu.cn; Zhang Honglin [Department of Chemistry, Qufu Normal University, Qufu 273165 (China); Li Ping [Department of Chemistry, Shandong University, Jinan 250100 (China); Wu Ling [Department of Chemistry, Shandong University, Jinan 250100 (China); Guo Wenjuan [Department of Chemistry, Shandong University, Jinan 250100 (China)

    2006-12-30

    A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.

  5. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    Science.gov (United States)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  6. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    Science.gov (United States)

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN activated carbon.

  7. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  8. Study on sorption capacity and characterization of Sr2+ on synthetic zeolite

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2010-01-01

    Sr 2+ adsorption capacity of synthetic zeolite(ZF) are studied with the intermittence method, and ZF adsorbed the Sr 2+ is characterized and analyzed by XRD, as a reference for the evaluation of the disposal effectiveness of low and medium radwastes. The results show that Sr 2+ adsorption capacity of ZF is good, and the equilibrium time for ZF to adsorb Sr 2+ is in range of 5-14 days. Sr 2+ concentration has the greatest effect on ZF adsorption capacity,and the medium,temperature and pH value of the solution also have effect on ZF adsorption capacity. With the augment of Sr 2+ concentration,the Sr 2+ equilibrium adsorption quantity of ZF increases,but the equilibrium adsorption rate and equilibrium adsorption ratio decreases. Sr 2+ adsorption capacity of ZF improves with the augment of pH value. Sr 2+ adsorption capacity of ZF is complicate and varies with the different ion, concentration and other components in the medium solution. Sr 2+ adsorption capacity of ZF increases with the augment of temperature. As a whole, when Sr 2+ concentration in the solution is 0.005mol/L, the pH value of the solution, and the temperature of medium and solution have less effect on the Sr 2+ adsorption capacity of ZF, and the unit cell parameter of ZF adsorbed Sr 2+ decreases. (authors)

  9. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2015-09-01

    The present study investigated the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludges and sewage sludge-derived biochars. The organic carbon normalized distribution coefficient (log K(OC) for C(w) = 0.01 S(w)) for the sewage sludges ranged from 5.62 L kg(-1) to 5.64 L kg(-1) for PHE and from 5.72 L kg(-1) to 5.75 L kg(-1) for PYR. The conversion of sewage sludges into biochar significantly increased their sorption capacity. The value of log K(OC) for the biochars ranged from 5.54 L kg(-1) to 6.23 L kg(-1) for PHE and from 5.95 L kg(-1) to 6.52 L kg(-1) for PYR depending on temperature of pyrolysis. The dominant process was monolayer adsorption in the micropores and/or multilayer surface adsorption (in the mesopores), which was indicated by the significant correlations between log K(OC) and surface properties of biochars. PYR was sorbed better on the tested materials than PHE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adsorption of mercury compounds by tropical soils. I. Adsorption in soil profiles in relation to their physical, chemical, and mineralogical properties

    Energy Technology Data Exchange (ETDEWEB)

    Semu, E.; Singh, B.R.; Selmer-Olsen, A.R.

    1986-01-01

    Mercury adsorption of HgCl/sub 2/ and 2-methoxyethylmercury chloride (Aretan) (100 mg Hg L/sup -1/) was measured for three soil profiles from Morogoro, Arusha, and Dar es Salaam in Tanzania. The adsorption was investigated for the physical, chemical, and mineralogical properties of soils. All soil samples showed greater capacity for adsorption of Aretan than for HgCl/sub 2/. In the Morogoro profile Hg adsorption decreased with depth but in the other two soils, the minimum adsorption occurred in the third horizon and increased both upwards and downwards. In the Morogoro profile, Aretan adsorption correlated well with pH. Adsorption of both Aretan and HgCl/sub 2/ correlated well with the distribution of organic C and with the cation exchange capacity of the soils. In the Arusha and Dar es Salaam profiles Hg adsorption was not significantly correlated with any of the soil properties tested.

  11. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  12. Adsorption behavior of U (Ⅵ) and mechanism analysis by organically modified vermiculite

    International Nuclear Information System (INIS)

    Xiao Yiqun; Zhou Yantong; Xia Liangshu; Fu Wanfa; Liu Wenjuan; Liang Xin

    2014-01-01

    The adsorption behavior of U (Ⅵ) on modified vermiculite by HDTMA · Br was studied with static experiments. The effects of the amount of adsorbent, pH, initial mass concentration of uranium and time on the removal rate of uranium were investigated. The unit mass of adsorption process was analyzed in thermodynamics and kinetics, and the adsorption mechanism was analyzed with FT-IR and SEM. The results indicate that the removal rate of uranium can increase with the increase of adsorbent amount and time, and the decrease of initial mass concentration of uranium. The adsorption equilibrium tends to be achieved in 120 min, and solution using flocculant and modified vermiculite can be improved. The adsorption of uranium by organically modified vermiculite is a complex process, so Langmuir monolayer adsorption theory and Freundlich adsorption theory cannot fully explain the adsorption process. The removal mechanism of uranium by using modified vermiculite fits Langmuir adsorption law, and is in line with quasi-second order kinetic equation. It is confirmed by FT-IR that -OH and Si = O play an important role in the adsorption of uranium. SEM shows that the adsorption of uranium using modified vermiculite causes the structure change. (authors)

  13. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Science.gov (United States)

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  14. Evaluation of sorption capacity of scrap tyre in the removal of copper (II) ion from aqua system

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ofomaja, A.; Ebare, E.; Ebare, E.

    2006-01-01

    The use of scrap-tyre (ST), which was both a waste and pollutant was investigated as a low-cost sorbent to sorbed Cu (II) from aqueous solution. The influence of pH, sorbent dosage, contact time, and initial sorbate concentration on the uptake of Cu (II) by ST were studied. Optimum sorption of Cu (II) by ST was achieved at pH 6. The amount Of sorbate sorbed per gram of sorbent decreased with increase in sorbent dosage. Maximum uptake of the Cu (II) was achieved within the first thirty minutes of contact between the ST and the Cu (II). The equilibrium relationship between the concentration of the Cu (II) in the fluid phase and the concentration in the ST particles at a given temperature showed that the sorption mechanism was like adsorption rather than distribution into any phase. Analysis of the result using Langmuir and Freundlich models showed that it conformed to Langmuir equation based on the formation of a monomolecular layer. The adsorption capacity due to monolayer coverage was 12.95 mg/g, while the energy of adsorption was 3.95 dm/mg. (author)

  15. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  16. NH3 adsorption on anatase-TiO2(101)

    Science.gov (United States)

    Koust, Stig; Adamsen, Kræn C.; Kolsbjerg, Esben Leonhard; Li, Zheshen; Hammer, Bjørk; Wendt, Stefan; Lauritsen, Jeppe V.

    2018-03-01

    The adsorption of ammonia on anatase TiO2 is of fundamental importance for several catalytic applications of TiO2 and for probing acid-base interactions. Utilizing high-resolution scanning tunneling microscopy (STM), synchrotron X-ray photoelectron spectroscopy, temperature-programmed desorption (TPD), and density functional theory (DFT), we identify the adsorption mode and quantify the adsorption strength on the anatase TiO2(101) surface. It was found that ammonia adsorbs non-dissociatively as NH3 on regular five-fold coordinated titanium surface sites (5f-Ti) with an estimated exothermic adsorption energy of 1.2 eV for an isolated ammonia molecule. For higher adsorbate coverages, the adsorption energy progressively shifts to smaller values, due to repulsive intermolecular interactions. The repulsive adsorbate-adsorbate interactions are quantified using DFT and autocorrelation analysis of STM images, which both showed a repulsive energy of ˜50 meV for nearest neighbor sites and a lowering in binding energy for an ammonia molecule in a full monolayer of 0.28 eV, which is in agreement with TPD spectra.

  17. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  18. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Gunjan Bisht

    2016-01-01

    Full Text Available Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (VI from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO2, a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and vibrating magnetometric analysis (VSM. The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (VI removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at pH 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs (i.e., 99.9% than their nonmodified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (qe = 452.26 mg/g of MIONPs attained can be related to their preparation in Sc CO2 as qe calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (VI were modeled by pseudo-second-order model.

  19. Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications.

    Science.gov (United States)

    Carrascosa, Laura G; Martínez, Lidia; Huttel, Yves; Román, Elisa; Lechuga, Laura M

    2010-09-01

    A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.

  20. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  1. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  2. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  3. A density functional study of nitrogen adsorption in single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Jie; Wang Yao; Li Wenjun; Wei Fei; Yu Yangxin

    2007-01-01

    An understanding of the adsorption behaviour of nitrogen in single-wall carbon nanotubes (SWCNTs) is necessary for obtaining information on its pores by nitrogen adsorption manometry. Non-local density functional theory was used to simulate nitrogen adsorption behaviour, including the adsorption isotherms, equilibrium density profiles and potential energy of the nitrogen molecules at 77 K, inside SWCNTs with diameters ranging from 0.696 to 3.001 nm. With increasing diameter, nitrogen adsorption changes from continuous filling in one dimension to a two-stage adsorption that corresponds to monolayer formation followed by multilayer condensation. The average density of the adsorbed nitrogen and the density profiles, especially in small diameter SWCNTs, were used to analyse the adsorbate phase at the saturation pressure. The results indicate that the type of pore filling depends primarily on the ratio of the SWCNT diameter to the adsorbate molecular diameter. The filling of SWCNTs is not a simple capillary condensation process, but is dominated by geometrical limitation

  4. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  5. Synthesis of multi-walled carbon nanotubes/{beta}-FeOOH nanocomposites with high adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com [School of Materials Science and Engineering, Jiangsu University (China); Liu Lei [Pharmaceutic College of Henan University (China); Jia Xiaohua; Min Chunying [School of Materials Science and Engineering, Jiangsu University (China)

    2012-12-15

    A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and {beta}-ferric oxyhydroxide ({beta}-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous {beta}-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring {beta}-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of {beta}-FeOOH nanoparticles. The values of remanent magnetization (M{sub r}) and coercivity (H{sub c}) of the as-synthesized CNTs/{beta}-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/{beta}-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

  6. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH); Adsorcion de iones Pb(II) presentes en solucion acuosa sobre los oxihidroxidos: boehmita (γ-AlOOH), goetita (α-FeOOH) y manganita (γ-MnOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Arreola L, J. E.

    2013-07-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N{sub 2} physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead

  7. Adsorption of malachite green and iodine on rice husk-based porous carbon

    International Nuclear Information System (INIS)

    Guo Yupeng; Zhang Hui; Tao Nannan; Liu Yanhua; Qi Juirui; Wang Zichen; Xu Hongding

    2003-01-01

    Adsorption isotherms of I 2 and malachite green (MG) by rice husk-based porous carbons (RHCs) from aqueous medium have been studied. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. And the adsorption isotherms have been determined after modifying the carbon surfaces by oxidation with nitric acid and hydrogen peroxide and after degassing at 800 deg. C. The results have been found to follow the Freundlich adsorption isotherm. Three samples of N series have larger capacity for removing I 2 and MG from solution compared to that of the tested commercial carbons. The adsorption capacity of I 2 is similar for K series and commercial carbons. And the capacity of commercial carbons for MG is larger than K series. The adsorption capacity of I 2 on oxidation carbons has increased for hydrogen peroxide treatment and decreased for nitric acid, and that of MG is decreased. But the adsorption capacities of I 2 and MG increase on degassing. On the other hand, the adsorption of I 2 increases after modifying the carbon surfaces by HCl without oxidation. Suitable mechanisms have been proposed

  8. Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-01-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 deg. C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 deg. C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  9. Paraquat adsorption on NaX and Al-MCM-41.

    Science.gov (United States)

    Rongchapo, Wina; Deekamwong, Krittanun; Loiha, Sirinuch; Prayoonpokarach, Sanchai; Wittayakun, Jatuporn

    2015-01-01

    The aim of this work is to determine paraquat adsorption capacity of zeolite NaX and Al-MCM-41. All adsorbents were synthesized by hydrothermal method using rice husk silica. For Al-MCM-41, aluminum (Al) was added to the synthesis gel of MCM-41 with Al content of 10, 15, 20 and 25 wt%. The faujasite framework type of NaX and mesoporous characteristic of Al-MCM-41 were confirmed by X-ray diffraction. Surface area of all adsorbents determined by N2 adsorption-desorption analysis was higher than 650 m2/g. Al content and geometry were determined by X-ray fluorescence and 27Al nuclear magnetic resonance, respectively. Morphology of Al-MCM-41 were studied by transmission electron microscopy; macropores and defects were observed. The paraquat adsorption experiments were conducted using a concentration range of 80-720 mg/L for NaX and 80-560 mg/L for Al-MCM-41. The paraquat adsorption isotherms from all adsorbents fit well with the Langmuir model. The adsorption capacity of NaX was 120 mg/g-adsorbent. Regarding Al-MCM-41, the 10% Al-MCM-41 exhibited the lowest capacity of 52 mg/g-adsorbent while the other samples had adsorption capacity of 66 mg/g-adsorbent.

  10. Effects of basic nitrogen poisoning on adsorption of hydrogen on a hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Entz, R.W.; Seapan, M.

    1985-01-01

    Activity of a hydrotreatment catalyst depends on the hydrogen adsorption characteristics of the catalyst. In this work, the adsorption of hydrogen on a Ni-Mo/Al/sub 2/O/sub 3/ catalyst (shell 324) has been studied using a TGA at 1 atm pressure and 200-400 0 C temperature. Hydrogen adsorption on a calcined catalyst was shown to be of activated type with a sudden increase in hydrogen adsorption around 350 0 C. When the catalyst is extracted with Tetrahydrofuran (THF), the hydrogen adsorption increases gradually as the temperature is increased, approaching a monolayer coverage of the catalyst surface. It is shown that solvent extraction of catalyst changes its hydrogen adsorption characteristics significantly. Indeed, at 400 0 C, an extracted catalyst adsorbs about four times more hydrogen than an unextracted catalyst. Adsorption of basic nitrogen compounds on the catalyst interferes with the hydrogen adsorption. The adsorption of pyridine, piperidine, n-pentylamine, and ammonia were studied at 400 0 C. It is shown that the strength of adsorption of piperidine and n-pentylamine are relatively similar, however their adsorption strength is higher than pyridine. Ammonia is the weakest adsorbing compound studied. These observations are in agreement with other studies

  11. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    Science.gov (United States)

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  12. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  13. Lateral Interactions in Monolayer Thick Mercury Films

    Science.gov (United States)

    Kime, Yolanda Jan

    An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through

  14. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  15. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  16. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite

    International Nuclear Information System (INIS)

    Zhao Yijiang; Chen Yan; Li Meisheng; Zhou Shouyong; Xue Ailian; Xing Weihong

    2009-01-01

    Polyacrylamide/attapulgite (PAM/ATP) was prepared by the solution polymerization of acrylamide (AM) onto γ-methacryloxypropyl trimethoxy silane (KH-570)-modified attapulgite (ATP). PAM/ATP was characterized using Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of contact time, adsorbent dosage, and pH of the initial solution on the adsorption capacities for Hg 2+ were investigated. The adsorption process was rapid; 88% of adsorption occurred within 5 min and equilibrium was achieved at around 40 min. The equilibrium data fitted the Langmuir sorption isotherms well, and the maximum adsorption capacity of Hg 2+ onto PAM/ATP was found to be 192.5 mg g -1 . The adsorption kinetics of PAM/ATP fitted a pseudo-second-order kinetic model. Our results suggest that chemisorption processes could be the rate-limiting steps in the process of Hg 2+ adsorption. Hg 2+ adsorbed onto PAM/ATP could be effectively desorbed in hot acetic acid solution, and the adsorption capacity of the regenerated adsorbents could still be maintained at 95% by the sixth cycle.

  17. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  18. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    Science.gov (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  20. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical

  1. 玉米秸秆基改性生物质活性炭对Cd的吸附特性%Adsorption capacity of modified corn straw based activated biocarbon to Cd

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·吐尔洪; 帕提古丽·伊克木; 阿热祖古丽·达吾提; 阿马努拉·依明尼亚孜

    2018-01-01

    以玉米秸秆为原料,制备了生物质活性炭(以下简称生物炭),用HNO3、NaOH、沸水、四氢呋喃(THF)对其进行改性,并比较了不同生物炭对Cd的吸附特性,对沸水和 T HF滤液进行了光谱分析,结果显示:随着Cd初始浓度的增加,玉米秸秆基生物炭及改性产物对Cd的吸附量大体增强;Cd初始质量浓度超过25.0 mg/L时,吸附量表现为碱改性生物炭> 未改性生物炭> T HF改性生物炭> 沸水改性生物炭> 酸改性生物炭.NaO H通过改变玉米秸秆基生物炭表面官能团和元素构成,增强了其吸附能力.HNO3使玉米秸秆基生物炭孔隙带正电荷,从而抑制了对Cd的吸附.沸水和 T HF从玉米秸秆基生物炭孔隙中溶出了有利于吸附反应的部分表面官能团,从而降低了其对Cd的吸附能力.随着Cd初始浓度增加,玉米秸秆基生物炭对Cd的吸附量大体增加,滤液pH大体降低.用玉米秸秆基生物炭处理污水中的Cd时,建议用碱改性法来提高其吸附能力.%Corn straw based activated biocarbon was prepared and modified with HNO3,NaOH,hot water and tetrahydrofuran(T HF).Adsorption capacities of original and modified activated biocarbons to Cd,as well as spectrum of filtrate of hot water and THF modified activated biocarbons were tested.Result showed that adsorption capacities of activated biocarbons increased with the concentration of initial Cd solution.The order of adsorption capacities was NaOH modified activated biocarbons>original activated biocarbons> THF modified activated biocarbons >hot water modified activated biocarbons > HNO3modified activated biocarbons when initial Cd exceeded 25.0 mg/L.NaOH enhanced the adsorption capacity of original activated biocarbon by changing the surface functional group and elemental contents.HNO3inhibited the adsorption by charging the surface of activated biocarbon with positive charge.Hot water and THF scoured off some surface groups which were favorable for adsorption

  2. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nano composite with High Adsorption Capacity for Hexavalent Chromium

    International Nuclear Information System (INIS)

    Bisht, G.; Neupane, S.; Makaju, R.

    2016-01-01

    Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (Vi) from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs) were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO 2 ), a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and vibrating magnetometric analysis (VSM). The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (Vi) removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at ph 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs) (i.e., 99.9%) than their non modified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (q e = 452.26 mg/g) of MIONPs attained can be related to their preparation in Sc CO 2 asq e calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (Vi) were modeled by pseudo-second-order model

  3. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  4. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  5. Competitive Adsorption of Chloroform and Bromoform Using ...

    African Journals Online (AJOL)

    The results obtained were checked with Freundlich adsorption isotherm model. This model expresses well adsorption of one THM species in the presence of another with R2 > 0.95. Based on the model, adsorption capacity of Calgon F200 and Norit GCN1240 were found higher for bromoform than chloroform. Calgon F200 ...

  6. Potential theory of adsorption for associating mixtures: possibilities and limitations

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Shapiro, Alexander; Kontogeorgis, Georgios

    2013-01-01

    The applicability of the Multicomponent Potential Theory of Adsorption (MPTA) for prediction of the adsorption equilibrium of several associating binary mixtures on different industrial adsorbents is investigated. In the MPTA the adsorbates are considered to be distributed fluids subject...... to describe the solid-fluid interactions. The potential is extended to include adsorbate-absorbent specific capacities rather than an adsorbent specific capacity. Correlations of pure component isotherms are generally excellent with individual capacities, although adsorption on silicas at different...... temperatures still poses a challenge. The quality of the correlations is usually independent on the applied EoS. Predictions for binary mixtures indicate that the MPTA+SRK is superior when adsorption occurs on non-polar or slightly polar adsorbents, while MPTA+CPA performs better for polar adsorbents, or when...

  7. Evaluation of the adsorption capacity of nano-graphene and nano-graphene oxide for xylene removal from air and their comparison with the standard adsorbent of activated carbon to introduce the optimized one

    Directory of Open Access Journals (Sweden)

    Akram Tabrizi

    2016-06-01

    Full Text Available Introduction: Volatile organic compounds from industrial activities are one of the most important pollutants released into the air and have adverse effects on human and environment. Therefore, they should be removed before releasing into atmosphere. The aim of the study was to evaluate xylene removal from air by nano-grapheme and nano-graphene oxide in comparison with activated carbon adsorbent. Material and Method:  After preparing adsorbents of activated carbon, nano-graphene, and nano-graphene oxide, experiments adsorption capacity in static mode (Batch were carried out in a glass vial. Some variables including contact time, the amount of adsorbent, the concentration of xylene, and the temperature were studied. Langmuir absorption isotherms were used in order to study the adsorption capacity of xylene on adsorbents. Moreover, sample analysis was done by gas chromatography with Flame Ionization Detector (GC-FID. Results: The adsorption capacities of activated carbon, nano-graphene oxide and nano-graphene for removal of xylene were obtained 349.8, 14.5, and 490 mg/g, respectively. The results of Scanning Electron Microscope (SEM for nano-graphene and nano-graphene oxide showed particle size of less than 100 nm. While, the results of Transmission Electron Microscope (TEM showed particle size of 45nm for nano-graphene and 65 nm for nano-graphene oxide. Also, X-Ray Diffraction (XRD showed cube structure of nano-adsorbents. Conclusion: In constant humidity, increase in exposure time and temperature caused an increase in the adsorption capacity. The results revealed greater adsorption capacity of xylene removal for nano-graphene compared to the activated carbon, and nano-graphene oxide.

  8. Adsorption methods for hydrogen isotope storage on zeolitic sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, F.; Brad, S.; Lazar, A.

    2001-01-01

    For hydrogen isotope separation, adsorption molecular sieves and active carbon were used. Adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. Commercial zeolites have the same proprieties with natural zeolites, but they have a regular pore structure. They also have affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen temperature (77.4 K) and liquid hydrogen revealed the efficient behaviour of the active carbon and zeolitic sieves for hydrogen isotopes temporary storage. We study adsorption of the synthetic zeolites in a wide range of temperatures and pressures and we used the molecular sieves 4A, 5A and active carbon. The 4A and 5A zeolites have a tridimensional structure with 11.4 A diameter. When the hydration water is eliminated, the material keeps a porous structure. The porous volume represents 45% from the zeolite mass for 4A and 5A sieves. The activation temperature of the zeolite and the carbon is very important for obtaining a high adsorption capacity. If the temperature used for activation is low, the structural water will be not eliminated and the adsorption capacity will be low. The excessive temperature will destroy the porous structure. The adsorption capacity for the hydrogen isotopes was calculated with the relation: A = V ads /m (cm 3 /g). The adsorption capacity and efficiency for the adsorbent materials, are given. Physical adsorption process of the hydrogen isotopes was carried out at liquid nitrogen temperature. The flux gas used in the adsorption system is composed of dry deuterium and protium. This mixture is cooled in liquid nitrogen and then is passed to the adsorbent getter at the same temperature (77.4 K). The gas flux in the adsorbent getter is 5 and 72 l/h (which correspond to 0.008 and 0.134 discharge velocity, respectively). (authors)

  9. Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.

    Science.gov (United States)

    Ramakrishnan, Saminathan; Subramaniam, Sivaraman; Stewart, A Francis; Grundmeier, Guido; Keller, Adrian

    2016-11-16

    DNA origami has become a widely used method for synthesizing well-defined nanostructures with promising applications in various areas of nanotechnology, biophysics, and medicine. Recently, the possibility to transfer the shape of single DNA origami nanostructures into different materials via molecular lithography approaches has received growing interest due to the great structural control provided by the DNA origami technique. Here, we use ordered monolayers of DNA origami nanostructures with internal cavities on mica surfaces as molecular lithography masks for the fabrication of regular protein patterns over large surface areas. Exposure of the masked sample surface to negatively charged proteins results in the directed adsorption of the proteins onto the exposed surface areas in the holes of the mask. By controlling the buffer and adsorption conditions, the protein coverage of the exposed areas can be varied from single proteins to densely packed monolayers. To demonstrate the versatility of this approach, regular nanopatterns of four different proteins are fabricated: the single-strand annealing proteins Redβ and Sak, the iron-storage protein ferritin, and the blood protein bovine serum albumin (BSA). We furthermore demonstrate the desorption of the DNA origami mask after directed protein adsorption, which may enable the fabrication of hierarchical patterns composed of different protein species. Because selectivity in adsorption is achieved by electrostatic interactions between the proteins and the exposed surface areas, this approach may enable also the large-scale patterning of other charged molecular species or even nanoparticles.

  10. Ab-initio studies of the Sc adsorption and the ScN thin film formation on the GaN(000-1)-(2 × 2) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Sánchez-Ochoa, F.; Cocoletzi, Gregorio H.; Rivas-Silva, J.F.; Takeuchi, Noboru

    2013-01-01

    First principles total energy calculations have been performed to investigate the initial stages of the Sc adsorption and ScN thin film formation on the GaN(000-1)-(2 × 2) surface. Studies are done within the periodic density functional theory as implemented in the PWscf code of the Quantum ESPRESSO package. The Sc adsorption at high symmetry sites results in the bridge site as the most stable structure. When a Sc monolayer is deposited above the surface the T4 site results as the most stable geometry. The Sc migration into the first Ga monolayer induces the Ga displaced ad-atom to be adsorbed at the T4-2 site. A ScN bilayer may be obtained under the Ga monolayer. Finally a ScN bilayer may be formed in the wurtzite phase above the surface. The formation energy plots show that in the moderate Ga-rich conditions we obtain the formation of a ScN bilayer under the gallium monolayer. However at N-rich conditions the formation of ScN bilayer above the surface is the most favorable structure. We report the density of states to explain the electronic structure of the most favorable geometries. - Highlights: • Studies of the initial stages in the formation of Sc and ScN structures on GaN • In the adsorption of Sc on the GaN the Br site is the most favorable geometry. • When a Sc replaces a Ga of the first monolayer the displaced Ga occupies a T4-2 site. • For Ga-rich conditions there is formation of ScN under the Ga monolayer. • In N-rich conditions there is formation of ScN in the wurtzite phase

  11. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianwei, E-mail: jwlin@shou.edu.cn [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China); Zhan, Yanhui; Zhu, Zhiliang [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Xing, Yunqing [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China)

    2011-10-15

    Graphical abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. Highlights: {yields} Surfactant modified zeolites (SMZs) have a good tannic acid (TA) adsorption capacity. {yields} Adsorption capacity for SMZ with bilayer was relatively high at solution pH 3.5-7.0. {yields} Adsorption was well described by pseudo-second-order kinetic model. {yields} Adsorption fitted well with Langmuir, Redlich-Peterson and Sips isotherm models. {yields} Coexisting Cu(II) in aqueous solution resulted in markedly enhanced TA adsorption. - Abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. The TA adsorption efficiencies for natural zeolite and various SMZs were compared. SMZ presented higher TA adsorption efficiency than natural zeolite, and SMZ with higher loading amount of CPB exhibited higher TA adsorption efficiency. The adsorption of TA onto SMZ as a function of contact time, initial adsorbate concentration, temperature, ionic strength, coexisting Cu(II) and solution pH was investigated. The adsorbents before and after adsorption were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption kinetics of TA onto SMZ with CPB bilayer coverage (SMZ-CBC) followed a pseudo-second-order model. The equilibrium adsorption data of TA onto SMZ-CBC were well represented by Langmuir, Redlich-Peterson and Sips isotherm models. The calculated thermodynamic parameters indicated that TA adsorption onto SMZ-CBC was spontaneous and exothermic. The TA adsorption capacity for SMZ-CBC slightly decreased with increasing ionic strength but significantly increased with increasing Cu(II) concentration. The TA adsorption

  12. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... Ready-To-Use. The tested pH differences had minor effect on the adsorption. The mixed-drug adsorption showed about 40% Q(m) reduction of each drug with increasing amounts of drug/g AC, but the total gram of drug adsorbed to AC was increased compared to one-drug conditions. Conclusion. The adsorption...

  13. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Yajun Chen

    Full Text Available Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR and ciprofloxacin (CIP, by nano-hydroxyapatite (n-HAP were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  14. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    Science.gov (United States)

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  15. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Adding underbrushes of oligoethylene glycol (OEG) to monolayers of long chain PEG molecules on a surface is one of the strategies [1] in designing a suitable platform for antifouling purpose, where it is possible to have high graft density and molecular conformational freedom[4] simultaneously......, there by maximal retention of activity of covalently immobilised antifouling enzyme [2] on PEG surfaces along with resistance to protein adsorption[3]. Here we present some our studies on the addition of OEG thiol molecules over a self assembled monolayer of PEG thiol on gold. The kinetics of addition of OEG thiol...

  16. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  17. Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for {sup 99}Mo/{sup 99m}Tc generators columns

    Energy Technology Data Exchange (ETDEWEB)

    Guedes-Silva, Cecilia C.; Ferreira, Thiago dos Santos; Paula, Carolina M. de; Otubo, Larissa, E-mail: cecilia.guedes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio M.S. [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Instituto de Geociencias

    2016-07-15

    Technetium-{sup 99m} is the clinically most used radionuclide worldwide. Although many techniques can be applied to separate {sup 99}Mo and {sup 99m}Tc, the most commonly used method is the column chromatography with alumina as stationary phase. However, the alumina nowadays used has limited adsorption capacity of molybdate ions which implies the need to develop or improve materials to produce high specific activity generators. In this paper, alumina was obtained by a solid state method and heat treatments at different conditions. The powders had a microstructure with porous particles of γ, δ, θ and α-Al{sub 2}O{sub 3} phases as well as specific surface area between 36 and 312 m{sup 2} g{sup -1}. Most interesting results were reached by powders calcined at 900 deg C for 5 hours which had high chemical stability and a molybdenum adsorption capacity of 92.45 mg Mo per g alumina. (author)

  18. Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers

    Directory of Open Access Journals (Sweden)

    Syed W. H. Shah

    2017-10-01

    Full Text Available We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl-sn-glycero-3-phosphocholine, a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC. The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide block flanked by hydrophilic poly(glycerol monomethacrylate blocks (GP. F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m−1, much higher than GP (32.5 mN m−1. We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE to liquid-condensed (LC transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m−1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m−1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.

  19. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite

    International Nuclear Information System (INIS)

    Wang Li; Wang Aiqin

    2008-01-01

    A series of surfactant-modified montmorillonites (MMT) were prepared using octyltrimethylammonium bromide (OTAB), dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB), and the organification of MMT was proved by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron micrographic (SEM) and transmission electron microscope (TEM). The adsorption of Congo Red (CR) anionic dye from aqueous solution onto surfactant-modified MMT was carried out. Compared with MMT, the adsorption capacity of surfactant-modified MMT for CR was greatly enhanced and MMT modified with CTAB (2.0 CEC) exhibited the higher adsorption capacity. The effects of pH value of the dye solution, adsorption temperature, adsorption time and the initial dye concentration on the adsorption capacity of CR on CTAB-MMT have been investigated. The results showed that the adsorption kinetic of CR on CTAB-MMT could be best described by the pseudo-second-order model and that the adsorption isotherm of CR was in good agreement with the Langmuir equation. The IR spectra and SEM analysis also revealed that the adsorption of CTAB-MMT was a chemical adsorption process between CTAB and the NH 2 , -N=N- and SO 3 groups of CR

  20. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    Science.gov (United States)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  1. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A

    2009-09-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.

  2. Effect of agitation speed on adsorption of imidacloprid on activated carbon

    International Nuclear Information System (INIS)

    Zahoor, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on powdered activated carbon were described. The adsorption experiments were carried out as function of time, initial concentration and agitation speed. The equilibrium data fits well to Langmuir adsorption isotherm, while the kinetic data fits well to Pseudo second order kinetic model. The kinetic experiments were carried out at 200, 250, 300 and 350 rpm and it was found that the equilibrium time increases with increase in initial concentration and decreases with increase in agitation speed. This is due to the increased turbulence and as a consequence, the decrease boundary layer thickness around the adsorbent particles as a result of increasing the degree of mixing. At 300 rpm the adsorption capacity was maximum and beyond this there was no significant increase in adsorption capacity. Weber intra particle diffusion model was used to describe the adsorption mechanism. It was found that both the boundary layer and intra particle diffusion for both adsorbents played important role in the adsorption mechanisms of the adsorbate. The effects of temperature and pH on adsorption were also studied. It was found that the adsorption capacity of the adsorbent decreases with increase in temperature. There was no significant change in adsorption from pH 2 to 8, however at high pH a decrease in adsorption of imidacloprid on activated carbon was observed. (author)

  3. Adsorption of emerging contaminant metformin using graphene oxide.

    Science.gov (United States)

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    Science.gov (United States)

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite

    International Nuclear Information System (INIS)

    Karaca, S.; Guerses, A.; Bayrak, R.

    2004-01-01

    In this study, the effects of some pre-treatments, such as HCl treatment, demineralization and pyrolysis, under a CO 2 atmosphere at different temperatures on the adsorption of methylene blue by Balkaya lignite were investigated. The adsorption capacities of the samples were determined before and after these pre-treatments. In addition, the removals of pyritic and organic sulfur and ash contents for the same coal samples were also defined. It was found that the adsorption capacities of the samples decreased after these pre-treatments. The decrease in adsorption capacity with pyrolysis can be attributed to the changes in surface morphology and/or pore size distribution of the coal samples. On the other hand, the observed decrease in adsorption capacity with removal of carbonates and silicates shows that these minerals have an important effect on methylene blue adsorption, and the adsorption considerably occurs through electrostatic interactions. In addition, the obtained results showed that the organic sulfur presence in the coal matrix have a positive effect on the methylene blue adsorption

  6. Experimental study on removals of SO2 and NOX using adsorption of activated carbon/microwave desorption.

    Science.gov (United States)

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO 2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO 2 concentrations. Adsorption capacity of SO 2 declines with the increasing of O 2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO 2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO 2 increases and removal efficiencies of NO and SO 2 would be relatively stable. Adsorption capacities of both NO and SO 2 decrease with the increasing of CO 2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO 2 content exceeds 12.4%. The mechanisms of this process are also discussed. [Box: see text].

  7. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  8. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  9. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huitzil-Tepanecatl, Arely [Postgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, BUAP, Apartado Postal 52, Puebla 72000 (Mexico); Cocoletzi, Gregorio H., E-mail: cocoletz@sirio.ifuap.buap.m [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Codigo Postal 22860, Apartado Postal 2732 Ensenada, Baja California (Mexico); Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico); Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Takeuchi, Noboru [Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico)

    2010-10-29

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  10. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    International Nuclear Information System (INIS)

    Huitzil-Tepanecatl, Arely; Cocoletzi, Gregorio H.; Takeuchi, Noboru

    2010-01-01

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  11. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  12. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    Science.gov (United States)

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  14. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  15. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Science.gov (United States)

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  16. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  17. Adsorption of phenol on metal treated by granular activated carbon

    International Nuclear Information System (INIS)

    Kang, Kwang Cheol; Kwon, Soo Han; Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won; Kim, Jin Won

    2007-01-01

    In this study, the effect of metal treatment on Granular Activated Carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal

  18. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  19. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  20. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  1. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  2. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS2 Monolayer

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-04-01

    Full Text Available MoS2 nanosheets can be used as solid lubricants or additives of lubricating oils to reduce friction and resist wear. However, the atomic scale mechanism still needs to be illustrated. Herein, molecular simulations on the indentation and scratching process of MoS2 monolayer supported by Pt(111 surface were conducted to study the anti-pressure and friction reduction mechanisms of the MoS2 monolayer. Three deformation stages of Pt-supported MoS2 monolayer were found during the indentation process: elastic deformation, plastic deformation and finally, complete rupture. The MoS2 monolayer showed an excellent friction reduction effect at the first two stages, as a result of enhanced load bearing capacity and reduced deformation degree of the substrate. Unlike graphene, rupture of the Pt-supported MoS2 monolayer was related primarily to out-of-plane compression of the monolayer. These results provide a new insight into the relationship between the mechanical properties and lubrication properties of 2D materials.

  3. Simultaneous adsorption of SO2 and NO from flue gas over mesoporous alumina.

    Science.gov (United States)

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Ning, Ping; Huang, Bin; Wang, Fang; Yuan, Qin

    2015-01-01

    Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702 mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas.

  4. Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosensing interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dengyou; Luo, Qimei [Science College of Hunan Agricultural University, Changsha 410128 (China); Deng, Fawen [The Fourth Hospital of Chansha, Changsha 410006 (China); Li, Zhen [Science College of Hunan Agricultural University, Changsha 410128 (China); Li, Benxiang, E-mail: 172170960@qq.com [Science College of Hunan Agricultural University, Changsha 410128 (China); Shen, Zhifa, E-mail: shenzhifa@wmu.edu.cn [Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China)

    2017-06-08

    Highly sensitive and selective quantitation of a variety of proteins over a wide concentration range is highly desirable for increased accuracy of biomarker detection or for multidisease diagnostics. In the present contribution, using human immunoglobulin G (HIgG) as the model target protein, an electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer-mediated (OSAM) sensing interface. For this immunosensor, the “signal-on” signaling mechanism and enzymatic signal amplification effect were integrated into one sensing architecture. Moreover, the thiolated flexible single-stranded DNAs immobilized onto gold electrode surface not only performs the wobbling motion to facilitate the electron transfer between the electrode surface and biosensing layer but also fundamentally prohibiting the direct interaction of proteins with gold substrate. Thus, the electrochemical signal could be efficiently enhanced and the unspecific adsorption or cross-reaction might be eliminated. As a result, utilizing the newly-proposed immunosensor, the HIgG can be detected down to 0.5 ng/mL, and the high detection specificity is offered. The successful design of OSAM and the highly desirable detection capability of new immunosensor are expected to provide a perspective for fabricating new robust immunosensing platform and for promising potential of oligonucleotide probe in biological research and biomedical diagnosis. - Highlights: • An electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer (OASM). • OASM severs as a flexible monolayer to promote electron transfer and prohibits the direct interaction of proteins with gold substrate. • The electrochemical signal is efficiently enhanced and the unspecific adsorption or cross-reaction is eliminated. • Target protein can be detected down to 0.5 ng/mL, and the high detection specificity can be obtained.

  5. Application of optimized large surface area date stone (Phoenix dactylifera ) activated carbon for rhodamin B removal from aqueous solution: Box-Behnken design approach.

    Science.gov (United States)

    Danish, Mohammed; Khanday, Waheed Ahmad; Hashim, Rokiah; Sulaiman, Nurul Syuhada Binti; Akhtar, Mohammad Nishat; Nizami, Maniruddin

    2017-05-01

    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb ' s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    Science.gov (United States)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g-1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  7. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    Science.gov (United States)

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  9. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  10. Radiotracer studies of the adsorption of surface active substances at aqueous surfaces, 6

    International Nuclear Information System (INIS)

    Tajima, Kazuo

    1976-01-01

    The surface tension and adsorption were observed by the Wilhelmy plate and radiotracer methods at the air-solution interface of an aqueous solution of urea and α-dodecyl-ω-hydroxyhexa(oxyethylene) (D(EO) 6 ). The adsorption of D(EO) 6 was dependent on the concentration of urea below the CMC values, but above the values it was independent of the concentration. Urea adsorption occurs positively for low-surface packing of the poly(oxyethylene) group of D(EO) 6 , but negatively for the closest packing of the group and high concentrations of urea. It was confirmed that D(EO) 6 adsorption took place at the solution surface according to the Gibbs adsorption isotherm, which was taken into account as an activity coefficient in an empirical equation for the interactions of D(EO) 6 and urea in solution. Urea adsorption for the adsorbed monolayer of D(EO) 6 above the CMC value was interpreted assuming that urea, as for the nonionic micelle, was nonpenetrating, which was examined by gel permeation. (auth.)

  11. Optimal working pairs for solar adsorption cooling applications

    International Nuclear Information System (INIS)

    Allouhi, A.; Kousksou, T.; Jamil, A.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y.

    2015-01-01

    This article suggests a detailed comparison of 7 working pairs intended for use in solar adsorption cooling systems. The performance analysis was based on two indicators: adsorption capacity and solar coefficient of performance. Based on a reformed form of the Dubinin–Astakhov equation, a 3D graph was constructed to show the adsorbate concentration in the appropriate adsorbent as a first step to determine the adsorption capacity. A MATLAB program was developed to solve the system equation to predict the solar coefficient of performance for a typical summer day in a Moroccan city Fez. It was found that maximal adsorption capacity is obtained by activated carbon fibre/methanol (0.3406 kg kg −1 ) followed by activated carbon/methanol (0.2565 kg kg −1 ) and activated carbon/ethanol (0.2008 kg kg −1 ). At a condenser temperature of 25 °C, with an adsorbent mass of 20 kg, and an integrated collector-reactor configuration, the couple silica gel/water for air conditioning purpose can reach an SCOP of 0.3843. Activated carbon fibre/methanol is the following more efficient couple and can be used in the different cooling applications with an SCOP ranging from 0.1726 to 0.3287. Furthermore, adequate indicators are evaluated addressing the economic, environmental and safe aspects associated with each working pair. - Highlights: • 7 working pairs intended for use in solar adsorption cooling systems are compared. • A MATLAB program is used to predict the solar coefficient of performance. • Maximal adsorption capacity is obtained by activated carbon fibre/methanol

  12. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  13. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    Science.gov (United States)

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adsorption Characteristics of Different Adsorbents and Iron(III Salt for Removing As(V from Water

    Directory of Open Access Journals (Sweden)

    Josip Ćurko

    2016-01-01

    Full Text Available The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V from water: Bayoxide® E33 (granular iron(III oxide, Titansorb® (granular titanium oxide and a suspension of precipitated iron(III hydroxide. Results of As(V adsorption stoichiometry of two commercial adsorbents and precipitated iron(III hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V. Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V from water.

  15. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    Science.gov (United States)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  16. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaohong [Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China)

    2015-02-28

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  17. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-01-01

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater

  18. Simulating multi-component liquid phase adsorption systems: ethanol and residual sugar

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.; Tezel, F.H.; Thibault, J. [Department of Chemical and Biological Engineering, University of Ottawa (Canada)], email: Jules.Thibault@uottawa.ca

    2011-07-01

    A series of multi-component adsorption studies was performed to determine the relative advantages of producing ethanol which is to be blended with gasoline. These studies developed a model to describe the competition for adsorption sites between ethanol and sugar molecules on the surface of the adsorbent. Three competitive adsorption models established by batch systems were examined to evaluate the suitability of the experiment data across different ethanol and sugar concentrations and determine their isotherm parameters. Multi-component packed bed adsorption experiments were then performed. The results show that ethanol capacity was decreased only slightly from that obtained in single component adsorption studies. There is significant evidence to indicate that sugar displacement from adsorption sites occurs because adsorption of ethanol is preferred. So the capacity of sugars will be greatly reduced if there are appreciable ethanol concentrations.

  19. Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

    International Nuclear Information System (INIS)

    Horsfall, M.; Spiff, A. I.; Abia, A. A.

    2004-01-01

    Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb Cu 2+ and Cd 2+ from aqueous solution over a wide range of reaction conditions at 30 .deg. C. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the Cu 2+ /Cd 2+ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for Cu 2+ than Cd 2+ . According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g Cu 2+ and 119.6 mg/g Cd 2+ . The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be 2.04 x 10 -3 min -1 and 1.98 x 10 -3 min -1 for Cu 2+ and Cd 2+ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents

  20. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    Science.gov (United States)

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix

    Science.gov (United States)

    Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur

    2018-01-01

    In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.

  2. Equilibrium Kinetics and Thermodynamic Studies of the Adsorption of Tartrazine and Sunset Yellow

    Directory of Open Access Journals (Sweden)

    F. O. Okeola

    2017-04-01

    Full Text Available Batch adsorption experiment was carried out on freema (combination of Tartrazine and Sunset Yellow an adsorbent prepared from moringa pod. The adsorption capacity of the adsorbent was determined. Effect of such factors as initial concentration of the adsorbate solution, contact time with the adsorbent, pH of the dye solution, and temperature of the dye solution on the adsorption capacity of the absorbent was determined. The result showed that the optimum adsorption was attained at pH of 3, adsorption equilibrium was attained within 60 min. The adsorption capacity increases with increase in initial concentration of the dye solution. The result of the kinetics study showed that the adsorption process was better described by the pseudo-second order rate equation. The adsorption process fitted well with both Freundlich (R2 = 0.983 and Langmuir (R2 = 0.933 models. Thermodynamic result showed ΔH and ΔS were all negative. Gibbs free energy change (ΔG increases with increase in temperature of the dye solution.

  3. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption

    International Nuclear Information System (INIS)

    Zhao, Lianqin; Yu, Baowei; Xue, Fumin; Xie, Jingru; Zhang, Xiaoliang; Wu, Ruihan; Wang, Ruijue; Hu, Zhiyan; Yang, Sheng-Tao; Luo, Jianbin

    2015-01-01

    Graphical abstract: S-doped graphene sponge was prepared via hydrothermal treatment, where S-doped graphene sponge had an adsorption capacity of 228 mg/g for Cu 2+ . - Highlights: • S-doped graphene sponge was prepared by hydrothermal treatment for heavy metal adsorption. • S-doped graphene sponge had a huge adsorption capacity for Cu 2+ , which was 40 times higher than that of active carbon. • S-doped graphene sponge could be easily regenerated by washing with acidic thiourea. - Abstract: Graphene sponge (GS) has been widely employed for water purification, but adsorption capacity loss frequently occurs during the formation of spongy structure. In this study, we reported the hydrothermal preparation of S-doped GS for the removal of Cu 2+ with a huge adsorption capacity of 228 mg/g, 40 times higher than that of active carbon. The adsorption isotherm could be well fitted into the Freundlich model with a K F value of 36.309 (L/mg) 1/n . The equilibrium adsorption could be fully achieved in the first 5 min. In the thermodynamics study, the negative ΔG indicated that the adsorption was spontaneous and physisorption in nature. The positive ΔH implied that the adsorption was endothermic. The changes of both pH and ionic strength had no apparent influence on the adsorption. S-doped GS could be easily regenerated by washing with acidic thiourea. Moreover, S-doped GS could be used for the adsorption of other heavy metal ions, too. The implication to the applications of S-doped GS in water treatment is discussed

  4. Auger measurements on the two-dimensional adsorption of krypton on graphite

    International Nuclear Information System (INIS)

    Kramer, H.M.; Suzanne, J.

    1975-01-01

    The adsorption of krypton on a (0001) plane of graphite was studied by means of Auger Electron Spectroscopy. The spectrum of krypton in the energy range from 5eV to 11eV and from 30eV to 70eV is reported. By means of LEED a √3x√3 superstructure is found for the adsorbed monolayer of Kr [fr

  5. Influence of defects on the effective electrical conductivity of a monolayer produced by random sequential adsorption of linear k-mers onto a square lattice

    Science.gov (United States)

    Tarasevich, Yuri Yu.; Laptev, Valeri V.; Goltseva, Valeria A.; Lebovka, Nikolai I.

    2017-07-01

    The effect of defects on the behaviour of electrical conductivity, σ, in a monolayer produced by the random sequential adsorption of linear k-mers (particles occupying k adjacent sites) onto a square lattice is studied by means of a Monte Carlo simulation. The k-mers are deposited on the substrate until a jamming state is reached. The presence of defects in the lattice (impurities) and of defects in the k-mers with concentrations of dl and dk, respectively, is assumed. The defects in the lattice are distributed randomly before deposition and these lattice sites are forbidden for the deposition of k-mers. The defects of the k-mers are distributed randomly on the deposited k-mers. The sites filled with k-mers have high electrical conductivity, σk, whereas the empty sites, and the sites filled by either types of defect have a low electrical conductivity, σl, i.e., a high-contrast, σk /σl ≫ 1, is assumed. We examined isotropic (both the possible x and y orientations of a particle are equiprobable) and anisotropic (all particles are aligned along one given direction, y) deposition. To calculate the effective electrical conductivity, the monolayer was presented as a random resistor network and the Frank-Lobb algorithm was used. The effects of the concentrations of defects dl and dk on the electrical conductivity for the values of k =2n, where n = 1 , 2 , … , 5, were studied. Increase of both the dl and dk parameters values resulted in decreases in the value of σ and the suppression of percolation. Moreover, for anisotropic deposition the electrical conductivity along the y direction was noticeably larger than in the perpendicular direction, x. Phase diagrams in the (dl ,dk)-plane for different values of k were obtained.

  6. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    Science.gov (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  8. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Bascetin, Elvan [Cekmece Nuclear Research and Training Center, P.K.1 34149, Atatuerk Airport, Istanbul (Turkey); Atun, Guelten [Engineering Faculty, Chemistry Department, Istanbul University, 34850 Avcilar, Istanbul (Turkey)]. E-mail: gultena@istanbul.edu.tr

    2006-08-15

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using {sup 90}Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol{sup -1} showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na.

  9. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    International Nuclear Information System (INIS)

    Bascetin, Elvan; Atun, Guelten

    2006-01-01

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using 90 Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol -1 showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na

  10. Selective adsorption of a supramolecular structure on flat and stepped gold surfaces

    Science.gov (United States)

    Peköz, Rengin; Donadio, Davide

    2018-04-01

    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.

  11. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  12. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  13. Adsorption of strontium on different sodium-enriched bentonites

    Directory of Open Access Journals (Sweden)

    Marinović Sanja R.

    2017-01-01

    Full Text Available Bentonites from three different deposits (Wyoming, TX, USA and Bogovina, Serbia with similar cation exchange capacities were sodium enriched and tested as adsorbents for Sr2+ in aqueous solutions. X-Ray diffraction analysis confirmed successful Na-exchange. The textural properties of the bentonite samples were determined using low-temperature the nitrogen physisorption method. Significant differences in the textural properties between the different sodium enriched bentonites were found. Adsorption was investigated with respect to adsorbent dosage, pH, contact time and the initial concentration of Sr2+. The adsorption capacity increased with pH. In the pH range from 4.0–8.5, the amount of adsorbed Sr2+ was almost constant but 2–3 times smaller than at pH ≈11. Further experiments were performed at the unadjusted pH since extreme alkaline conditions are environmentally hostile and inapplicable in real systems. The adsorption capacity of all the investigated adsorbents toward Sr2+ was similar under the investigated conditions, regardless of significant differences in the specific surface areas. It was shown and confirmed by the Dubinin–Radushkevich model that the cation exchange mechanism was the dominant mechanism of Sr2+ adsorption. Their developed microporous structures contributed to the Sr2+ adsorption process. The adsorption kinetics obeyed the pseudo-second-order model. The isotherm data were best fitted with the Langmuir isotherm model. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001

  14. First-principles study of the adsorption of methanol at the α-Al2O3(0001) surface

    International Nuclear Information System (INIS)

    Borck, Oeyvind; Schroeder, Elsebeth

    2006-01-01

    We present density functional theory calculations of methanol molecular adsorption at the (0001) surface of α-Al 2 O 3 , for methanol coverages of 1/4 to 1 monolayer (ML). Adsorption energies, adsorption-induced restructuring of the surface, and induced changes to the electronic structure are calculated. We find that methanol bonds with its O atom to Al atoms at the α-Al 2 O 3 (0001) surface with an adsorption energy of 1.23 eV at coverage 1/4 ML, decreasing with coverage to 1.03 eV at 1 ML coverage. From calculations of the relaxed adsorption geometry and the angular dependence of the total energy, we predict an orientation of the adsorbed methanol molecule that has the molecular COH plane tilted away from the surface normal. The adsorption of methanol significantly restructures α-Al 2 O 3 (0001), especially for the outermost Al layer. Upon adsorption a small charge transfer from the molecule to the substrate takes place

  15. Calorimetric study at different temperatures of iodine adsorption from organic solutions on outgassed 'eta' alumina and bayerite

    International Nuclear Information System (INIS)

    Della Gatta, G.; Stradella, L.; Venturello, G.

    1977-01-01

    The adsorption of iodine from solution in n-pentane at 27 0 C and in cyclohexane at 35 0 C and 50 0 C on eta-Al 2 O 3 and bayerite outgassed at R.T. has been studied with a calorimetric technique. The measurements were performed by means of a Calvet type calorimeter using a new cell conceived for the adsorption from solution. The integral molar energies of adsorption show, at low coverages, a very strong interaction of iodine with surface hydroxyl groups, possibly leading to charge-transfer complexes and reactions. A peculiar exothermic effect has been also evidenced before the monolayer completion, in correspondence with a 'step' on the adsorption isotherms. This result is interpreted in terms of cooperative adsorption implying the possible formation of surface clusters around the strongly absorbed molecules. On non-porous samples (bayerite) the adsorption temperature rise decrease the total amounts adsorbed. But on porous ones (eta-Al 2 O 3 ) the adsorption is increased. (orig./HK) [de

  16. Adsorption of molecular hydrogen on nanostructered surfaces

    International Nuclear Information System (INIS)

    Uranga Piña, Llinersy; Martínez Mesa, Aliezer; Seifert, Gotthard

    2015-01-01

    Were investigated the effect of the structural characteristics of model nanoporous environments on the adsorption of molecular hydrogen. The adsorption properties of the target nanostructures (graphene and ZnO sheets, carbon foams, metal-organic frameworks) are evaluated in a broad range of thermodynamic conditions. The study is carried out within the density functional theory for quantum fluids at finite temperature (QLDFT), which allows to account for the many-body and quantum delocalization effects in a single theoretical framework. The exchange-correlation (excess) functional is derived from the empirical equation of state of the homogeneous system. We focus on the evaluation of hydrogen storage capacities of the substrates and on the emergence of quantum effects triggered by the confinement imposed by the host structure. The approach provides accurate estimates of the hydrogen storage capacities for realistic adsorptive media. The relation between the microscopic structure of the hydrogen fluid and the calculated adsorption properties is also addressed. (full text)

  17. Molecular beam studies of adsorption dynamics

    International Nuclear Information System (INIS)

    Arumainayagam, C.R.; McMaster, M.C.; Madix, R.J.

    1991-01-01

    We have investigated the trapping dynamics of C 1 -C 3 alkanes and Xe on Pt(111) using supersonic molecular beams and a direct technique to measure trapping probabilities. We have extended a one-dimensional model based on classical mechanics to include trapping and have found semiquantitative agreement with experimental results for the dependence of the initial trapping probability on incident translational energy at normal incidence. Our measurements of the initial trapping probability as a function of incident translational energy at normal incidence are in agreement with previous mean translational energy measurements for Xe and CH 4 desorbing near the surface normal, in accordance with detailed balance. However, the angular dependence of the initial trapping probability shows deviations from normal energy scaling, demonstrating the importance of parallel momentum in the trapping process and the inadequacy of one-dimensional models. The dependence of the initial trapping probability of Xe on incident translational energy and angle is quite well fit by three-dimensional stochastic classical trajectory calculations utilizing a Morse potential. Angular distributions of the scattered molecules indicate that the trapping probability is not a sensitive function of surface temperature. The trapping probability increases with surface coverage in quantitative agreement with a modified Kisliuk model which incorporates enhanced trapping onto the monolayer. We have also used the direct technique to study trapping onto a saturated monolayer state to investigate the dynamics of extrinsic precursor adsorption and find that the initial trapping probability onto the monolayer is higher than on the clean surface. The initial trapping probability onto the monolayer scales with total energy, indicating a highly corrugated interaction potential

  18. Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals.

    Science.gov (United States)

    Qiu, Shan; Ma, Fang; Huang, Xu; Xu, Shanwen

    2014-01-01

    In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La(3+) > Cu(2+) > Mg(2+) > Na(+).

  19. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  20. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  1. Equilibrium Kinetics and Thermodynamic Studies of the Adsorption of Tartrazine and Sunset Yellow

    OpenAIRE

    Okeola, F. O.; Odebunmi, E. O.; Ameen, O. M.; Amoloye, M. A.; Lawal, A. A.; Abdulmummeen, A. G.

    2017-01-01

    Batch adsorption experiment was carried out on freema (combination of Tartrazine and Sunset Yellow) an adsorbent prepared from moringa pod. The adsorption capacity of the adsorbent was determined. Effect of such factors as initial concentration of the adsorbate solution, contact time with the adsorbent, pH of the dye solution, and temperature of the dye solution on the adsorption capacity of the absorbent was determined. The result showed that the optimum adsorption was attained at pH of 3, a...

  2. Adsorption of Chloroform by the Rapid Response System Filter

    National Research Council Canada - National Science Library

    Karwacki, Christopher

    1997-01-01

    Adsorption equilibria and dynamic breakthrough data were measured to determine the adsorption capacity and effect of purge air on the desorption of chloroform from activated carbon simulating the Rapid Response System (RRS) filter...

  3. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  4. Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values

    International Nuclear Information System (INIS)

    Li, Huihui; Zhu, Shuqiang; Cheng, Ting; Wang, Shuxia; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-01-01

    Boronate affinity materials have been widely used for selective capture of cis-diols such as nucleosides. Adsorbents with features of low binding pH and high adsorption capacity are highly desired. However, most reported materials only possess one of the two features. We have synthesized a 1,3,5-triazine-containing binary boronic acid by reacting cyanuric chloride with 3-amino phenylboronic acid, and the product was then grafted onto attapulgite (a fibrous aluminum-magnesium silicate). The resulting functionalized attapulgite exhibit low binding pH (5.0) and display high adsorption capacity (19.5 ± 1.1 mg⋅g"−"1 for adenosine). The material exhibits high selectivity for cis-diols even in the presence of a 1000-fold excess of interferences. It was applied to the selective extraction of nucleosides from human urine. Typical features of the method include (a) limits of detection in the range from 4 to 17 ng⋅mL"−"1, (b) limits of quantification between 13 and 57 ng⋅mL"−"1, (c) relative standard deviations of ≤9.1 %, and (d) recoveries of nucleosides from spiked human urine between 85.0 and 112.9 %. In our perception, the material and method offer a promising strategy for selective capture of cis-diols in the areas of proteomics, metabolomics and glycomics. (author)

  5. Synthesis of magnetic wheat straw for arsenic adsorption

    International Nuclear Information System (INIS)

    Tian, Ye; Wu, Min; Lin, Xiaobo; Huang, Pei; Huang, Yong

    2011-01-01

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe 3 O 4 . → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe 3 O 4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe 3 O 4 . Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe 3 O 4 content and initial pH value influenced its adsorption behavior. Higher Fe 3 O 4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L -1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  6. Adsorption of diastase over natural halloysite nanotubes (HNTs)

    Science.gov (United States)

    Twaiq, F.; Chang, K. X.; Ling, J. Y. W.

    2017-06-01

    Adsorption of diastase over natural halloysite nanotubes is studied in order to evaluate the adsorption capacity of diastase. The halloysite surface characteristics were assessed using nitrogen adsorption, x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transformed infrared (FTIR). The surface area of the natural halloysite is found to be 51 m2·g-1, with total pore volume of 0.106 cm3·g-1. The natural halloysite has a basal spacing (d001) of 10 Å confirming the structure of the natural halloysite material. TGA results indicated that halloysite loses its interlayer water in the range of 30 to 105 °C and the dehydration in the structural layer above 150 °C. The dehydroxylation of halloysite has occurred at approximately 460 °C. The FTIR result of the thermally treated halloysite sample indicated that the bands observed are assigned to Si-O and Al-O bonds. The effects of solution pH and temperature were studied on the adsorption capacity and percent removal of diastase from the solution. The adsorption kinetic found to fit well with both the Pseudo first-order and Pseudo second-order models, and the values of the kinetic constant were found to be 0.173 min-1 and 0.00018 g·mg-1·min-1 respectively. The Langmuir isotherm model is found to fit well to the adsorption data and a kinetic value is found to be 0.00059 m3·g-1. The maximum adsorption capacity was found to be 370 mg·g-1, indicating the potential for applications of the natural nanostructured halloysite material as an effective adsorbent for diastase.

  7. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  8. Control of the molecular density in a chemically adsorbed thiophene system monolayer

    Directory of Open Access Journals (Sweden)

    Tanaka Yosuke

    2013-08-01

    Full Text Available Chemically absorbed monolayers (CAM of thienyl functionalized n-alkyltrichlorosilane 11-(3-thienyl undecyltrichlorosilane (TUTS have been prepared with two methods which are the standard technique (TUTS-STD and the twice adsorption method (TUTS-TAM. The existence of TUTS-CAM was confirmed with water contact angle measurements, calculation of thickness with ellipsometry, fourier transform infrared reflection adsorption spectroscopy (FTIR-RAS. Here are described is the comparison of TUTS-STD and TUTS-TAM characterized by using Electron Spectroscopy for Chemical Analysis (ESCA and ultraviolet visible (UV-vis absorption spectroscopy. TUTS-TAM showed more densely packing than TUTS-STD by these measurements. Moreover, these TUTS-CAM polymerized by chemical oxidative polymerization and UV-Vis absorption spectra was measured to confirm the conjugated bond length of the polymerized thienyl groups. UV-vis spectra of the polymerized TUTS-CAM showed a new broad absorbance band at longer wavelength than 700nm.

  9. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  10. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Men, Jiying; Gao, Baojiao [School of Chemical Engineering and Environment, North University of China, Taiyuan (China)

    2012-03-15

    In this paper, a novel composite material the silica grafted by poly(N-vinyl imidazole) (PVI), i.e., PVI/SiO{sub 2}, was prepared using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia through the ''grafting from'' method. The adsorption behavior of metal ions by PVI/SiO{sub 2} was researched by both static and dynamic methods. Experimental results showed that PVI/SiO{sub 2} possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO{sub 2} exhibited different adsorption abilities with the following order of adsorption capacity: Cu{sup 2+}> Cd{sup 2+}> Zn{sup 2+}. The adsorption material PVI/SiO{sub 2} was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO{sub 2} particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Anomalous adsorptive properties of HIV protease: Indication of two-dimensional crystallization?

    Czech Academy of Sciences Publication Activity Database

    Cígler, Petr; Král, V.; Kožíšek, Milan; Konvalinka, Jan; Mirsky, V.M.

    2008-01-01

    Roč. 64, č. 1 (2008), s. 145-149 ISSN 0927-7765 R&D Projects: GA MŠk 1M0508; GA MŠk LC512 Grant - others:RASP(XE) SP5A-CT-2006-044515 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protein adsorption * protein-resistant surfaces * self-assembled monolayer * surface plasmon resonance Subject RIV: CE - Biochemistry Impact factor: 2.593, year: 2008

  12. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  13. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  14. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.

    Science.gov (United States)

    Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V

    2017-04-04

    The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.

  15. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  16. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    Science.gov (United States)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  17. Volatile organic compound adsorption in a gas-solid fluidized bed.

    Science.gov (United States)

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas

  18. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  19. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  20. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  1. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  2. Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups.

    Science.gov (United States)

    Campbell, Gossett A; Mutharasan, Raj

    2006-04-01

    In this paper, we describe a new modality of measuring human serum albumin (HSA) adsorption continuously on CH3-, COOH-, and OH-terminated self-assembled monolayers (SAMs) of C11-alkanethiols and the direct quantification of the adsorbed amount. A gold-coated piezoelectric-excited millimeter-sized cantilever (PEMC) sensor of 6-mm2 sensing area was fabricated, where resonant frequency decreases upon mass increase. The resonant frequency in air of the detection peak was 45.5 +/- 0.01 kHz. SAMs of C11-thiols (in absolute ethanol) with different end groups was prepared on the PEMC sensor and then exposed to buffer solution containing HSA at 10 microg/mL. The resonant frequency decreased exponentially and reached a steady-state value within 30 min. The decrease in resonant frequency indicates that the mass of the sensor increased due to HSA adsorption onto the SAM layer. The frequency change obtained for the HSA adsorption on CH3-, COOH-, and OH-terminated SAM were 520.8 +/- 8.6 (n = 3), 290.4 +/- 6.1 (n = 2), and 210.6 +/- 8.1 Hz (n = 3), respectively. These results confirm prior conclusions that albumin adsorption decreased in the order, CH(3) > COOH > OH. Observed binding rate constants were 0.163 +/- 0.003, 0.248 +/- 0.006, and 0.381 +/- 0.001 min(-1), for methyl, carboxylic, and hydroxyl end groups, respectively. The significance of the results reported here is that both the formation of self-assembled monolayers and adsorption of serum protein onto the formed layer can be measured continuously, and quantification of the adsorbed amount can be determined directly.

  3. Adsorption of phenolic compound by aged-refuse

    Energy Technology Data Exchange (ETDEWEB)

    Chai Xiaoli [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: xlchai@mail.tongji.edu.cn; Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  4. Adsorption of phenolic compound by aged-refuse

    International Nuclear Information System (INIS)

    Chai Xiaoli; Zhao Youcai

    2006-01-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic

  5. Modelling phosphate adsorption to the soil: Application of the non-ideal competitive adsorption model

    International Nuclear Information System (INIS)

    Abou Nohra, Joumana S.; Madramootoo, Chandra A.; Hendershot, William H.

    2007-01-01

    Phosphorus (P) transport in subsurface runoff has increased despite the limited mobility of P in soils. This study investigated the ability of the non-ideal competitive adsorption (NICA) model to describe phosphate (PO 4 ) adsorption for soils in southern Quebec (Canada). We measured the surface charge and PO 4 adsorption capacity for 11 agricultural soils. Using the experimental data and a nonlinear fitting function, we derived the NICA model parameters. We found that the NICA model described accurately the surface charge of these soils with a mean R 2 > 0.99, and described the adsorption data with a mean R 2 = 0.96. We also found that the variable surface charge was distributed over the two binding sites with the low pH sites demonstrating a stronger binding energy for hydroxyl and PO 4 ions. We established that the NICA model is able to describe P adsorption for the soils considered in this study. - The NICA model accurately described the adsorption of phosphate to some southern Quebec soils

  6. Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2013-07-01

    Full Text Available The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsorption the sediment mineral matrices were obtained by removing inorganic matter metal oxides, and organic matter from natural sediments, which were collected from the Nantong reach of the Yangtze River. The results show that an exponential relationship exists between the median particle size (D50 and specific surface area (Sg of the sediment mineral matrices, and the fine sediment mineral matrix sample has a larger specific surface area and pore volume than the coarse sediment particles. The kinetic equations were used to describe the phosphorus adsorption process of the sediment mineral matrices, including the Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation. The results show that the quasi-second-order adsorption kinetic equation has the best fitting effect. Using the mass conservation and Langmuir adsorption kinetic equations, a formula was deduced to calculate the equilibrium adsorption capacity of the sediment mineral matrices. The results of this study show that the phosphorus adsorption capacity decreases with the increase of D50, indicating that the specific surface area and pore volume are the main factors in determining the phosphorus adsorption capacity of the sediment mineral matrices. This study will help understand the important role of sediment in the transformation of phosphorus in aquatic environments.

  7. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    Science.gov (United States)

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  8. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  9. Effect of dispersion on surface interactions of cobalt(II) octaethylporphyrin monolayer on Au(111) and HOPG(0001) substrates: a comparative first principles study.

    Science.gov (United States)

    Chilukuri, Bhaskar; Mazur, Ursula; Hipps, K W

    2014-07-21

    A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff-Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin-substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.

  10. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  11. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  12. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  13. Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    International Nuclear Information System (INIS)

    Campiglio, Paolo; Breitwieser, Romain; Repain, Vincent; Guitteny, Solène; Chacon, Cyril; Bellec, Amandine; Lagoute, Jérôme; Girard, Yann; Rousset, Sylvie; Sassella, Adele; Imam, Mighfar; Narasimhan, Shobhana

    2015-01-01

    We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices. (paper)

  14. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.

    Science.gov (United States)

    Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins

    2015-09-15

    Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Adsorption of volatile organic compounds by polytetra-fluor ethylene; Adsorption de composes organiques volatils par le polytetrafluor ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, J.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N{sub 2} adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [French] La sorption de vapeurs organiques par du polytetrafluor ethylene microporeux a ete etudiee gravimetriquement a l'aide d'un appareillage du type balance de Mac Bain. La valeur de la masse adsorbee, les particularites observees dans la forme des isothermes, le peu d'influence de la temperature, la faiblesse de l'hysteresis suggerent l'intervention d'une adsorption physique, du moins au voisinage de 25 deg. C. Les isothermes relatives a l'absorption de vapeurs organiques conduisent a des valeurs de la surface specifique tres differentes de celles obtenues par adsorption d'azote. Ces divergences ne peuvent s'expliquer par la seule intervention de la structure moleculaire et de la fonction chimique de l'adsorbat, ni par la structure poreuse de l'adsorbant. Par contre, l'adsorption de freons tres volatils conduit a des valeurs de la surface specifique analogues a celles obtenues par adsorption d'azote ce qui semble etablir un lien entre la

  16. Adsorption of volatile organic compounds by polytetra-fluor ethylene; Adsorption de composes organiques volatils par le polytetrafluor ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N{sub 2} adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [French] La sorption de vapeurs organiques par du polytetrafluor ethylene microporeux a ete etudiee gravimetriquement a l'aide d'un appareillage du type balance de Mac Bain. La valeur de la masse adsorbee, les particularites observees dans la forme des isothermes, le peu d'influence de la temperature, la faiblesse de l'hysteresis suggerent l'intervention d'une adsorption physique, du moins au voisinage de 25 deg. C. Les isothermes relatives a l'absorption de vapeurs organiques conduisent a des valeurs de la surface specifique tres differentes de celles obtenues par adsorption d'azote. Ces divergences ne peuvent s'expliquer par la seule intervention de la structure moleculaire et de la fonction chimique de l'adsorbat, ni par la structure poreuse de l'adsorbant. Par contre, l'adsorption de freons tres volatils conduit a des valeurs de la surface specifique analogues a celles obtenues par adsorption d'azote ce qui semble etablir un lien entre la volatilite de l'adsorbat et l'etendue des couches monomoleculaires

  17. Adsorption of Cu (II) onto Bamboo Supported Manganese (BS-Mn ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Maximum monolayer coverage capacity(mg.g-1);. KL = Langmuir isotherm ... Nanotechnology offers the potential of creating material and device ... disorderliness, reduction in the rate of photosynthesis, cirrhosis .... Therefore, protonation and cationic.

  18. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Wu, Zhongyu; Zhang, Yufeng; Meng, Jianqiang, E-mail: jianqiang.meng@hotmail.com

    2017-04-30

    Highlights: • Electrospun nanofiber membranes were grafted with hyperbranched polyols. • The membrane had a maximum boron uptake of 5.68 mmol/g. • The membrane could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. • The membrane obeyed the Langmuir and the pseudo-first-order kinetic model. • The regeneration efficiency remained over 90% after 10 cycled uses. - Abstract: The development of efficient adsorbents with high sorption capacity remains as a challenge for the removal of micropollutants occurred globally in water resources. In this work, poly (amic acid) (PAA) electrospun nanofiber membranes grafted with hyperbranched polyols were synthesized and used for boron removal. The PAA nanofiber was reacted with hyperbranched polyethylenimine (HPEI) and further with glycidol to introduce the vicinal hydroxyl groups. The chemical composition and surface characteristics of the obtained PAA-g-PG membranes were evaluated by FESEM, FTIR, XPS and water contact angles (WCA) measurements. The boron adsorption thermodynamics and kinetics were investigated systematically. The results showed that the PAA nanofiber spun from concentration of 15% had uniform morphology and narrow diameter distribution. The PAA-g-PG nanofiber membrane had a maximum boron uptake of 5.68 mmol/g and could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. Both the high surface area of nanofibers and the hyperbranched structure should contribute to the high boron uptake and high adsorption rate. The nanofiber membrane obeyed the Langmuir adsorption model and the pseudo-first-order kinetic model. The regeneration efficiency of the nanofiber membrane remained 93.9% after 10 cycled uses, indicating good regenerability of the membrane.

  19. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  20. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  1. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  2. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    International Nuclear Information System (INIS)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun; Tang, Yingru; Cao, Juexian

    2015-01-01

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%, 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.

  3. ADSORPTION OF GIBBERELLIC ACID ONTO NATURAL KAOLIN FROM TATAKAN, SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Adsorption of gibberellic acid (GA3 onto raw and purified kaolin from Tatakan, South Kalimantan was investigated in this study. Purification process was done by sedimentation to obtain relative pure kaolinite. Raw and purified kaolin samples were characterized by Fourier transformed infrared (FTIR spectroscopy and X-ray diffractometer (XRD. The adsorption process was carried out in a batch system and the effect of pH, contact time and GA3 concentration were experimentally studied to evaluate the adsorption capacity. The amount of GA3 adsorbed was determined by UV spectrophotometer. The result showed that the raw kaolin from South Kalimantan consist of 53.36% kaolinite, 29.47% halloysite, 4.47% chlorite, 11.32% quartz and 1.38% christobalite and the purified kaolin consist of 73.03% kaolinite, 22.6% halloysite, 0.77% chlorite, 1.37% quartz and 2.23% christobalite Adsorption experimental indicate that the optimum adsorption took place at pH 7 and contact time for 4 h. Adsorption of GA3 was described by the Langmuir adsorption isotherm model with adsorption capacity of 8.91 mg/g on raw kaolin and 10.38 mg/g on purified kaolin.   Keywords: kaolin, gibberellic acid, adsorption

  4. Macromolecule simulation and CH{sub 4} adsorption mechanism of coal vitrinite

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Song, E-mail: songyu10094488@126.com [School of Resources and Earth Science, China University of Mining & Technology, Xuzhou 221116 (China); Key Laboratory of Coal bed Methane Resource & Reservoir Formation Process, Ministry of Education, Xuzhou 221008 (China); Yan-ming, Zhu; Wu, Li [School of Resources and Earth Science, China University of Mining & Technology, Xuzhou 221116 (China); Key Laboratory of Coal bed Methane Resource & Reservoir Formation Process, Ministry of Education, Xuzhou 221008 (China)

    2017-02-28

    Highlights: • Molecular model of single maceral vitrinite was obtained by {sup 13}C NMR, FT IR and HRTEM. • An optimal configuration was obtained through calculation of MM and MD. • The adsorption parameters for methane and vitrinite were determined with DFT and GCMC. - Abstract: The microscopic mechanism of interactions between CH{sub 4} and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, {sup 13}C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH{sub 4} is conducted. A saturated state is reached after absorbing 17 CH{sub 4}s per coal vitrinite molecule. CH{sub 4} is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [−C=O] and [C−O−C]. CH{sub 4} distributed in the distance of 0.99–16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [−C=O] (1.64 Å) < [C−O−C] (1.89 Å) < [−COOH] (3.78 Å) < [-CH{sub 3}] (4.11 Å) according to the average RDF curves. CH{sub 4} enriches

  5. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  6. Oxygen-induced Decrease in the Equilibrium Adsorptive Capacities of Activated Carbons

    OpenAIRE

    Ovín Ania, María Concepción; Parra Soto, José Bernardo; Pis Martínez, José Juan

    2004-01-01

    Special attention was paid in this work to the role of surface chemistry in the adsorption of phenol and salicylic acid onto activated carbons. To this end, two commercial activated carbons (granular and powdered) were oxidised using ammonium peroxodisulphate [(NH4) 2S2O8] and nitric acid in different concentrations. The structural and chemical properties of the oxidised adsorbents were characterised via nitrogen adsorption isotherms measured at –196 ° C and Boehm titrations. Phenol adsorptio...

  7. Adsorptive removal of cesium using bio fuel extraction microalgal waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi, E-mail: inoue@elechem.chem.saga-u.ac.jp [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Gurung, Manju [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Adhikari, Birendra Babu; Alam, Shafiq [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Kawakita, Hidetaka; Ohto, Keisuke [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Kurata, Minoru [Research Laboratories, DENSO CORPORATION, Minamiyama 500-1, Komenoki, Nisshin, Aichi 470-0111 (Japan); Atsumi, Kinya [New Business Promotion Dept., DENSO CORPORATION, Showa-cho 1-1, Kariya, Aichi 448-8661 (Japan)

    2014-04-01

    Highlights: • A novel biosorbent was prepared from the microalgal waste after biofuel extraction. • Higher selectivity and adsorption efficiency of the adsorbent for Cs{sup +} over Na{sup +} ions from aqueous solutions. • Potential candidate and eco-friendly alternative to the commercial resins such as zeolite. - Abstract: An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs{sup +} over Na{sup +} from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs{sup +} calculated from Langmuir model was found to be 1.36 mol kg{sup −1}. Trace concentration of Cs{sup +} ions present in aqueous streams was successfully separated from Na{sup +} ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs{sup +} in column operation was 0.13 mol kg{sup −1}. Although the adsorbed Cs{sup +} ions were easily eluted using 1 M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs{sup +} ions due to the combustible characteristics of this adsorbent.

  8. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash

    International Nuclear Information System (INIS)

    Atun, Guelten; Hisarli, Guel; Kurtoglu, Ayse Engin; Ayar, Nihat

    2011-01-01

    This investigation reveals the adsorption characteristics of two basic dyes, thionine (TH) and safranine T (ST), onto fly ash (FA) and its three zeolitized products prepared at different hydrothermal conditions. Typical two-step isotherms were observed for TH adsorption onto four adsorbents, whereas the isotherms of the larger ST molecules were S-shaped. The adsorption capacities of the zeolitized fly ash (ZFA) estimated from the first plateau region of the TH isotherms was nearly twice the FA capacity. The capacities increased by up to five times in the second plateau region. The adsorption capacity of FA for ST is equivalent that of TH, whereas the capacities of ZFA are lower than those found for TH. The equilibrium results were well-described by the Freundlich isotherm model. The kinetic data obtained in the temperature range of 298-318 K was analyzed using Paterson's and Nernst Plank's approximations based on the homogeneous surface diffusion model (HSDM). The thermodynamic functions for the transition state were evaluated from the temperature-dependence of the surface diffusion coefficients by applying the Eyring model.

  9. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Atun, Guelten, E-mail: gultena@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, 34850 Avcilar, Istanbul (Turkey); Hisarli, Guel; Kurtoglu, Ayse Engin; Ayar, Nihat [Istanbul University, Faculty of Engineering, Department of Chemistry, 34850 Avcilar, Istanbul (Turkey)

    2011-03-15

    This investigation reveals the adsorption characteristics of two basic dyes, thionine (TH) and safranine T (ST), onto fly ash (FA) and its three zeolitized products prepared at different hydrothermal conditions. Typical two-step isotherms were observed for TH adsorption onto four adsorbents, whereas the isotherms of the larger ST molecules were S-shaped. The adsorption capacities of the zeolitized fly ash (ZFA) estimated from the first plateau region of the TH isotherms was nearly twice the FA capacity. The capacities increased by up to five times in the second plateau region. The adsorption capacity of FA for ST is equivalent that of TH, whereas the capacities of ZFA are lower than those found for TH. The equilibrium results were well-described by the Freundlich isotherm model. The kinetic data obtained in the temperature range of 298-318 K was analyzed using Paterson's and Nernst Plank's approximations based on the homogeneous surface diffusion model (HSDM). The thermodynamic functions for the transition state were evaluated from the temperature-dependence of the surface diffusion coefficients by applying the Eyring model.

  10. First-principles studies on the effects of halogen adsorption on monolayer antimony.

    Science.gov (United States)

    Yeoh, Keat Hoe; Yoon, Tiem Leong; Ong, Duu Sheng; Lim, Thong Leng; Zuntu Abdullahi, Yusuf

    2017-09-27

    Using first-principles calculations, we carry out systematic studies on the electronic, magnetic and structural properties of halogenated β-phase antimonene. We consider two different levels of halogen adatom coverage i.e. Θ = 1/8 and Θ = 1/18. It is found that F, Cl and Br adatoms act as acceptors whereas the I adatom acts as a donor. For a high coverage of Θ = 1/8, halogenated β-phase antimonene exhibits metallic characteristics. With a lower coverage of Θ = 1/18, through the adsorption of F, Cl and Br the semiconducting unstrained antimonene becomes metallic. In contrast, I-adsorbed antimonene remains semiconducting but exhibits magnetic behavior. We further investigate the effects of bi-axial strain on the halogenated β-phase antimonene. It is found that bi-axial strain can only induce ferromagnetism on the halogenated antimonene at Θ = 1/18. However, the ferromagnetism is suppressed when the applied strain is high. We uncover that the emergence of strain-dependent magnetism is attributed to the presence of localized states in the bandgap resulting from collective effects of bi-axial strain and the adsorption of halogen atoms.

  11. In-situ optical spectroscopy and electronic properties of pyrrole sub-monolayers on Ga-rich GaAs(001)

    International Nuclear Information System (INIS)

    Bruhn, Thomas; Ewald, Marcel; Fimland, Bjørn-Ove; Kneissl, Michael; Esser, Norbert; Vogt, Patrick

    2011-01-01

    We report on the characterization of sub-monolayers of pyrrole adsorbed on Ga-rich GaAs(001) surfaces. The interfaces were characterized by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) and reflectance anisotropy spectroscopy (RAS) in a spectral range between 1.5 and 8 eV. The adsorption of pyrrole on Ga-rich GaAs(001) modifies the RAS spectrum of the clean GaAs surface significantly at the surface transitions at 2.2 and 3.5 eV indicating a chemisorption of the molecules. By the help of transients at these surface transitions during the adsorption process, we were able to prepare different molecular coverages from a sub-monolayer up to a complete molecular layer. The different coverages of pyrrole were imaged by STM and electronically characterized by STS. The measurements reveal that the adsorbed molecules electronically insulate the surface and indicate the formation of new interface states around −3.5 and +4.2 eV. The RAS measurements in the UV region show new anisotropies in the spectral range of the optical transitions of the adsorbed pyrrole molecules. Our measurements demonstrate the potential of optical and electronic spectroscopy methods for the characterization of atomically thin molecular layers on semiconductor surfaces allowing a direct access to the properties of single adsorbed molecules.

  12. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  13. Dose-dependent adsorptive capacity of activated charcoal for gastrointestinal decontamination of a simulated paracetamol overdose in human volunteers

    DEFF Research Database (Denmark)

    Gude, Anne-Bolette Jill; Hoegberg, Lotte Christine Groth; Riis Angelo, Helle

    2010-01-01

    The amount of activated charcoal needed to treat drug overdoses has arbitrarily been set at a charcoal-drug ratio of 10:1. Recent in vitro studies have shown a larger adsorptive capacity for activated charcoal when used in a model of paracetamol overdose. In the present study, we investigated...... whether this reserve capacity exists in vivo. This is clinically relevant in cases of large overdoses or if the full standard dose of 50 g activated charcoal cannot be administered. We performed a randomized, cross-over study (n = 16). One hour after a standard breakfast, 50 mg/kg paracetamol...... was administered, followed 1 hr later by an activated charcoal-Water slurry containing 50 (control), 25 or 5 g activated charcoal. The areas under the serum concentration-time curve (AUC) for paracetamol were used to estimate the efficacy of each activated charcoal dose. The AUC of the 25-g dose was found...

  14. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    Science.gov (United States)

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  15. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.

    Science.gov (United States)

    Kastner, James R; Miller, Joby; Das, K C

    2009-05-30

    Ammonia adsorbents were generated via pyrolysis of biomass (peanut hulls and palm oil shells) over a range of temperatures and compared to a commercially available activated carbon (AC) and solid biomass residuals (wood and poultry litter fly ash). Dynamic ammonia adsorption studies (i.e., breakthrough curves) were performed using these adsorbents at 23 degrees C from 6 to 17 ppmv NH(3). Of the biomass chars, palm oil char generated at 500 degrees C had the highest NH(3) adsorption capacity (0.70 mg/g, 6 ppmv, 10% relative humidity (RH)), was similar to the AC, and contrasted to the other adsorbents (including the AC), the NH(3) adsorption capacity significantly increased if the relative humidity was increased (4 mg/g, 7 ppmv, 73% RH). Room temperature ozone treatment of the chars and activated carbon significantly increased the NH(3) adsorption capacity (10% RH); resultant adsorption capacity, q (mg/g) increased by approximately 2, 6, and 10 times for palm oil char, peanut hull char (pyrolysis only), and activated carbon, respectively. However, water vapor (73% RH at 23 degrees C) significantly reduced NH(3) adsorption capacity in the steam and ozone treated biomass, yet had no effect on the palm shell char generated at 500 degrees C. These results indicate the feasibility of using a low temperature (and thus low energy input) pyrolysis and activation process for the generation of NH(3) adsorbents from biomass residuals.

  16. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Regti, Abdelmajid [Equipe de Chimie Analytique & Environnement, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi (Morocco); Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/. Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Ayouchia, Hicham Ben El [Equipe de Chimie Moléculaire, Matériaux et Modélisation, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi (Morocco); Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/. Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Laamari, My Rachid [Equipe de Chimie Analytique & Environnement, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi (Morocco); Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/. Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Stiriba, Salah Eddine; Anane, Hafid [Equipe de Chimie Moléculaire, Matériaux et Modélisation, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi (Morocco); Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/. Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); and others

    2016-12-30

    Highlights: • The adsorption efficiency increases with increasing pH, thus more negatively charged surface was available. • Monolayer adsorption and homogeneous adsorbent surface. • The experimental and theoretical data are in good agreement showing that MB has ability to accept electrons allowing more adsorption than BY28 dye. - Abstract: The adsorption of cationic dyes, Basic Yellow (BY28) and Methylene Blue (MB) on a new activated carbon from medlar species were studied in both single and binary system. Some experimental parameters, namely, pH, amount of adsorbent and contact time are studied. Quantum chemical results indicate that the adsorption efficiency was directly related to the dye electrophilicity power. Some theorical parameters were calculated and proved that MB is more electrophilic than BY28, than greatest interaction with surface sites. Kinetic study showed that the adsorption follows the pseudo-second-order model and Freundlich was the best model to describe the phenomenon in the single and binary system. According to the local reactivity results using Parr functions, the sulphur and nitrogen atoms will be the main adsorption sites.

  17. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    Science.gov (United States)

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Nie, Yulun; Hu, Chun; Kong, Chuipeng

    2012-01-01

    Highlights: ► Al modified hydroxyapatite possessed a higher defluoridation capacity of 32.57 mg/g. ► Hydroxyl groups on the surface of Al-HAP was the adsorption sites for F − removal. ► Enhanced F − removal over Al-HAP was attributed to the modification with aluminum. - Abstract: Aluminum-modified hydroxyapatite (Al-HAP) was prepared and characterized using XRD and BET analyses. Al-HAP possessed higher defluoridation capacity (DC) of 32.57 mgF − /g than unmodified hydroxyapatite (HAP) which showed a DC of 16.38 mgF − /g. The effect of Al/Ca atomic ratio in Al-HAP, solution pH and co-existing anions was further studied. The results indicated that the adsorption data could be well described by the Langmuir isotherm model and the adsorption kinetic followed the pseudo-second-order model. The pH changes during the adsorption process suggested that the -OH on the surface of Al-HAP was the adsorption sites. The more adsorption sites were formed on Al modified HAP, which possessed abundant surface hydroxyl groups, resulting in higher efficiency of F − removal. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated in order to understand the nature of adsorption process. The results revealed that the adsorption reaction was a spontaneous and endothermic process.

  19. The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China

    Science.gov (United States)

    Wang, Lu; Yu, Qingchun

    2016-11-01

    This study investigated the effects of moisture on high-pressure methane adsorption in carboniferous shales from the Qaidam Basin, China. The shale characteristics, including the organic/inorganic compositions and pore structure (volume and surface) distribution, were obtained using various techniques. Gibbs adsorption measurements were performed over a pressure range up to 6 MPa and temperatures of 308.15 K on dry samples and moisture-equilibrated samples to analyze the correlations between organic/inorganic matter, pore structure, and moisture content on the methane sorption capacity. Compared to dry samples, the sorption capacity of wet samples (0.44-2.52% of water content) is reduced from 19.7 ± 5.3% to 36.1% ± 6.1%. Langmuir fitting is conducted to investigate moisture-dependent variations of adsorbed methane density, Langmuir pressure, and volume. By combining the pore volume and surface distribution analyses, our observations suggested that the main competition sites for CH4-H2O covered pores of approximately 2-7 nm, whereas the effective sites for methane and water were predominantly distributed within smaller (10 nm), respectively. Regarding the compositional correlations, the impact of moisture on the amount of adsorbed methane shows a roughly linearly decreasing trend with increasing TOC content ranging from 0.62 to 2.88%, whereas the correlation between the moisture effect and various inorganic components is more complicated. Further fitting results indicate that illite/smectite mixed formations are closely related to the methane capacity, whereas the illite content show an evident connection to the pore structural (volume and surface) variations in the presence of moisture.

  20. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  1. Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements

    International Nuclear Information System (INIS)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2013-01-01

    A silver particle suspension obtained by a chemical reduction was used in this work. Monolayers of these particles (average size 28 nm) on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverages, quantitatively determined by atomic force microscopy (AFM) and SEM, was regulated by adjusting the nanoparticle deposition time and the suspension concentration. The zeta potential of the monolayers was determined by streaming potential measurements carried out under in situ (wet) conditions. These measurements performed for various ionic strengths and pH were interpreted in terms of the three-dimensional (3D) electrokinetic model. The stability of silver monolayers was also investigated using streaming potential and the AFM methods. The decrease in the surface coverage of particles as a function of time and ionic strength varied between 10 −1 and 10 −4  M was investigated. This allowed one to determine the equilibrium adsorption constant K a and the binding energy of silver particles (energy minima depth). Energy minima depth were calculated that varied between −18 kT for I = 10 −1  M and −19 kT for I = 10 −4 for pH 5.5 and T = 298 K. Our investigations suggest that the interactions between surface and nanoparticles are controlled by the electrostatic interactions among ion pairs. It was also shown that the in situ electrokinetic measurements are in accordance with those obtained by more tedious ex situ AFM measurements. This confirmed the utility of the streaming potential method for direct kinetic studies of nanoparticle deposition/release processes.Graphical Abstract

  2. Grand Canonical Monte Carlo simulations of hydrogen adsorption on aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mee Kyung [Bioinformatics and Molecular Design Research Center, B138A, Yonsei Engineering Research Complex, Yonsei University, Seoul 120-749 (Korea); No, Kyoung Tai [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea)

    2009-03-15

    The hydrogen adsorption simulations were carried for several model AlPOs (VPI-5, AlPO-5, AlPO-11 and AlPO-25) employing the Grand Canonical Monte Carlo (GCMC) simulations at 77 K to investigate the effect of pore size and the pore volume on the hydrogen uptake. The adsorption capacity showed no relationship with the pore size, surface area and micropore volume of AlPOs. However, the adsorption capacity per unit micropore volume increased as the pore size decreases. The heat of adsorption also increased as the pore size decreases. For all model AlPOs, the hydrogen exists homogeneously near the oxygen atoms in the framework. (author)

  3. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation.

    Science.gov (United States)

    Van de Voorde, Ben; Hezinová, Markéta; Lannoeye, Jeroen; Vandekerkhove, Annelies; Marszalek, Bartosz; Gil, Barbara; Beurroies, Isabelle; Nachtigall, Petr; De Vos, Dirk

    2015-04-28

    By combining experimental adsorption isotherms, microcalorimetric data, infrared spectroscopy and quantum chemical calculations the adsorption behaviour of the CPO-27/MOF-74 series (Ni, Co, Mg, Cu, and Zn) in the desulfurization of fuels is evaluated. The results show a clear influence of the metal ion on the adsorption capacity and affinity for S-heterocyclic compounds, with CPO-27(Ni) being the best performing material both in terms of capacity and affinity. The microcalorimetric data and infrared spectroscopy confirm the high affinity of CPO-27(Ni) for thiophene and similar compounds, while the computational data reveal that the origin of this outstanding adsorption performance is the strong sulfur-metal interaction.

  4. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    International Nuclear Information System (INIS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-01-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (q m /SSA BET ) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π–π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  5. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  6. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  7. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  8. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations

    Science.gov (United States)

    Peng, Chenliang; Min, Fanfei; Liu, Lingyun

    2017-12-01

    The hydrophobic aggregation in cationic surfactant suspension is an effective method to enhance the dewatering of clay-rich tailing. The solution pH can affect the adsorption behavior of cationic surfactant on clay mineral. The effect of pH on the adsorption of dodecylamine (DDA) on montmorillonite was investigated by the sedimentation test and the characterization of flocs images, contact angle, adsorption quantity, and fourier transform infrared (FTIR) spectroscopy, as well as molecular dynamics (MD) simulation. It was found that DDA ions were adsorbed on montmorillonite basal surfaces mainly by physical adsorption, including the electrostatic attraction and hydrogen bonding. A certain number of neutral DDA molecules can favor the adsorption of DDA. At pH around 8, the effect of hydrophobic modification was the best because DDA molecules and ions form compact and well-organized monolayer. The MD simulation results were in good agreement with that of contact angle, adsorption quantity and FTIR.

  9. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar

    International Nuclear Information System (INIS)

    Yang, Kun; Yang, Jingjing; Jiang, Yuan; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin–Ashtakhov (DA) model. Correlations of adsorption capacity (Q 0 ) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and α m ), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents. - Highlights: • Adsorption of organic chemicals on biochars are captured by pore filling mechanism. • Adsorption is derived from Van der Waals force, π-π EDA and H-bonding interactions. • Adsorption capacity is negatively correlated with organic molecular sizes/melting points. • Adsorption capacity is restricted by molecular sieving effect and packing efficiency. • Adsorption affinity has a LSER with chemical

  10. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  11. Comparison of the adsorption capacities of an activated-charcoal--yogurt mixture versus activated-charcoal--water slurry in vivo and in vitro

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Christophersen, Anne-Bolette; Christensen, Hanne Rolighed

    2005-01-01

    BACKGROUND: An activated charcoal--yogurt mixture was evaluated in vivo to determine the effect on the gastrointestinal absorption of paracetamol, as compared to activated-charcoal--water slurry. The potential advantage of the activated-charcoal--yogurt mixture is a better palatability and general...... acceptance by the patients without loss of efficacy. In addition, paracetamol adsorption studies were carried out in vitro to calculate the maximum adsorption capacity of paracetamol to activated-charcoal--yogurt mixture. METHODS: In vivo: A randomized crossover study on 15 adult volunteers, using...... paracetamol 50 mg/kg as a simulated overdose. Each study day volunteers were given a standard meal 1 h before paracetamol, then 50 g activated charcoal 1 h later in either of two preparations: standard water slurry or mixed with 400 mL yogurt. Paracetamol serum concentrations were measured using HPLC...

  12. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  13. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  14. A Study on adsorption of Li from aqueous solution using various adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, Keon Sang [Dept. of Applied Chemistry, Andong National University, Andon (Korea, Republic of); Kim, Dae Ik [School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-04-15

    The aim of the present study is to explore the possibility of utilizing fly ash, loess and activated charcoal for the adsorption of Li in aqueous solution. Batch adsorption experiments were performed to evaluate the influences of various factors like initial concentration, contact time, and temperature. The adsorption data showed that fly ash and activated charcoal are not effective for the adsorption of Li. On the contrary, loess showed much higher adsorption capacity for Li. The adsorption of Li on loess was highly concentration dependent. It was found that the adsorption capacity of loess is favored at a lower Li concentration. At equilibrium, approximately 95% of adsorption was achieved by loess. The equilibrium data were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R 2 compared to the pseudo-first-order kinetic models. The thermodynamic parameters such as free energy ΔG, the enthalpy ΔH, and the entropy ΔS were calculated.

  15. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  16. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    International Nuclear Information System (INIS)

    Greene, J. E.

    2015-01-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO 2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  17. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  18. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  19. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  20. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon

    International Nuclear Information System (INIS)

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-01-01

    Highlights: ► The presence of EfOM significantly reduced the adsorption capacities and rates of PFCs. ► Low-molecular-weight EfOM compounds ( 30 kDa) affect the adsorption through pore blockage or restriction effect. ► Changes in surface properties of PAC caused by preloaded EfOM could affect PFCs adsorption. - Abstract: Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC–EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds ( 30 kDa) had much less effect on PFC adsorption capacity.