WorldWideScience

Sample records for monodispersed silica nanoparticles

  1. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing.

    Science.gov (United States)

    Thomassen, Leen C J; Aerts, Alexander; Rabolli, Virginie; Lison, Dominique; Gonzalez, Laetitia; Kirsch-Volders, Micheline; Napierska, Dorota; Hoet, Peter H; Kirschhock, Christine E A; Martens, Johan A

    2010-01-05

    For the investigation of the interaction of nanoparticles with biomolecules, cells, organs, and animal models there is a need for well-characterized nanoparticle suspensions. In this paper we report the preparation of monodisperse dense amorphous silica nanoparticles (SNP) suspended in physiological media that are sterile and sufficiently stable against aggregation. SNP sols with various particle sizes (2-335 nm) were prepared via base-catalyzed hydrolysis and polymerization of tetraethyl orthosilicate under sterile conditions using either ammonia (Stober process (1) ) or lysine catalyst (Lys-Sil process (2) ). The series was complemented with commercial silica sols (Ludox). Silica nanoparticle suspensions were purified by dialysis and dispersed without using any dispersing agent into cell culture media (Dulbecco's Modified Eagle's medium) containing antibiotics. Particle sizes were determined by dynamic light scattering. SNP morphology, surface area, and porosity were characterized using electron microscopy and nitrogen adsorption. The SNP sols in cell culture medium were stable for several days. The catalytic activity of the SNP in the conversion of hydrogen peroxide into hydroxyl radicals was investigated using electron paramagnetic resonance. The catalytic activity per square meter of exposed silica surface area was found to be independent of particle size and preparation method. Using this unique series of nanoparticle suspensions, the relationship between cytotoxicity and particle size was investigated using human endothelial and mouse monocyte-macrophage cells. The cytotoxicity of the SNP was strongly dependent on particle size and cell type. This unique methodology and the collection of well-characterized SNP will be useful for further in vitro studies exploring the physicochemical determinants of nanoparticle toxicity.

  2. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  3. Controlled Microwave-Assisted Growth of Monodisperse of Silica Nanoparticles under Acid Catalysis (Postprint)

    Science.gov (United States)

    2012-11-26

    over conventional heating techniques because they deliver large amounts of controlled power quickly to small volumes of absorbing media, promoting...transition states, such as pentacoordinate and hexacoordinate silanes .25,38,39 Recently, a DFT study has postulated that the formation of stable silica

  4. Monodispersed Silica Nanospheres Encapsulating Fe3O4 and LaF3:Eu3+ Nanoparticles for MRI Contrast Agent and Luminescent Imaging

    Science.gov (United States)

    Tian, Yang; Yu, Binbin; Yang, Hong-Yu; Liao, Ji

    2013-03-01

    Bifunctional nanospheres of silica encapsulating Fe3O4 and LaF3:Eu nanoparticles were synthesized in a reverse microemulsion solution. The nanospheres were perfectly monodispersed with a small diameter of 20 nm. The composition of the bifunctional nanospheres was confirmed by powder X-ray diffraction. Their magnetic and luminescent properties were measured at room temperature. The relaxation efficiency and T2-weighted images showed the high-performance for the product as a resonance imaging contrast agent. In addition, a qualitative cell uptake in human cervical cancer HeLa cells demonstrated that the SFLE nanospheres were efficiently up-taken into cytosol. Taken together, these findings suggest that the SiO2/Fe3O4-LaF3:Eu3+ nanospheres are good luminescence probes for bio-imaging.

  5. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  6. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    Science.gov (United States)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  7. Facile Method for Preparation of Silica Coated Monodisperse Superparamagnetic Microspheres

    Directory of Open Access Journals (Sweden)

    Xuan-Hung Pham

    2016-01-01

    Full Text Available This paper presents a facile method for preparation of silica coated monodisperse superparamagnetic microsphere. Herein, monodisperse porous polystyrene-divinylbenzene microbeads were prepared by seeded emulsion polymerization and subsequently sulfonated with acetic acid/H2SO4. The as-prepared sulfonated macroporous beads were magnetized in presence of Fe2+/Fe3+ under alkaline condition and were subjected to silica coating by sol-gel process, providing water compatibility, easily modifiable surface form, and chemical stability. FE-SEM, TEM, FT-IR, and TGA were employed to characterize the silica coated monodisperse magnetic beads (~7.5 μm. The proposed monodisperse magnetic beads can be used as mobile solid phase particles candidate for protein and DNA separation.

  8. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  9. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  10. Monodisperse cobalt ferrite nanomagnets with uniform silica coatings.

    Science.gov (United States)

    Dai, Qiu; Lam, Michelle; Swanson, Sally; Yu, Rui-Hui Rachel; Milliron, Delia J; Topuria, Teya; Jubert, Pierre-Olivier; Nelson, Alshakim

    2010-11-16

    Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles--which uses poly(acrylic acid) to bind to the nanoparticle surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor--was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.

  11. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules.

  12. Synthesis and antimicrobial activity of monodisperse copper nanoparticles.

    Science.gov (United States)

    Kruk, Tomasz; Szczepanowicz, Krzysztof; Stefańska, Joanna; Socha, Robert P; Warszyński, Piotr

    2015-04-01

    Metallic monodisperse copper nanoparticles at a relatively high concentration (300 ppm CuNPs) have been synthesized by the reduction of copper salt with hydrazine in the aqueous SDS solution. The average particles size and the distribution size were characterized by Dynamic Light Scattering (DLS), Nanosight-Nanoparticle Tracking Analysis (NTA). The morphology and structure of nanoparticles were investigated using Scanning Electron Microscopy (SEM). The chemical composition of the copper nanoparticles was determined by X-ray Photoelectron Spectroscopy (XPS). Monodisperse copper nanoparticles with average diameter 50 nm were received. UV/vis absorption spectra confirmed the formation of the nanoparticles with the characteristic peak 550 nm. The antimicrobial studies showed that the copper nanoparticles had high activity against Gram-positive bacteria, standard and clinical strains, including methicillin-resistant Staphylococcus aureus, comparable to silver nanoparticles and some antibiotics. They also exhibited antifungal activity against Candida species. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mesoporous silica nanoparticles for active corrosion protection.

    Science.gov (United States)

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  14. Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process

    Institute of Scientific and Technical Information of China (English)

    LI Peng; GUAN Jianguo; ZHANG Qingjie; ZHAO Wenyu

    2005-01-01

    Polymer-protected monodisperse nickel nanoparticles were synthesized by a modified polyol reduction method in the presence of poly ( N-vinyl- 2-pyrrolidone ). These nanoparticles were characterized by transmission electron microscopy (TEM), X- ray diffraction ( XRD ), selected area electron diffraction ( SAED ), as well as vibrating sample magnetometer (VSM). The experimental results show that the addition of PVP and the concentration of NaOH have strong influences on the size, agglomeration and uniformity of nanoparticles. In the presence of PVP and NaOH with low concentrations, monodisperse nickel nanoparticles with average diameters about 42 nm were obtained and characterized to be pure nickel crystalline with fcc structure. Secondary structures such as clusters, loops, and strings resulted from magnetic interactions between particles were observed. The chemical interaction between the PVP and nickel nanoparticles was found by FTIR. The saturation magnetization ( Ms ), remanent magnetization (Mr) and coercivity ( Hc ) of these nickel nanoparticles are lower than those of bulk nickel.

  15. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  16. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    Science.gov (United States)

    Chen, Feng; Shi, Ruobing; Xue, Yun; Chen, Lei; Wan, Qian-Hong

    2010-08-01

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe 2O 3)/silica (SiO 2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe 3O 4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe 3O 4 to γ-Fe 2O 3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size ( dparticle=1.72 μm), high saturation magnetization ( Ms=17.22 emu/g), superparamagnetism ( Mr/ Ms=0.023), high surface area ( SBET=240 m 2/g), and mesoporosity ( dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO 2 nanoparticles, in which cubic γ-Fe 2O 3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/ A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  17. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  18. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    SHEN Cheng-Min; HUI Chao; YANG Tian-Zhong; XIAO Cong-Wen; CHEN Shu-Tang; DING Hao; GAO Hong-Jun

    2008-01-01

    @@ Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L1o structure and the particles are ferromagnetic at room temperature.

  19. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene.

    Science.gov (United States)

    Xia, Guanglin; Tan, Yingbin; Chen, Xiaowei; Sun, Dalin; Guo, Zaiping; Liu, Huakun; Ouyang, Liuzhang; Zhu, Min; Yu, Xuebin

    2015-10-21

    Monodisperse MgH2 nanoparticles with homogeneous distribution and a high loading percent are developed through hydrogenation-induced self-assembly under the structure-directing role of graphene. Graphene acts not only as a structural support, but also as a space barrier to prevent the growth of MgH2 nanoparticles and as a thermally conductive pathway, leading to outstanding performance.

  20. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Peng; TANG Shao-Chun; MENG Xiang-Kang

    2009-01-01

    Silver nanoparticles with an average size of about 2Onto are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method.The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  1. Synthesis and characterization of gold-deposited red, green and blue fluorescent silica nanoparticles for biosensor application.

    Science.gov (United States)

    Lee, Kyoung G; Wi, Rinbok; Park, Tae Jung; Yoon, Sun Hong; Lee, Jaebeom; Lee, Seok Jae; Kim, Do Hyun

    2010-09-14

    Fluorescent silica nanoparticles deposited with highly monodisperse gold nanoparticles (1-2 nm) were synthesized via the W/O method and intensive ultrasound irradiation. A large surface area of gold-doped fluorescent silica nanoparticle serves as a platform to immobilize a specific binding protein for biomolecules interaction in bioimaging applications.

  2. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    Science.gov (United States)

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials.

  3. A Facile Solvothermal Synthesis of Monodisperse Ni Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YU Peng-fei; CUI Bin; ZHANG Yan; SHI Qi-zhen

    2008-01-01

    A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.

  4. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A; Swalih, P.K.A; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A; Anantharaman, A

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  5. Solvent: A Key in Digestive Ripening for Monodisperse Au Nanoparticles

    Science.gov (United States)

    Wang, Peng; Qi, Xuan; Zhang, Xuemin; Wang, Tieqiang; Li, Yunong; Zhang, Kai; Zhao, Shuang; Zhou, Jun; Fu, Yu

    2017-01-01

    This work has mainly investigated the influence of the solvent on the nanoparticles distribution in digestive ripening. The experiments suggested that the solvents played a key role in digestive ripening of Au nanoparticles (Au NPs). For the benzol solvents, the resulting size distribution of Au NPs was inversely related to the solvent polarity. It may be interpreted by the low Gibbs free energy of nanoparticles in the high polarity medium, which was supposedly in favor of reducing the nanoparticles distribution. Through digestive ripening in the highly polar benzol solvent of p-chlorotoluene, monodisperse Au NPs with relative standard deviation (RSD) of 4.8% were achieved. This indicated that digestive ripening was an effective and practical way to prepare high-quality nanoparticles, which holds great promise for the nanoscience and nanotechnology.

  6. Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John

    Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.

  7. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles.

    Science.gov (United States)

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S

    2010-11-01

    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates.

  8. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng; Shi Ruobing; Xue Yun; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.c [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2010-08-15

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (gamma-Fe{sub 2}O{sub 3})/silica (SiO{sub 2}) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe{sub 3}O{sub 4}) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe{sub 3}O{sub 4} to gamma-Fe{sub 2}O{sub 3} by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 deg. C feature spherical shape and uniform particle size (d{sub particle}=1.72 mum), high saturation magnetization (M{sub s}=17.22 emu/g), superparamagnetism (M{sub r}/M{sub s}=0.023), high surface area (S{sub BET}=240 m{sup 2}/g), and mesoporosity (d{sub pore}=6.62 nm). The composite microsphere consists of interlocked amorphous SiO{sub 2} nanoparticles, in which cubic gamma-Fe{sub 2}O{sub 3} nanocrystals are homogeneously dispersed and thermally stable against gamma- to alpha-phase transformation at temperatures up to 600 deg. C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A{sub 260}/A{sub 280} values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  9. Toxicity of silica nanoparticles and the effect of protein corona

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Jespersen, Lars Vesterby; Wang, Jing

    2010-01-01

    ). The NPs were characterized by TEM and DLS as monodisperse and non-aggregated in solution and the NP suspensions were free of metal and endotoxin impurities as tested by ICP-MS and the LAL test. Cellular uptake and binding of the silica NPs was indirectly assessed by flow cytometry side scatter and SEM...... the NPs were found to cause increased cellular ROS production which could not be reduced by antioxidant treatment. In conclusion, our data suggest that surface area is an appropriate dose metric to predict cytotoxicity and inflammation induced by silica nanoparticles. Furthermore, the reduced toxicity...

  10. Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application

    Energy Technology Data Exchange (ETDEWEB)

    Peedikakkandy, Lekha [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Kalita, Laksheswar [Advanced Technology Group, Applied Materials India Pvt. Ltd., Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076 (India); Kavle, Pravin [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Kadam, Ankur; Gujar, Vikas; Arcot, Mahesh [Advanced Technology Group, Applied Materials India Pvt. Ltd., Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076 (India); Bhargava, Parag, E-mail: pbhargava@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2015-12-01

    Highlights: • Nano-layer coating of ceria over silica nanoparticles. • Study effect of reaction pH and temperature on ceria coating over silica nanoparticles. • CMP application of ceria coated silica nanoparticles over SiO{sub 2} and SiN films. - Abstract: This paper describes synthesis of spherical and highly mono-dispersed ceria coated silica nanoparticles of size ∼70–80 nm for application as abrasive particles in Chemical Mechanical Planarization (CMP) process. Core silica nanoparticles were initially synthesized using micro-emulsion method. Ceria coating on these ultrafine and spherical silica nanoparticles was achieved using controlled chemical precipitation method. Study of various parameters influencing the formation of ceria coated silica nanoparticles of size less than 100 nm has been undertaken and reported. Ceria coating over silica nanoparticles was varied by controlling the reaction temperature, pH and precursor concentrations. Characterization studies using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Energy Dispersive X-ray analysis show formation of crystalline CeO{sub 2} coating of ∼10 nm thickness over silica with spherical morphology and particle size <100 nm. Aqueous slurry of ceria coated silica abrasive was prepared and employed for polishing of oxide and nitride films on silicon substrates. Polished films were studied using ellipsometry and an improvement in SiO{sub 2}:SiN selective removal rates up to 12 was observed using 1 wt% ceria coated silica nanoparticles slurry.

  11. A novel method for preparing monodispersed polystyrene nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIU Kaiyi; WANG Zhaoqun

    2007-01-01

    A preparation manner for monodispersed polystyrene(PS)nanoparticles polymerized by using a novel addition procedure of a monomer is suggested.In systems containing a smaller amount of surfactant compared with conventional microemulsion polymerization,the polymerization processes consists of three stages:adding dropwise the first part of the monomer for a few minutes at 80℃ and polymerizing for 1 h;adding collectively the residual part of the monomer and polymerizing at the same temperature for another 1 h;and then polymerizing at 85℃ for another 1 h.Based on discussions on the nucleation mechanism of particles in the polymerization system,the influences of monomer weight added dropwise,and amounts of initiator and emulsifier on the size and distribution of PS particles were investigated.PS nanoparticles with smaller diameter such as a number-average diameter of 18.7 nm and better monodispersity were obtained since the dropped styrene amount was suitable under 20wt-% emulsifier amount and 3wt-% initiator amount based on the monomer.

  12. Monodisperse spherical meso-macroporous silica particles: Synthesis and adsorption of biological macromolecules

    Science.gov (United States)

    Stovpiaga, E. Yu.; Grudinkin, S. A.; Kurdyukov, D. A.; Kukushkina, Yu. A.; Nashchekin, A. V.; Sokolov, V. V.; Yakovlev, D. R.; Golubev, V. G.

    2016-11-01

    Monodispersed spherical silica particles, including large mesopores (over 10 nm) and macropores (up to 100 nm) were obtained by chemical etching in an autoclave. A method for introducing globular protein myoglobin molecules into the pores is developed. The method of filling is based on a high adsorption capacity of the developed internal pore structure of the particles. The structure and adsorption properties of the materials are studied.

  13. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (PGMA-EDMA) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized PGMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  14. Pore fabrication in various silica-based nanoparticles by controlled etching

    KAUST Repository

    Zhao, L. J.

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  15. Monodisperse silica nanoparticles coated with gold nanoparticles as a sorbent for the extraction of phenol and dihydroxybenzenes from water samples based on dispersive micro-solid-phase extraction: Response surface methodology.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2015-08-01

    A selective and sensitive method was developed based on dispersive micro-solid-phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high-performance liquid chromatography with UV detection. SiO2 , SiO2 @MPTES, and SiO2 @MPTES@Au nanoparticles (MPTES = 3-mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett-Burman design. The significant variables optimized by a Box-Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1-500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.

  16. Ultrasonically Aided Electrospray source for monodisperse, charged nanoparticles

    Science.gov (United States)

    Song, Weidong

    This dissertation presents a new method of producing nearly monodisperse electrospray using charged capillary standing waves. This method, based on the Ultrasonically Aided Electrospraying (UAE) technology concept invented by the author, includes the steps of dispensing a liquid on the top surface of a diaphragm so as to form a liquid film on the surface of the diaphragm, setting the diaphragm into vibration using piezoelectric transducers so as to induce capillary standing waves in the liquid film, applying electric charge to the capillary standing waves so that electrospray is extracted from the crests of the capillary standing waves. Theoretical analysis on the formation of charged particles from charged capillary standing waves at critically stable condition is performed. An experimental UAE system is designed, built, and tested and the performance of this new technology concept is assessed. Experimental results validate the capabilities of the UAE concept. The method has several applications including electric space propulsion, nano particulate technologies, nanoparticle spray coating and painting techniques, semiconductor fabrication and biomedical processes. Two example applications in electric space propulsion and nanoparticle spray coating are introduced.

  17. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    Science.gov (United States)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  18. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  19. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2017-03-22

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  20. Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications.

    Science.gov (United States)

    Zhang, Xin-Sheng; Wang, Jie-Xin; Xu, Ke; Le, Yuan; Chen, Jian-Feng

    2011-04-01

    Monodisperse Ag@SiO2 core-shell structured nanoparticles were firstly utilized as a novel corrosion inhibitor for marine anticorrosion applications. The related marine anticorrosion properties were evaluated with an electrochemical noise (ECN) analysis during 2 weeks of accelerated immersion tests in natural seawater with the addition of various inorganic salts and nutriments. The experimental results indicate that the corrosion activity is markedly reduced by nearly 1-3 orders of magnitude owing to the introduction of Ag@SiO2 core-shell nanoparticles into coating. The inhibition efficiency of corrosion can reach as high as about 99%. More importantly, such a coating exhibits an excellent long-term sustained marine anticorrosion effect. So it could be reasonably inferred that silver cores as active inhibitors effectively prevent the corrosion damage from microorganisms, while silica shells act as a good protection for silver nanoparticles, delay the release of silver ions, and also function as the corrosion inhibiting action for inorganic salts. Therefore, this would make monodisperse Ag@SiO2 core-shell nanoparticles a potential and promising corrosion inhibitor for developing future advanced multifunctional coatings.

  1. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shichuan; Zhang, Tonglai; Tang, Runze; Qiu, Hao [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Caiqin [Shandong Special Industry Group Co., Ltd, Shandong 255201 (China); Zhou, Zunning [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-04-01

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (M{sub s}) of 97.979 emu/g and retentivity (M{sub r}) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material. - Highlights: • A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work. • The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes. • The superparamagnetic NaCit–Fe{sub 3}O{sub 4} samples have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. • The relevant formation mechanisms of the two types of samples are proposed.

  2. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    OpenAIRE

    Zhen Yin; Yining Zhang; Kai Chen; Jing Li; Wenjing Li; Pei Tang; Huabo Zhao; Qingjun Zhu; Xinhe Bao; Ding Ma

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the s...

  3. Preparation of Monodisperse Nanoparticle of Layered Double Hydroxides and Polyoxyethylene Sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Huizhong; QIN Lianjie; ZHANG Hong; YANG Qinzheng; YANG Jing

    2005-01-01

    In order to obtain the bio-molecule/ LDHs nanocomposites having regular crystal structure,three nanocomposites of layered double hydroxides and polyoxyethylene sulfates were prepared by ion-exchange method. TEM analysis reveals that the monodisperse rigid .sphere of approximately 200 nm in diameter could be gotten when the intergallery anion was PEGS-400. Such monodisperse nanoparticle could be used as a promising precursor for preparing bio-molecule/LDHs nanocomposites.

  4. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  5. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet; Ojha, Animesh K. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004 (India); Srivastava, Manish, E-mail: 84.srivastava@gmail.com, E-mail: manish-mani84@rediffmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Singh, Jay [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Yashpal, Madhu [Electron Microscope Facility, Department of Anatomy Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Materny, Arnulf [Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Campus Ring, 28759 Bremen (Germany)

    2015-02-15

    In the present study, monodispersed CeO{sub 2} nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce{sup 4+} into Ce{sup 3+} at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm{sup -1} for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce{sup 3+} ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO{sub 2} samples.

  6. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.

    Science.gov (United States)

    Fan, Wen; Yan, Wei; Xu, Zushun; Ni, Hong

    2012-02-01

    Chitosan nanoparticles have been extensively studied for drug and gene delivery. In this paper, monodisperse, low molecular weight (LMW) chitosan nanoparticles were prepared by a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent. The objective of this study was to solve the problem of preparation of chitosan/TPP nanoparticles with high degree of monodispersity and stability, and investigate the effect of various parameters on the formation of LMW chitosan/TPP nanoparticles. It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process. The optimized nanoparticles exhibited a mean hydrodynamic diameter of 138 nm with a polydispersity index (PDI) of 0.026 and a zeta potential of +35 mV, the nanoparticles had good storage stability at room temperature up to at least 20 days.

  7. The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles

    Science.gov (United States)

    Stovpiaga, E. Yu.; Eurov, D. A.; Kurdyukov, D. A.; Smirnov, A. N.; Yagovkina, M. A.; Grigorev, V. Yu.; Romanov, V. V.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    The method of obtaining nanoclusters α-Fe2O3 in the pores of monodisperse spherical particles of mesoporous silica ( mSiO2) by a single impregnation of the pores with a melt of crystalline hydrate of ferric nitrate and its subsequent thermal destruction has been proposed. Fe3O4 nanoclusters are synthesized from α-Fe2O3 in the pores by reducing in thermodynamically equilibrium conditions. Then particles containing Fe3O4 were annealed in oxygen for the conversion of Fe3O4 back to α-Fe2O3. In the result, the particles with the structure of the core-shell mSiO2/Fe3O4@ mSiO2/α-Fe2O3 are obtained. The composition and structure of synthesized materials as well as the field dependence of the magnetic moment on the magnetic field strength have been investigated.

  8. Thermal resistance between amorphous silica nanoparticles

    Science.gov (United States)

    Meng, Fanhe; Elsahati, Muftah; Liu, Jin; Richards, Robert F.

    2017-05-01

    Nanoparticle-based materials have been used as thermal insulation in a variety of macroscale and microscale applications. In this work, we investigate the heat transfer between nanoparticles using non-equilibrium molecular dynamics simulations. We calculate the total thermal resistance and thermal boundary resistance between adjacent amorphous silica nanoparticles. Numerical results are compared to interparticle resistances determined from experimental measurements of heat transfer across packed silica nanoparticle beds. The thermal resistance between nanoparticles is shown to increase rapidly as the particle contact radius decreases. More significantly, the interparticle resistance depends strongly on the forces between particles, in particular, the presence or absence of chemical bonds between nanoparticles. In addition, the effect of interfacial force strength on thermal resistance increases as the nanoparticle diameter decreases. The simulations results are shown to be in good agreement with experimental results for 20 nm silica nanoparticles.

  9. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  10. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com [Department of Electronics science, Kurukshetra University, Kurukshetra, Haryana, India-136119 (India); Kumar, Dinesh

    2016-05-06

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  11. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    Science.gov (United States)

    Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  12. Optical properties of gold nanoshells on monodisperse silica cores: Experiment and simulations

    Science.gov (United States)

    Khanadeev, Vitaly A.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.

    2017-01-01

    Gold nanoshells (GNSs) on silica cores are widely used in various biomedical applications that need the spectral tunability and controlled absorption/scattering ratio. However, the plasmonic quality of experimental extinction spectra of GNS colloids differs from that predicted by Mie theory. In this work, we fabricated highly monodisperse silica nanospheres to use them further as cores for synthesis of silica/gold nanoshells. Four GNS samples with 116-nm core and gold shell thickness ranging from 16 to 34 nm (116/16, 18, 25, 34) were additionally separated in glycerol gradient solutions to obtain fractions with dominant percentage of single particles or aggregates of various sizes. The separated samples demonstrated extinction spectra with a high extinction maximum to minimum ratio about 3. Optical properties of GNS monomers and aggregates with fixed and random orientations were calculated by Mie theory for polydisperse GNSs, by a generalized multiparticle Mie (GMM) theory for aggregates of separated GNSs, and by the finite-difference time-domain (FDTD) method for aggregates of overlapped GNSs. The extinction spectra of upper fractions from 116/25 and 116/34 samples are shown to be well described by Mie theory for GNSs with polydisperse shell thickness. However, for as prepared 116/16 sample this approach fails because of strong near infrared (NIR) contribution from GNS dimers and trimers. The formation of such aggregates is due to coupling of silica cores at early stages of nanoshell synthesis, thus leading to peanut structures with overlapped gold shells. We suggested TEM-based ensemble model with single particles and small dimer and trimer aggregates, which gives satisfactory agreement between measured and FDTD simulated spectra in the vis-NIR region. Thus, the proposed synthetic technology produces high quality gold nanoshells, which remarkable optical properties are in good agreement with electromagnetic simulations based on TEM data.

  13. Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol.The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanoparticles was investigated.X-ray diffraction (XRD),transmission electron microscopy (TEM),and high resolution transmission electron microscopy (HRTEM) were employed to characterize the nickel particles are spherical in shape and are not agglomerated.A possible extensive mechanism of nickel nanoparticle formation has been suggested.

  14. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    Science.gov (United States)

    2016-05-23

    synthesized by controlling Tetraethyl orthosilicate (TEOS) and ammonia solution concentration. The composites were used as nanoparticles fillers in...important to synthesize the uniform and monodisperse magnetic nanoparticles. So, we, as a team of this collaboration project, focused on synthesizing ...uniform and monodisperse magnetic nanoparticles. First, we synthesized silica-coated monodisperse iron oxide nanoparticles (≈ 30 nm) sent to

  15. Conventional and microwave hydrothermal synthesis of monodispersed metal oxide nanoparticles at liquid-liquid interface

    Science.gov (United States)

    Monodispersed nanoparticles of metal oxide including ferrites MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3, Ta2O5 etc. have been synthesized using a water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure uses readily availab...

  16. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Ismail Ab Rahman

    2012-01-01

    Full Text Available Application of silica nanoparticles as fillers in the preparation of nanocomposite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nanocomposites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nanocomposites, generally by sol-gel technique. The effect of nanosilica on the properties of various types of silica-polymer composites is also summarized.

  17. Synthesis and characterization of monodisperse Eu-doped luminescent silica nanospheres for biological applications

    Science.gov (United States)

    Enrichi, Francesco; Riccò, Raffaele; Parma, Alvise; Riello, Pietro; Benedetti, Alvise

    2008-04-01

    Luminescent nanoparticles are gaining more and more interest for bio-sensing and bio-imaging applications. In particular it is desiderable to work with cheap and non toxic materials which could be easily functionalized in their surface. To these respects silica nanoparticles seem to be a very promising and interesting solution. The liquid synthesis of silica spheres can be obtained by condensation of tetraethylortosilicate (TEOS) in basic or acid environment. Several strategies have been developed to make them luminescent by the incorporation of organic or inorganic emission centres, but often requiring multiple processing steps and use of expensive or toxic molecules. Moreover, common dyes suffer disadvantages such as a broad spectral band, short fluorescent lifetime and photobleaching. In contrast, rare earths exhibit narrow emission bands, large Stokes shifts and long luminescence lifetimes. In this work we focus our attention on the synthesis and characterization of europium-doped silica spheres. Europium introduction in the spheres can be interesting for biological applications to increase the signal to noise ratio due to the long luminescence lifetime (possibility to perform time-delayed analysis) and to the good emission intensity. The obtained results are presented and discussed, giving suggestions for the optimization of their morphological and optical properties. The possibility of realizing good luminescent silica spheres by following the described procedure is shown and suggestions for future development are given. The cheap and easy synthesis of these luminescent particles, the stability in water, the easy surface functionalization and bio-compatibility makes them very attractive in biological imaging and other applications.

  18. Controlled Synthesis and Characterization of Monodisperse Fe3O4 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    SHI,Rongrong; GAO,Guanhua; YI,Ran; ZHOU,Kechao; QIU,Guanzhou; LIU,Xiaohe

    2009-01-01

    Monodisperse Fe3O4 nanoparticles were successfully synthesized through the thermal decomposition of iron acetylacetonate in octadecene solvent in the presence of oleic acid and oleylamine.The influences of experimental parameters,such as reacting temperature,amounts and kinds of surfactants,solvents,oleic acid and oleylamine,on the size and shape of monodisperse Fe3O4 nanoparticles were discussed.The phase structures,morphology,and size of the as-prepared products were investigated in detail by X-ray diffraction (XRD),transmission electron microscopy (TEM),selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM).Magnetic property was measured using a vibrating sample magnetometer (VSM) at room temperature,which revealed that Fe3O4 nanoparticles were of ferromagnetism with a saturation magnetization (Ms) of 74.0 emu/g and coercivity (Hc) of 72.6 Oe.

  19. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    Science.gov (United States)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  20. Novel Terbium Chelate Doped Fluorescent Silica Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ning Qiaoyu; Meng Jianxin; Wang Haiming; Liu Yingliang; Man Shiqing

    2006-01-01

    Novel terbium chelate doped silica fluorescent nanoparticles were prepared and characterized.The preparation was carried out in water-in-oil (W/O) microemulsion containing monomer precursor (pAB-DTPAA-APTEOS), Triton X-100, n-hexanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate and 3-aminopropyl-triethyloxysilane.The nanoparticles are spherical and uniform in size, about 30 nm in diameter, strongly fluorescent, and highly stable.The amino groups directly introduced to the surface of the nanoparticles using APTEOS during preparation made the surface modification and bioconjugation of the nanoparticles easier.The nanoparticles are expected as an efficient time-resolved luminescence biological label.

  1. Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties.

    Science.gov (United States)

    Kostiv, U; Janoušková, O; Šlouf, M; Kotov, N; Engstová, H; Smolková, K; Ježek, P; Horák, D

    2015-11-21

    Oleic acid-stabilized hexagonal NaYF4:Yb(3+)/Er(3+) nanocrystals, emitting green and red luminescence, were prepared by the high-temperature co-precipitation of lanthanide chlorides. By varying the reaction time and the Ln(3+)/Na(+) ratio, the nanocrystal size can be controlled within the range 16-270 nm. The maximum upconversion quantum yield is achieved under 970 nm excitation. The reverse microemulsion technique using hydrolysis and condensation of tetraethoxysilane is a suitable method to coat the nanocrystal surface with a silica shell to make the particles dispersible and colloidally stable in aqueous media. During the subsequent functionalization, (3-aminopropyl)trimethoxysilane introduced amino groups onto the silica to enable future bioconjugation with the target molecules. All specimens were characterized by TEM microscopy, electron and X-ray diffraction, ATR FT-IR spectroscopy, and upconversion luminescence. Finally, in vitro cytotoxicity and intracellular nanoparticle uptake (using confocal microscopy) were determined with human cervical carcinoma HeLa and mRoGFP HeLa cells, respectively. From the investigated particles, amino-functionalized NaYF4:Yb(3+)/Er(3+) nanocrystals internalized into the cells most efficiently. The nanoparticles proved to be nontoxic at moderate concentrations, which is important when considering their prospective application in biolabeling and luminescence imaging of various cell types.

  2. Enzyme-encapsulated silica nanoparticle for cancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Yi-Rong; Ho, Wei-Jen; Chao, Jiun-Shuan; Yuan, Chiun-Jye, E-mail: cjyuan@mail.nctu.edu.tw [National Chiao Tung University, Department of Biological Science and Technology, Taiwan (China)

    2012-03-15

    A novel horseradish peroxidase-encapsulated silica nanoparticle (SNP) was generated in this study under relatively mild conditions. The generated enzyme-encapsulated SNP were relatively uniform in size (average 70 {+-} 14.3 nm), monodispersed, and spherical, as characterized by transmission electron microscopy and scanning electron microscopy. The horseradish peroxidase encapsulated in silica nanoparticle exhibits biological properties, such as a pH-dependent activity profile and k{sub m} value, similar to that of free enzymes. Furthermore, enzyme-encapsulated SNP exhibited good operational stability for the repetitive usage with a relative standard deviation of 5.1 % (n = 10) and a high stability for long term storage (>60 days) at 4 Degree-Sign C. The feasibility of using enzyme-encapsulated SNP in prodrug cancer therapy was also demonstrated by its capability to convert the prodrug indole-3-acetic acid into cytotoxic peroxyl radicals and trigger the death of tumor cells. These results indicate that the developed enzyme-encapsulated SNP has potential in the applications of prodrug cancer therapy.

  3. Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2007-04-01

    Metal-oxide-semiconductor capacitors containing various densities of ex situ produced, colloidal, highly monodisperse, spherical, 1nm silicon nanoparticles were fabricated and evaluated for potential use as charge storage elements in future nonvolatile memory devices. The capacitance-voltage characteristics are well behaved and agree with similarly fabricated zero-nanoparticle control samples and with an ideal simulation. Unlike larger particle systems, the demonstrated memory effect exhibits effectively pure hole storage. The nature of charging, hole type versus electron type may be understood in terms of the characteristics of ultrasmall silicon nanoparticles: large energy gap, large charging energy, and consequently a small electron affinity.

  4. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  5. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.

    Science.gov (United States)

    Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) Ω m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  6. Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    FU YunZhi; DU YuKou; YANG Ping; LI JinRu; JIANG Long

    2007-01-01

    We describe here that fine control of nanoparticle shape and size can be achieved by systematic variation of experimental parameters in the seeded growth procedure in aqueous solution. Cubic and spherical gold nanoparticles are obtained respectively. In particularly, the Au cubes are highly monodisperse in 33±2 nm diameter. The experimental methods involve the preparation of Au seed particles and the subsequent addition of an appropriate quantity of Au seed solution to the aqueous growth solutions containing desired quantities of CTAB and ascorbic acid (AA). Here, AA is a weak reducing agent and CTAB is not only a stable agent for nanoparticles but also an inductive agent for leading increase in the face of nanoparticle. Ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) are used to characterize the nanoparticles. The results show that the different size gold nanoparticles displayed high size homogenous distribution and formed mono-membrane at the air/solid interface.

  7. Synthesis of mono-dispersed Fe-Co nanoparticles with precise composition control

    Science.gov (United States)

    Wang, Yufeng; Zheng, Yi; Hu, Shuchun

    2017-01-01

    Monodispersed Fe-Co nanoparticles are synthesized by reducing FeCl2 and CoCl2 in diphenyl ether, with n-butyllithium as reducing agent and oleic acid as surfactant. The body centered cubic (BCC) crystal structure of Fe-Co nanoparticles is confirmed by both XRD patterns and TEM diffraction patterns. The average nanoparticle size is 10 nm at the reported experimental condition. The magnetization of the Fe-Co increases with increased cobalt atomic percentage. XPS technique is used to investigate the surface chemical states of Fe-Co nanoparticles. Finally, the composition of Fe-Co nanoparticles is investigated through EDX, confirming the molar ratio of Fe/Co in nanoparticles could be accurately controlled by changing the composition of the precursors.

  8. Microfluidic synthesis of monodisperse Cu nanoparticles in aqueous solution.

    Science.gov (United States)

    Ke, Te; Zeng, Xiao-Fei; Wang, Jie-Xin; Le, Yuan; Chu, Guang-Wen; Chen, Jian-Feng; Shao, Lei

    2011-06-01

    The continuous production of Cu nanoparticles with a particle size of 2-5 nm was conducted by sodium borohydride reduction of copper sulfate in aqueous solution in a tube-in-tube microchannel reactor (TMR), which consists of an inner tube and an outer tube with the reaction performed in the annular microchannel between these two tubes. The as-prepared Cu nanoparticles were compared with those obtained by a conventional batch synthesis process by using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy. Due to the highly intensified micromixing effects in the TMR, Cu nanoparticles prepared by this route exhibits a smaller particle size, narrower size distribution and better stability in air. The TMR shows an excellent ability of preparing high-quality Cu nanoparticles in mild conditions. In addition, with the unique microchannel structure, the throughput capability of the TMR for the production of Cu nanoparticles is up to several liters per minute.

  9. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  10. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States); Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States); Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-06-22

    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  11. In Situ Monitoring of the Generation of Monodisperse Silica Particles during the Hydrolysis of Tetraethyl Orthosilicate with Piezoelectric Quartz Crystal Impedance Analyzer

    Institute of Scientific and Technical Information of China (English)

    姚守拙; 张友玉; 谢青季

    2003-01-01

    The piezoelectric quartz crystal(PQC)impedance analyzer was used to monitor in situ the generation of monodisperse silica particles during the hydrolysis of tetraethyl orthosilicate (TEOS) and their adsorption onto and Au electrode in alcohol solutions containing water(6-15mol/L)and ammonia(0.2-2.0 mol/L).The equivalent circuit parameters,the resonance frequencies and the half-peak width values of the conductance spectra of the PQC resonance were obtained.The resonant frequency decreased notably while the motional resistance changed very slightly(within 1Ω during the hydrolysis reaction,suggesting that the mass effect dominated the adsorption of generated monodisperse silica particles on the gold electrode in this system.Changes in f0 indicated that the ammonia concentration affected the hydrolytic reaction obviously,and the influence of water concentration on the reaction was small while the water was significantly excessive.Kinetics of monodisperse silica particle adsorption occurring at the electrode i solution interface was analyzed using a first-order reaction scheme.In addition,the electrolyte-induced precipitation of the monodisperse silica of adsorbed particles per area and the converge of monodisperse silica particles were obtained from scanning electron nicroscope(SEM)observations.

  12. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  13. Direct Dry-Grinding Synthesis of Monodisperse Lipophilic CuS Nanoparticles.

    Science.gov (United States)

    Li, Yajuan; Scott, Julie; Chen, Yi-Tzai; Guo, Liangran; Zhao, Mingyang; Wang, Xiaodong; Lu, Wei

    2015-07-15

    Copper sulfide nanoparticles, effective absorbers of near-infrared light, are recently attracting broad interest as a photothermal coupling agent for cancer therapy. Lipophilic copper sulfide nanoparticles are preferred for high performance biomedical applications due to high tissue affinity. Synthesis of lipophilic copper sulfide nanoparticles requires complicated multi-step processes under severe conditions. Here, we describe a new synthetic process, developed by direct dry-grinding of copper(II) acetylacetonate with sulfur under ambient environment at low temperature. The formed CuS nanoparticles are of uniform size, ~10 nm in diameter, and are monodispersed in chloroform. Each covellite CuS nanocrystal surface is modified with oleylamine through hydrogen bonding between sulfur atoms and amine groups of oleylamine. The nanoparticles demonstrate near-infrared light absorption for photothermal applications. The synthetic methodology described here is more convenient and less extreme than previous methods, and should thus greatly facilitate the preparation of photothermal lipophilic copper sulfide nanomaterials for cancer therapy.

  14. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Jing Wen [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); Saunders, Martin [Centre for Microscopy, Characterisation and Analysis, University of Western Australia (Australia); Lim, Lee-Yong, E-mail: lee.lim@uwa.edu.au [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); School of Biomedical, Biomolecular and Chemical Sciences, 35 Stirling Hwy, Crawley 6009 (Australia)

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  15. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  16. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyojong, E-mail: hyojong@hallym.ac.kr; Pak, Joonsung [Hallym University, Department of Chemistry (Korea, Republic of)

    2013-05-15

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH{sub 4}OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract.

  17. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  18. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    Science.gov (United States)

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  19. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    Science.gov (United States)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  20. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  1. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone.

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-02

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ∼100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ∼100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering-volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  2. Porous TiO2 Assembled from Monodispersed Nanoparticles

    OpenAIRE

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-01-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending...

  3. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    Science.gov (United States)

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  4. Facile synthesis of monodisperse thermally immiscible Ag–Ni alloy nanoparticles at room temperature

    Indian Academy of Sciences (India)

    S Tabatabaei; S K Sadrnezhaad

    2014-10-01

    Ag and Ni are immiscible, mainly due to their large lattice mismatch. This paper reports on their nanoscale formation of solid solution at room temperature by simple reduction reactions which lead to the amorphous Ag–Ni alloy nanoparticles (ANPs) with mono-disperse distribution. Microscopic and spectroscopic studies confirmed dependence of the alloy composition on size of nanoparticles. In the presence of different ligands such as sodium citrate, polyvinyl alcohol and potassium carbonate a mixture of silver oxide and Ag–Ni ANPs was achieved. Stoichiometry of the Ag–Ni ANPs was also found to be strongly dependent on ligands of the reduction reaction and further study shows without any ligand 100% Ag–Ni ANPs was observed in the system. Using Tetrakis hydroxymethyl phosphonium chloride resulted in construction of near-uniform ANPs in the easily controllable conditions of the present alloying procedure. Nanoparticles having up to 65% Ni were observed for the first time in this research.

  5. Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane.

    Science.gov (United States)

    Bao, Yan; Yang, Yongqiang; Ma, Jianzhong

    2013-10-01

    Polystyrene/silica core-shell spheres were fabricated using polystyrene as templates by hydrolysis and condensation of tetraethyl orthosilicate through a sol-gel process, in which polystyrene was synthesized by emulsion polymerization. Then, hollow silica spheres were obtained after selective removal of the organic polystyrene core from the polystyrene/silica core-shell spheres by tetrahydrofuran etching. The effect of hollow silica spheres on water vapor permeability, mechanical property, and water uptake of polyacrylate membrane were investigated. The microstructure analysis shows that the mean size and wall thickness of hollow silica spheres are 170 nm and 20 nm, respectively. The silica shells consist of amorphous silica seed assembly with a broad size distribution, which roughen the surfaces of hollow silica spheres greatly. The specific surface area of hollow silica spheres is bigger than that of polystyrene/silica core-shell spheres. Hollow silica spheres can significantly improve water vapor permeability of polyacrylate membrane, but lead to the reduction in mechanical property.

  6. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    Science.gov (United States)

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system.

  7. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract

    Science.gov (United States)

    Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-01-01

    A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248

  8. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  9. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method

    Directory of Open Access Journals (Sweden)

    Kazem Naghavi

    2013-04-01

    Full Text Available Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0 to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1, allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology.

  10. Direct dry-grinding synthesis of monodisperse lipophilic CuS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yajuan; Scott, Julie; Chen, Yi-Tzai; Guo, Liangran; Zhao, Mingyang; Wang, Xiaodong [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); Lu, Wei, E-mail: weilu@uri.edu [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-07-15

    Copper sulfide nanoparticles, effective absorbers of near-infrared light, are recently attracting broad interest as a photothermal coupling agent for cancer therapy. Lipophilic copper sulfide nanoparticles are preferred for high performance biomedical applications due to high tissue affinity. Synthesis of lipophilic copper sulfide nanoparticles requires complicated multi-step processes under severe conditions. Here, we describe a new synthetic process, developed by direct dry-grinding of copper(II) acetylacetonate with sulfur under ambient environment at low temperature. The formed CuS nanoparticles are of uniform size, ∼10 nm in diameter, and are monodispersed in chloroform. Each covellite CuS nanocrystal surface is modified with oleylamine through hydrogen bonding between sulfur atoms and amine groups of oleylamine. The nanoparticles demonstrate near-infrared light absorption for photothermal applications. The synthetic methodology described here is more convenient and less extreme than previous methods, and should thus greatly facilitate the preparation of photothermal lipophilic copper sulfide nanomaterials for cancer therapy. - Highlights: • We make lipophilic CuS nanoparticles by mechanical grinding method in large scale. • The reaction condition is studied to obtain high yield and uniform size. • The synthesis does not need nitrogen protection or high temperature. • Lipophilic CuS nanoparticles show significant near-infrared absorbance.

  11. Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical microscopy

    Science.gov (United States)

    Röding, Magnus; Zagato, Elisa; Remaut, Katrien; Braeckmans, Kevin

    2016-06-01

    We present an approximate Bayesian computation scheme for estimating number concentrations of monodisperse diffusing nanoparticles in suspension by optical particle tracking microscopy. The method is based on the probability distribution of the time spent by a particle inside a detection region. We validate the method on suspensions of well-controlled reference particles. We illustrate its usefulness with an application in gene therapy, applying the method to estimate number concentrations of plasmid DNA molecules and the average number of DNA molecules complexed with liposomal drug delivery particles.

  12. A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [ORNL; Peng, Sheng [Brown University; Lee, Youngmin [Brown University; Wang, Chao [Brown University; Yin, Hongfeng [ORNL; Sun, Shouheng [ORNL

    2008-01-01

    Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl{sub 4} {center_dot} 3H{sub 2}O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at -45 C.

  13. Crystallization of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  14. Fabrication of and drug delivery by an upconversion emission nanocomposite with monodisperse LaF3:Yb,Er core / mesoporous silica shell structure

    NARCIS (Netherlands)

    Yang, Y.; Qu, Y.; Zhao, J.; Zeng, Q.; Ran, Y.; Zhang, Q.; Kong, X.; Zhang, H.

    2010-01-01

    Monodisperse, uniform, encapsulated mesoporous silicananocomposites with a LaF3:Yb,Er core and a mesoporous silica shell structure, which still exhibit green upconversion photoluminescence (PL) under 980 nm irradiation, have been successfully synthesized and investigated as potential drug delivery s

  15. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions

    NARCIS (Netherlands)

    Mahalingam, V.; Onclin, S.; Péter, M.; Ravoo, B.J.; Huskens, Jurriaan; Reinhoudt, David

    2004-01-01

    Silica nanoparticles functionalized with -cyclodextrin (CD) host molecules (5) have been prepared by reacting carboxylic active ester-terminated silica nanoparticles (4) with CD heptamine. Silica nanoparticles functionalized with glucosamine (6), having similar surface properties as 5 but lacking

  16. Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We describe here that fine control of nanoparticle shape and size can be achieved by systematic varia-tion of experimental parameters in the seeded growth procedure in aqueous solution. Cubic and spherical gold nanoparticles are obtained respectively. In particularly, the Au cubes are highly mono-disperse in 33±2 nm diameter. The experimental methods involve the preparation of Au seed particles and the subsequent addition of an appropriate quantity of Au seed solution to the aqueous growth solutions containing desired quantities of CTAB and ascorbic acid (AA). Here, AA is a weak reducing agent and CTAB is not only a stable agent for nanoparticles but also an inductive agent for leading increase in the face of nanoparticle. Ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) are used to characterize the nanoparticles. The results show that the different size gold nanoparticles displayed high size homogenous distribution and formed mono-membrane at the air/solid interface.

  17. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    Science.gov (United States)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  18. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  19. DMSO as a solvent/ligand to monodisperse CdS spherical nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijun [China Pharmaceutical University, Physical Chemistry Lab, School of Science (China); Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education (China)

    2016-01-15

    Monodisperse CdS nanospheres assembled by small nanoparticles were prepared using dimethyl sulfoxide (DMSO) as a solvent through several routes including thermolysis of xanthate, the reaction of cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}) with thiourea, and interfacial reaction of CS{sub 2} and Cd(CH{sub 3}CO{sub 2}){sub 2}/DMSO. The corresponding products possessed the particle sizes ranging from around 35 to 45 nm, 63 to 73 nm, and 240 to 280 nm, respectively. These products presented uniform spherical morphology, which provide insights into the effect of DMSO on CdS morphology. DMSO, as an aprotic and polar solvent, possesses unique properties. The oxygen and sulfur atoms in DMSO can coordinate to metal ions on nanoparticles surface, and the high polarity of DMSO is favorable to fast reaction, nucleation, growth, and Ostwald ripening, forming monodisperse nanospheres with narrow size distribution. The influence of CdS size on its photocatalytic activity was evaluated using Rhodamine B (RhB) as a model compound under visible light irradiation.

  20. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    Science.gov (United States)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.

  1. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2009-06-01

    The magnetite nanoparticles were synthesized in an ethanol-water solution under ultrasonic irradiation from a Fe(OH)(2) precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol-water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol-water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol-water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe(2+) concentration in the magnetite cubic structure.

  2. Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Bin Du

    2015-01-01

    Full Text Available Insulating oil modified by nanoparticles (often called nanofluids has recently drawn considerable attention, especially concerning the improvement of electrical breakdown and thermal conductivity of the nanofluids. In this paper, three sized monodisperse Fe3O4 nanoparticles were prepared and subsequently dispersed into insulating vegetable oil to achieve nanofluids. The dispersion stability of nanoparticles in nanofluids was examined by natural sedimentation and zeta potential measurement. The electrical breakdown strength, space charge distribution, and several dielectric characteristics, for example, permittivity, dielectric loss, and volume resistivity of these nanofluids, were comparatively investigated. Experimental results show that the monodisperse Fe3O4 nanoparticles not only enhance the dielectric strength but also uniform the electric field of the nanofluids. The depth of electrical potential well of insulating vegetable oils and nanofluids were analyzed to clarify the influence of nanoparticles on electron trapping and on insulation improvement of the vegetable oil.

  3. Hydrothermal growth of highly monodispersed TiO2 nanoparticles: Functional properties and dye-sensitized solar cell performance

    Science.gov (United States)

    Navaneethan, M.; Nithiananth, S.; Abinaya, R.; Harish, S.; Archana, J.; Sudha, L.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.

    2017-10-01

    Monodispersed anatase TiO2 nanoparticles were synthesized by hydrothermal method using citric acid as a capping agent. The effect of citric acid and the growth time on the formation of TiO2, functional properties and dye-sensitized solar cell performances were investigated. X-ray diffraction pattern (XRD) and Raman spectroscopy results revealed that the TiO2 nanoparticles possess the anatase phase. Transmission electron microscopy (TEM) measurement revealed the formation of spherical nanoparticles with monodispersity in size and morphology. An average size of 14 nm was obtained for the growth period of 15 h. The maximum efficiency (η) of dye-sensitized solar cell was achieved for TiO2 nanoparticles grown for 15 h as 7.66% which was higher than that of commercial P25 TiO2 (5.23%) and uncapped nanoparticles (3.68%).

  4. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    Science.gov (United States)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular

  5. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-10

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  6. Perylene-labeled silica nanoparticles: synthesis and characterization of three novel silica nanoparticle species for live-cell imaging.

    Science.gov (United States)

    Blechinger, Julia; Herrmann, Rudolf; Kiener, Daniel; García-García, F Javier; Scheu, Christina; Reller, Armin; Bräuchle, Christoph

    2010-11-05

    The increasing exposure of humans to nanoscaled particles requires well-defined systems that enable the investigation of the toxicity of nanoparticles on the cellular level. To facilitate this, surface-labeled silica nanoparticles, nanoparticles with a labeled core and a silica shell, and a labeled nanoparticle network-all designed for live-cell imaging-are synthesized. The nanoparticles are functionalized with perylene derivatives. For this purpose, two different perylene species containing one or two reactive silica functionalities are prepared. The nanoparticles are studied by transmission electron microscopy, widefield and confocal fluorescence microscopy, as well as by fluorescence spectroscopy in combination with fluorescence anisotropy, in order to characterize the size and morphology of the nanoparticles and to prove the success and homogeneity of the labeling. Using spinning-disc confocal measurements, silica nanoparticles are demonstrated to be taken up by HeLa cells, and they are clearly detectable inside the cytoplasm of the cells.

  7. A bioinspired strategy for surface modification of silica nanoparticles

    Science.gov (United States)

    Tian, Jianwen; Zhang, Haoxuan; Liu, Meiying; Deng, Fengjie; Huang, Hongye; Wan, Qing; Li, Zhen; Wang, Ke; He, Xiaohui; Zhang, Xiaoyong; Wei, Yen

    2015-12-01

    Silica nanoparticles have become one of the most promising nanomaterials for a vast of applications. In this work, a novel strategy for surface modification of silica nanoparticles has been developed for the first time via combination of mussel inspired chemistry and Michael addition reaction. In this procedure, thin polydopamine (PDA) films were first coated on the bare silica nanoparticles via self-polymerization of dopamine in alkaline condition. And then amino-containing polymers were introduced onto the PDA coated silica nanoparticles through Michael addition reaction, that are synthesized from free radical polymerization using poly(ethylene glycol) methyl methacrylate (PEGMA) and N-(3-aminopropyl) methacrylamide (NAPAM) as monomers and ammonium persulfate as the initiator. The successful modification of silica nanoparticles was evidenced by a series of characterization techniques. As compared with the bare silica nanoparticles, the polymers modified silica nanoparticles showed remarkable enhanced dispersibility in both aqueous and organic solution. This strategy is rather simple, effective and versatile. Therefore, it should be of specific importance for further applications of silica nanoparticles and will spark great research attention of scientists from different fields.

  8. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    Monodisperse metal nanoparticles (NPs) with high activity and selectivity are among the most important catalytic materials. However, the intrinsic process to obtain well-dispersed metal NPs with tunable high density (ranging from 10(13) to 10(16) m(-2)) and thermal stability is not yet well under...

  9. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  10. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    Science.gov (United States)

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  11. Time Resolved Nucleation and Growth of Monodisperse FeOOH Nanoparticles Observed in situ

    Science.gov (United States)

    Legg, B. A.; Zhu, M.; Zhang, H.; Waychunas, G.; Banfield, J. F.

    2012-12-01

    The nucleation and growth of oxide minerals from aqueous solution is a poorly understood process. Complexities such as two-stage precipitation, phase transformation, and hydrolysis often inhibit simple interpretation. In this study, we track the thermally induced nucleation and growth of akaganeite (β-FeOOH) nanoparticles from FeCl3 solutions, using in situ time resolved small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Variations in reaction temperature (from 37 deg C to 80 deg C) and FeCl3 concentration (from 5 mM to 800 mM) produce systematic changes in nucleation rate, growth rate, particle size distribution, and aspect ratio. Low FeCl3 concentrations and high temperatures lead to formation of very small particles via rapid nucleation. (FeCl3 solutions are actually more supersaturated with respect to akaganeite when concentrations are low, due to the acid-base chemistry of ferric iron.) Increasing the FeCl3 concentration leads to large, highly monodisperse particles via size focused growth. Suspensions of highly monodisperse, elongated particles are found to self-organize into two dimensional colloidal crystals. The well-controlled growth processes in this system make it possible to conduct detailed kinetic modeling, and determine how both nucleation and growth rate respond to changes in the experimental conditions.

  12. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO.

    Science.gov (United States)

    Zhu, Wenlei; Michalsky, Ronald; Metin, Önder; Lv, Haifeng; Guo, Shaojun; Wright, Christopher J; Sun, Xiaolian; Peterson, Andrew A; Sun, Shouheng

    2013-11-13

    We report selective electrocatalytic reduction of carbon dioxide to carbon monoxide on gold nanoparticles (NPs) in 0.5 M KHCO3 at 25 °C. Among monodisperse 4, 6, 8, and 10 nm NPs tested, the 8 nm Au NPs show the maximum Faradaic efficiency (FE) (up to 90% at -0.67 V vs reversible hydrogen electrode, RHE). Density functional theory calculations suggest that more edge sites (active for CO evolution) than corner sites (active for the competitive H2 evolution reaction) on the Au NP surface facilitates the stabilization of the reduction intermediates, such as COOH*, and the formation of CO. This mechanism is further supported by the fact that Au NPs embedded in a matrix of butyl-3-methylimidazolium hexafluorophosphate for more efficient COOH* stabilization exhibit even higher reaction activity (3 A/g mass activity) and selectivity (97% FE) at -0.52 V (vs RHE). The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and selective electrocatalytic reduction of CO2 to CO.

  13. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  14. Superhydrophobic silica nanoparticles as ultrasound contrast agents.

    Science.gov (United States)

    Jin, Qiaofeng; Lin, Chih-Yu; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yang, Chia-Min; Yeh, Chih-Kuang

    2017-05-01

    Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5-12min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30min at a MI of 1.0, while lipid microbubble lasted for about 5min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Contact electrification in aerosolized monodispersed silica microspheres quantified using laser based velocimetry

    DEFF Research Database (Denmark)

    Alois, Stefano; Merrison, Jonathan P.; Iversen, Jens Jacob

    2017-01-01

    The contact electrification of aerosolized micro particles has been studied using a novel technique involving laser velocimetry. This has allowed the simultaneous determination of size and electrical charge of individual silica microspheres (in the range 1 – 8 µm). Interestingly the particles...

  16. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Directory of Open Access Journals (Sweden)

    Lewinski Nastassja

    2011-01-01

    Full Text Available Abstract An in depth analysis of gold nanoparticle (AuNP synthesis and size tuning, utilizing carbon monoxide (CO gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min.

  17. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications

    Science.gov (United States)

    Araújo-Neto, R. P.; Silva-Freitas, E. L.; Carvalho, J. F.; Pontes, T. R. F.; Silva, K. L.; Damasceno, I. H. M.; Egito, E. S. T.; Dantas, Ana L.; Morales, Marco A.; Carriço, Artur S.

    2014-09-01

    We report a simple and low cost methodology to synthesize sodium oleate coated magnetite nanoparticles for hyperthermia applications. The system consists of oleate coated magnetite nanoparticles with large susceptibility (1065 emu/gT), induced by the dipolar inter-particle interaction, with a magnetic core diameter in the 6 nm-12 nm size range. In aqueous medium, the nanoparticles agglomerate to form a monodisperse system, exhibiting a mean hydrodynamic diameter of 60.6 nm±4.1 nm, with a low average polydispersity index of 0.128±0.003, as required for intravenous applications. The system exhibits promising efficiency for magnetic hyperthermia, with a specific absorption rate of 14 W/g at a low field amplitude of 15.9 kA/m and frequency of 62 kHz. In a 50 mg/mL density in 1 mL, the temperature rises to 42.5 °C in 1.9 min.

  18. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  19. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  20. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  1. EFFECT OF SILICA NANOPARTICLES ON PROPERTIES OF WATERBORNE POLYURETHANES

    Institute of Scientific and Technical Information of China (English)

    Xiao-hu Qiang; Li-bang Feng; Yan-ping Wang; Shun-hua Wang

    2012-01-01

    Waterborne polyurethane composites containing silica nanoparticles are synthesized successfully via the in situ polymerization.The structure,thermal stability,surface hardness,tensile strength,UV-Vis absorbance,dynamic mechanical properties and chemicals resistance of the resulting composites are investigated by FTIR,TEM,TGA,UV-Vis,DMA and chemicals soakage measurements.Results show that polyurethane molecules and silica nanoparticles are linked with covalent bonds.As a result,physical properties of polyurethane composites,such as thermal stability,surface hardness,weather and chemicals resistance are all improved when an appropriate concentration of silica nanoparticles are incorporated.

  2. Effects of Fumed and Mesoporous Silica Nanoparticles on the Properties of Sylgard 184 Polydimethylsiloxane

    OpenAIRE

    Junshan Liu; Guoge Zong; Licheng He; Yangyang Zhang; Chong Liu; Liding Wang

    2015-01-01

    The effects of silica nanoparticles on the properties of a commonly used Sylgard 184 polydimethylsiloxane (PDMS) in microfluidics were systemically studied. Two kinds of silica nanoparticles, A380 fumed silica nanoparticles and MCM-41 mesoporous silica nanoparticles, were individually doped into PDMS, and the properties of PDMS with these two different silica nanoparticles were separately tested and compared. The thermal and mechanical stabilities of PDMS were significantly enhanced, and the ...

  3. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    Science.gov (United States)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  4. Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor.

    Science.gov (United States)

    Li, Yuanyuan; Liu, Shoujie; Yao, Tao; Sun, Zhihu; Jiang, Zheng; Huang, Yuying; Cheng, Hao; Huang, Yuanyuan; Jiang, Yong; Xie, Zhi; Pan, Guoqiang; Yan, Wensheng; Wei, Shiqiang

    2012-10-14

    Synthesis of monodisperse small Au nanoparticles in a controllable manner is of great importance for fundamental science and technical applications. Here, we report a "precursor continuous-supply" strategy for controllable synthesis of 0.9-3.3 nm Au nanoparticles with a narrow size distribution of 0.1-0.2 nm, using a weak reductant to slow-down the reducing rate of AuClPPh(3) precursor in ethanol. Time-dependent X-ray absorption and UV-Vis absorption measurements revealed that owing to the joint use of AuClPPh(3) and ethanol, the remnant AuClPPh(3) was self-supplied and the precursor concentration was maintained at a level near to its equilibrium solubility (ca. 1.65 mmol L(-1)) in ethanol. Hence the nucleation duration was extended that focused the initial size distribution of the Au clusters. With reaction going on for 58 min, most of AuClPPh(3) with a nominal Au concentration of 17.86 mmol L(-1) was converted to ethanol-soluble Au clusters with a size of about 1.0 nm, resulting in a high-yield synthesis.

  5. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  6. Synthesis of monodisperse nimesulide nanoparticles in microemulsions E170/isopropyl myristate/water/n-butanol (or isopropanol).

    Science.gov (United States)

    Debuigne, F; Cuisenaire, J; Jeunieau, L; Masereel, B; Nagy, J B

    2000-01-01

    Nanoparticles of nimesulide have been synthesized in two systems of microemulsion: E170/isopropyl myristate/water/n-butanol (or isopropanol). Nanoparticles are monodisperse. In the two microemulsions, the size of the nanoparticles is comprised between 45 and 60 A and also seems to be independent of the factor R ([water]/[E170]) and of the concentration of the nimesulide solubilized in chloroform. The constancy of the size suggests that the size is controlled by thermodynamic stabilization of the nanoparticles with the surfactant. The nature of the cosurfactant does not have an obvious influence on the nanoparticle size. The nanoparticles are instantaneously formed and stay stable during a long period of time (several months).

  7. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  8. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    Science.gov (United States)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  9. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun; Li, Wei; Chen, Qiang [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oil was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.

  10. Impact of Amorphous Silica Nanoparticles on a Living Organism: Morphological, Behavioural and Molecular Biology Implications.

    Directory of Open Access Journals (Sweden)

    Alfredo eAmbrosone

    2014-09-01

    Full Text Available It is generally accepted that silica (SiO2 is not toxic. But the increasing use of silica nanoparticles (SiO2NPs in many different industrial fields has prompted the careful investigation of its toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles 25nm in diameter, were administered to living Hydra vulgaris (Cnidaria. The dose-related effects were defined by morphological and behavioural assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35nM NPs and a LT50 of 38h. At sub lethal doses the morpho-physiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs and that the physiological modifications are transduced to gene expression modulation.

  11. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  12. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  13. Toxicity of silica nanoparticles and the effect of protein corona

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Jespersen, Lars Vesterby; Wang, Jing;

    2010-01-01

      The cytotoxicity of silica nanoparticles (NPs) was investigated in the human lung cell line, A549. Silica NPs of different sizes (DLS size; 16-42 nm) were used to determine appropriate dose metrics whereas the effect of the NP corona was tested by coating the NPs with bovine serum albumin (BSA...

  14. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  15. Luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres as efficient labels in DNA microarrays

    Science.gov (United States)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Marinello, F.; Schiavuta, P.

    2009-08-01

    Luminescent nanoparticles are gaining more and more interest in bio-labeling and bio-imaging applications, like for example DNA microarray. This is a high-throughput technology used for detection and quantification of nucleic acid molecules and other ones of biological interest. The analysis is resulting by specific hybridization between probe sequences deposited in array and a target ss-DNA usually expressed by PCR and functionalized by a fluorescent dye. These organic labels have well known disadvantages like photobleaching and limited sensitivity. Quantum dots may be used as alternatives, but they present troubles like blinking, toxicity and excitation wavelengths out of the usual range of commercial instruments, lowering their efficiency. Therefore in this work we investigate a different strategy, based on the use of inorganic silica nanospheres incorporating standard luminescent dyes or rare earth doped nanocrystals. In the first case it is possible to obtain a high luminescence emission signal, due to the high number of dye molecules that can be accommodated into each nanoparticle, reduced photobleaching and environmental protection of the dye molecules thanks to the encapsulation in the silica matrix. In the second case, rare earths exhibit narrow emission bands (easy identification), large Stokes shifts (efficient discrimination of excitation and emission) and long luminescence lifetimes (possibility to perform time-delayed analysis) which can be efficiently used for the improvement of signal to noise ratio. The synthesis and characterization of good luminescent silica spheres either by organic dye-doping or by rare-earth-doping are investigated and reported. Moreover, their application in the DNA microarray technology in comparison to the use of standard molecular fluorophores or commercial quantum dots is discussed. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalization and bio

  16. Polymeric Nanocapsule from Silica Nanoparticle@Cross-linked Polymer Nanoparticles via One-Pot Approach

    Directory of Open Access Journals (Sweden)

    Shen Ruoping

    2009-01-01

    Full Text Available Abstract A facile strategy was developed here to prepare cross-linked polymeric nanocapsules (CP nanocapsules with silica nanoparticles as templates. The silica nanoparticle@cross-linked polymer nanoparticles were prepared by the encapsulation of the silica nanoparticles by the one-pot approach via surface-initiated atom transfer radical polymerization of hydroxyethyl acrylate in the presence ofN,N′-methylenebisacrylamide as a cross-linker from the initiator-modified silica nanoparticles. After the silica nanoparticle templates were etched with hydrofluoric acid, the CP nanocapsules with particle size of about 100 nm were obtained. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis and transmission electron microscopy.

  17. Composite Electroplating to Obtain Ni-ZrO2 Nanocomposite Coatings Containing Monodispersed ZrO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; HOU Feng-yan; GUO He-tong

    2004-01-01

    The Zirconia nanoparticles are dispersed well in the plating bath using polyelectrolyte dispersant and NiZrO2 nanocomposite coatings containing monodispersed ZrO2 nanoparticles are successfully prepared under DC electrodeposition condition. The effects of the dispersant concentration on the dispersibility of Zirconia nanoparticles in the plating bath and the hardness of nanocomposite coatings have been investigated. The results shows that the hardness of nanocomposite coatings are strongly influenced by the dispersion state of ZrO2 nanoparticles in the composite coatings and only a very low volume percent of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating.

  18. Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres

    OpenAIRE

    Jiang, Xingmao; Bao, Lihong; Cheng, Yung-Sung; Dunphy, Darren R.; Li, Xiaodong; Brinker, C. Jeffrey

    2011-01-01

    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and und...

  19. Thermal conductivity of silica nanoparticle powder: Measurement and theoretical analysis

    Science.gov (United States)

    Huang, Congliang; Lin, Zizhen; Feng, Yanhui; Zhang, Xinxin; Wang, Ge

    2015-12-01

    The hot-wire method was applied to experimentally determine the thermal conductivity (TC) of a silica nanoparticle powder. A fitting model was further employed to analyze the experimental results and to predict the TC over a wider porosity scale. Results show that the effective TC of the silica-nanoparticle powder can be less than that of free air because of the low TC of both the silica nanoparticles and the air confined in the pore spaces; the relative contribution of the nanoparticle TC, the confined air TC, and the radiation heat transfer coefficient to the effective TC will significantly affect at which porosity the extreme value of the effective TC occurs; the porosity obtained when the contribution to the effective TC of the confined air equals that of the nanoparticles is the most favorable for constructing thermal insulation materials.

  20. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

    Science.gov (United States)

    Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.

    2011-04-01

    Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (˜30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.

  1. Magnetic Behaviour and Heating Effect of Fe3O4 Ferrofluids Composed of Monodisperse Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Ying; DOU Yong-Hua; ZHANG Ling; GU Hong-Chen

    2007-01-01

    Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18 nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour,whereas the others display hysteresis properties and the coercivity increases with the increasing particle size.The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.

  2. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

    Science.gov (United States)

    He, Ming; Pang, Xinchang; Liu, Xueqin; Jiang, Beibei; He, Yanjie; Snaith, Henry; Lin, Zhiqun

    2016-03-18

    Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.

  3. Optical and morphological properties of infrared emitting functionalized silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Malvindi, M.A. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Agnello, S., E-mail: simonpietro.agnello@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Buscarino, G.; Alessi, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Pompa, P.P. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2013-11-01

    The loading process of functionalized silica nanoparticles was investigated in order to obtain nanoparticles having functional groups on their surface and Near-Infrared (NIR) emission properties. The NIR emission induced by O{sub 2} loading was studied in silica nanoparticles, produced by pyrogenic and microemulsion methods, with size ranging from 20 to 120 nm. Loading was carried out by thermal treatments in O{sub 2} atmosphere up to 400 °C and 90 bar. The effects of the thermal treatments on the NIR emission and on the structural properties were studied by luminescence and Raman techniques, whereas the morphological features were investigated by Transmission Electron Microscopy and Atomic Force Microscopy. Our data show that silica nanoparticles produced by pyrogenic technique can be loaded with O{sub 2} at lower temperature than the ones obtained by microemulsion and have a higher luminescence intensity due to the internal porosity of the latter. The treatments do not affect the nanosize of the microemulsion particles and provide NIR emitting probes of selected size. Post-processing surface functionalization of the pyrogenic nanoparticles does not affect their emission properties and provides high efficiency NIR emitters with functionalized surface. - Highlights: • Pyrogenic and microemulsion silica nanoparticles with near infrared emission. • Functionalization of nanoparticles does not change the NIR emission. • Porosity limits the emission properties of nanoparticles.

  4. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  5. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.

    Science.gov (United States)

    Zhang, Yu; Zhu, Pengli; Li, Gang; Zhao, Tao; Fu, Xianzhu; Sun, Rong; Zhou, Feng; Wong, Ching-ping

    2014-01-08

    Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.

  6. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    Science.gov (United States)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  7. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

  8. Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Vincent [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Rivolta, Ilaria [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Vincent, Julien [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Raccurt, Olivier [CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN) (France); Rouzaud, Jean-Noel [Ecole Normale superieure de Paris, Laboratoire de Geologie (France); Miserrochi, Giuseppe [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Doris, Eric [CEA, Service de Chimie Bioorganique et de Marquage, iBiTecS (France); Reynaud, Cecile; Herlin-Boime, Nathalie, E-mail: nathalie.herlin@cea.fr [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France)

    2012-02-15

    This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core-shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core-shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

  9. Preparation of Size-tunable, Highly Monodisperse PVP-Protected Pt-nanoparticles by Seed-mediated Growth

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, Matthias Michael; Jones, Louis C.; Somorjai, Gabor A.

    2008-04-02

    We demonstrate a preparative method which produces highly-monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrollidone (PVP). Slow addition of the Pt-salt first will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  10. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Science.gov (United States)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  11. Monodisperse polyvinylpyrrolidone-coated CoFe{sub 2}O{sub 4} nanoparticles: Synthesis, characterization and cytotoxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangshuo, E-mail: wgs8136@163.com; Ma, Yingying, E-mail: bzhjgcmyy@163.com; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    Graphical abstract: - Highlights: • Monodisperse cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared with various additions of polyvinylpyrrolidone (PVP) by a facile sonochemical method. • PVP-coated CoFe{sub 2}O{sub 4} showed relatively well dispersion and homogeneous shape with narrow size distribution. • PVP-coated CoFe{sub 2}O{sub 4} exhibited superparamagnetism with moderate saturation magnetization and hydrophilic character at room temperature. • Negligible cytotoxicity of PVP-coated CoFe{sub 2}O{sub 4} was observed even at high sample concentration after 24 h treatment. - Abstract: In this study, monodisperse cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe{sub 2}O{sub 4} were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe{sub 2}O{sub 4} showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe{sub 2}O{sub 4} with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe{sub 2}O{sub 4} even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe{sub 2}O{sub 4} nanoparticles hold great potential in a variety of biomedical applications.

  12. IN VIVO TOXICITY ASSESSMENT OF SILICA NANOPARTICLES IN CHICK EMBRYO

    Directory of Open Access Journals (Sweden)

    Chandrapragasam Vani

    2013-09-01

    Full Text Available Silica is one of the most effective stored seedand food grain protecting pesticide agent, usedfor ages Silica nanoparticles are hard and strong andresistant to brittle fracture under an imposed stress. The aim of our study is to synthesize and evaluate the toxicity of silica nanoparticles at various concentrations using chick embryo, as it serves as a bridging model between in vivo and ex vivo studies. Silica nanoparticles of 70 nm sizewith concentrations of 10, 20, 40 and 80 PPM were injected in vivo and incubated for 19 days as per IACUC guidelines. The study was carried out on dissected chick embryo after the 19th day of incubation. Vital tissues such as liver and heart tissues were subjected to toxicity assays. Biochemical assay of antioxidant enzymes like superoxide dismutase and glutathione peroxide were assessed. The results showed a decreased level of MDA (Malondialdehyde, an end product of lipid Peroxidation, whereas increased activity of superoxide dismutase and glutathione peroxide were observed. Therefore silica nanoparticles may be used as a pesticide and also as a biomaterial for therapeutic application in the field of medicine.

  13. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles.

    Science.gov (United States)

    Zhao, Baozhong; Yin, Jun-Jie; Bilski, Piotr J; Chignell, Colin F; Roberts, Joan E; He, Yu-Ying

    2009-12-01

    Nanoparticles have been explored recently as an efficient means of delivering photosensitizers for cancer diagnosis and photodynamic therapy (PDT). Silicon phthalocyanine 4 (Pc4) is currently being clinically tested as a photosensitizer for PDT. Unfortunately, Pc4 aggregates in aqueous solutions, which dramatically reduces its PDT efficacy and therefore limits its clinical application. We have encapsulated Pc4 using silica nanoparticles (Pc4SNP), which not only improved the aqueous solubility, stability, and delivery of the photodynamic drug but also increased its photodynamic efficacy compared to free Pc4 molecules. Pc4SNP generated photo-induced singlet oxygen more efficiently than free Pc4 as measured by chemical probe and EPR trapping techniques. Transmission electron microscopy and dynamic light scattering measurements showed that the size of the particles is in the range of 25-30 nm. Cell viability measurements demonstrated that Pc4SNP was more phototoxic to A375 or B16-F10 melanoma cells than free Pc4. Pc4SNP photodamaged melanoma cells primarily through apoptosis. Irradiation of A375 cells in the presence of Pc4SNP resulted in a significant increase in intracellular protein-derived peroxides, suggesting a Type II (singlet oxygen) mechanism for phototoxicity. More Pc4SNP than free Pc4 was localized in the mitochondria and lysosomes. Our results show that these stable, monodispersed silica nanoparticles may be an effective new formulation for Pc4 in its preclinical and clinical studies. We expect that modifying the surface of silicon nanoparticles encapsulating the photosensitizers with antibodies specific to melanoma cells will lead to even better early diagnosis and targeted treatment of melanoma in the future.

  14. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice

    Science.gov (United States)

    Lee, Soyoung; Kim, Mi-Sun; Lee, Dakeun; Kwon, Taeg Kyu; Khang, Dongwoo; Yun, Hui-Suk; Kim, Sang-Hyun

    2013-01-01

    Background Mesoporous silica (MPS) nanoparticles (NPs), which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col) NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs. Materials and methods Both MPS and Col NPs (2, 20, and 50 mg/kg/day) were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined. Results There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to significant increases in liver and spleen weight and splenocyte proliferation. Mice treated with MPS NPs showed altered lymphocyte populations (CD3+, CD45+, CD4+, and CD8+) in the spleen, increased serum IgG and IgM levels, and histological changes. Despite slight changes in lymphocyte populations in the spleen, Col NPs did not alter other immunological factors. Conclusion The results indicate that in vivo exposure to MPS NPs caused more damage to systemic immunity than that of Col NPs through the dysregulation of the spleen. The results for in vivo data are inconsistent with those for in vitro data, which show lower cytotoxicity for MPS NPs. These results suggest the importance of verifying biocompatibility both in vitro and in vivo during the design of

  15. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.

    Science.gov (United States)

    Seo, Minseok; Matsuura, Naomi

    2014-10-28

    Multifunctional medical agents based on imaging or therapy nanoparticles (NPs) incorporated into perfluorocarbon (PFC) droplets are promising new agents for cancer detection and treatment. For the first time, monodisperse PFC nanodroplets labeled with NPs have been produced. Lipophilic, as-synthesized, hydrocarbon-stabilized NPs are directly miscibilized into lipophobic PFCs using a removable cosolvent, diethyl ether (DEE), which eliminates the need of the typical time-consuming and expertise-specific NP surface modification steps previously required for NP incorporation into PFCs. This NP-DEE/PFC solution is then used to synthesize monodisperse, micrometer-scale, DEE-infused NP-PFC precursor droplets in water using microfluidics. After precursor microdroplet generation, the DEE cosolvent is removed by dissolution and evaporation, resulting in dramatically smaller, monodisperse, NP-labeled nanodroplets, with final droplet sizes far smaller than the minimum droplet size limit of the microfluidic system, and easily controlled by the amount of DEE mixed in the PFC phase prior to precursor droplet synthesis. Using this technique, unmodified lipophilic quantum dot (QD) NPs were integrated into monodisperse and PFC nanodroplets 165 times smaller in volume than the precursor microdroplets, with dimensions down to 470 nm. The final droplet sizes scaled with the PFC concentrations in the precursor microdroplets, and the QDs remain localized within the droplets after DEE is removed from the system. This method is robust and versatile, and it comprises a platform technology for other unmodified lipophilic NPs and molecules to be incorporated into different types of PFC droplets for the production of new NP-PFC hybrid agents for medical imaging and therapy applications.

  16. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    Science.gov (United States)

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  17. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  18. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.

    Science.gov (United States)

    Tumturk, Hayrettin; Yüksekdag, Hazer

    2016-01-01

    Polyethyleneimine (PEI) coated-silica nanoparticles were prepared by the Stöber method. The formation and the structure of the nanoparticles were characterized by ATR-FT-IR spectroscopy and transmission electron microscopy (TEM). TEM images of the silica and PEI-coated nanoparticles revealed that they were well dispersed and that there was no agglomeration. The acetylcholineesterase enzyme was immobilized onto these nanoparticles. The effects of pH and temperature on the storage stability of the free and immobilized enzyme were investigated. The optimum pHs for free and immobilized enzymes were determined as 7.0 and 8.0, respectively. The optimum temperatures for free and immobilized enzymes were found to be 30.0 and 35.0°C, respectively. The maximum reaction rate (Vmax) and the Michaelis-Menten constant (Km) were investigated for the free and immobilized enzyme. The storage stability of acetylcholinesterase was increased when immobilized onto the novel PEI-coated silica nanoparticles. The reuse numbers of immobilized enzyme were also studied. These hybrid nanoparticles are desirable as carriers for biomedical applications.

  19. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  20. Interaction of surface-modified silica nanoparticles with clay minerals

    Directory of Open Access Journals (Sweden)

    Cigdem Omurlu

    2016-05-01

    Full Text Available Abstract In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate, cationic (quaternary ammonium (quat, and nonionic (polyethylene glycol (PEG surfactant. We employed ultraviolet–visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  1. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-28

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  2. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  3. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  4. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  5. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  6. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor

    Science.gov (United States)

    Davies, Gemma-Louise; O'Brien, John; Gun'Ko, Yurii K.

    2017-04-01

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu3+-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum.

  7. Molecular Organization Induced Anisotropic Properties of Perylene – Silica Hybrid Nanoparticles

    OpenAIRE

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-01-01

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tet...

  8. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    Science.gov (United States)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  9. Erbium-doped nanoparticles in silica-based optical fibres

    CERN Document Server

    Blanc, Wilfried; Dussardier, Bernard; 10.1504/IJNT.2012.045350

    2012-01-01

    Developing of new rare-earth (RE)-doped optical fibres for power amplifiers and lasers requires continuous improvements in the fibre spectroscopic properties (like shape and width of the gain curve, optical quantum efficiency, resistance to spectral hole burning and photodarkening...). Silica glass as a host material for fibres has proved to be very attractive. However, some potential applications of RE-doped fibres suffer from limitations in terms of spectroscopic properties resulting from clustering or inappropriate local environment when doped into silica. To this aim, we present a new route to modify some spectroscopic properties of RE ions in silica-based fibres based on the incorporation of erbium ions in amorphous dielectric nanoparticles, grown in-situ in fibre preforms. By adding alkaline earth elements, in low concentration into silica, one can obtain a glass with an immiscibility gap. Then, phase separation occurs under an appropriate heat treatment. We investigated the role of three alkaline-earth...

  10. CO ppb sensors based on monodispersed SnOx:Pd mixed nanoparticle layers: Insight into dual conductance response

    Science.gov (United States)

    Aruna, I.; Kruis, F. E.; Kundu, S.; Muhler, M.; Theissmann, R.; Spasova, M.

    2009-03-01

    This study reports the modifications in CO sensing of SnOx nanoparticle layers by utilizing monodispersed Pd nanoparticles. The distinct advantage of monosized particles and contaminant-free samples with open porosity in addition to size effects resulted in improved CO sensing with decrease in Pd nanoparticle size to 5 nm, decreasing the lowest detection levels of CO using SnOx-based sensor technology down to 10 ppb (parts per billion) in dry synthetic air. The homogeneously mixed nanoparticle layers also exhibit discrimination capability between CO and ethanol in dry air as a manifestation of the dual conductance response. Detailed x-ray photoelectron spectroscopy studies clearly reveal "Mars-van Krevelen" as the key mechanism responsible for the observed sensing in mixed nanoparticle layers. The interfacial/surface PdO formed upon pretreatment in air is continuously "consumed" and "reformed" upon exposure, respectively, to CO and synthetic air. In contrast to the case of ethanol exposure with n-type response, the Pd aided reduction of tin oxide surface in CO ambient leads to p-type response. The sensors of the present study have a wide range of promising applications from air quality control to food and fuel industries.

  11. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging.

    Science.gov (United States)

    Kevadiya, Bhavesh D; Bade, Aditya N; Woldstad, Christopher; Edagwa, Benson J; McMillan, JoEllyn M; Sajja, Balasrinivasa R; Boska, Michael D; Gendelman, Howard E

    2017-02-01

    The size, shape and chemical composition of europium (Eu(3+)) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu(3+) ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM(-1)s(-1) and r2=419.52mM(-1)s(-1) (in saline) and r2=736.57mM(-1)s(-1) and r2=814.41mM(-1)s(-1) (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM(-1)s(-1) in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations.

  12. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  13. The role of surface functionalization of silica nanoparticles for bioimaging

    Directory of Open Access Journals (Sweden)

    Maria C. Gomes

    2016-07-01

    Full Text Available Among the several types of inorganic nanoparticles available, silica nanoparticles (SNP have earned their relevance in biological applications namely, as bioimaging agents. In fact, fluorescent SNP (FSNP have been explored in this field as protective nanocarriers, overcoming some limitations presented by conventional organic dyes such as high photobleaching rates. A crucial aspect on the use of fluorescent SNP relates to their surface properties, since it determines the extent of interaction between nanoparticles and biological systems, namely in terms of colloidal stability in water, cellular recognition and internalization, tracking, biodistribution and specificity, among others. Therefore, it is imperative to understand the mechanisms underlying the interaction between biosystems and the SNP surfaces, making surface functionalization a relevant step in order to take full advantage of particle properties. The versatility of the surface chemistry on silica platforms, together with the intrinsic hydrophilicity and biocompatibility, make these systems suitable for bioimaging applications, such as those mentioned in this review.

  14. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  15. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  16. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  17. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    Science.gov (United States)

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  18. Phosphotungstate-Based Ionic Silica Nanoparticles Network for Alkenes Epoxidation

    Directory of Open Access Journals (Sweden)

    Xiaoting Li

    2015-12-01

    Full Text Available An inorganic-organic porous silica network catalyst was prepared by linking silica nanoparticles using ionic liquid and followed by anion-exchange with phosphotungstate. Characterization methods of FT-IR, TG, SEM, TEM, BET, etc., were carried out to have a comprehensive insight into the catalyst. The catalyst was used for catalyzing cyclooctene epoxidation with high surface area, high catalytic activity, and convenient recovery. The conversion and selectivity of epoxy-cyclooctene could both reach over 99% at 70 °C for 8 h using hydrogen peroxide (H2O2 as an oxidant, and acetonitrile as a solvent when the catalyst was 10 wt. % of cyclooctene.

  19. Magnetic heating of silica-coated manganese ferrite nanoparticles

    Science.gov (United States)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  20. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  2. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  3. Light-induced growth of monodisperse silver nanoparticles with tunable SPR properties and wavelength self-limiting effect

    Science.gov (United States)

    Zheng, Xianliang; Lombardi, John R.

    2008-08-01

    We present a technique for the tunable synthesis of a variety of monodisperse silver nanoparticles. Utilizing different optical wavelengths to irradiate initially grown seed crystals, the size and shape of the products can be controlled. Monitoring the absorption spectrum during growth, we observe that initially the absorption maximum shifts to longer wavelengths and broadens, indicating increasing particle size and dispersion. Remarkably, this effect gradually comes to a halt and reverses, displaying a shift to shorter wavelengths and simultaneously narrower bandwidths, until on completion, a final size and relatively narrow distribution is reached. The final morphology is found to depend on control of the laser wavelength and power. Discs, triangular prisms as well as pyramidal and pentagonal prisms may be produced. A process based on a wavelength dependent self-limiting mechanism governed by the surface plasmon resonance controlling the photochemical reduction of particles is suggested. By a similar mechanism, we show that by using a sodium lamp instead of a laser as an excitation source, a monodisperse sample of nanotetrahedra can be produced.

  4. Aggregation of silica nanoparticles directed by adsorption of lysozyme.

    Science.gov (United States)

    Bharti, Bhuvnesh; Meissner, Jens; Findenegg, Gerhard H

    2011-08-16

    The interaction of the globular protein lysozyme with silica nanoparticles of diameter 20 nm was studied in a pH range between the isoelectric points (IEPs) of silica and the protein (pH 3-11). The adsorption affinity and capacity of lysozyme on the silica particles is increasing progressively with pH, and the adsorbed protein induces bridging aggregation of the silica particles. Structural properties of the aggregates were studied as a function of pH at a fixed protein-to-silica concentration ratio which corresponds to a surface concentration of protein well below a complete monolayer in the complete-binding regime at pH > 6. Sedimentation studies indicate the presence of compact aggregates at pH 4-6 and a loose flocculated network at pH 7-9, followed by a sharp decrease of aggregate size near the IEP of lysozyme. The structure of the bridged silica aggregates was studied by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The structure factor S(q) derived from the scattering profiles displays characteristic features of particles interacting by a short-range attractive potential and can be represented by the square-well Percus-Yevick potential model, with a potential depth not exceeding 3k(B)T.

  5. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  6. Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores.

    Science.gov (United States)

    Rampazzo, Enrico; Bonacchi, Sara; Juris, Riccardo; Montalti, Marco; Genovese, Damiano; Zaccheroni, Nelsi; Prodi, Luca; Rambaldi, Diana Cristina; Zattoni, Andrea; Reschiglian, Pierluigi

    2010-11-18

    Very monodisperse water-soluble silica core-surfactant shell nanoparticles (SCSS NPs) doped with a rhodamine B derivative were prepared using micelles of F127 as nanoreactors for the hydrolysis and condensation of the silica precursor tetraethoxysilane (TEOS). The functionalization of the rhodamines with a triethoxysilane group allowed the covalent binding of the fluorophores to the silica core: no leaking of the dye was observed when the NPs were purified either by ultrafiltration (UF) or dialysis. The diameter of the core (d(c) = 10 ± 1 nm) was determined by TEM and subtracted from the hydrodynamic diameter, measured by DLS, (d(H) = 24 nm, PdI = 0.1) to calculate the shell thickness (∼7 nm). The presence of a single population of NPs with a radius compatible with the one measured by DLS after UF was confirmed by AF4-MALS-RI measurements. The concentration of the NPs was measured by MALS-RI. This allowed us to determine the average number of rhodamine molecules per NP (10). The ability of the NPs to host hydrophobic species as cyanines in the SS was confirmed by fluorescence anisotropy measurements. Steady-state and time-resolved fluorescence measurements allowed us to observe the occurrence of a very efficient Förster resonance energy transfer process from the covalently linked rhodamines to the hosted cyanines. In particular, the analysis of the TCSPC data and steady-state measurements revealed that the adsorption of a single cyanine molecule causes an almost complete quenching of the fluorescence of the NP. Thanks to these observations, it was possible to easily determine the concentration of the NPs by fluorescence titration experiments. Results are in good agreement with the concentration values obtained by MALS-RI. Finally, the hosted cyanine molecule could be extracted with (±)-2-octanol, demonstrating the reversibility of the adsorption process.

  7. Nearly Monodispersion CoSm Alloy Nanoparticles Formed by an In-situ Rapid Cooling and Passivating Microfluidic Process

    Directory of Open Access Journals (Sweden)

    Henry Laurence

    2009-01-01

    Full Text Available Abstract An in siturapid cooling and passivating microfluidic processhas been developed for the synthesis of nearly monodispersed cobalt samarium nanoparticles (NPs with tunable crystal structures and surface properties. This process involves promoting the nucleation and growth of NPs at an elevated temperature and rapidly quenching the NP colloids in a solution containing a passivating reagent at a reduced temperature. We have shown that Cobalt samarium NPs having amorphous crystal structures and a thin passivating layer can be synthesized with uniform nonspherical shapes and size of about 4.8 nm. The amorphous CoSm NPs in our study have blocking temperature near 40 K and average coercivity of 225 Oe at 10 K. The NPs also exhibit high anisotropic magnetic properties with a wasp-waist hysteresis loop and a bias shift of coercivity due to the shape anisotropy and the exchange coupling between the core and the thin oxidized surface layer.

  8. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  9. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  10. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Science.gov (United States)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  11. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  12. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  13. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    Science.gov (United States)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  14. Walnut kernel-like mesoporous silica nanoparticles as effective drug carrier for cancer therapy in vitro

    Science.gov (United States)

    Ge, Kun; Ren, Huihui; Sun, Wentong; Zhao, Qi; Jia, Guang; Zang, Aimin; Zhang, Cuimiao; Zhang, Jinchao

    2016-03-01

    In drug delivery systems, nanocarriers could reduce the degradation and renal clearance of drugs, increase the half-life in the bloodstream and payload of drugs, control the release patterns, and improve the solubility of some insoluble drugs. In particular, mesoporous silica nanoparticles (MSNs) are considered to be attractive nanocarriers for application of delivery systems because of their large surface areas, large pore volume, tunable pore sizes, good biocompatibility, and the ease of surface functionalization. However, the large-scale synthesis of monodisperse MSNs that are smaller than 200 nm remains a challenge. In this study, monodisperse walnut kernel-like MSNs with diameters of approximately 100 nm were synthesized by a sol-gel route on a large scale. The morphology and structure of MSNs were characterized by scanning electron microscope, and transmission electron microscopy, N2 adsorption-desorption isotherms, Zeta potentials, and dynamic light scattering. Drug loading and release profile, cellular uptake, subcellular localization, and anticancer effect in vitro were further investigated. The results indicated that the loading efficiency of doxorubicinhydrochloride (DOX) into the MSNs was 57 %. The MSNs-DOX delivery system exhibited a drug-pronounced initial burst release within 12 h, followed by the slow sustained release of DOX molecules; moreover, MSNs could improve DOX release efficiency in acidic medium. Most free DOX was localized in the cytoplasm, whereas the MSNs-DOX was primarily distributed in lysosome. MSNs-DOX exhibited a potential anticancer effect against MCF-7, HeLa, and A549 cells in dose- and time-dependent manners. In summary, the as-synthesized MSNs may have well function as a promising drug carrier in drug delivery fields.

  15. Preparation and characterization of functional silica hybrid magnetic nanoparticles

    Science.gov (United States)

    Digigow, Reinaldo G.; Dechézelles, Jean-François; Dietsch, Hervé; Geissbühler, Isabelle; Vanhecke, Dimitri; Geers, Christoph; Hirt, Ann M.; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2014-08-01

    We report on the synthesis and characterization of functional silica hybrid magnetic nanoparticles (SHMNPs). The co-condensation of 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) in presence of superparamagnetic iron oxide nanoparticles (SPIONs) leads to hybrid magnetic silica particles that are surface-functionalized with primary amino groups. In this work, a comprehensive synthetic study is carried out and completed by a detailed characterization of hybrid particles' size and morphology, surface properties, and magnetic responses using different techniques. Depending on the mass ratio of SPIONs and the two silanes (TEOS and APTES), we were able to adjust the number of surface amino groups and tune the magnetic properties of the superparamagnetic hybrid particles.

  16. Cobalt-silica magnetic nanoparticles with functional surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vadala, Michael L. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States); Zalich, Michael A. [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); Fulks, David B. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States); St Pierre, Tim G. [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); Dailey, James P. [Department of Ophthalmology, Case Western Reserve University, Cleveland, OH (United States); Riffle, Judy S. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States)]. E-mail: judyriffle@aol.com

    2005-05-15

    Cobalt nanoparticles encased in polysiloxane block copolymers have been heated at 600-700 deg C to form protective shells around the particles, which contain crosslinked Si-O structures, and to anneal the cobalt. Methods to functionalize and modify the surfaces of the pyrolyzed/annealed silica-cobalt complexes with amines, isocyanates, poly(ethylene oxide), poly(L-lactide) and polydimethylsiloxane (PDMS) are presented.

  17. 单分散介孔二氧化硅微球的制备%Synthesis of monodisperse mesoporous silica microsphere

    Institute of Scientific and Technical Information of China (English)

    钟立峰; 宁海金; 徐先进; 廖道发

    2012-01-01

    Modified Stober method was used to prepare monodisperse mesoporous silica microsphere by two-step reaction including hydrolysis and condensation of tetraethyl orthosilicate(TEOS)with ammonia as catalyst.Effects of the reaction parameters on the size and mono-disperse of the microsphere were discussed based on many characterization tests.Results showed: the microsphere size increased with the increment of ammonia and TEOS concentrations while decreased at higher temperature due to the evaporation of ammonia;effects of the reaction time on the particle distribution existed mainly in the initial stage,then got smooth gradually.The comparison of small angle X ray analysis suggested that peak intensity of silica microsphere increased and the overlapping peaks drifted rightward after calcination,indicating that the surfactant molecules were removed from the hole and the aperture shrank at the same time.In addition,the texture of the product was affected by reaction conditions to some extent.The mechanism study revealed the formation of silica microsphere was achieved through TEOS hydrolysis and polycondensation two steps successively.This is a simple,effective and repeatable method,which may be used for mass production,for the preparation of mono-dispersed mesoporous silica microspheres.%在Stober方法基础上制备了单分散二氧化硅微球,系统研究了反应条件对成球粒径以及单分散性的影响。通过多种测试手段,发现随着正硅酸乙酯和氨水浓度的提高,成球的粒径逐渐增大;而温度的提高会促使氨水挥发而使得成球的粒径降低;反应时间在反应初期对成球粒径的影响很大,然后逐渐趋于平缓。经对煅烧前后产物的小角X射线衍射对比分析,发现煅烧后产物的峰强度增加,并且重叠峰向右漂移,指示表面活性剂分子从孔中移除并发生了孔径收缩现象,同时发现不同反应条件对产物的织构性质有一定的影响。研究了相关的反应机

  18. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  19. Polymer Adsorption on Iron Oxide Nanoparticles for One-Step Amino-Functionalized Silica Encapsulation

    Directory of Open Access Journals (Sweden)

    Lionel Maurizi

    2015-01-01

    Full Text Available This paper presents an original method to obtain, in one step, core/shell nanoparticles grafted covalently with polymer and functionalized with amino groups. By combining polyvinyl alcohol (PVA and silica precursors, we were able to obtain silica-coated and amino-functionalized iron oxide nanoparticles (SPIONs cross-linked with PVA. We also showed that using silica and amino-silica precursors together significantly increased the amount of PVA covalently bonded to the SPION surface compared to using only silica precursors. This original and interesting method has high potential for the industrial development of biocompatible functionalized nanoparticles for targeting nanomedicine.

  20. Interactions between Food Additive Silica Nanoparticles and Food Matrices

    Directory of Open Access Journals (Sweden)

    Mi-Ran Go

    2017-06-01

    Full Text Available Nanoparticles (NPs have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food

  1. Estimation of contact angle for hydrophobic silica nanoparticles in their hexagonally ordered layer

    Energy Technology Data Exchange (ETDEWEB)

    Detrich, Ádám; Nyári, Mária; Volentiru, Emőke; Hórvölgyi, Zoltán, E-mail: zhorvolgyi@mail.bme.hu

    2013-07-15

    Wetting properties of bilayered nanostructured coatings were studied in this work. Coatings were prepared by stratifying a compact silica sol–gel (SG) film and a Langmuir–Blodgett (LB) layer of differently sized (84, 131 and 227 nm) Stöber silica particles onto glass substrates. Joint high temperature annealing of the layers increased the mechanical stability of the particulate film facilitating its further investigations. Regular structure of LB layers allowed us to carry out wetting model investigations. Close-packed arrangement of particles was reinforced by optical measurements. Transmittance spectra of LB films were taken and evaluated by a theoretical model. Resulting effective refractive index and film thickness values indicated a good agreement between the real and the supposed (hexagonally close packed, monodisperse spherical particles) layer structure. It was confirmed by field emission scanning electron microscopy (FESEM) images, too. Advancing and receding water contact angles (CA) on differently (with mono- and bifunctional chlorosilanes) hydrophobized SG and combined films were measured applying the sessile drop method. SG films showed approximately the same CA-s after different silylation processes without considerable contact angle hysteresis (CAH). In case of combined films ca. 30° higher advancing CA-s were measured at stronger silylation and only the milder silylation resulted in significant CAH. It was explained by the surface heterogeneity of constituent particles. Layers of differently sized particles showed the same wetting properties in all cases in agreement to the Cassie–Baxter equation which was used for the estimation of CA values for the individual silica particles (88–90° and 105–106° depending on the silylation conditions). - Highlights: • Wetting of silica sol–gel films and LB layers of Stöber silica particles was studied. • Close-packed structure of LB layers was justified by optical and FESEM studies. • Only

  2. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  3. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Jung, Chong Hun; Yoon, Suk Bon; Kim, Chorong; Jung, Jun Young; Park, Sang Yoon; Moon, Jei Kwon; Choi, Wang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid.

  4. Separation of Gases Using Ultra-Thin Porous Layers of Monodisperse Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied.

  5. Subcellular Distribution and Genotoxicity of Silica Nanoparticles 
in Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangqiang ZHAO

    2013-03-01

    Full Text Available Background and objective Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B. Methods The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM. DNA damage was detected by single-cell gel electrophoresis (comet assay. Results TEM revealed that SiO2 nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05. Conclusion The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  6. Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Anil K [ORNL; Doktycz, Mitchel John [ORNL; Wang, Wei [ORNL; Moon, Ji Won [ORNL; Gu, Baohua [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

  7. Wrinkling of graphene membranes supported by silica nanoparticles on substrates

    Science.gov (United States)

    Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team

    2011-03-01

    The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471

  8. Colloidal suspensions of functionalized mesoporous silica nanoparticles.

    Science.gov (United States)

    Kobler, Johannes; Möller, Karin; Bein, Thomas

    2008-04-01

    The synthesis and characterization of colloidal mesoporous silica (CMS) functionalized with vinyl-, benzyl-, phenyl-, cyano-, mercapto-, aminopropyl- or dihydroimidazole moieties is reported. Uniform mesoporous particles ranging in size from 40 to 150 nm are generated in a co-condensation process of tetraethylorthosilicate (TEOS) and organotriethoxysilanes (RTES) in alkaline aqueous media containing triethanolamine (TEA) in combination with cetyltrimethylammonium chloride (CTACl) serving as a structure-directing agent. The materials are obtained as colloidal suspensions featuring long-term stability after template removal by ion exchange with an ethanolic solution of ammonium nitrate or HCl. The spherical particles exhibit a wormlike pore system with defined pore sizes and high surface areas. Samples are analyzed by a number of techniques including TEM, SEM, DLS, TGA, Raman, and cross-polarized (29)Si-MAS NMR spectroscopy, as well as nitrogen sorption measurements. We demonstrate that co-condensation and grafting methods result in similar changes in the nitrogen adsorption behavior, indicating a successful internal lining of the pores with functional groups through both procedures.

  9. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  10. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.

    Science.gov (United States)

    Nishioka, Masateru; Miyakawa, Masato; Kataoka, Haruki; Koda, Hidekazu; Sato, Koichi; Suzuki, Toshishige M

    2011-06-01

    Continuous synthesis of silver nanoparticles based on a polyol process was conducted using a microwave-assisted flow reactor installed in a cylindrical resonance cavity. Silver nitrate (AgNO(3)) and poly(N-vinylpyrrolidone) (PVP) dissolved in ethylene glycol were used respectively as a silver metal precursor and as a capping agent of nanoparticles. Ethylene glycol worked as the solvent and simultaneously as the reductant. Silver nanoparticles of narrow size distributions were synthesized steadily for 5 h, maintaining almost constant yield (>93%) and quality. The reaction was achieved within 2.8 s of residence time, although nanoparticles were not formed under this flow rate by conventional heating. A narrower particle size distribution was realized by the increased flow rate of the reaction solution. Nanoparticles of 9.8 nm average size with a standard deviation of 0.9 nm were synthesized at the rate of 100 ml h(-l).

  11. Enhancing the Sensitivity of DNA Microarray Using Dye-Doped Silica Nanoparticles: Detection of Human Papilloma Virus

    Science.gov (United States)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Canton, G.; Cretaio, E.

    2010-10-01

    DNA microarray is a high-throughput technology used for detection and quantification of nucleic acid molecules and others of biological interest. The analysis is based on the specific hybridization between probe sequences deposited in array and a target ss-DNA amplified by PCR and functionalized by a fluorescent dye. Organic labels have well known disadvantages like photobleaching and low signal intensities, which put a limitation to the lower amount of DNA material that can be detected. Therefore for trace analysis the development of more efficient biomarkers is required. With this aim we present in this paper the synthesis and application of alternative hybrid nanosystems obtained by incorporating standard fluorescent molecules into monodisperse silica nanoparticles. Efficient application to the detection of Human Papilloma Virus is demonstrated. This virus is associated to the formation of cervical cancer, a leading cause of death by cancer for women worldwide. It is shown that the use of the novel biomarkers increases the optical signal of about one order of magnitude with respect to the free dyes or quantum dots in conventional instruments. This is due to the high number of molecules that can be accommodated into each nanoparticle, to the reduced photobleaching and to the improved environmental protection of the dyes when encapsulated in the silica matrix. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalizability and bio-compatibility make them very promising for present and future bio-labeling and bio-imaging applications.

  12. Er doped oxide nanoparticles in silica based optical fibres

    CERN Document Server

    Blanc, Wilfried; Paul, M C

    2009-01-01

    Erbium doped materials are of great interest in optical telecommunications due to the Er3+ intra-4f emission at 1.54 ?m. Erbium doped fibre amplifiers (EDFA) were developed in silica glass because of the low losses at this wavelength and the reliability of this glass. Developments of new rare earth doped fibre amplifiers aim to control their spectroscopic properties including shape and width of the gain curve and optical quantum efficiency. Standard silica glass modifiers, such as aluminium, result in very good properties in current EDFA. However, for more drastic spectroscopic changes, more important modifications of the rare earth ions local environment are required. To address this aim, we present a fibre fabrication route creating rare earth doped calcia?silica or calcia?phosphosilica nanoparticles embedded in silica glass. By adding alkaline earth elements such as calcium, in low concentration, one can obtain a glass with an immisci- bility gap so that phase separation occurs with an appropriate heat tre...

  13. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  14. Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling

    Science.gov (United States)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Cretaio, E.; Marinello, F.; Schiavuta, P.; Parma, A.; Riello, P.; Benedetti, A.

    2010-10-01

    DNA microarray is a high-throughput technology used for detection and quantification of nucleic acid molecules and others of biological interest. The analysis is resulting by specific hybridization between probe sequences deposited in array and a target ss-DNA usually functionalized by a luminescent dye. These organic labels have well known disadvantages like photobleaching and limited sensitivity. Therefore in this work we investigate a different strategy, based on the use of inorganic silica nanospheres incorporating standard luminescent dyes or rare earth ions. The synthesis and characterization of these biomarkers is reported and their application to the DNA microarray technology in comparison to the use of standard molecular fluorophores or commercial quantum dots is discussed. We show that dye doped silica spheres provides a significant increase of the optical emission signal with respect to the use of free dyes, while rare earth doped silica spheres allow reducing or completely avoiding the background noise. These aspects, together with their cheap and easy synthesis, stability in water, easy surface functionalization and bio-compatibility makes them very promising for present and future applications in bio-labelling and bio-imaging.

  15. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  16. Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, Gabor A.

    2008-07-11

    The role of particle size during the hydrogenation/dehydrogenation of cyclohexene (10 Torr C{sub 6}H{sub 10}, 200-600 Torr H{sub 2}, and 273-650 K) was studied over a series of monodisperse Pt/SBA-15 catalysts. The conversion of cyclohexene in the presence of excess H{sub 2} (H{sub 2}:C{sub 6}H{sub 10} ratio = 20-60) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane at low temperature (< 423 K), an intermediate temperature range in which both hydrogenation and dehydrogenation occur; and a high temperature regime in which the dehydrogenation of cyclohexene dominates (> 573 K). The rate of both reactions demonstrated maxima with temperature, regardless of Pt particle size. For the hydrogenation of cyclohexene, a non-Arrhenius temperature dependence (apparent negative activation energy) was observed. Hydrogenation is structure insensitive at low temperatures, and apparently structure sensitive in the non-Arrhenius regime; the origin of the particle-size dependent reactivity with temperature is attributed to a change in the coverage of reactive hydrogen. Small particles were more active for dehydrogenation and had lower apparent activation energies than large particles. The selectivity can be controlled by changing the particle size, which is attributed to the structure sensitivity of both reactions in the temperature regime where hydrogenation and dehydrogenation are catalyzed simultaneously.

  17. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    Science.gov (United States)

    Munaweera, Imalka; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J.; Balkus, Kenneth J., Jr.

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  18. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munaweera, Imalka; Balkus, Kenneth J. Jr., E-mail: Balkus@utdallas.edu, E-mail: Anthony.DiPasqua@unthsc.edu [Department of Chemistry, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States); Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J., E-mail: Balkus@utdallas.edu, E-mail: Anthony.DiPasqua@unthsc.edu [Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas 76107 (United States)

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  19. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    Directory of Open Access Journals (Sweden)

    Imalka Munaweera

    2014-11-01

    Full Text Available Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  20. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    K C Barick; D Bahadur

    2006-11-01

    The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.

  1. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Hashmath I., E-mail: hashmath.i@deakin.edu.au [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Yi, Zhifeng [Deakin University, Institute for Frontier Materials (Australia); Rookes, James E. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Kong, Lingxue X. [Deakin University, Institute for Frontier Materials (Australia); Cahill, David M. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia)

    2013-06-15

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  3. The infrared fingerprint signals of silica nanoparticles and its application in immunoassay

    Science.gov (United States)

    Ding, Yadan; Chu, Xueying; Hong, Xia; Zou, Peng; Liu, Yichun

    2012-01-01

    Infrared absorption properties of silica nanoparticles were studied. The transverse optical and the longitudinal optical phonon modes from the silica were proved to be the characteristic spectroscopic fingerprint signals. Based on this, a sandwich-structured immunoassay was performed, and the detection of the analyte (human IgG) was achieved by using biofunctional silica nanoparticles as infrared probes. The immunoassay based on Fourier transform infrared reflection absorption spectroscopy of silica nanoparticles shows significant value for potential applications in many areas, such as biomedicine, food safety, and waste treatment.

  4. The Effect of Colloidal Silica Nanoparticles on the Activity of α-Amylase

    Directory of Open Access Journals (Sweden)

    G. R. Behbehani

    2012-12-01

    Full Text Available The effect of silica nanoparticles on the activity of α-amylase is determinations using isothermal titration calorimetry. It was found that the immobilized enzyme activity increased as evidenced by the stability parameters recovered from the extended solvation theory. The stability indexes of the immobilized α-amylase was less than of the free enzyme, thereby the activity of the enzyme was increased as a result of its interaction with silica nanoparticles. The present report shows that silica nanoparticles are activator of -amylase, as the complexes of silica+ -amylase are less stable than the free enzyme.

  5. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    Science.gov (United States)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  6. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation

    NARCIS (Netherlands)

    van Schooneveld, M.M.; Vucic, E.; Koole, R.; Zhou, Y.; Stocks, J.; Cormode, D.P.; Tang, C.Y.; Gordon, R.E.; Nicolay, K.; Meijerink, A.; Fayad, Z.; Mulder, W.J.M.

    2008-01-01

    Silica is a promising carrier material for nanoparticle-facilitated drug delivery, gene therapy, and molecular imaging. Understanding of their pharmacokinetics is important to resolve bioapplicability issues. Here we report an extensive study on bare and lipid-coated silica nanoparticles in mice. Re

  7. Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles

    Science.gov (United States)

    Xu, Jiarong; Zhang, Yu; Zhao, Yanbao; Zou, Xueyan

    2017-09-01

    N-halamine decorated mesoporous silica nanoparticles (mSiO2/halamine NPs) were prepared by coating mSiO2 NPs with poly (1-allylhydantoin-co-methyl methacrylate) (AH-co-MMA) by the aid of the radical polymerization, followed by chlorination treatment. The sterilizing effect on the bacterial strain is investigated by incubating Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results indicated that the mSiO2/halamine NPs had excellent antibacterial activity and no significant change occurred in antibacterial efficiency after five recycle experiments.

  8. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  9. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Giret, Simon; Wong Chi Man, Michel; Carcel, Carole

    2015-09-28

    The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.

  10. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail: wolfgang.kautek@univie.ac.at

    2005-12-15

    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  11. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    Science.gov (United States)

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods.

  12. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  13. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    Science.gov (United States)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  14. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  15. Fracture behavior of silica nanoparticle filled epoxy resin

    Science.gov (United States)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles

  16. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB).

    Science.gov (United States)

    Liu, Y; Tourbin, M; Lachaize, S; Guiraud, P

    2013-07-01

    Nanoparticles will inevitably be found in industrial and domestic wastes in the near future and as a consequence soon in water resources. Due to their ultra-small size, nanoparticles may not only have new hazards for environment and human health, but also cause low separation efficiency by classical water treatments processes. Thus, it would be an important challenge to develop a specific treatment with suitable additives for recovery of nanoparticles from waters. For this propose, this paper presents aggregation of silica nanoparticles (Klebosol 30R50 (75nm) and 30R25 (30nm)) by cationic surfactant cetyltrimethylammonium bromide (CTAB). Different mechanisms such as charge neutralization, "depletion flocculation" or "volume-restriction", and "hydrophobic effect" between hydrocarbon tails of CTAB have been proposed to explicate aggregation results. One important finding is that for different volume concentrations between 0.05% and 0.51% of 30R50 suspensions, the same critical coagulation concentration was observed at CTAB=0.1mM, suggesting the optimized quantity of CTAB during the separation process for nanoparticles of about 75nm. Furthermore, very small quantities of CTAB (0.01mM) can make 30R25 nanosilica aggregated due to the "hydrophobic effect". It is then possible to minimize the sludge and allow the separation process as "greener" as possible by studying this case. It has also shown that aggregation mechanisms can be different for very small particles so that a special attention has to be paid to the treatment of nanoparticles contained in water and wastewaters.

  17. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Adam Pluskota

    Full Text Available While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the 'bag of worms' phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production.

  18. Effects of Fumed and Mesoporous Silica Nanoparticles on the Properties of Sylgard 184 Polydimethylsiloxane

    Directory of Open Access Journals (Sweden)

    Junshan Liu

    2015-07-01

    Full Text Available The effects of silica nanoparticles on the properties of a commonly used Sylgard 184 polydimethylsiloxane (PDMS in microfluidics were systemically studied. Two kinds of silica nanoparticles, A380 fumed silica nanoparticles and MCM-41 mesoporous silica nanoparticles, were individually doped into PDMS, and the properties of PDMS with these two different silica nanoparticles were separately tested and compared. The thermal and mechanical stabilities of PDMS were significantly enhanced, and the swelling characteristics were also improved by doping these two kinds of nanoparticles. However, the transparency of PDMS was decreased due to the light scattering by nanoparticles. By contrast, PDMS/MCM-41 nanocomposites showed a lower coefficient of thermal expansion (CTE owing to the mesoporous structure of MCM-41 nanoparticles, while PDMS/A380 nanocomposites showed a larger elastic modulus and better transparency due to the smaller size of A380 nanoparticles. In addition, A380 and MCM-41 nanoparticles had the similar effects on the swelling characteristics of PDMS. The swelling ratio of PDMS in toluene was decreased to 0.68 when the concentration of nanoparticles was 10 wt %.

  19. Fabrication of monodisperse FePt rate at Au core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D.H. [Institute of Physics, Academia Sinica, Taipei 115 (China); Hung, D.S. [Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111 (China); Ho, C.S.; Wang, J.W. [Department of Chemical Engineering, Tunghai University, Taichung 407 (China); Yao, Y.D. [Department of Materials Engineering, Tatung University, Taipei 104 (China)

    2007-12-15

    Hydrophobic FePt rate at Au core-shell nanoparticles were chemically synthesized and with controllable surface-function properties. The enhanced optical property is due to the contribution of Au shell. The surface modification of FePt rate at Au nanoiparticles by using 11-mercaptoundecanoic acid (MUA) was hydrophilic through ligand exchange and with good biocompatibility for future multi-functional applications. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kejing; Cao Haijian, E-mail: caohaijian20010@163.com; Qian Kun; Sha Xiaofei; Chen Yanping [Jiangnan University, Key Laboratory of Eco-textiles, Ministry of Education (China)

    2012-03-15

    The surface of silica nanoparticles with an average diameter of 650 nm was modified by ball milling and chemical treatment with ethylene glycol (EG). The Fourier-transform infrared spectra and particle size analysis methods were used to characterize the modified silica nanoparticles. The morphologies of the silica nanoparticles before and after the different surface treatments were examined by transmission electron microscope, scanning electron microscope. The rheological behaviors of modified silica suspensions in polyethylene glycol were studied by using Anton-paar 301 stress-controlled rheometer. The results of rheological tests indicated that the surface treatments had a great effect on increasing the maximum weight fraction of silica nanoparticles in Shear-thickening fluids, especially treated by the chemical method with EG.

  1. Langmuir and Langmuir-Blodgett films of bidisperse silica nanoparticles.

    Science.gov (United States)

    Detrich, Adám; Deák, András; Hild, Erzsébet; Kovács, Attila L; Hórvölgyi, Zoltán

    2010-02-16

    We present the studies on the structure and optical properties of bidisperse Stöber silica nanoparticulate Langmuir films prepared at the air/water interface in a Wilhelmy film balance and transferred onto glass slides using the Langmuir-Blodgett technique. Three different compositions (covered area ratios: 4:1; 1:1, and 1:4) of two bidisperse systems were used in the experiments. Bidisperse samples (B1 and B2) were prepared by mixing the appropriate amount of monodisperse sols of particles with 61 and 100 nm diameters (B1) and those with 37 and 100 nm diameters (B2). By surface pressure-area isotherms and (transmission and scanning) electron microscopy images we provide information about the structure of the films. Optical properties of the supported films were measured with UV-vis spectroscopy and the transmittance spectra were evaluated in terms of an optical model which allows monotonous in-depth variation of the refractive index across the film. (1) We have found that the refractive index decreased from the substrate-layer interface toward the air-layer interface when the smaller particles were in majority, and increased otherwise. That would suggest that the smaller particles of each bidisperse system can be positioned at the air side of the film if they are in minority in the sample and they can be situated on the substrate if they are in majority. The scanning electron microscope images of bidisperse films supported the in-depth film structure suggested by optical studies.

  2. Fast, microwave-assisted synthesis of monodisperse HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roo, Jonathan De; Keukeleere, Katrien De; Feys, Jonas; Lommens, Petra [Ghent University, Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis (SCRiPTS) (Belgium); Hens, Zeger [Ghent University, Physics and Chemistry of Nanostructures (PCN) (Belgium); Driessche, Isabel Van, E-mail: Isabel.VanDriessche@ugent.be [Ghent University, Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis (SCRiPTS) (Belgium)

    2013-07-15

    A conventional solvothermal synthesis was compared to a microwave-assisted method for the synthesis of HfO{sub 2} nanoparticles. In a microwave, the reaction could be completed in 3 h, compared to 3 days in an autoclave. In the microwave synthesis, the ensemble of particles was found to have a better size dispersion and a smaller average size (4 nm). The reaction mechanism was investigated and proof for an ether elimination process was provided. Post-synthetic modification with dopamine or dodecanoic acid permitted the suspension of the synthesized particles in both polar and apolar solvents, which is an advantage for further processing.

  3. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Immobilization of the atom transfer radical polymerization(ATRP)macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate(TDI),after which the residual isocyanate groups were converted into ATRP macroinitiators.Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined,densely grafted outer polystyrene by ATRP,which was initiated by the as-synthesized silica-based macroinitiator.FTIR,NMR and gel permeation chromatography(GPC)were used to characterize the polystyrene/silica hybrid particles.

  4. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Immobilization of the atom transfer radical polymerization (ATRP) macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate (TDI), after which the residual isocyanate groups were converted into ATRP macroinitiators. Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene by ATRP, which was initiated by the as-synthesized silica-based macroinitiator. FTIR, NMR and gel permeation chro-matography (GPC) were used to characterize the polystyrene/silica hybrid particles.

  5. Ostwald Ripening of Platinum Nanoparticles Confined in a Carbon Nanotube/Silica-Templated Cylindrical Space

    Directory of Open Access Journals (Sweden)

    Cintia Mateo-Mateo

    2012-01-01

    Full Text Available Sintering of nanoparticles mediated by an Ostwald ripening mechanism is generally assessed examining the final particle size distributions. Based on this methodology, a general approach for depositing platinum nanoparticles onto carbon nanotubes in solution has been employed in order to evaluate the sintering process of these metallic nanoparticles at increasing temperatures in a carbon nanotube/silica-templated confined space.

  6. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  7. A novel nonviral nanoparticle gene vector: Poly-L-lysine-silica nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA delivery is a core technology for gene structure and function research as well as clinical settings. The ability to safely and efficiently targeted transfer foreign DNA into cells is a fundamental goal in biotechnology. With the development of nanobiotechnology, nanoparticle gene vectors brought about new hope to reach the goal. In our research, silica nanoparticles (SiNP) were synthesized first in a microemulsion system polyoxyethylene nonylphenyl ether (OP-10)/cyclohexane/ammonium hydroxide, at the same time the effects of SiNP size and its distribution were elucidated by orthogonal analysis; then poly-L-lysine (PLL) was linked on the surface of SiNP by nanoparticle surface energy and electrostatically binding; lastly a novel complex nanomaterial-- poly-L-lysine-silica nanoparticles (PLL-SiNP) was prepared. The analysis of plasmid DNA binding and DNaseⅠ enzymatic degradation discovered that PLL-SiNP could bind DNA, and protect it against enzymatic degradation. Cell transfection showed that PLL-SiNP could efficiently transfer PEGFPC-2 plasmid DNA into HNE1 cell line. These results indicated that PLL-SiNP was a novel nonviral nanoparticle gene vector, and would probably play an important role in gene structure and function research as well as gene therapy.

  8. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  9. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    Science.gov (United States)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  10. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    Science.gov (United States)

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  11. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting.

    Science.gov (United States)

    Khung, Yit Lung; Narducci, Dario

    2015-12-01

    In the past decade, zwitterionic-based anti-biofouling layers had gained much focus as a serious alternative to traditional polyhydrophilic films such as PEG. In the area of assembling silica nanoparticles with stealth properties, the incorporation of zwitterionic surface film remains fairly new but considering that silica nanoparticles had been widely demonstrated as useful biointerfacing nanodevice, zwitterionic film grafting on silica nanoparticle holds much potential in the future. This review will discuss on the conceivable functional chemistry approaches, some of which are potentially suitable for the assembly of such stealth systems.

  12. Mesoporous silica nanoparticles with tunable pore size for tailored gold nanoparticles

    Science.gov (United States)

    Sponchia, G.; Marin, R.; Freris, I.; Marchiori, M.; Moretti, E.; Storaro, L.; Canton, P.; Lausi, A.; Benedetti, A.; Riello, P.

    2014-02-01

    The aim of this paper was to verify a possible correlation between the pore-size of mesoporous silica nanoparticles (MSNs) and the sizes of gold nanoparticles (AuNPs) obtained by an impregnation of gold(III) chloride hydrate solution in the MSNs, followed by a specific thermal treatment. Mesoporous silica nanoparticles with tunable pore diameter were synthesized via a surfactant-assisted method. Tetraethoxysilane as silica precursor, cetyltrimethylammonium bromide (CTAB) as surfactant and toluene as swelling agent were used. By varying the CTAB-toluene molar ratio, the average dimension of the pores could be tuned from 2.8 to 5.5 nm. Successively, thiol groups were grafted on the surface of the MSNs. Finally, the thermal evolution of the gold salt, followed by "in situ" X-ray powder diffraction (XRPD) and thermogravimetric analysis (TGA), revealed an evident correlation among the degradation of the thiol groups, the pore dimension of the MSNs and the size of the AuNPs. The samples were characterized by means of nitrogen adsorption-desorption, transmission electron microscopy, small-angle X-ray scattering, XRPD "in situ" by synchrotron radiation, and "ex situ" by conventional techniques, diffuse reflectance infrared Fourier transform spectroscopy, and TGA.

  13. Simultaneous detection of pathogenic bacteria using agglutination test based on colored silica nanoparticles.

    Science.gov (United States)

    Yu, Hui; Zhao, Guangying; Dou, Wenchao

    2015-01-01

    Aimed to explore an agglutination test which can simultaneously detect two pathogenic bacteria, an agglutination test based on colored silica nanoparticles (colored-SiNps) was established in this work. Monodisperse colored-SiNps were used as agglutination test carriers; red-SiNps and blue-SiNps were prepared by reverse microemulsion with C.I. Reactive red 136 and C.I. Reactive Blue 14. Then the red-SiNps were sensitized with antibodies against E. sakazaki and denoted as IgG-red-SiNps; The blue-SiNps were coated with antibodies against S. pullorum and S. Gallinarum and denoted as IgGblue- SiNps. The mixture solution of IgG-red-SiNps and IgG-blue-SiNps could simultaneously agglutinate with E. sakazakii and S. pullorum and S. gallinarum on glass slide. The E. sakazakii and S. pullorum and S. gallinarum could be simultaneously detected by agglutination test with obvious agglutination phenomena. The E. sakazakii and S. pullorum and S. gallinarum could both be detected in a range from 4×10(3) to 4×10(9) CFU/mL. The pullorum and S. gallinarum and E. sakazakii in the infected food sample were detected by mixture solution of IgG-red-SiNps and IgG-blue-SiNps too. This agglutination test was easy and rapid, it might be useful for in situ rapid detection method for simultaneously screening different pathogenic microorganisms of foods and feeds in the field.

  14. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, Romain; Delichere, Pierre; Gajan, David; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2008-12-01

    Treatment under H{sub 2} at 300 C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru{sub p}/SiO{sub 2}], according to EXAFS, HRTEM and XPS. H{sub 2} adsorption measurements on [Ru{sub p}/SiO{sub 2}] in the absence of O{sub 2} show that Ru particles adsorb up to ca. 2 H per surface ruthenium atoms (2H/Ru{sub s}) on various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O{sub 2} adsorption on [Ru{sub p}/SiO{sub 2}] leads to a partial oxidation of the bulk at 25 C, to RuO{sub 2} at 200 C and to sintering upon further reduction under H{sub 2}, showing that O{sub 2} adsorption cannot be used to measure the dispersion of Ru particles.

  15. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    Science.gov (United States)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  16. Design and development of sustained-release glyburide-loaded silica nanoparticles

    Indian Academy of Sciences (India)

    JAYESH S PATIL; PRITAM B PATIL; PRAVIN SONAWANE; JITENDRA B NAIK

    2017-04-01

    The aim of this study was to develop sustained-release glyburide-loaded silica nanoparticles. Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was successfully entrapped in synthesized silica nanoparticles. To identify the effect of independent variables (concentration of silica and concentration of glyburide) on encapsulation efficiency and drug release (dependent variables), 3$^2$ (three level-two factors) response surface methodology was employed. Silica nanoparticles and glyburide-loaded silica nanoparticles were characterized by scanning electron microscopy, BET surface area, X-ray diffraction andFourier transformed infrared spectroscopy. The optimum values of encapsulation efficiency and drug release were 70.21 and 87.8% over 24 h, respectively; these values agree well with predicted values obtained by response surfacemethodology. Glyburide-loaded silica nanoparticles were successfully prepared without any incompatibility and seem to be promising for sustained-release drug delivery application and better patient compliance.

  17. A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Auger Aurélien

    2011-01-01

    Full Text Available Abstract Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

  18. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Science.gov (United States)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  19. Sol-Gel processing of silica nanoparticles and their applications.

    Science.gov (United States)

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-06

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  1. Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val

    Directory of Open Access Journals (Sweden)

    Ziaee Masumeh

    2016-07-01

    Full Text Available Bioassays were conducted to assess the effects of two silicon dioxide nanoparticles of Aerosil® and Nanosav against adults of Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Silica nanoparticles were applied at the rates of 50, 100, 200 and 300 mg · kg−1 on wheat and peeled barley. The mortality was counted after 1, 2, 3, and 7 days of exposure. Another experiment was carried out to evaluate the effect of food source on the survival of beetles after exposure to silica nanoparticles. Adults were exposed to silica nanoparticles at the rate of 0.2 mg · cm−2 for 1 and 2 days on filter paper inside plastic Petri dishes, respectively. After exposure, the initial mortality was counted and live individuals of both species were held for a week in empty glass vials or vials containing wheat and wheat flour, respectively. Silica nanoparticles have high toxicity on R. dominica and T. confusum adults. Rhyzopertha dominica was more susceptible than T. confusum. However, the mortality of both species increased with increasing concentrations and time exposed to each concentration. At low concentrations, Aerosil® was more effective than Nanosav. Silica nanoparticles were more effective in wheat grains than barley. Results indicated that the initial mortality was so high that the impact of food source on delay mortality was unclear in most cases. Silica nanoparticles were efficient against tested species and can be used effectively in a stored grain integrated pest management program.

  2. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles.

    Science.gov (United States)

    Tian, Jia; Vana, Philipp

    2016-02-18

    Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors.

  3. Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB).

    Science.gov (United States)

    Yildiz, Yunus; Erken, Esma; Pamuk, Handan; Sert, Hakan; Sen, Fatih

    2016-06-01

    Herein, monodisperse platinum (0) nanocatalyst assembled on reduced graphene oxide (Pt(0)@RGO) was easily and reproducibly prepared by the double solvent reduction method at room temperature. Pt(0)@RGO was characterized by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM) measurements that verify the formation of monodisperse Pt (0) nanoparticles on RGO. The catalytic and electrocatalytic performances of Pt(0) @ RGO in terms of activity, isolability and reusability were investigated for both methanol oxidation and the dehydrocoupling of dimethylamine-borane (DMAB) in which Pt(0)@RGO was found to be highly active and reusable heterogeneous catalyst even at room temperature. The prepared nanoparticles can also electrocatalyze methanol oxidation with very high electrochemical activities (5.64 A/cm2 at 0.58 V for methanol). The activation energy (Ea), activation enthalpy (ΔH#), and activation entropy (ΔS#) for DMAB dehydrogenation were calculated to be 59.33 kJ mol(-1), 56.79 kJ mol(-1) and -151.68 J mol(-1) K(-1), respectively. The exceptional stability of new Pt(0) @ RGO nanoparticles towards agglomeration, leaching and CO poisoning allow these particles to be recycled and reused in the catalysis of DMAB dehydrogenation and methanol oxidation. After four subsequent reaction and recovery cycles, Pt(0) @ RGO retained ≥ 75% activity towards the complete dehydrogenation of DMAB.

  4. Intracellular degradation of multilabeled poly(ethylene imine)-mesoporous silica-silica nanoparticles: implications for drug release.

    Science.gov (United States)

    Bergman, Lotta; Kankaanpää, Pasi; Tiitta, Silja; Duchanoy, Alain; Li, Ling; Heino, Jyrki; Lindén, Mika

    2013-05-06

    Mesoporous silica nanoparticles, MSNs, have emerged as an interesting carrier for drugs in vitro and in vivo. The particles are typically used in a surface functionalized form, where functional silanes or other covalently linked surface functions are used to provide anchoring sites for additional functionalities like targeting groups, imaging agents, and drugs. Here, we report results related to extra- and intracellular degradation of silica nanoparticles using multilabeled nonporous silica core-mesoporous silica shell-surface hyperbranched poly(ethylene imine) shell nanoparticles as model particles. Different fluorophores have been selectively covalently linked to different regions of the particles in order to study the particle degradation in detail under in vitro conditions in human SAOS-2 cells. A novel, quantitative method for nanoparticle degradation evaluation based on confocal fluorescence microscopy is applied. Our results suggest that the core-shell-shell MSNs degrade at a higher rate inside cells as compared to outside cells, which is of high importance for further application of this class of drug carriers.

  5. Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles.

    Science.gov (United States)

    Zhou, Wen-Juan; Fang, Lin; Fan, Zhaoyu; Albela, Belén; Bonneviot, Laurent; De Campo, Floryan; Pera-Titus, Marc; Clacens, Jean-Marc

    2014-04-02

    Stabilization of oil/oil Pickering emulsions using robust and recyclable catalytic amphiphilic silica nanoparticles bearing alkyl and propylsulfonic acid groups allows fast and efficient solvent-free acetalization of immiscible long-chain fatty aldehydes with ethylene glycol.

  6. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  7. Engineered silica nanoparticles as additives in lubricant oils

    Science.gov (United States)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  8. Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alessio Malfanti

    2016-04-01

    Full Text Available In this paper, mesoporous silica nanoparticles (MSNs were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM and of its 4-(N-acyl derivatives, (4-(N-valeroyl-(C5GEM, 4-(N-lauroyl-(C12GEM and 4-(N-stearoyl-gemcitabine (C18GEM. The loading of the GEM lipophilic prodrugs on MSNs was explored with the aim to obtain both a physical and a chemical protection of GEM from rapid plasmatic metabolization. For this purpose, MSNs as such or with grafted aminopropyl and carboxyethyl groups were prepared and characterized. Then, their different drug loading capacity in relation to the nature of the functional group was evaluated. In our experimental conditions, GEM was not loaded in any MSNs, while C12GEM was the most efficiently encapsulated and employed for further evaluation. The results showed that loading capacity increased with the presence of functional groups on the nanoparticles; similarly, the presence of functional groups on MSNs’ surface influenced the drug release profile. Finally, the cytotoxicity of the different preparations was evaluated and data showed that C12GEM loaded MSNs are less cytotoxic than the free drug with an activity that increased with the incubating time, indicating that all these systems are able to release the drug in a controlled manner. Altogether, the results demonstrate that these MSNs could be an interesting system for the delivery of anticancer drugs.

  9. Scattering of ultrasonic shock waves in suspensions of silica nanoparticles.

    Science.gov (United States)

    Baudoin, Michael; Thomas, Jean-Louis; Coulouvrat, François; Chanéac, Corinne

    2011-03-01

    Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity.

  10. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    Science.gov (United States)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  11. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading

    Directory of Open Access Journals (Sweden)

    Xiaodong She

    2015-01-01

    Full Text Available Hollow mesoporous silica nanoparticles were successfully fabricated and functionalized with appropriate silanes. After modifications, amine, carboxyl, cyano, and methyl groups were grafted onto the nanoparticles and all functionalized hollow mesoporous silica nanoparticles maintained a spherical and hollow structure with a mean diameter of ~120 nm and a shell thickness of ~10 nm. The loading capacity of the hollow mesoporous silica nanoaprticles to the anticancer drug, 5-fluorouracil, can be controlled via precise functionalization. The presence of amine groups on the surface of nanoparticles resulted in the highest loading capacity of 28.89%, due to the amine functionalized nanoparticles having a similar hydrophilicity but reverse charge to the drug. In addition, the change in pH leads to the variation of the intensity of electrostatic force between nanoparticles and the drug, which finally affects the loading capacity of amine functionalized hollow mesoporous silica nanoparticles to some extent. Higher drug loading was observed at pH of 7.4 and 8.5 as 5-fluorouracil becomes more deprotonated in alkaline conditions. The improved drug loading capacity by amine functionalized hollow mesoporous silica nanoparticles has demonstrated that they can become potential intracellular 5-fluorouracil delivery vehicles for cancers.

  12. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  13. Stabilization of silica nanoparticles dispersions by surface modification with silicon derivative of thiacalix[4]arene

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachuk, Vladimir V.; Ziatdinova, Ramilia V. [Kazan Federal University, A.M. Butlerov’ Chemical Institute (Russian Federation); Evtugyn, Vladimir G. [Kazan Federal University, Interdisciplinary Centre for Analytical Microscopy (Russian Federation); Stoikov, Ivan I., E-mail: ivan.stoikov@mail.ru [Kazan Federal University, A.M. Butlerov’ Chemical Institute (Russian Federation)

    2015-03-15

    For the first time, silica nanopowder functionalized with thiacalixarene derivatives was synthesized by ultrasonication of nanoparticles (diameter 23.7 ± 2.4 nm) with organosilicon derivative of thiacalixarene in glacial acetic acid. The protocol resulted in the formation of colloidal solution of low-disperse (polydispersity index of 0.11) submicron-sized (diameter 192.5 nm) clusters of nanoparticles according to the dynamic light scattering data. As defined by scanning electron microscopy (SEM), mean diameter of thiacalixarene-functionalized nanoparticles is equal to 25.5 ± 2.5 nm and the shape is close to spherical. SEM images confirm low aggregation of thiacalixarene-modified nanoparticle compared to initial silica nanopowder (mean diameter of aggregates 330 and 429 nm, correspondingly). According to the thermogravimetry/differential scanning calorimetry and elemental analysis of the nanoparticles obtained, 5 % of the powder mass was related to thiacalixarene units. The effect of thiacalixarene functionalization of silica nanoparticles on linear polydimethylsiloxane (PDMS)—silica dispersions was modeled to achieve high resistance toward liquid media required for similar sol–gel prepared PDMS-based materials applied for solid-phase microextraction. In such a manner, the influence of thiacalixarene-modified nanofiller on thermal stability and resistance against polar organic solvents was estimated. Similarity of decomposition temperature of both thiacalixarene-functionalized nanoparticles and non-functionalized silica nanoparticles was found. Swelling/solubility behavior observed was related to partial dissolution of PDMS/silica (10 % mixture) in alcohols. Thiacalixarene-functionalized silica particles exerted significantly higher resistance of PDMS/silica composites toward alcohol solvents.

  14. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  15. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Javed [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamed, Maqusood, E-mail: maqusood@gmail.com [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Akhtar, Mohd Javed [Fibre Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow-226001 (India); Alrokayan, Salman A. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  16. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis of monodisperse MFe{sub 2}O{sub 4} (M = Fe and Zn) nanoparticles for polydiethylsiloxane-based ferrofluid with a solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Zhuang, Lin, E-mail: stszhl@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Zhang, Yong [Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Shen, Hui [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-09-15

    Highlights: • MFe{sub 2}O{sub 4} nanoparticles were synthesized through a facile solvothermal method. • The relationship between viscosity and temperature of the polydiethylsiloxane-based ferrofluid is discussed. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 73.06 emu/g at room temperature. - Abstract: Monodisperse MFe{sub 2}O{sub 4} (M = Fe, Zn) nanoparticles were successfully synthesized for the application of polydiethylsiloxane-based (PDES) ferrofluids (FFs) via a novel solvothermal method, with which 1-octanol and 1-octanamine act as binary solvent, oleic acid (OA) as the surfactant and metal acetylacetonate [M(acac){sub 3}](M = Fe and Zn) as the metal source. X-ray diffractometer confirms that the resultant nanoparticles are pure MFe{sub 2}O{sub 4} with a spinel structure. Infrared spectroscopy indicates that oleic acid is bound to the surface of MFe{sub 2}O{sub 4} through a covalent bond between carboxylate (COO{sup −}) and metal cations. The ratio of 1-octanol and 1-octanamine plays a key role in the formation of the sphere-shaped morphology. Transmission electron microscopy (TEM) images confirm that the Fe{sub 3}O{sub 4} particles are of 4–11 nm with good monodispersity and a narrow size distribution. The saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles with sizes of 7 nm can reach up to 73.06 emu/g. Polydiethylsiloxane-based (PDES) FFs show relatively smaller changes of the viscosity with low temperatures (from −7 to 20 °C) than the polydimethylsiloxane-based (PDMS) FFs. For FFs applications, the relationship between viscosity and temperature is also discussed.

  18. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  19. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  20. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Science.gov (United States)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-02-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  1. Manganese-enhanced MRI of rat brain based on slow cerebral delivery of manganese(II) with silica-encapsulated Mn x Fe(1-x) O nanoparticles.

    Science.gov (United States)

    Chen, Wei; Lu, Fang; Chen, Chiao-Chi V; Mo, Kuan-Chi; Hung, Yann; Guo, Zhi-Xuan; Lin, Chia-Hui; Lin, Ming-Huang; Lin, Yu-Hsuan; Chang, Chen; Mou, Chung-Yuan

    2013-09-01

    In this work, we report a monodisperse bifunctional nanoparticle system, MIO@SiO2 -RITC, as an MRI contrast agent [core, manganese iron oxide (MIO); shell, amorphous silica conjugated with rhodamine B isothiocyanate (RITC)]. It was prepared by thermal decomposition and modified microemulsion methods. The nanoparticles with varying iron to manganese ratios displayed different saturated magnetizations and relaxivities. In vivo MRI of rats injected intravenously with MIO@SiO2-RITC nanoparticles exhibited enhancement of the T1 contrast in brain tissue, in particular a time-delayed enhancement in the hippocampus, pituitary gland, striatum and cerebellum. This is attributable to the gradual degradation of MIO@SiO2-RITC nanoparticles in the liver, resulting in the slow release of manganese(II) [Mn(II)] into the blood pool and, subsequently, accumulation in the brain tissue. Thus, T1-weighted contrast enhancement was clearly detected in the anatomic structure of the brain as time progressed. In addition, T2*-weighted images of the liver showed a gradual darkening effect. Here, we demonstrate the concept of the slow release of Mn(II) for neuroimaging. This new nanoparticle-based manganese contrast agent allows one simple intravenous injection (rather than multiple infusions) of Mn(II) precursor, and results in delineation of the detailed anatomic neuroarchitecture in MRI; hence, this provides the advantage of the long-term study of neural function. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip.

    Science.gov (United States)

    Piao, Jing Yu; Park, Eun Hee; Choi, Kihwan; Quan, Bo; Kang, Dong Ho; Park, Pan Yun; Kim, Dai Sik; Chung, Doo Soo

    2009-12-15

    A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.

  3. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Science.gov (United States)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  4. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zwe-Ling, E-mail: kongzl@mail.ntou.edu.tw; Chang, Jenq-Sheng; Chang, Ke Liang B. [National Taiwan Ocean University, Department of Food Science (China)

    2013-09-15

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  5. A novel route for immobilization of oligonucleotides onto modified silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Kota Sreenivasa [Institute of Scientific and Industrial Research, Sanken, Osaka University, Osaka (Japan)]. E-mail: kotas_1999@yahoo.com; Rani, Sikhakolli Usha [Institute of Scientific and Industrial Research, Sanken, Osaka University, Osaka (Japan); Charyulu, Devarayapalli Kamakshaiah [Institute of Advanced Energy, Kyoto University, Gokasho, Uji (Japan); Kumar, Kamisetty Nagendra [Institute of Advanced Energy, Kyoto University, Gokasho, Uji (Japan); Lee, Bong-Kuk [Institute of Scientific and Industrial Research, Sanken, Osaka University, Osaka (Japan); Lee, Hea-Yeon [Institute of Scientific and Industrial Research, Sanken, Osaka University, Osaka (Japan); Kawai, Tomoji [Institute of Scientific and Industrial Research, Sanken, Osaka University, Osaka (Japan)

    2006-08-25

    A novel approach for immobilization of probe oligonucleotides that uses zirconium phosphate modified silica nanoparticles is proposed. The surface modification of nanoparticles was carried out in two stages. Initially binding of Zr{sup 4+} to the surface of silica nanoparticles and later treated with phosphoric acid for terminal phosphate groups. Oligonucleotide probes modified with amine group at 5'-end were strongly binds to the phosphate terminated silica nanoparticles with imidazole in presence of 0.1 mol L{sup -1} EDC [N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide], as phosphate groups are more reactive towards amine group. Various studies, i.e., synthesis of silica nanoparticles, their surface modification, probe immobilization, measurement of hybridization and effect of bovine serum albumin (BSA) were carried out during optimization of reaction conditions. The significant reduction in the background signal was observed by treating the probe modified silica nanoparticles with bovine serum albumin prior to hybridization. The probe modified silica nanoparticles were retained their properties and the hybridization was induced by exposure of single-stranded DNA (ssDNA) containing silica nanoparticles to the complementary DNA in solution. The decrease in the fluorescence signal for one mismatch and three mismatch was observed upon hybridization of probe with target DNAs, while there was no response for the random target ssDNA under the same experimental conditions. The intensity of fluorescence signal was linear to the concentration of target DNA ranging from 3.9 x 10{sup -9} to 3.0 x 10{sup -6} mol L{sup -1}. A detection limit of 1.22 x 10{sup -9} mol L{sup -1} of oligonucleotides can be estimated. The proposed hybridization assay is simple and possesses good analytical characteristics and it can provide an effective and efficient route in the development of DNA biosensors and biochips.

  6. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot, E-mail: navjot.dhindsa2989@gmail.com; Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [School of Physics and Materials Science, Thapar University, Patiala-147004 (India)

    2015-05-15

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  7. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    Science.gov (United States)

    Kaur, Navjot; Chudasama, Bhupendra

    2015-05-01

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  8. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Tridib Kumar; Yoon, Diana [University of Maryland, Department of Chemical and Biomolecular Engineering (United States); Patel, Minal; Fisher, John [University of Maryland, Fischell Department of Bioengineering (United States); Ehrman, Sheryl, E-mail: sehrman@umd.ed [University of Maryland, Department of Chemical and Biomolecular Engineering (United States)

    2010-10-15

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m{sup 2}/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  9. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Science.gov (United States)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  10. Gene expression profiles for genotoxic effects of silica-free and silica-coated cobalt ferrite nanoparticles.

    Science.gov (United States)

    Hwang, Do Won; Lee, Dong Soo; Kim, Soonhag

    2012-01-01

    Nanomaterials have been widely evaluated for potential use as efficient delivery carriers for cancer diagnosis and therapy. To translate these nanomaterials to the clinic, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. We investigated changes in gene expression profiles influenced by silica-coated cobalt ferrite magnetic-fluorescence nanoparticles and silica-free cobalt ferrite magnetic-core nanoparticles in vivo and in vitro. (68)Ga-labeled cobalt ferrite nanoparticles produced by synthesis of 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid chelator were established after labeling efficiency had been validated through a thin-layer chromatography method. The expression of genes associated with the stress and toxicity pathways was verified by a commercially available polymerase chain reaction array kit. In comparison with magnetic-fluorescence nanoparticles, magnetic-core nanoparticles revealed severe cytotoxic effects at various doses and treatment times as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Whole-body small-animal PET and biodistribution studies, including transmission electron microscope analysis, showed that tail-vein injection of magnetic-core or magnetic-fluorescence nanoparticles exhibited substantial liver accumulation. Real-time polymerase chain reaction array using 52 genes related to cellular toxicity demonstrated that 17 genes from the magnetic-core-treated liver samples were significantly affected, mostly in relation to DNA damage or repair and to oxidative or metabolic stress. The magnetic-fluorescence-treated liver samples showed gene expression approximately 90% similar to that of untreated liver samples. We compared a variety of gene expression profiles in mice injected with magnetic-fluorescence or magnetic-core nanoparticles. This study of gene expression profiles affected by nanotoxicity provides critical information for the

  11. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  12. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  13. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Ma, Xing; Zhao, Yanli

    2012-10-24

    Squaraine dyes were loaded inside mesoporous silica nanoparticles, and the nanoparticle surfaces were then wrapped with ultrathin graphene oxide sheets, leading to the formation of a novel hybrid material. The hybrid exhibits remarkable stability and can efficiently protect the loaded dye from nucleophilic attack. The biocompatible hybrid is noncytotoxic and presents significant potential for application in fluorescence imaging in vitro.

  14. Ferrocenyl-functionalized silica nanoparticles: preparation, characterization and molecular recognition at interfaces

    NARCIS (Netherlands)

    Ling, X.Y.; Reinhoudt, David; Huskens, Jurriaan

    2006-01-01

    Ferrocenyl-functionalized silica nanoparticles (Fc-SiO2, 6a-6c) of about 60 nm with supramolecular "guest" properties were prepared. Nanoparticles 6a-6c differed by the addition of different molar ratios of starting compounds during the functionalization step, i.e., 1:0, 1:10, and 1:90 of

  15. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Science.gov (United States)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  16. Synthesis of exfoliated PA66 nanocomposites via interfacial polycondensation: effect of layered silicate and silica nanoparticles

    Indian Academy of Sciences (India)

    HOSSIEN GHARABAGHI; MEHDI RAFIZADEH; FARAMARZ AFSHAR TAROMI

    2016-08-01

    Nanocomposites of polyamide 66 (PA66) with layered silicate and silica (SiO2) nanoparticles were prepared via in situ interfacial polycondensation method. Hexamethylenediamine (HDMA) and adipoyl chloride(AdCl) were reacted in a two-phase media. Montmorillonite (NaMMT) and silica nanoparticles were added to reacting media. Preparation of PA66 and its nanocomposites were studied using Fourier transform infrared spectroscopy.Dispersion of nanoparticles was studied using X-ray diffraction and transmission electron microscopy. The results show that two structures were achieved using two kinds of nanoparticles. Silica nanoparticles were partially exfoliated, while NaMMT nanoparticles were hybrid intercalated–exfoliated in nanocomposite samples. Thermal properties of samples were investigated by differential scanning calorimetry. The results suggest that crystallinity is heterogeneous in the presence of nanoparticles. Kinetic of crystallization was studied by means of Avrami equation, based on the kinetic parameters, spherulites are produced. Results were reported for nanocomposites containing 2 and 4% of nanoparticles. Avrami equation parameter, n, shows that spherulite crystallization occured in the samples. Addition of nanoparticles decreases n first, then n increases with nanoparticle content.

  17. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    Science.gov (United States)

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  18. Novel fluorescent silica nanoparticle probe for Förster Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Mouhamad Khalil

    2014-04-01

    Full Text Available The preparation and utilization of a novel particulate label based on fluorescent hybrid silica nanoparticles are reported in this article. These fluorescent nanoparticles have shown several unique advantages over existing dye molecules, quantum dots, and latex-based fluorescent particles in easy preparation, good photostability and high sensitivity. Alexa Fluor® dyes, the leading and most trusted fluorescent dyes available today were used to make the grafting onto silica nanoparticles. Alexa Fluor® was modified with 3-aminopropyl-triethoxysilane (APS to provide reactive groups Alexa-APS. Alexa-APS can be grafted onto silica nanoparticles via silylation process. The silica nanoparticles were prepared by Stöber methods and treated by Etching to functionalized their surface. A mixture of Alexafluoro donor A488 and Alexafluoro acceptor A568 coated silica nanoparticles leads to the Förster Resonance Energy Transfer (FRET by excitation of the acceptor when the particles are distant by less than 10nm.

  19. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  20. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    K. Nadeemn; M.Shahid; M.Mumtaz

    2014-01-01

    Silica coated (30 wt%) cobalt zinc ferrite (Co1 ? xZnxFe2O4, x ¼ 0, 0.2, 0.3, 0.4, 0.5 and 1) nanoparticles were synthesized by using sol-gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD) reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37-45 nm. Fourier transform infrared (FTIR) spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM) images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1 ? xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  1. Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle

    Indian Academy of Sciences (India)

    GHARAATI A; KAMALDAR A

    2016-06-01

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric constants. In the second step, the Maxwell–Garnetttheory is exploited to replace the spherical nanoparticles with cylindrical and ellipsoidal ones, facilitating the calculation of the third-order nonlinear effective susceptibility for a degenerate four-wave mixing case. The results are followed by numerical computations for silver, copper and gold nanoparticles. It is shown, graphically, that the maximum and minimum of the real part of thereflection coefficient for nanoparticles of silver occurs in smaller wavelengths compared to that of copper and gold. Further, it is found that spherical nanoparticles exhibit greater figure-of-merit compared to those with cylindrical or ellipsoidal geometries.

  2. In Vivo Toxicity of Intravenously Administered Silica and Silicon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Galagudza

    2012-10-01

    Full Text Available Both silicon and silica nanoparticles (SiNPs and SiO2NPs, respectively are currently considered to be promising carriers for targeted drug delivery. However, the available data on their in vivo toxicity are limited. The present study was aimed at investigation of SiNP and SiO2NP (mean diameter 10 and 13 nm, respectively toxicity using both morphological and functional criteria. Hematological and biochemical parameters were assessed in Sprague-Dawley rats 5, 21 and 60 days after administration of NPs. Inner ear function was determined using otoacoustic emission testing at 21 and 60 days after infusion of NPs. Furthermore, the histological structure of liver, spleen and kidney samples was analyzed. Intravenous infusion of SiNPs or SiO2NPs (7 mg/kg was not associated with significant changes in hemodynamic parameters. Hearing function remained unchanged over the entire observation period. Both inter- and intragroup changes in blood counts and biochemical markers were non-significant. Histological findings included the appearance of foreign body-type granulomas in the liver and spleen as well as microgranulation in the liver after administration of NPs. The number of granulomas was significantly lower after administration of SiNPs compared with SiO2NPs. In conclusion, both tested types of NPs are relatively biocompatible nanomaterials, at least when considering acute toxicity.

  3. Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study.

    Science.gov (United States)

    Silencieux, Fanny; Bouchoucha, Meryem; Mercier, Olivier; Turgeon, Stéphane; Chevallier, Pascale; Kleitz, Freddy; Fortin, Marc-André

    2015-12-01

    Thin films made of mesoporous silica nanoparticles (MSNs) are finding new applications in catalysis, optics, as well as in biomedicine. The fabrication of MSNs thin films requires a precise control over the deposition and sintering of MSNs on flat substrates. In this study, MSNs of narrow size distribution (150 nm) are synthesized, and then assembled onto flat silicon substrates, by means of a dip-coating process. Using concentrated MSN colloidal solutions (19.5 mg mL(-1) SiO2), withdrawal speed of 0.01 mm s(-1), and well-controlled atmospheric conditions (ambient temperature, ∼ 70% of relative humidity), monolayers are assembled under well-structured compact patterns. The thin films are sintered up to 900 °C, and the evolution of the MSNs size distributions are compared to those of their pore volumes and densities. Particle size distributions of the sintered thin films were precisely fitted using a model specifically developed for asymmetric particle size distributions. With increasing temperature, there is first evidence of intraparticle reorganization/relaxation followed by intraparticle sintering followed by interparticle sintering. This study is the first to quantify the impact of sintering on MSNs assembled as thin films.

  4. Silica coated nanoparticles: Synthesis, magnetic properties and spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Mazaleyrat, F., E-mail: mazaleyrat@satie.ens-cachan.f [SATIE, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Ammar, M.; LoBue, M. [SATIE, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Bonnet, J.-P.; Audebert, P. [PPSM, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Wang, G.-Y.; Champion, Y. [ICMPE, CNRS, Universite Paris XII, 2-8 rue Henri Dunant, F-94320 Thiais (France); Hytch, M.; Snoeck, E. [CEMES, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2009-08-26

    In the recent years, magnetic nanoparticles have been extensively studied for their superparamagnetic properties providing useful labels in biology or for fundamental aspects including the size dependence of magnetic atomic moment and the effect of surface anisotropy. In most cases, the particles were smaller than 10 nm and interestingly, the sizes ranging between 10 and 100 nm have been poorly investigated until now. This is mainly due to the fact that usual chemical routes produce 5-10 nm oxide or metallic particles or eventually 20 nm at most. On the over side, atomization techniques yield particles in the micrometer range. Metallic particles are particularly interesting for better magnetic properties compared to oxides, but they have two big drawbacks: they are not biocompatible and they are conducting electricity. Consequently, it's necessary to produce core-shell particles, for which the shell is biocompatible and insulating and with a perfect control of thickness and uniformity of that shell. In this work, we are studying metallic particles synthesized by an original evaporation-condensation technique that produces particles of several tens of nanometers. We prepared hard magnetic cobalt particles and soft FeNi ones coated with a silica shell using a modified sol-gel method. Morphological and magnetic properties are presented, showing the efficiency of ultrasonic sol-gel process for that purpose.

  5. Silica nanoparticle is a possible safe carrier for gene therapy

    Institute of Scientific and Technical Information of China (English)

    XUE Zhigang; DAI Heping; TANG Baisha; XIA Kun; XIA Jiahui; LIANG Desheng; LI Yumei; LONG Zhigao; PAN Qian; LIU Xionghao; WU Lingqian; ZHU Shaihong; CAI Fang

    2005-01-01

    In order to develop a safe and effective gene therapy carrier, some toxicological and biodynamical experiments were carried out on silica nanoparticles (SiNPs). First we prepared SiNPs with appropriate portions of cyclohexane, deionized water and ethyl silicate, and then transfected the modified SiNPs and GFP plasmid DNA complex into the HT1080 cells to test the effectiveness of transfection for gene therapy. At the same time, we injected the SiNPs into a number of mice through tail vein. Then we made the mice crossed to evaluate the acute, long-term and reproductive toxicity. In vivo distribution analysis and pathological examination were made on both adult mice and their offspring. SiNPs were uniform and had an average diameter of 40 nm, and the modified SiNPs carried exogenous DNA molecules into target cells and the transferred GFP fusion gene was effectively expressed in the cells. The SiNPs injected via tail vein were widely distributed in almost all of tissues, and the injected mice had the ability to reproduce normally. The in vivo and in vitro results of this study clearly show that SiNPs can be used as a safe and effective carrier for gene transfection and gene therapy.

  6. Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages

    Directory of Open Access Journals (Sweden)

    Nagano Kazuya

    2011-01-01

    Full Text Available Abstract Surface properties are often hypothesized to be important factors in the development of safer forms of nanomaterials (NMs. However, the results obtained from studying the cellular responses to NMs are often contradictory. Hence, the aim of this study was to investigate the relationship between the surface properties of silica nanoparticles and their cytotoxicity against a murine macrophage cell line (RAW264.7. The surface of the silica nanoparticles was either unmodified (nSP70 or modified with amine (nSP70-N or carboxyl groups (nSP70-C. First, the properties of the silica nanoparticles were characterized. RAW264.7 cells were then exposed to nSP70, nSP70-N, or nSP70-C, and any cytotoxic effects were monitored by analyzing DNA synthesis. The results of this study show that nSP70-N and nSP70-C have a smaller effect on DNA synthesis activity by comparison to unmodified nSP70. Analysis of the intracellular localization of the silica nanoparticles revealed that nSP70 had penetrated into the nucleus, whereas nSP70-N and nSP70-C showed no nuclear localization. These results suggest that intracellular localization is a critical factor underlying the cytotoxicity of these silica nanoparticles. Thus, the surface properties of silica nanoparticles play an important role in determining their safety. Our results suggest that optimization of the surface characteristics of silica nanoparticles will contribute to the development of safer forms of NMs.

  7. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Indresh, E-mail: vkaswal@barc.gov.in; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 PSI Villigen Switzerland (Switzerland)

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  8. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    CERN Document Server

    Heidegger, S; Schmidt, A; Gößl, D; Argyo, C; Endres, S; Bein, T; Bourquin, C

    2015-01-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1\\beta. In contrast, when surface-funct...

  9. Synthesis and Spectroscopy of Silica Nanoparticles as Scatter Centers in Random Gain Porous Media

    Institute of Scientific and Technical Information of China (English)

    Firas J Kadhim; Baha TChiad; Nathera AAli; Jafer FOdah

    2015-01-01

    This work was carried out to synthesis a silica matrix by sol-gel technique,which used as host to Kiton Red laser dye doped with silica nanoparticles,which also prepared by sol-gel technique,to obtain KR-SiO2 nanoparticles confined in silica xerogel matrix.The rods at different pH values were successfully synthe-sized.The different values of pH cause different size of obtained nanoparticles,these nanoparticles act as scat-ter centers in the matrix.Amplified spontaneous emission (ASE),threshold pumping energy (Eth ),and mean free path (lt )for photons in the rods have been reported.the results show that the values of bandwidth at full width half-maximum (FWHM)and the threshold energy are about 8. 7 nm and 12 mJ respectively.

  10. In vitro cytotoxicity of fluorescent silica nanoparticles hybridized with aggregation-induced emission luminogens for living cell imaging.

    Science.gov (United States)

    Xia, Yun; Li, Min; Peng, Tao; Zhang, Weijie; Xiong, Jun; Hu, Qinggang; Song, Zifang; Zheng, Qichang

    2013-01-07

    Fluorescent silica nanoparticles (FSNPs) can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE) luminogens (namely FSNP-SD) were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  11. In Vitro Cytotoxicity of Fluorescent Silica Nanoparticles Hybridized with Aggregation-Induced Emission Luminogens for Living Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yun Xia

    2013-01-01

    Full Text Available Fluorescent silica nanoparticles (FSNPs can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE luminogens (namely FSNP-SD were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  12. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO{sub 2} was larger as CTAB amount increased, and SiO{sub 2} contents in the top solution were decreased after centrifugation.

  13. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  14. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  15. Graphene Quantum Dots-Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy.

    Science.gov (United States)

    Yao, Xianxian; Niu, Xingxing; Ma, Kexin; Huang, Ping; Grothe, Julia; Kaskel, Stefan; Zhu, Yufang

    2017-01-01

    A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency.

  16. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    Science.gov (United States)

    Francés, A. B.; Navarro Bañón, M. V.

    2014-08-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.

  17. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation.

    Science.gov (United States)

    Xia, Zhiwei; Lin, Zian; Xiao, Yun; Wang, Ling; Zheng, Jiangnan; Yang, Huanghao; Chen, Guonan

    2013-09-15

    Surface imprinting over nanostructured matrices is an effective solution to overcome template removal and achieve high binding capacity. In this work, a facile method was developed for synthesis of polydopamine-coated molecularly imprinted silica nanoparticles (PDA-coated MIP silica NPs) based on self-polymerization of dopamine (DA) on the surface of silica NPs in the presence of template protein. Transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) showed that PDA layers were successfully attached on the surface of silica NPs and the corresponding thickness was about 5nm, which enabled the MIP silica NPs to have fast binding kinetics and high binding capacity. Under the aqueous media, the imprinted silica NPs showed much higher binding affinity toward template than non-imprinted (NIP) silica NPs. The protein recognition properties were examined by single-protein or competitive batch rebinding experiments and rebinding kinetics study, validating that the imprinted silica NPs have high selectivity for the template. The resultant BHb-MIP silica NPs could not only selectively separate BHb from the protein mixture, but also specifically deplete high-abundance BHb from cattle whole blood. In addition, the stability and regeneration were also investigated, which indicated that the imprinted silica NPs had excellent reusability. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Canine mesenchymal stem cells are effectively labeled with silica nanoparticles and unambiguously visualized in highly autofluorescent tissues

    Directory of Open Access Journals (Sweden)

    Han Sei-Myoung

    2012-08-01

    Full Text Available Abstract Background Development of a method for long-term labeling of cells is critical to elucidate transplanted cell fate and migration as well as the contribution to tissue regeneration. Silica nanoparticles have been recently developed and demonstrated to be biocompatible with a high labeling capacity. Thus, our study was designed to assess the suitability of silica nanoparticles for labeling canine mesenchymal stem cells (MSCs and the fluorescence afficiency in highly autofluorescent tissue. Results We examined the effect of silica nanoparticle labeling on stem cell morphology, viability and differentiation as compared with those of unlabeled control cells. After 4 h of incubation with silica nanoparticles, they were internalized by canine MSCs without a change in the morphology of cells compared with that of control cells. The viability and proliferation of MSCs labeled with silica nanoparticles were evaluated by a WST-1 assay and trypan blue exclusion. No effects on cell viability were observed, and the proliferation of canine MSCs was not inhibited during culture with silica nanoparticles. Furthermore, adipogenic and osteogenic differentiation of silica nanoparticle-labeled canine MSCs was at a similar level compared with that of unlabeled cells, indicating that silica nanoparticle labeling did not alter the differentiation capacity of canine MSCs. Silica nanoparticle-labeled canine MSCs were injected into the kidneys of BALB/c mice after celiotomy, and then the mice were sacrificed after 2 or 3 weeks. The localization of injected MSCs was closely examined in highly autofluorescent renal tissues. Histologically, canine MSCs were uniformly and completely labeled with silica nanoparticles, and were unambiguously imaged in histological sections. Conclusions The results of the current study showed that silica nanoparticles are useful as an effective labeling marker for MSCs, which can elucidate the distribution and fate of transplanted

  19. Influence of adhesion of silica and ceria abrasive nanoparticles on Chemical-Mechanical Planarization of silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, D.O. [Department of Physics, Clarkson University, Potsdam, NY 13699 (United States); Dandu, P.R Veera [Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699 (United States); Goodman, H.; Santora, B. [Ferro Electronic Material Systems, Penn Yan, NY 14527 (United States); Sokolov, I., E-mail: isokolov@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699 (United States); Center for Advanced Materials and Processing, Clarkson University, Potsdam, NY 13699 (United States)

    2011-08-01

    We report on a direct measurement of adhesion between abrasive nanoparticles of irregular shape, which are used in semiconductor industry in the process of Chemical-Mechanical Planarization (CMP), and silica surface. The adhesion of ceria and silica nanoparticles to silica surface is measured in multiple chemistries of different CMP slurries using a specially developed atomic force microscopy (AFM) method. Using this method, we study the influence of adhesion on the main parameters of CMP, removal rate and defectivity, scratches. While being plausible to expect correlation between these parameters and adhesion, it has not been systematically studied as of yet. We observed direct correlation between adhesion and removal rate. Comparing the measured defectivity and adhesion, we observe the presence of some correlation between these parameters. We conclude that both adhesion and shape of abrasive particles influence defectivity, micro-scratches. Direct measurements of the adhesion between abrasive nano-particles and surface can be used in the screening of new slurries as well as various modeling related to wearing of the surfaces.

  20. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis.

  1. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles

    Science.gov (United States)

    Jiang, Yan-rong; Zhang, Zhen-hai; Liu, Qi-yuan; Hu, Shao-ying; Chen, Xiao-yun; Jia, Xiao-bin

    2013-01-01

    We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. PMID:23836971

  2. Comprehensive Mechanism Analysis of Mesoporous-Silica-Nanoparticle-Induced Cancer Immunotherapy.

    Science.gov (United States)

    Wang, Xiupeng; Li, Xia; Yoshiyuki, Kazuko; Watanabe, Yohei; Sogo, Yu; Ohno, Tadao; Tsuji, Noriko M; Ito, Atsuo

    2016-05-01

    A plain mesoporous silica nanoparticle without any immunomodulatory molecules significantly enhances anticancer immunity in vivo. Comprehensive mechanism of mesoporous-silica-nanoparticle-induced cancer immunotherapy is analyzed in this paper. The mesoporous silica nanoparticle promotes both Th1 and Th2 immune responses, as it accelerates lymphocytes proliferation, stimulates IFN-γ, IL-2, IL-4, and IL-10 cytokine secretion by lymphocytes ex vivo, and increases IgG, IgG1, IgG2a, IgM, and IgA antibody titers in mice serum compared with those of alum and adjuvant-free groups. Moreover, the mesoporous silica nanoparticle enhances effector memory CD4(+) and CD8(+) T cell populations in three most important immune organs (bone marrow, lymph node, and spleen) of mice compared with those of alum and adjuvant-free groups three months after adjuvant injection. The present study paves the way for the application of mesoporous silica nanoparticle as immunoadjuvant for cancer immunotherapy.

  3. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    Directory of Open Access Journals (Sweden)

    Lee JA

    2014-12-01

    Full Text Available Jeong-A Lee,1 Mi-Kyung Kim,1 Hee-Jeong Paek,1 Yu-Ri Kim,2 Meyoung-Kon Kim,2 Jong-Kwon Lee,3 Jayoung Jeong,3 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea; 3Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk–do, Republic of Korea Purpose: The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods: Silica nanoparticles of two different sizes (20 nm and 100 nm were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results: The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion: The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ

  4. Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains.

    Science.gov (United States)

    Hong, Bingbing; Panagiotopoulos, Athanassios Z

    2012-03-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene oxide) oligomers were also simulated to clarify the effect of grafting on the dynamics of nanoparticles and chains. The model approximates nanoparticles as solid spheres and uses a united-atom representation for chains, including torsional and bond-bending interactions. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental data but show a smaller activation energy relative to real NOHMs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted ones at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of particles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that NOHMs have liquidlike behavior in the absence of a solvent. For both grafted and ungrafted systems at low temperatures, increasing chain length reduces the volume fraction of nanoparticles and accelerates the dynamics. However, at high temperatures, longer chains slow down nanoparticle diffusion. From the Stokes-Einstein relationship, it was determined that the coarse-grained treatment of nanoparticles leads to slip on the nanoparticle surfaces. Grafted systems obey the Stokes-Einstein relationship over the temperature range simulated, but ungrafted systems display deviations from it.

  5. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    Energy Technology Data Exchange (ETDEWEB)

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  6. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    Science.gov (United States)

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  7. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yanyan; Zhang Peng [Department of Chemistry, New Mexico Tech, Socorro, NM 87801 (United States); Rogelj, Snezna, E-mail: pzhang@nmt.edu [Department of Biology, New Mexico Tech, Socorro, NM 87801 (United States)

    2010-02-10

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO{sub 2}-NH{sub 2}-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO{sub 2}-NH{sub 2}-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  8. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2014-06-01

    Full Text Available Abderrahim Nemmar,1 Sulayma Albarwani,2 Sumaya Beegam,1 Priya Yuvaraju,1 Javed Yasin,3 Samir Attoub,4 Badreldin H Ali5 1Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman; 3Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 4Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 5Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman Abstract: Amorphous silica nanoparticles (SiNPs are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg. Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane

  9. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  10. Composites of Eu(3+)-doped calcium apatite nanoparticles and silica particles: comparative study of two preparation methods.

    Science.gov (United States)

    Isobe, Ayumu; Takeshita, Satoru; Isobe, Tetsuhiko

    2015-02-10

    We synthesized composites of Eu(3+)-doped calcium apatite (CaAp:Eu(3+)) nanoparticles and silica particles via two methods: (i) in situ synthesis of CaAp:Eu(3+) in the presence of silica particles and (ii) electrostatic adsorption of CaAp:Eu(3+) nanoparticles on silica particle surfaces. In both methods, submicrometer spherical silica particles were covered with CaAp:Eu(3+) nanoparticles without forming any impurity phases, as confirmed by X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. In method i, part of the silica surface acted as a nucleation site for apatite crystals and silica particles were inhomogeneously covered with CaAp:Eu(3+) nanoparticles. In method ii, positively charged CaAp:Eu(3+) nanoparticles were homogeneously adsorbed on the negatively charged silica surface through electrostatic interactions. The bonds between the silica surface and CaAp:Eu(3+) nanoparticles are strong enough not to break under ultrasonic irradiation, irrespective of the synthetic method used. The composite particles showed red photoluminescence corresponding to 4f → 4f transitions of Eu(3+) under near-UV irradiation. Although the absorption coefficient of the forbidden 4f → 4f transitions of Eu(3+) was small, the red emission was detectable with a commercial fluorescence microscope because the CaAp:Eu(3+) nanoparticles accumulated on the silica particle surfaces.

  11. Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica

    Science.gov (United States)

    Al Samri, Mohammed T; Silva, Rafael; Almarzooqi, Saeeda; Albawardi, Alia; Othman, Aws Rashad Diab; Al Hanjeri, Ruqayya SMS; Al Dawaar, Shaikha KM; Tariq, Saeed; Souid, Abdul-Kader; Asefa, Tewodros

    2013-01-01

    We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C–SiO2-etched), carbon–silica (C–SiO2), carbon–cobalt–silica (C–Co–SiO2), and carbon–cobalt oxide–silica (C–Co3O4–SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C–SiO2-etched or C–SiO2 nanoparticles. C–SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C–SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C–Co–SiO2 and C–Co3O4–SiO2 impaired lung tissue bioenergetics. C–Co–SiO2, however, increased caspase activity and altered lung structure more than C–Co3O4–SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles. PMID:23658487

  12. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam

    2013-01-01

    Full Text Available Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  13. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  14. Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology.

    Science.gov (United States)

    Burns, Andrew; Ow, Hooisweng; Wiesner, Ulrich

    2006-11-01

    Novel nanoscale fluorescent materials are integral to the progress of emergent fields such as nanobiotechnology and facilitate new research in a variety of contexts. Sol-gel derived silica is an excellent host material for creating fluorescent nanoparticles by the inclusion of covalently-bound organic dyes. Significant enhancements in the brightness and stability of organic dye emission can be achieved for silica-based core-shell nanoparticle architectures at length scales down to tens of nanometers with narrow size distributions. This tutorial review will highlight these findings and describe the evolution of the fluorescent core-shell silica nanoparticle concept towards integration of multiple functionalities including mesoporosity, metal nanoshells and quantitative chemical sensing. These developments point towards the development of "lab on a particle" architectures with promising prospects for nanobiotechnology, drug development and beyond.

  15. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.

    Science.gov (United States)

    Ribeiro, Tânia; Fedorov, Aleksander; Baleizão, Carlos; Farinha, José Paulo S

    2013-07-01

    We prepared water-dispersible core-shell nanoparticles with a perylenediimide-labeled silica core and a poly(butyl methacrylate) shell, for application in photoactive high performance coatings. Films cast from water dispersions of the core-shell nanoparticles are flexible and transparent, featuring homogeneously dispersed silica nanoparticles, and exhibiting fluorescence under appropriate excitation. We characterized the film formation process using nanoparticles where the polymer shell has been labeled with either a non-fluorescent N-benzophenone derivative (NBen) or a fluorescent phenanthrene derivative (PheBMA). We used Förster resonance energy transfer (FRET) from PheBMA to NBen to follow the interparticle interdiffusion of the polymer anchored to the silica surface that occurs after the dried dispersions are annealing above the glass transition temperature of the polymer. By calculating the evolution of the FRET quantum efficiency with annealing time, we could estimate the approximate fraction of mixing (fm) between polymer from neighbor particles, and from this, the apparent diffusion coefficients (Dapp) for this process. For long annealing times, the limiting values of fm are slightly lower than for films of pure PBMA particles at similar temperatures (go up to 80% of total possible mixing). The corresponding diffusion coefficients are also very similar to those reported for films of pure PBMA, indicating that the fact that the polymer chains are anchored to the silica particles does not significantly hinder the diffusion process during the initial part of the mixing process. From the temperature dependence of the diffusion coefficients, we found an effective activation energy for diffusion of Ea=38 kcal/mol, very similar to the value obtained for particles of the same polymer without the silica core. With these results, we show that, although the polymer is grafted to the silica surface, polymer interdiffusion during film formation is not significantly

  16. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil

    Energy Technology Data Exchange (ETDEWEB)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [K. S. Rangasamy College of Technology, Centre for Nano Science and Technology (India); Kannan, N. [K. S. Rangasamy College of Arts and Science, Department of Biotechnology (India)

    2012-12-15

    The present study aims to explore the effect of high surface area (360.85 m{sup 2} g{sup -1}) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha{sup -1}) in comparison with bulk silica (15-20 kg ha{sup -1}). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha{sup -1} whereas at 20 kg ha{sup -1}, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha{sup -1} (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha{sup -1} compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha{sup -1} has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  17. Growth and physiological responses of maize ( Zea mays L.) to porous silica nanoparticles in soil

    Science.gov (United States)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2012-12-01

    The present study aims to explore the effect of high surface area (360.85 m2 g-1) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha-1) in comparison with bulk silica (15-20 kg ha-1). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha-1 whereas at 20 kg ha-1, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha-1 (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha-1 compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha-1 has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  18. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  19. Facile route for preparation of silver nanoparticle-coated precipitated silica

    Science.gov (United States)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Park, Sung Dae; Kim, Jong-Kil; Kim, Hee Taik

    2011-02-01

    In this research, a facile route was used to prepare silver nanoparticle-coated precipitated silica using sodium silicate, a cheap precursor. Precipitated silica (PS) was synthesized by dropping 8% H2SO4 into a mixed solution of sodium silicate 24% (Na2O·3.4SiO2) and NaCl 4%; under constant stirring. The precipitated silica was then modified by simultaneous addition of 3-aminopropyltriethoxysilane (3-APTES) and 8% H2SO4. The resulting material was aged at 80 °C for 1 h to produce amino-functionalized precipitated silica (AFPS). Silver nanoparticle-coated precipitated silica (Ag-NPS) was synthesized by adding silver nitrate (AgNO3). The synthesis procedure also involved mixing for 2 h and dropping 0.05 M sodium borohydride (NaBH4). The final products, namely, PS, AFPS, and Ag-NPS were characterized using BET analyzer, FE-SEM, TEM and XRD. Silver nanoparticles with an average size ranging from 18 to 25 nm were found mostly coated on the exterior layer of the precipitated silica. The synthesis method reported in this work is facile and might be used for large-scale industrial production of inexpensive Ag-NPS.

  20. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhou, Xianguang [National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016 (China); Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Wang, Jiandong [Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Longjiang [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Teng, Zhaogang, E-mail: tzg@fudan.edu.cn [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2015-03-30

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  1. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release

    Science.gov (United States)

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-02-01

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08753h

  2. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    Science.gov (United States)

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs.

  3. Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

    Energy Technology Data Exchange (ETDEWEB)

    He, Wentao; Wu, Danhua; Li, Juan; Zhang, Kai; Xiang, Yushu; Long, Lijuan; Qin, Shuhao; Yu, Jie; Zhang, Qin [Guizhou Univ., Guiyang (China)

    2013-09-15

    Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of T{sup 2} and T{sup 3} except for Q{sup 2} and Q{sup 3} signals by CP/MAS {sup 29}Si NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.

  4. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    Science.gov (United States)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  5. Human serum albumin binding to silica nanoparticles--effect of protein fatty acid ligand.

    Science.gov (United States)

    Ang, Joo Chuan; Henderson, Mark J; Campbell, Richard A; Lin, Jhih-Min; Yaron, Peter N; Nelson, Andrew; Faunce, Thomas; White, John W

    2014-06-07

    Neutron reflectivity shows that fatted (F-HSA) and defatted (DF-HSA) versions of human serum albumin behave differently in their interaction with silica nanoparticles premixed in buffer solutions although these proteins have close to the same surface excess when the silica is absent. In both cases a silica containing film is quickly established at the air-water interface. This film is stable for F-HSA at all relative protein-silica concentrations measured. This behaviour has been verified for two small silica nanoparticle radii (42 Å and 48 Å). Contrast variation and co-refinement have been used to find the film composition for the F-HSA-silica system. The film structure changes with protein concentration only for the DF-HSA-silica system. The different behaviour of the two proteins is interpreted as a combination of three factors: increased structural stability of F-HSA induced by the fatty acid ligand, differences in the electrostatic interactions, and the higher propensity of defatted albumin to self-aggregate. The interfacial structures of the proteins alone in buffer are also reported and discussed.

  6. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes

    Science.gov (United States)

    Yang, Xiaowei; Cai, Zhengwei; Ye, Zhangmei; Chen, Sheng; Yang, Yu; Wang, Haifang; Liu, Yuanfang; Cao, Aoneng

    2012-01-01

    A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation. Electronic supplementary information (ESI) available: Experimental procedures and the result of the surface-grafted catalase control experiment. See DOI: 10.1039/c1nr11153a

  7. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  8. Hyperthermia HeLa cell treatment with silica coated manganese oxide nanoparticles

    CERN Document Server

    Villanueva, A; Alonso, JM; Rueda, T; Martínez, A; Crespo, P; Morales, MP; Fernandez, MA Gonzalez; Valdes, J; Rivero, G

    2009-01-01

    HeLa tumour cells incubated with ferromagnetic nanoparticles of manganese oxide perovskite La0.56(SrCa)0.22MnO3 were treated with a high frequency alternating magnetic field. The particles were previously coated with silica to improve their biocompatibility. The control assays made with HeLa tumour cells showed that cell survival and growth rate were not affected by the particle internalization in cells, or by the electromagnetic field on cells without nanoparticles. The application of an alternating electromagnetic field to cells incubated with this silica coated manganese oxide induced a significant cellular damage that finally lead to cell death by an apoptotic mechanism.

  9. Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2015-01-01

    Full Text Available Novel nanocomposite containing fullerenol nanoparticles (FNP and porous silica nanoparticles (PSNs was constructed and characterized. The capability of FNP to serve as a pore-capping agent and for entrapping 9-aminoacridine (9-AA inside the pores of the PSN material was also demonstrated. Nitrogen sorption measurements evidence the successful capping of the silica pores while thermogravimetric analysis of FNP loaded PSN indicates the existence of pore-loaded fullerenol molecules. Higher amount of the drug release was noted by exposing the material to weakly acidic conditions in comparison to physiological pH, which may find application in targeted treatment of weakly acidic tumor tissues.

  10. Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice.

    Science.gov (United States)

    Leclerc, Lara; Klein, Jean-Philippe; Forest, Valérie; Boudard, Delphine; Martini, Matteo; Pourchez, Jérémie; Blanchin, Marie-Geneviève; Cottier, Michèle

    2015-08-01

    With the continuing development of nanomaterials, the assessment of their potential impact on human health, and especially human reproductive toxicity, is a major issue. The testicular biodistribution of nanoparticles remains poorly studied. This study investigated whether gold-silica nanoparticles could be detected in mouse testes after intramuscular injection, with a particular focus on their ability to cross the blood-testis barrier. To that purpose, well-characterized 70-nm gold core-silica shell nanoparticles were used to ensure sensitive detection using high-resolution techniques. Testes were collected at different time points corresponding to spermatogenesis stages in mice. Transmission electron microscopy and confocal microscopy were used for nanoparticle detection, and nanoparticle quantification was performed by atomic emission spectroscopy. All these techniques showed that no particles were able to reach the testes. Results accorded with the normal histological appearance of testes even at 45 days post sacrifice. High-resolution techniques did not detect 70-nm silica-gold nanoparticles in mouse testes after intramuscular injection. These results are reassuring about the safety of nanoparticles with regard to male human reproduction, especially in the context of nanomedicine.

  11. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Farda Barandeh

    Full Text Available The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.

  12. A novel gene carrier based on amino-modified silica nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Uniform-sized amino-modified silica nanoparticles have been prepared by the controlled synchronous hydrolysis of tetraethoxysilane and N-(β-amimoethyl)-γ- aminopropyltriethoxysilane in water nanodroplet of the water-in-oil microemulsion. These nanoparticles display positive charge potential at definited pH. This is due to the presence of amino groups on the surface of the nanoparticles. Nanoparticles-plasmid DNA complexes can easily form through electrostatical binding between the positive charges of the amino-modified silica nanoparticles and the negative charges of the plasmid DNA. The complexes can be also dissociated under alkaline pH or high ionic strength conditions. And enzymatic digestion of the plasmid DNA is almost inhibited by these nanoparticles complexes. A novel non-viral gene carrier based on the amino-modified silica nanoparticles is proposed under the combination of nanotechnology, biotechnology and gene engineering technology. The plasmid DNA can successfully cross various systemic barriers to COS-7 cells as well as mediate high expression of Green Fluorescence Protein (GFP) gene in cells by use of this novel gene carrier.

  13. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  14. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    Science.gov (United States)

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity.

  15. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Directory of Open Access Journals (Sweden)

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  16. Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Toshiro [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yoshioka, Yasuo, E-mail: yasuo@phs.osaka-u.ac.jp [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takahashi, Hideki; Ichihashi, Ko-ichi; Yoshida, Tokuyuki; Tochigi, Saeko [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagano, Kazuya [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); Abe, Yasuhiro [Cancer Biology Research Center, Sanford Research/USD, 2301 E. 60th Street N, Sioux Falls, SD 57104 (United States); Kamada, Haruhiko; Tsunoda, Shin-ichi [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nabeshi, Hiromi [Division of Foods, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Yoshikawa, Tomoaki [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silica nanoparticles enhanced cross-presentation. Black-Right-Pointing-Pointer Silica nanoparticles induced endosomal release of exogenous antigens. Black-Right-Pointing-Pointer Silica nanoparticle-induced cross-presentation was mediated by scavenger receptors. Black-Right-Pointing-Pointer Surface-modification may enable the manufacture of safer silica nanoparticles. -- Abstract: Nanomaterials (NMs) exhibit unique physicochemical properties and innovative functions, and they are increasingly being used in a wide variety of fields. Ensuring the safety of NMs is now an urgent task. Recently, we reported that amorphous silica nanoparticles (nSPs), one of the most widely used NMs, enhance antigen-specific cellular immune responses and may therefore aggravate immune diseases. Thus, to ensure the design of safer nSPs, investigations into the effect of nSPs on antigen presentation in dendritic cells, which are central orchestrators of the adaptive immune response, are now needed. Here, we show that nSPs with diameters of 70 and 100 nm enhanced exogenous antigen entry into the cytosol from endosomes and induced cross-presentation, whereas submicron-sized silica particles (>100 nm) did not. Furthermore, we show that surface modification of nSPs suppressed cross-presentation. Although further studies are required to investigate whether surface-modified nSPs suppress immune-modulating effects in vivo, the current results indicate that appropriate regulation of the characteristics of nSPs, such as size and surface properties, will be critical for the design of safer nSPs.

  17. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.

    Science.gov (United States)

    Foldbjerg, Rasmus; Wang, Jing; Beer, Christiane; Thorsen, Kasper; Sutherland, Duncan S; Autrup, Herman

    2013-06-25

    Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other

  18. Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica

    Indian Academy of Sciences (India)

    A Bhaumik; S Samanta; N K Mal

    2005-11-01

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV–visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3),` within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore.

  19. Nanoparticle-based PARACEST agents: the quenching effect of silica nanoparticles on the CEST signal from surface-conjugated chelates.

    Science.gov (United States)

    Evbuomwan, Osasere M; Merritt, Matthew E; Kiefer, Garry E; Dean Sherry, A

    2012-01-01

    Silica nanoparticles of average diameter 53 ± 3 nm were prepared using standard water-in-oil microemulsion methods. After conversion of the surface Si-OH groups to amino groups for further conjugation, the PARACEST agent, EuDOTA-(gly)₄ (-) was coupled to the amines via one or more side-chain carboxyl groups in an attempt to trap water molecules in the inner-sphere of the complex. Fluorescence and ICP analyses showed that approximately 1200 Eu(3+) complexes were attached to each silica nanoparticle, leaving behind excess protonated amino groups. CEST spectra of the modified silica nanoparticles showed that attachment of the EuDOTA-(gly)₄ (-) to the surface of the nanoparticles did not result in a decrease in water exchange kinetics as anticipated, but rather resulted in a complete elimination of the normal Eu(3+) -bound water exchange peak and broadening of the bulk water signal. This observation was traced to catalysis of proton exchange from the Eu(3+) -bound water molecule by excess positively charged amino groups on the surface of the nanoparticles.

  20. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  1. Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity

    Science.gov (United States)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Kim, Jong-Kil; Chai, Young Gyu; Kim, Sang Hoon; Ryu, Jae-Yong; Kim, Hee Taik

    2011-05-01

    Silver nanoparticle containing silica micro beads (Ag-NPBs) were successfully prepared by using sodium silicate, a cheap precursor, involving chemical reductive method. First, silica gel was synthesized and crushed into micro beads which have sizes ranging from 0.5 to 1 mm. Silica micro beads were then modified with 3-aminopropyltriethoxysilane to graft amino functional groups onto their surface. Silver ions were loaded onto the surface of the modified silica and reduced to silver crystal by adding NaBH 4. The presence of silver nanoparticles as well as structure of materials was characterized with FT-IR, XRD, BET, FE-SEM, TEM, UV-vis spectrophotometer, and optical microscope. Silver nanoparticles with an average size about 5 nm were found in the pore and on the surface of amino functionalized silica beads. Ag-NPBs samples were tested for their antibacterial activity against Escherichia coli ( E. coli). The antibacterial activity was examined by both zone inhibition and test tube test method. Biological results indicated that the synthesized materials have an excellent antibacterial performance against E. coli which was completely inhibited after 5 min contact with Ag-NPBs.

  2. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  3. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    Directory of Open Access Journals (Sweden)

    Stauber Roland

    2011-01-01

    Full Text Available Abstract Background To date silica nanoparticles (SNPs play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities. They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release, and TER (Transepithelial Electrical Resistance measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number

  4. Development of near infrared responsive material based on silica encapsulated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H C; Tsai, I S [Nanotechnology Research Center, Feng Chia University, Taiwan (China); Lin, Y H [Department of Fiber and Composite Material, Feng Chia University, Taiwan (China)

    2009-09-01

    In this research, the silica encapsulated gold nanoparticles with optical resonance located in 700-850 nm spectral region were synthesized by combining gold core and the silica shell. The synthesized composite particles can be potentially used in biological fields, due to the biocompatibility of gold, silica and biopolymers. Nano-gold, which can act a raw material of composite particles, was fabricated by stand citrate reduction method. Then, the polyvinyl pyrrolidone (PVP) and (3-mercaptopropyl)trimethoxysilane (MPTMS) are added to deposit silica shell and control particle size. Finally, a complete silica nanoshell was formed on the gold surface by the one-step method, without a repeated coating process. The controllable absorption wavelength of nano-composite particles can be easily controlled by the concentration ratio of PVP and MPTMS. Transmission electron microscopy (TEM) images and optical absorption spectra clearly showed that silica was successfully deposited onto the gold surface by this novel method. As the decreasing aggregation of gold core by adding PVP, the optical plasmon peaks became blue-shifted, but the optical plasmon resonance became red-shifted and the absorption spectra were functions of addition ratios by MPTMS. We expect to extend these functional nanoparticles for real sample applications in the near future.

  5. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  6. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    Directory of Open Access Journals (Sweden)

    Lee H

    2015-08-01

    Full Text Available Haisung Lee,1 Dongkyung Sung,2 Jinhoon Kim,3 Byung-Tae Kim,3 Tuntun Wang,4 Seong Soo A An,5 Soo-Won Seo,6 Dong Kee Yi4 1Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, 2Department of Life Sciences, Graduate School of Korea University, 3Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, 4Department of Chemistry, Myongji University, Seoul, 5Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, 6Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea Abstract: In this study, fluorescent dye-conjugated magnetic resonance (MR imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. Keywords: dual bioimaging, MR imaging, silica colloid, T1 contrast imaging, nanohybrid

  7. Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions.

    Science.gov (United States)

    Singh, Beer; Saxena, Amit; Nigam, Anil Kumar; Ganesan, Kumaran; Pandey, Pratibha

    2009-01-30

    High surface area (887.3m(2)/g) silica nanoparticles were synthesized using aerogel route and thereafter, characterized by N(2)-Brunauer-Emmet-Teller (BET), SEM and TEM techniques. The data indicated the formation of nanoparticles of silica in the size range of 24-75 nm with mesoporous characteristics. Later, these were impregnated with reactive chemicals such as N-chloro compounds, oxaziridines, polyoxometalates, etc., which have already been proven to be effective against sulphur mustard (HD). Thus, developed novel mesoporous reactive sorbents were tested for their self-decontaminating feature by conducting studies on kinetics of adsorptive removal of HD from solution. Trichloroisocyanuric acid impregnated silica nanoparticles (10%, w/w)-based system was found to be the best with least half-life value (t(1/2)=2.8 min) among prepared systems to remove and detoxify HD into nontoxic degradation products. Hydrolysis, dehydrohalogenation and oxidation reactions were found to be the route of degradation of HD over prepared sorbents. The study also inferred that 10% loading of impregnants over high surface area and low density silica nanoparticles enhances the rate of reaction kinetics and seems to be useful in the field of heterogeneous reaction kinetics.

  8. Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites

    Directory of Open Access Journals (Sweden)

    Tahir Ahmad

    2013-01-01

    Full Text Available The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research (Ahmad and Mamat, 2012 into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC analysis.

  9. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    Directory of Open Access Journals (Sweden)

    Marwa Elkady

    2016-06-01

    Full Text Available A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG was established and characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR, thermal gravimetric analysis (TGA, differential scanning calorimetry (DSC and vibrating sample magnetometry (VSM. The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG.

  10. Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A

    Directory of Open Access Journals (Sweden)

    A Lodha

    2012-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs are introduced as chemically and thermally stable nanomaterials with well-defined and controllable morphology and porosity. It is shown that these particles possess external and internal surfaces that can be selectively functionalized with multiple organic and inorganic groups. Silica nano-particles were synthesized by chemical methods from tetraethylorthosilicate (TEOS, methanol (CH3OH and deionised water in the presence of sodium hydroxide as catalyst at 80°C temperature. The nature and morphology of particles was investigated by scanning electron microscopy (SEM, N2 adsorption/desorption method using BET instrument and X-ray diffraction (XRD. Silica nanoparticles are applicable to a wide range of therapeutic entities from small molecule to peptides and proteins including hydrophobic and hydrophilic entities. Drug loading does not require chemical modification of the molecule; there are no changes in the drug structure or activity after loading and subsequent release of the drug. Thus, well suited to solve formulation problems associated with hydrophobic drugs such as peptide and protein drugs like cyclosporine A. Silica nanoparticles improved the solubility of poorly water soluble drugs and enhanced the absorption and bioavailability of these compounds.

  11. Spectroscopic studies of silica nanoparticles: Magnetic resonance and nanomaterial-biological interactions

    Science.gov (United States)

    Lehman, Sean E.

    Primarily concerned with manipulation and study of matter at the nanoscale, the concept of nanoscience encompasses ideas such as nanomaterial synthesis, characterization, and applications to modern scientific and societal problems. These problems encompass a broad range of issues such as energy storage and conversion, medical diagnostics and treatment, environmental remediation and detection, carbon economy and as well as many others. Silica nanoparticles of porous morphology have broad application to many of these issues. In particular, the utility of silica nanoparticles is facilitated by their large intrinsic surface area, tunable surface chemistry, and synthetic variability in both their size and morphology. This facilitates applications to these problems. However, extensive characterization and deeper understanding is needed before full implementation in key applications can be realized. The work described in this thesis aims to explore fundamental and applied characterization of silica nanoparticles that might be used in biomedical and environmental applications. Fundamental studies of functionalized nanomaterials using NMR spectroscopy reveal complex, dynamic phenomena related to-and ultimately deriving from-the intrinsic and/or modified surface chemistry. Applied studies of nanomaterial-biological interfaces demonstrate free radical chemistry as dominating the toxic response of the materials when exposed to biological systems of interest. Characterization of protein adsorbed on the interface reinforces the ubiquitous nature of protein adsorption on nanomaterial surface in biological and environmental media. Overall, this work illuminates and highlights complex changes that take place in aqueous solution for silica nanoparticles of varied morphology and surface chemistry.

  12. Formation and Optical Absorption of Photo-reduced Gold Nanoparticles Inside Pores of Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    SHI Hua-Zhong; YAO Bao-Dian; ZHANG Li-De; BI Hui-Juan; CAI Wei-Ping; WU Yu-Cheng

    2000-01-01

    Mesoporous silica with gold nanoparticles inside its pores was synthesized by soaking and photo-reduction method. This new material was characterized by transmission electron microscopy, x-ray photoelectron spectroscopy and Brunauer-Emmett-Teller techniques. The results showed that gold nanoparticles were isolated from each other and uniformly dispersed inside the pores of silica, most of which were less than 4 nm in diameter. It was found that in optical absorption spectrum, surface plasma resonance peak of nanosized gold particles assumed a significant redshift (about 55nm) with respect to that predicted by Mie theory. This can be explained in terms of interface interaction (boundary coupling) between gold particles and pore walls of porous silica.

  13. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    Science.gov (United States)

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.

  14. Impact of silica environment on hyperfine interactions in 𝜖-Fe2O3 nanoparticles

    Science.gov (United States)

    Kubíčková, Lenka; Kohout, Jaroslav; Brázda, Petr; Veverka, Miroslav; Kmječ, Tomáš; Kubániová, Denisa; Bezdička, Petr; Klementová, Mariana; Šantavá, Eva; Závěta, Karel

    2016-12-01

    Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of 𝜖-Fe2O3 nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ˜20 nm and the thickness of silica coating ˜5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of 𝜖-Fe2O3 with admixtures of ˜1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ˜2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the 𝜖-Fe2O3 nanoparticles spread between ˜85 K and ˜150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

  15. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    Science.gov (United States)

    Kaman, Ondřej; Dědourková, Tereza; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, Radim; Královec, Karel; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, Adam; Svoboda, Ladislav

    2016-04-01

    Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn-Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol-gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn-Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

  16. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Alshatwi, Ali A., E-mail: alshatwi@ksu.edu.sa; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120 °C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. - Highlights: • Simple, rapid and convenient process • Amorphous and spherical with 10–30 nm size SiO{sub 2} nanoparticles were fabricated. • Biogenic silica nanoparticles showed biocompatibility. • bSNPs are an alternative to synthetic forms of silica.

  17. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  18. Synthesis of Monodisperse Silica Particles Grafted with Concentrated Ionic Liquid-Type Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization for Use as a Solid State Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Takashi Morinaga

    2016-04-01

    Full Text Available A polymerizable ionic liquid, N,N-diethyl-N-(2-methacryloylethyl-N-methylammonium bis(trifluoromethylsulfonylimide (DEMM-TFSI, was polymerized via copper-mediated atom transfer radical polymerization (ATRP. The polymerization proceeded in a living manner producing well-defined poly(DEMM-TFSI of target molecular weight up to about 400 K (including a polycation and an counter anion. The accurate molecular weight as determined by a GPC analysis combined with a light scattering measurement, and the molecular weight values obtained exhibited good agreement with the theoretical values calculated from the initial molar ratio of DEMM-TFSI and the monomer conversion. Surface-initiated ATRP on the surface of monodisperse silica particles (SiPs with various diameters was successfully performed, producing SiPs grafted with well-defined poly(DEMM-TFSI with a graft density as high as 0.15 chains/nm2. Since the composite film made from the silica-particle-decorated polymer brush and ionic liquid shows a relatively high ionic conductivity, we have evaluated the relationship between the grafted brush chain length and the ionic conductivity.

  19. 单分散、规则球形Au@SiO_2核-壳纳米粒的制备及光谱研究%Preparation and Spectrum Study of Monodispersed Regular Spherical Au@SiO_2 Core-Shell Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    姚祖福; 黄可龙; 于金刚; 郭军; 李艳华; 方东

    2009-01-01

    Using 3-mercaptopropyhrimethoxysilane as linker,single gold nanoparticle was successfully encapsulated by silicon oxide shell,and Au@SiO_2 core-sheU nanoparticles were prepared.The nanocomposites were spherical and monodispersal.The gold nanoparticle located at the center of silica nano-sphere.No congregating gold nanoparticles were embedded in one silica sphere.The morphologies of the samples were characterized by transmission electron microscopy(TEM).The chemical contents of the samples were analyzed using energy diffraction X-ray(EDX)spectroscopy.And their optical properties were studied.%采用3-巯基丙基三甲氧基硅烷作为联结剂,成功将单个金纳米粒子包在氧化硅壳中,制得Au@SiO_2核壳纳米粒子;该复合纳米粒子形貌呈球形、单分散性较好,金纳米粒子位于氧化硅球的中心.无团聚的金纳米粒子包覆在氧化硅壳中.采用透射电镜(TEM)对样品的形貌进行了表征,通过能量散射X-射线能谱(EDX)分析了目标物的化学成分,并对所得核壳纳米粒子的光谱性质进行了研究.

  20. Silver Nanoparticle-Embedded Thin Silica-Coated Graphene Oxide as an SERS Substrate

    Directory of Open Access Journals (Sweden)

    Xuan-Hung Pham

    2016-09-01

    Full Text Available A hybrid of Ag nanoparticle (NP-embedded thin silica-coated graphene oxide (GO@SiO2@Ag NPs was prepared as a surface-enhanced Raman scattering (SERS substrate. A 6 nm layer of silica was successfully coated on the surface of GO by the physical adsorption of sodium silicate, followed by the hydrolysis of 3-mercaptopropyl trimethoxysilane. Ag NPs were introduced onto the thin silica-coated graphene oxide by the reduction of Ag+ to prepare GO@SiO2@Ag NPs. The GO@SiO2@Ag NPs exhibited a 1.8-fold enhanced Raman signal compared to GO without a silica coating. The GO@SiO2@Ag NPs showed a detection limit of 4-mercaptobenzoic acid (4-MBA at 0.74 μM.

  1. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Science.gov (United States)

    Dong, Alideertu; Huang, Jinfeng; Lan, Shi; Wang, Tao; Xiao, Linghan; Wang, Weiwei; Zhao, Tianyi; Zheng, Xin; Liu, Fengqi; Gao, Ge; Chen, Yuxin

    2011-07-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  2. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  3. Targeting cancer cells through Mn(Ⅱ)-dpa grafted silica nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The unique properties of paramagnetic nanoscale metal-organic frameworks provide them with high potential as key probes and vectors in the next generation of biomedical applications.To increase the nanoparticle targeting at the tumor site,the grafting of Mn(Ⅱ)-dpa (dpa =di(picolyl)amines) on oxide nanoparticles (SiO2) is proposed.The new Mn(Ⅱ)-dpa-grafted silica nanoparticles can enhance the MR imaging area in cancer tissues and perturb the Ca2+-loaded mitochondria swelling.Experimental results indicate the cancer cells may be targeted through possible intracellular Ca2+ signaling mitochondria accumulating in vivo.

  4. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    Science.gov (United States)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  5. Water-borne pressure-sensitive adhesives acrylics modified using amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-12-01

    Full Text Available The application of water-borne pressure-sensitive adhesives (PSA based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium, Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium, Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium, and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium (from Grace in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF and Plextol D273 (Synthomer properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.

  6. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    Science.gov (United States)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  7. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing

    2012-03-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene oxide) oligomers were also simulated to clarify the effect of grafting on the dynamics of nanoparticles and chains. The model approximates nanoparticles as solid spheres and uses a united-atom representation for chains, including torsional and bond-bending interactions. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental data but show a smaller activation energy relative to real NOHMs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted ones at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of particles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that NOHMs have liquidlike behavior in the absence of a solvent. For both grafted and ungrafted systems at low temperatures, increasing chain length reduces the volume fraction of nanoparticles and accelerates the dynamics. However, at high temperatures, longer chains slow down nanoparticle diffusion. From the Stokes-Einstein relationship, it was determined that the coarse-grained treatment of nanoparticles leads to slip on the nanoparticle surfaces. Grafted systems obey the Stokes-Einstein relationship over the temperature range simulated, but ungrafted systems display deviations from it. © 2012 American Chemical Society.

  8. Magnetic and Mössbauer spectroscopy studies of hollow microcapsules made of silica-coated CoFe2O4 nanoparticles

    Science.gov (United States)

    Lyubutin, I. S.; Gervits, N. E.; Starchikov, S. S.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Wang, Cheng-Chien; Chen, I.-Han; Ogarkova, Yu L.; Korotkov, N. Yu

    2016-01-01

    The hollow microcapsules made of silica-coated CoFe2O4 nanoparticles were synthesized using chemical co-precipitation, followed by the sol-gel method. Poly(MMA-co-MAA) microspheres were used as a core template which can be completely removed after annealing at 450 °C. The microcapsules are monodisperse with the outer diameter of about 450 nm and the thickness of the shell is about 50 nm. The nanoparticles of Co-ferrite are single crystalline. The size of the nanoparticles and magnetic properties of CoFe2O4/SiO2 hollow spheres can be tuned with high accuracy at the annealing stage. The Mössbauer data indicate that CoFe2O4 ferrite is an inverse spinel, in which Fe3+ and Co2+ ions are distributed in both octahedral and tetrahedral sites with the inversion degree close to the bulk ferrite value. At low temperature the CoFe2O4/SiO2 nanoparticles are in antiferromagnetic (AFM) state due to the canted or triangular magnetic structure. Under heating in the applied field, AFM structure transforms to the ferrimagnetic (FM) structure, that increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles do not show superparamagnetic behavior, but they transit to the paramagnetic state by the jump-like first order magnetic transition (JMT). This effect is a specific property of the magnetic nanoparticles isolated by inert material. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  9. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites

    Energy Technology Data Exchange (ETDEWEB)

    Canché-Escamilla, G., E-mail: gcanche@cicy.mx [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Duarte-Aranda, S. [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Toledano, M. [Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja s/n, Granada 18071 (Spain)

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1730 cm{sup −1}, corresponding to carbonyl groups (C=O) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700 °C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin—bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. - Highlights: • Hybrid nanoparticles silica/PMMA were used as fillers in dental composites. • The properties of the hybrid nanoparticle depend on the silica/PMMA content ratio. • A higher content of inorganic filler was obtained using hybrid nanoparticle. • Composites with higher modulus were obtained using hybrid nanoparticles. • A semi-IPN matrix between the PMMA shell and the resin is obtained.

  10. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Zhu, Haoguo [ORNL; Zhang, Zongtao [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

    2004-01-01

    Catalytic activities of gold strongly depend on its particle size. It is necessary to have homogeneous distributions of small gold nanoparticles with diameters between 2 and 5 nm for excellent catalytic activities. In this study, gold-containing mesoporous silica materials were prepared by a co-synthesis method. The essence of this sol-gel co-synthesis method is to combine together neutral surfactant template synthesis of mesoporous silica materials with the introduction of metal ions via bifunctional silane ligands, so that the formation of mesostructures and metal-ion doping occur simultaneously. The formation of gold nanoparticles with size less than 5 nm inside mesoporous materials (HMS, MSU, and PMO) has been achieved by this co-synthesis sol-gel process. In addition, the effects of post-treatments, such as calcination and reduction, on pore structures and nanoparticle size distributions were also investigated.

  11. Immobilized silver nanoparticles on silica gel as an efficient catalyst in nitroarene reduction

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Kiasat; Roya Mirzajani; Fakhri Ataeian; Mehdi Fallah-Mehrjardi

    2010-01-01

    Nanoparticles have properties that can be fine-tuned by their size as well as shape.Hence,there is significant current interest in preparing nano-materials of small size dispersity and to arrange them in close-packed aggregates.This letter describes a way of synthesising silver nanoparticles and their protection to aggregate by silica gel.The combination of catalytic quantities of immobilized silver nanoparticles with reductive ability of NaBH4 efficiently reduces aromatic nitroarenes to the corresponding amines in aqueous medium.Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogen and carboxylic acid groups.The silver particles immobilized on silica gel are stable in the presence of oxygen for several months.

  12. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Science.gov (United States)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  13. Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes.

    Science.gov (United States)

    Fisichella, Matthieu; Dabboue, Hinda; Bhattacharyya, Sanjib; Saboungi, Marie-Louise; Salvetat, Jean-Paul; Hevor, Tobias; Guerin, Martine

    2009-06-01

    We report on the observation that mesoporous silica nanoparticles (MSNs), after being endocytosed, interfere with the MTT test in HeLa cells and astrocytes by accelerating the exocytosis of formazan crystals. The stimulation of MTT formazan exocytosis is probably related to perturbation of intracellular vesicle trafficking by MSN uptake as revealed by experiments in presence of chloroquine and genistein. Similar effect has been previously observed with a number of chemicals, especially with neurotoxic beta amyloid peptides, but not with nanoparticles. We showed also that MTT reduction test gives an overestimation of the cytotoxicity of mesoporous silica nanoparticles compared to other tests such as LDH activity, WST-1 test and flow cytometry. These findings show that MTT assay should not be used for the study of MSN toxicity, and that perturbation of intracellular trafficking has to be taken into account in evaluating biocompatibility of MSNs.

  14. Preparation of acridine orange-doped silica nanoparticles for pH measurement

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinshui, E-mail: jsliu@sina.com; Zang, Lingjie; Wang, Yiru; Liu, Guoning

    2014-03-15

    Acridine orange was first encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. The nanoparticles are all in spherical shape and have a narrow size distribution, and its application as a optical pH sensor has been demonstrated. This novel sensor is based on the pH-dependent fluorescence intensities of acridine orange in different pH value. The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. Under optimum conditions, the changes of fluorescence intensity were proportional to the pH value in the range of 8.00–10.90. In addition, the sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. Furthermore, the effects of ionic strength and co-existing substances were proved to have little influence on the determination of pH. The sensor has been successfully applied to determine the pH of two artificial samples. Hence, the core–shell fluorescent nanoparticles show potential for practical application. -- Highlights: • Acridine orange was encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. • The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. • Its can be used as an optical pH sensor. • The sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. • The sensor has been successfully applied to determine the pH of artificial samples.

  15. Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers

    NARCIS (Netherlands)

    Trzaskus, Krzystof; Zdeb, Aneta; de Vos, Wiebe Matthijs; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.

    2016-01-01

    Nanotechnology applications give rise to new forms of water pollution, resulting in a need for reliable technologies that can remove nanoparticles from water. Membrane filtration is an obvious candidate. The tendency of nanoparticles to become instable in suspension and form aggregates strongly

  16. Rhodamine B doped silica nanoparticle labels for protein microarray detection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A core-shell Rhodamine B-doped SiO2 nanoparticle was synthesized and its fluorescent intensity was found to be 1000 times higher than that of individual Rhodamine B molecule. The doped nanoparticles were further conjugated with streptavidin and the resulting nanoparticles were used in the detection of reverse-phase protein microarrays, in which human IgG of various concentrations was first immobilized on aldehyde-modified glass slides and then biotinlyated goat anti human IgG as well as the labeled nanoparticles were sequentially conjugated. The calibration curve is linear over the range from 800 fg to 500 pg and the limit of detection is 100 fg, which is 8 times lower than that of streptavidin-labeled Cy3 fluorescent dyes. The dyedoped SiO2 nanoparticles show potentials for the protein array detection.

  17. A study of using luminophore-doped silica nanoparticles as fluorescent probe in protein microarray assay

    Institute of Scientific and Technical Information of China (English)

    LIU Haibo; ZHUANG Zhixia; YANG Huanghao; CHEN Chengxiang; TAN Fang; YAN Qingpi; WANG Xiaoru

    2007-01-01

    A convenient method for the synthesis of tris(2,2'-bipyridyl) dichlororuthenium(Ⅱ)hexahydrate-doped amino-modified double-layer silica nanoparticles is presented in this paper.The synthesized nanoparticles are uniform and photostable,and can be well dispersed in a water solution.Proteins could be directly immobilized onto these nanoparticles by a simple coupling process without losing their biological activities.These nanoparticles were further used as fluorescent probes in protein microarray assay for the quantitative detection of protein.The results obtained by these nanoparticles,with the detection limit of as low as 3.5μg/mL,were much better than those involving the use of conventional FITC probe.

  18. silica nanoparticles as a highly efficient catalyst for the one

    African Journals Online (AJOL)

    A green and efficient method for the preparation of 2-(dibenzylamino)-2-aryl ... Then residue was placed over a flash column of silica gel powder (5 g). Flash column chromatography was washed using petroleum ether-diethyl ether (10:1) as ...

  19. Fluorescent quantification of amino groups on silica nanoparticle surfaces.

    Science.gov (United States)

    Chen, Yang; Zhang, Yanqin

    2011-03-01

    Functionalization of the surfaces of silica particles is often the first step in their various applications. An improved heterogeneous Fmoc-Cl fluorescent assay using an aqueous solution was developed to detect the number of amino groups on solid-phase supports. The fluorescent Fmoc-Cl method is 50-fold more sensitive than the current UV assay using an organic solvent. This method, together with the homogeneous fluorescamine and OPA assays, is used to detect amino groups on the silica particle surface. The accuracy and effect factors of these methods were examined and the assays were optimized. The results showed that the amine groups on silica particles can produce stronger fluorescence than small amine molecules in solution, because the porous structure of the particle surface is a more hydrophobic environment. The number of active amino groups that can be conjugated with biomolecules is much less than the total number of amino groups on the silica particle. Compared with physical methods, chemical assays involving direct reaction with amino groups would furnish the closest result to the number of active amino groups on the particle surface.

  20. Lipid-coated silica nanoparticles for biomedical applications

    NARCIS (Netherlands)

    Koole, R.|info:eu-repo/dai/nl/298205610; van Schooneveld, M.M.|info:eu-repo/dai/nl/315032863; Cormode, D.P.; Fayad, Z.; Meijerink, A.|info:eu-repo/dai/nl/075044986; Mulder, W.J.M.

    2008-01-01

    Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be

  1. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  2. The effect of ultrasound on the gold plating of silica nanoparticles for use in composite solders.

    Science.gov (United States)

    Cobley, A J; Mason, T J; Alarjah, M; Ashayer, R; Mannan, S H

    2011-01-01

    In order to produce electronic devices that can survive harsh environments it is essential that the solder joints are very reliable and this has led to the development of composite solders. One approach to the manufacture of such solders is to disperse silica nanoparticles into it to improve their mechanical and fatigue characteristics. However, this is difficult to achieve using bare silica particles because they are not "wettable" in the solder matrix and so cannot be dispersed efficiently. In an attempt to alleviate this issue it has been found that if the silica nanoparticles are first plated with gold then this problem of wetting can, to some extent, be overcome. However, the particles must be completely encapsulated with gold which, using the method previously described by workers at Kings College London, was found to be difficult to accomplish. In this short communication the effect of ultrasound on the gold coverage is described. Different frequencies of ultrasound were used (20, 850 and 1176 kHz) and it was found that higher frequencies of ultrasound improved the coverage and dispersion of the gold nanoparticles over silica during the seeding step compared to simple mechanical agitation. This subsequently led to a more complete encapsulation of gold in the plating stage.

  3. Altered gene transcription in human cells treated with Ludox® silica nanoparticles.

    Science.gov (United States)

    Fede, Caterina; Millino, Caterina; Pacchioni, Beniamina; Celegato, Barbara; Compagnin, Chiara; Martini, Paolo; Selvestrel, Francesco; Mancin, Fabrizio; Celotti, Lucia; Lanfranchi, Gerolamo; Mognato, Maddalena; Cagnin, Stefano

    2014-08-28

    Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  4. Concentration quenching and photostability in Eu(dbm){sub 3}phen embedded in mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Talon, Aldo; Storaro, Loretta [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Le Donne, Alessia; Binetti, Simona [Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Benedetti, Alvise; Polizzi, Stefano [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy)

    2014-02-15

    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm){sub 3}phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N{sub 2} physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m{sup 2}) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu{sup 3+}(dbm){sub 3}phen molecules. • Concentration quenching avoided up to 23 wt% of Eu{sup 3+}(dbm){sub 3}phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes.

  5. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics

    Directory of Open Access Journals (Sweden)

    Gobi Nallathambi

    2011-12-01

    Full Text Available Silica nanoparticles particles were synthesized from rice hulls and characterized. The particles were found to be amorphous in nature, ranging in size from 50 to 100 nm. The concentration of silica nanoparticles, pH and curing time were taken as independent variables to design the experiment. Box-Behnken method has been used to derive the experimental plan and fifteen experiments were conducted. Regression equations have been formed with the dependent and independent variables and the results of all possible combinations have been derived. The combination of optimized concentration of BTCA and SHP were used as crosslinking agent and catalyst respectively and silica nano particles were used to enhance the physical properties of the cotton fabric. The effect of pH and curing time on physical properties were analysed by FTIR studies. By ranking method the best combination of process parameters were identified. From this study, it was observed that higher concentration of silica nanoparticles with BTCA improve the crease recovery angle and tensile strength. FTIR studies revealed that the increase of pH and curing time increases the ester carbonyl band intensity ratio.

  6. The pH-dependant attachment of ceria nanoparticles to silica using surface analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dawkins, K.; Rudyk, B.W.; Xu, Z.; Cadien, K., E-mail: kcadien@ualberta.ca

    2015-08-01

    Graphical abstract: - Highlights: • A model for interaction between ceria nanoparticles and silica surfaces is proposed. • Proposed model investigated using zeta potential measurements and XPS. • Surface contamination is minimized at higher slurry pH levels. • High-resolution Ce 3d XPS and surface composition measured at different pH levels. • Variations in ceria contamination on silica surfaces via SEM and AES are studied. - Abstract: The adhesion and removal of ceria particles to a silica surface was investigated with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and auger electron spectroscopy (AES) measurements. A model is presented based on electrophoretic mobility measurements of ceria slurry and silica particles at different pH's. XPS results show that at acidic pH values, ceria is present on silica surfaces, but at alkaline pH values, far less ceria is present, or no ceria is present in the extreme case. SEM results corroborated the XPS results showing uniform distribution of ceria particles on silica surface at pH 6 while a clean silica surface is observed at pH 12. However, SEM images show agglomeration of ceria particles occurring at the isoelectric point of ceria at ∼pH 9.6. High resolution Ce 3d XPS analysis indicates that ceria present on the surface is composed ∼31% Ce(III) and ∼69% Ce(IV). AES mapping done at specific points on the silica surface validated both XPS and SEM results. Based on XPS, SEM and AES analyses, it is clear that an alkaline pH is necessary to minimize particulate contamination of silica surface by ceria.

  7. Thermally induced structural modifications and O{sub 2} trapping in highly porous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: antonino.alessi@unipa.it; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-12-15

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m{sup 2}/g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm{sup −1}. In addition, after annealing at 900 and 1000 °C we noted the appearance of the O{sub 2} emission at 1272 nm, absent in the not treated samples. The measure of the O{sub 2} emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO{sup ·}{sub 2} radicals to investigate the O{sub 2} content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O{sub 2} molecules per mass units than nonporous silica supporting a model by which O{sub 2} trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O{sub 2} emission and HO{sup ·}{sub 2} electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O{sub 2} molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica.

  8. Preparation of L-Arginine-Modified Silica-Coated Magnetite Nanoparticles for Au(III) Adsorption

    OpenAIRE

    Amaria; Nuryono; Suyanta, .

    2017-01-01

    L-arginine-modified silica-coated magnetite nanoparticles(Fe3O4/SiO2-GPTMS-Arg) have been synthesized by sol-gel process for adsorption of Au(III) ion in aqueous solution. Modification of L-arginine on silica coated magnetite through a coupling agent of 3-glycidoxypropyl-trimethoxysilane (GPTMS) was performed in avariousmole ratioof GPTMS:Arg 1:0; 1:1; 1:2 and 1:3.The products of Fe3O4/SiO2-GPTMS-Arg were characterized with XRD, FTIR, EDX, TGA, and Kjeldahl methods.The results showed that bas...

  9. Magnetic properties of magnetite nanoparticles coated with mesoporous silica by sonochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Ursachi, Irina [Department of Physics and CARPATH Center, ' Alexandru Ioan Cuza' University of Iasi, 11 Carol I Blvd., 700506 Iasi (Romania); Vasile, Aurelia [Department of Chemistry, ' Alexandru Ioan Cuza' University of Iasi, 11 Carol I Blvd., 700506 Iasi (Romania); Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Postolache, Petronel [Department of Physics and CARPATH Center, ' Alexandru Ioan Cuza' University of Iasi, 11 Carol I Blvd., 700506 Iasi (Romania); Stancu, Alexandru, E-mail: alstancu@uaic.ro [Department of Physics and CARPATH Center, ' Alexandru Ioan Cuza' University of Iasi, 11 Carol I Blvd., 700506 Iasi (Romania)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer MCM-41-coating of magnetite nanoparticles performed under ultrasonic irradiation. Black-Right-Pointing-Pointer Ultrasonic irradiation accelerates the formation of the MCM-41 framework. Black-Right-Pointing-Pointer The hysteretic response to an applied field was investigated applying FORC diagram. Black-Right-Pointing-Pointer The average coercive field of the Fe{sub 3}O{sub 4} nanoparticles increased after coating. -- Abstract: In this paper we present the magnetic properties of mesoporous silica-coated Fe{sub 3}O{sub 4} nanoparticles. The coating of magnetite nanoparticles with mesoporous silica shell was performed under ultrasonic irradiation. The obtained mesoporous silica-coated magnetite nanoparticles were characterized by powder X-ray diffraction, focused ion beam-scanning electron microscopy, nitrogen adsorption-desorption isotherms and vibrating sample magnetometer. The hysteretic behavior was studied using first-order reversal curves diagrams. The X-ray diffraction result indicates that the extreme chemical and physical conditions created by acoustic cavitations have an insignificant effect on crystallographic structural characteristic of magnetite nanoparticles. Changes in the coercivity distributions of the magnetite nanoparticles were observed on the first-order reversal curves diagrams for the samples with coated particles compared with the samples containing uncoated particles of magnetite. The coated particles show an increased most probable coercivity of about 20% compared with the uncoated particles which can be associated with an increased anisotropy due to coating even if the interaction field distribution measured on the diagrams are virtually identical for coated/uncoated samples.

  10. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli.

    Science.gov (United States)

    Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J

    2015-10-30

    Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.

  11. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bhuvaneswari Koneru

    2015-10-01

    Full Text Available Tetracycline (TC is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41, a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS, pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli in culture over a 24 h period, while blank nanoparticles had no effect.

  12. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Adriano A. Torrano

    2014-09-01

    Full Text Available Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC in comparison to a cancer cell line derived from the cervix carcinoma (HeLa. The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1. These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division.

  13. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  14. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  15. Fluorescein isothiocyanate-dyed mesoporous silica nanoparticles for tracking antioxidant delivery.

    Science.gov (United States)

    Rashidi, Ladan; Ganji, Fariba; Vasheghani-Farahani, Ebrahim

    2017-06-01

    This study investigated the cellular uptake of fluorescein isothiocyanate-labelled mesoporous silica nanoparticles (FITC-MSNs), amine-functionalised FITC-MSNs (AP-FITC-MSNs) and their gallic acid (GA)-loaded counterparts. Mesoporous silica nanoparticles were labelled with fluorescein isothiocyanate, functionalised by 3-aminopropyltriethoxysilane (APTES) (AP-FITC-MSNs) and then loaded by GA. All nanoparticles were characterised by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X-ray diffraction. The cytotoxicity of different concentrations of dyed nanoparticles was investigated using (3-(4,5-trihydroxybenzoic acid, dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry. TEM images showed that the average particle sizes of FITC-MSNs and AP-FITC-MSNs were about 100 and 110 nm, respectively. These nanoparticles were internalised by Caco-2 cells, accumulated and dispersed into the cytoplasm, nucleus, and subcellular organelles. Nanoparticles containing GA clearly decreased the viability of cells. FITC-MSNs showed no toxicity on Caco-2 cells at concentrations of ≤50 µg/ml. Functionalisation of FITC-MSNs using APTES decreased toxicity effects on the cells. It was found that FITC-MSNs can be applied at low concentrations as a marker in the cells. In addition, AP-FITC-MSNs showed better biocompatibility with Caco-2 cells than FITC-MSNs, because of their positive surface charges.

  16. Magnetoliposomes based on nickel/silica core/shell nanoparticles: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ana Rita O.; Gomes, I.T.; Almeida, Bernardo G. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Araújo, J.P. [IFIMUP/IN – Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto (Portugal); Castanheira, Elisabete M.S. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Coutinho, Paulo J.G., E-mail: pcoutinho@fisica.uminho.pt [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-12-15

    In the present work, nickel magnetic nanoparticles with diameters lower than 100 nm, with and without silica shell, were synthesized by microheterogeneous templating. The magnetic properties of the nanoparticles show a typical ferromagnetic behavior with a coercive field of 80 Oe. Dry magnetoliposomes (DMLs) with diameter between 58 nm and 76 nm were obtained from the synthesis of nanoparticles in the presence of a lipid or surfactant layer, and aqueous magnetoliposomes (AMLs) were obtained by encapsulation of the nanoparticles in liposomes. FRET (Förster resonance energy transfer) experiments were performed to study the non-specific interactions between aqueous magnetoliposomes and giant unilamellar vesicles (GUVs), as models of cell membranes. It was possible to detect membrane fusion between GUVs and AMLs containing both NBD-C{sub 6}-HPC (donor) and the dye Nile Red (acceptor). - Highlights: • Magnetic nickel nanoparticles were synthesized in microheterogeneous media. • The nanoparticles were covered with a silica shell to improve biocompatibility. • Aqueous and dry magnetoliposomes were prepared, the latter with diameter around 70 nm. • Membrane fusion between magnetoliposomes and models of cell membranes was detected by FRET.

  17. Synthesis of highly monodispersed teardrop-shaped core–shell SiO{sub 2}/TiO{sub 2} nanoparticles and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lihong; Zhou, Yifeng, E-mail: yifengzhou@126.com; Nie, Wangyan; Song, Linyong; Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn

    2015-10-01

    Graphical abstract: - Highlights: • Uniform chitosan coated magnetic mesoporous silica nanoparticles (CMMSNs) were successfully synthesized. • The CMMSNs were applied to highly efficient methylene blue (MB) dyes removal, and the saturated adsorption capacity of MB was 43.03 mg/g. • The MB adsorption kinetic and adsorption isotherm analysis were studied. • The CMMSNs had a saturation magnetization of 12.6 emu/g and could be easily separated by a magnet after dye adsorption. - Abstract: In this study, teardrop-shaped SiO{sub 2}/TiO{sub 2} nanoparticles (TST-NPs) with core–shell structure were fabricated from tetraethoxysilane (TEOS) and tetrabutyl titanate (TBT) by sol–gel method. And these nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy. Photocatalytic activity of teardrop-shaped SiO{sub 2}/TiO{sub 2} nanoparticles after calcination (CST-NPs) was studied towards degradation of methylene blue under sunlight irradiation. The result showed that CST-NPs possessed good photocatalytic activity. The photocatalytic mechanism was also studied by adding different capture agent. Results showed that addition of 0.003 M of I{sup −} decreased the degradation of MB more than same amount of Ag{sup +}, indicating that the photogenerated holes may play a more essential role than photoinjected electrons in the oxidation of MB.

  18. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Heidegger, Simon; Gössl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2016-01-14

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.

  19. Photo-directed organization of silver nanoparticles in mesostructured silica and titania films

    Energy Technology Data Exchange (ETDEWEB)

    Destouches, N., E-mail: nathalie.destouches@univ-st-etienne.fr [Universite de Lyon (France); Battie, Y. [Universite de Lorraine, Laboratoire de Chimie Physique-Approche Multiechelle de Milieux Complexes (LCP-A2MC, EA4632) (France); Crespo-Monteiro, N. [Universite de Lyon (France); Chassagneux, F.; Bois, L. [Universite de Lyon, Laboratoire Multimateriaux et Interfaces (France); Bakhti, S.; Vocanson, F. [Universite de Lyon (France); Toulhoat, N.; Moncoffre, N. [Universite Lyon, IPNL, CNRS/IN2P3 (France); Epicier, T. [Materiaux, Ingenierie et Sciences (MATEIS), UMR 5510 CNRS, Universite de Lyon, INSA-Lyon (France)

    2013-01-15

    This paper quantifies the migration of silver contained within mesostructured hybrid silica films and mesoporous titania films under exposure to modulated light. This quantization allows to demonstrate that all of the initial silver salt can be concentrated and reduced in domains accumulating the higher photonic energy. Entirely reduced in the form of nanoparticles of few nanometers size embedded in the silica matrix, silver is then quite stable even under subsequent homogeneous exposures. It is also shown that thanks to the relatively slow nanoparticle growth, successive multiple exposures can be used to create complex 3D microstructures within silica films using a simple dual beam interferometer. In mesoporous titania films, the UV photo-growth of silver nanoparticles remains limited to the vicinity of the film interface because of the matrix absorption and cannot provide deep 3D patterns of silver nanoparticles. However, 2D refractive index patterns can be obtained under UV exposure, erased with visible light and updated thanks to a reversible photochromic behavior. In such films, opposite migration flows of silver species are proven under UV intensity gradient and homogeneous visible exposure.

  20. Synthesis, characterization, and biodistribution studies of (99m)Tc-labeled SBA-16 mesoporous silica nanoparticles.

    Science.gov (United States)

    de Barros, André Luís Branco; de Oliveira Ferraz, Karina Silva; Dantas, Thais Cristina Soares; Andrade, Gracielle Ferreira; Cardoso, Valbert Nascimento; Sousa, Edésia Martins Barros de

    2015-11-01

    Along with anti-cancer drug delivery researches, many efforts have been done to develop new tracers for diagnostic applications. Based on advances in molecular imaging, nanoparticles can be used to visualize, characterize and measure biological process at molecular and cellular level. Therefore, the purpose of this study was to synthesize, characterize and radiolabeled mesoporous silica nanoparticles (MSNs) for in vivo applications. The nanoparticles were synthesized, functionalized with 3-aminopropyltriethoxysilane (APTES) and then, anchored with diethylenetriaminepentaacetic acid (DTPA). Particles were physicochemical characterized by elemental analysis (CHN), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and zeta potential, and were morphologically characterized by scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Results indicate that functionalization process was successfully achieved. Next, functionalized silica nanoparticles were radiolabeled with technetium-99m showing high radiochemical yields and high radiolabeled stability. These findings allow the use of the particles for in vivo applications. Biodistribution and scintigraphic images were carried out in healthy mice in order to determine the fate of the particles. Results from in vivo experiments showed high uptake by liver, as expected due to phagocytosis. However, particles also showed a significant uptake in the lungs, indicated by high lung-to-non-target tissue ratio. In summary, taking into account the great potential of these silica mesoporous structures to carry molecules this platform could be a good strategy for theranostic purposes.

  1. Unconventional assembly of bimetallic Au-Ni janus nanoparticles on chemically modified silica spheres.

    Science.gov (United States)

    Jia, Lei; Pei, Xiaowei; Zhou, Feng; Liu, Weimin

    2014-02-10

    This paper reports that Janus Au-Ni nanoparticles (JANNPs) can self-assemble onto silica spheres in a novel way, which is different from that of single-component isotropic nanoparticles. JANNPs modified with octadecylamine (ODA) assemble onto catechol-modified silica spheres (SiO2-OH) to form a very special core-loop complex structure and finally the core-loop assemblies link each other to form large assemblies through capillary force and the hydrophobic interaction of the alkyl chains of ODA. The nanocomposites disassemble in the presence of vanillin and oleic acid because of the breakage of the catechol-metal link. Vanillin-induced disassembly enables the JANNPs to reassemble into a core-loop structure upon ODA addition. The assembly of SiO2-OH and isotropic Ni or Fe3O4 particles generates traditional core-satellite structures. This unconventional self-assembly can be attributed to the synergistic effect of Janus specificity and capillary force, which is also confirmed by the assembly of thiol-terminated silica spheres (SH-SiO2) with anisotropic JANNPs, isotropic Au, and Ni nanoparticles. These results can guide the development of novel composite materials using Janus nanoparticles as the primary building blocks. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure

    Directory of Open Access Journals (Sweden)

    Alicja Panas

    2014-09-01

    Full Text Available Background: Investigations on adverse biological effects of nanoparticles (NPs in the lung by in vitro studies are usually performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those observed at physiological settings at the air–liquid interface.Results: In order to avoid problems because of an altered behaviour of the nanoparticles in cell culture medium and to mimic a more realistic situation relevant for inhalation, human A549 lung epithelial cells were exposed to aerosols at the air–liquid interphase (ALI by using the ALI deposition apparatus (ALIDA. The application of an electrostatic field allowed for particle deposition efficiencies that were higher by a factor of more than 20 compared to the unmodified VITROCELL deposition system. We studied two different amorphous silica nanoparticles (particles produced by flame synthesis and particles produced in suspension by the Stöber method. Aerosols with well-defined particle sizes and concentrations were generated by using a commercial electrospray generator or an atomizer. Only the electrospray method allowed for the generation of an aerosol containing monodisperse NPs. However, the deposited mass and surface dose of the particles was too low to induce cellular responses. Therefore, we generated the aerosol with an atomizer which supplied agglomerates and thus allowed a particle deposition with a three orders of magnitude higher mass and of surface doses on lung cells that induced significant biological effects. The deposited dose was estimated and independently validated by measurements using either transmission electron microscopy or, in case of labelled NPs, by fluorescence

  3. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  4. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang YR

    2013-06-01

    Full Text Available Yan-rong Jiang,1,2 Zhen-hai Zhang,1 Qi-yuan Liu,1,2 Shao-ying Hu,1,2 Xiao-yun Chen,1,2 Xiao-bin Jia11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China; 2College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of ChinaAbstract: We prepared solid dispersions (SDs of tanshinone IIA (TSIIA with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1 was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01. Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone.Keywords: tanshinone IIA, solid dispersions, silica nanoparticles, in vitro

  5. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    Science.gov (United States)

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial.

  6. Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles.

    Science.gov (United States)

    Wang, Liying; Huo, Minfeng; Chen, Yu; Shi, Jianlin

    2017-09-21

    Biodegradation behavior of inorganic silica-based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination-accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination-responsive biodegradability, on-demand coordination-responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution-regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone-mediated biodegradation of Fe-doped HMSNs (Fe-HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination-accelerated biodegradation behavior. In addition to high biocompatibility of Fe-HMSNs, the anticancer drug doxorubicin (DOX)-loaded Fe-HMSNs show enhanced tumor-suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica-based nanoplatforms simply by biocompatible Fe-ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe-coordination proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  8. Wettability Alteration of Sandstones by Silica Nanoparticle Dispersions with Light and Heavy Crude Oil

    Science.gov (United States)

    Pales, A. R.; Huibers, B. M. J.; Bai, L.; Li, C.; Mu, L.; Ladner, D.; Daigle, H.; Darnault, C. J. G.

    2016-12-01

    In enhanced oil recovery (EOR), nanoparticles with their unique physico-chemical properties present a promising method for altering wettability. Nanoparticles could create a water-wet surface in a reservoir rather than an oil-wet one which would ease petroleum recovery. This research examines how uncoated silica nanoparticles alter the wettability of two sandstone surfaces, Berea and Boise, by measuring the contact angle and interfacial tension of different systems as an indicator of wettability. The silica nanoparticles were suspended in brine and brine plus a nonionic surfactant at concentrations of 0, 0.001, and 0.01 wt%. The differential impact on heavy and light crude oils was characterized as well. The study showed that surfactants had a greater impact on interfacial tension (IFT). The IFT decreased with the introduction of surfactants by 79% and 54% for light and heavy crude oils respectively. This reduction in IFT translates to less pressure needed for petroleum recovery. For the contact angle, images collected depict the reduction of contact angle with increased nanoparticle concentration across all oil, sandstone, and reservoir types. In addition to the images taken, the contact angles measured significantly decreased when nanoparticles were introduced with reductions reaching up to 93% between 0 and 0.001 wt% nanoparticles with light oil on the Berea sandstone. As nanoparticle concentration increased, the sandstones became increasingly water-wet for both oil types, and the increasing concentration impacted the light crude oil more than the heavy crude oil. The research evinced that nanoparticles can be used with surfactants in light and heavy crude oil systems to increase the hydrophilicity of Berea and Boise sandstones.

  9. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    Science.gov (United States)

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  10. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    Science.gov (United States)

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  11. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography.

    Science.gov (United States)

    Kato, Masaru; Sasaki, Minoru; Ueyama, Yukari; Koga, Ayaka; Sano, Akira; Higashi, Tatsuya; Santa, Tomofumi

    2015-02-01

    Nanoparticles, spherical particles with diameters less than 100 nm, are promising theranostic devices for noninvasive diagnosis and therapy. In this study, nanoparticles composed of polyethylene glycol and silica were prepared, and their migration behavior was examined using capillary electrophoresis. The effects of the sodium dodecyl sulfate concentration in the electrolyte, the nanoparticle size, and the encapsulated molecule on the migration were examined. The addition of sodium dodecyl sulfate into the electrolyte had a significant effect on the electrophoretic mobility of polyethylene glycol nanoparticles, but a small effect on that of silica nanoparticles. As for the size effect, the mobility became a little faster for smaller nanoparticle sizes for both polyethylene glycol and silica nanoparticles. The encapsulated molecule affected the mobility of the nanoparticles through interactions between the encapsulated molecules and sodium dodecyl sulfate. We propose that the large effect of sodium dodecyl sulfate on the migration of the polyethylene glycol nanoparticles was due to the large spaces within the nanoparticles. These results indicate that nanoparticle migration is mainly determined by the nanoparticle components.

  12. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  13. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    Science.gov (United States)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  14. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Huan [State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by {sup 1}H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria.

  15. In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay.

    Science.gov (United States)

    Ge, Shenguang; Liu, Weiyan; Ge, Lei; Yan, Mei; Yan, Jixian; Huang, Jiadong; Yu, Jinghua

    2013-11-15

    A simple, low-cost and sensitive origami electrochemical immunoassay-device was developed based on a novel gold nanoparticle modified porous paper working electrode (Au-PWE) for point-of-care testing. Azide-functionalized Au-PWE was prepared by the functionalization of Au-PWE with 1-azidoundecan-11-thiol. Alkyne end-terminated antibody was prepared with 4-pentynoic acid and antibody by the 1-ethyl-3-(3-(dimethylamino) propyl) carbodiimide hydrochloride and N-hydroxysuccinimide activation reaction. Alkyne-antibody was coupled to azido-Au-PWE by click reaction as a recognition element. Nearly monodispersed sphere-like silica-coated ferroferric oxide (Fe3O4@SiO2) nanoparticles were prepared via the reverse microemulsion method. Azide-functionalized Fe3O4@SiO2 was prepared by the functionalization of silica shell with 3-bromopropyltrichlorosilane followed by substitution with sodium azide. Alkyne-functionalized antibody and horse radish peroxidase were coupled to azide-functionalized Fe3O4@SiO2 by click reaction as signal label. Horse radish peroxidase and ferroferric oxide could catalyze the oxidation of thionine in the presence of hydrogen peroxide. After the sandwich immunoreaction, the current was proportional to the logarithm of the Microcystin-LR. The linear regression equation was i(μA)=119.89+46.27 log cMC-LR (μg/mL) in the range from 0.01 to 200 μg/mL. The limit of detection was 0.004 μg/mL. This immunoassay would provide a universal immunoassay method in environmental monitoring and public health.

  16. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites.

    Science.gov (United States)

    Canché-Escamilla, G; Duarte-Aranda, S; Toledano, M

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1,730 cm(-1), corresponding to carbonyl groups (CO) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700°C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin-bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  18. Targeting EGFR-overexpressed A431 cells with EGF-labeled silica-coated magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija; Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2013-05-15

    Human epidermal growth-factor receptor (EGFR) has emerged as an attractive target for cancer therapy. In this study, amino- or carboxyl-functionalized silica-coated maghemite nanoparticles were conjugated with epidermal growth-factor (EGF) using five different binding modes: carbodiimide chemistry, two types of homo-bifunctional cross-linking reagents, and electrostatic interactions between the nanoparticles and the EGF. The nanoparticles and their aqueous suspensions were characterized by transmission electron microscopy, zeta-potential measurements and dynamic light scattering. The binding efficiency of the EGF to the nanoparticles was measured by flow cytometry using a specific anti-EGF antibody. The ability of EGF bioconjugates to target the EGF receptors was tested using EGFR over-expressing A431 cells in comparison to EGFR negative HeLa cells. Our results showed that the bioconjugates where the EGF was bonded by carbodiimide chemistry are the most effective for the specific targeting of EGFR-expressing cells in vitro.

  19. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  20. Design and Cellular Fate of Bioinspired Au-Ag Nanoshells@Hybrid Silica Nanoparticles.

    Science.gov (United States)

    Soulé, Samantha; Bulteau, Anne-Laure; Faucher, Stéphane; Haye, Bernard; Aimé, Carole; Allouche, Joachim; Dupin, Jean-Charles; Lespes, Gaëtane; Coradin, Thibaud; Martinez, Hervé

    2016-10-04

    Silica-coated gold-silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.

  1. Core–Shell Bimetallic Nanoparticles Robustly Fixed on the Outermost Surface of Magnetic Silica Microspheres

    Science.gov (United States)

    Park, Hye Hun; Woo, Kyoungja; Ahn, Jae-Pyoung

    2013-01-01

    The major challenges in practically utilising the immense potential benefits of nanomaterials are controlling aggregation, recycling the nanomaterials, and fabricating well-defined nanoparticulate materials using innovative methods. We present a novel innovative synthetic strategy for core–shell bimetallic nanoparticles that are well-defined, ligand-free, and robustly fixed on the outermost surface of recyclable magnetic silica microspheres. The strategy includes seeding, coalescing the seeds to cores, and then growing shells from the cores on aminopropyl-functionalised silica microspheres so that the cores and aminopropyl moieties are robustly embedded in the shell materials. The representative Au–Ag bimetallic nanoparticles fixed on the microsphere showed excellent catalytic performance that remained consistent during repeated catalytic cycles. PMID:23511209

  2. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry

    Science.gov (United States)

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-01

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes.

  3. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  4. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    Science.gov (United States)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  5. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  6. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  7. Fluorescent Cy5 silica nanoparticles for cancer cell imaging

    Science.gov (United States)

    O'Connell, Claire; Nooney, Robert I.; Glynn, MacDara; Ducree, Jens; McDonagh, Colette

    2015-08-01

    Cancer is a leading cause of death worldwide, with metastasis responsible for the majority of cancer-related deaths. Circulating tumour cells (CTCs) play a central role in metastasis. Fluorescent silica particles (NPs), of diameter ~50 nm which contain a large concentration of Cy5 dye molecules and are extremely bright, have been developed to detect these rare CTCs. Due to this brightness, the particles have superior performance compared to single Cy5 dye molecule labels, for detecting cancer cells. Fluorescence measurements show that the NPs are almost 100 times brighter than the free dye. They do not photo bleach as readily and, due to the biocompatible silica surface, they can be chemically modified, layer-by-layer, in order to bind to cells. The choice of these chemical layers, in particular the NP to antibody linker, along with the incubation period and type of media used in the incubation, has a strong influence on the specific binding abilities of the NPs. In this work, NPs have been shown to selectively bind to the MCF-7 cell line by targeting epithelial cellular adhesion molecule (EpCAM) present on the MCF-7 cell membrane by conjugating anti-EpCAM antibody to the NP surface. Results have shown a high signal to noise ratio for this cell line in comparison to a HeLa control line. NP attachment to cells was verified qualitatively with the use of fluorescence microscopy and quantitatively using image analysis methods. Once the system has been optimised, other dyes will be doped into the silica NPs and their use in multiplexing will be investigated.

  8. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  9. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    Science.gov (United States)

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-05

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH 8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  10. Mesoporous Silica Nanoparticles with Co-Condensed Gadolinium Chelates for Multimodal Imaging

    OpenAIRE

    Wenbin Lin; Joseph Della Rocca; Kathryn M. L. Taylor-Pashow

    2011-01-01

    Several mesoporous silica nanoparticle (MSN) contrast agents have been synthesized using a co-condensation method to incorporate two different Gd3+ complexes at very high loadings (15.5–28.8 wt %). These MSN contrast agents, with an MCM-41 type pore structure, were characterized using a variety of methods including SEM and TEM, nitrogen adsorption measurements, thermogravimetric analysis (TGA), direct current plasma (DCP) spectroscopy, and powder X-ray diffraction (PXRD). The magnetic resonan...

  11. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  12. Influence of α-amylase template concentration on systematic entrapment of highly stable and monodispersed colloidal gold nanoparticles

    Science.gov (United States)

    Ananth, A. Nitthin; Ananth, A. Nimrodh; Jose, Sujin P.; Umapathy, S.; Mathavan, T.

    2016-01-01

    Nano gold / α-amylase colloidal dispersions of profound stability were made using simple procedure with a conventional reducing agent. The surface plasmon resonance of the gold nanocrystals was used to quantify the extent of the dispersion stability and functionalization. It is found that the reduced gold nanoparticles were trapped into the protein network without denaturation the structure of α-amylase protein. This kind of entrapment of particles into the protein network prevents clustering of individual gold nanoparticles (6.42 nm ± 0.92 nm) by acting as a natural spacer. Systematic entrapment was facilitated by the affinity of gold to the sulfur moieties (Au-S) in the protein structure.

  13. Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: modulable tools for the encapsulation and controlled release of pharmaceuticals.

    Science.gov (United States)

    Mendez-Ardoy, Alejandro; Gómez-García, Marta; Gèze, Annabelle; Putaux, Jean-Luc; Wouessidjewe, Denis; Ortiz Mellet, Carmen; Defaye, Jacques; García Fernández, José M; Benito, Juan M

    2012-07-01

    Selective chemical functionalization of cyclodextrins (CDs) is a readily amenable methodology to produce amphiphilic macromolecules endowed with modulable self-organizing capabilities. Herein, the synthesis of well-defined amphiphilic CD derivatives, with a "skirt-type" architecture, that incorporate long-chain fatty esters at the secondary hydroxyl rim and a variety of chemical functionalities (e. g. iodo, bromo, azido, cysteaminyl or isothiocyanato) at the primary hydroxyls rim is reported. Nanoprecipitation of the new CD facial amphiphiles, or binary mixtures of them, resulted in nanoparticles with average hydrodynamic diameters ranging from 100 to 240 nm that were stable in suspension for several months. The precise size, zeta potential and topology of the nanoparticles are intimately dependent on the functionalization pattern at the CD scaffold. Highly efficient molecular encapsulation capabilities of poorly bioavailable drugs such as diazepam (DZ) were demonstrated for certain derivatives, the drug release profile being dependent on the type of formulation (nanospheres or nanocapsules). The efficiency and versatility of the synthetic strategy, together with the possibility of exploiting the reactivity of the functional groups at the nanoparticle surface, offer excellent opportunities to further manipulate the carrier capabilities of this series of amphiphilic CDs from a bottom-up approach.

  14. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  15. The use of molecular probes for the characterization of dispersions of functionalized silica nanoparticles.

    Science.gov (United States)

    Arce, Valeria B; Bertolotti, Sonia G; Oliveira, Fernando J V E; Airoldi, Claudio; Gonzalez, Mónica C; Allegretti, Patricia E; Mártire, Daniel O

    2009-07-01

    Butoxylated silica nanoparticles (BSN) were prepared by esterification of the silanol groups of fumed silica nanoparticles with butanol and characterized by 13C and 29Si NMR and thermogravimetry. The molecular probes benzophenone (BP) and safranine-T were used to investigate the BSN suspensions in water:acetonitrile. Laser flash-photolysis experiments at lambda(exc)=266 nm performed with BSN suspended in acetonitrile:aqueous phosphate buffer supported previous results of our group obtained by time-resolved phosphorescence experiments and showed that only free and adsorbed excited triplet states of BP and diphenylketyl radicals contribute to the signals. The UV-vis spectroscopic and photophysical properties of safranine-T are strongly solvent-dependent. Thus, the analysis of the emission spectra and fluorescence lifetimes yielded information on the localization of this probe molecule in suspensions of BSN and of the bare silica nanoparticles. The values of the equilibrium constant for the adsorption of the ground-state safranine-T on the particles were found to be (9.2+/-0.8)x10(4), (7.2+/-0.8)x10(5), and (3.0+/-0.1)x10(4) for the BSN in 1:1 acetonitrile:water, SiO2 in 1:1 acetonitrile:water, and SiO2 in acetonitrile, respectively.

  16. Improvements of physical, mechanical and biodegradation properties of polybutadiene rubber insulators by chitosan and silica nanoparticles.

    Science.gov (United States)

    Saboktakin, Amin; Saboktakin, Mohammadreza

    2016-10-01

    1,4-cis-Polybutadiene rubber(1,4-cis pBR) as an insulation material is developing that will provide superior thermal insulation properties, flexibility, toughness by natural polymers such as chitosan(CS) and silica nanoparticles. This material is widely used in the insulation industries specially architecture. This research concerns physical, mechanical properties and also biodegradation of 1,4-cis pBR, which to be composed with the natural polymers such as CS. Silica nanoparticles were used as filler to improve the physical and mechanical properties of 1,4-cis pBR. To evaluating its physical and mechanical properties, stretching and bending and impact tests were used and the results show some improvement in these properties. Our observations show that temperature plays an important role as main factor in order to improve the mechanical properties of nanocomposites. Similar improvements in tensile modulus and strength have been observed for 1,4-cis pBR/CS-silica nanoparticles.

  17. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    Science.gov (United States)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  18. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    Science.gov (United States)

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials.

  19. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  20. Fabrication and ultraviolet-shielding properties of silica-coated titania-doped ceria nanoparticles

    Institute of Scientific and Technical Information of China (English)

    CHEN Weifan; HONG Jianming; LI Huiquan; LI Yongxiu

    2011-01-01

    A series of well-dispersed titania-doped ceria nanoparticles Ce1-xTixO2 were rapidly prepared by a novel salt-assisted solution combustion process using correspondent metal nitrates as oxidizers and ethyl glycol as fuel,and then coated with amorphous silica by seeded polymerization using tetraethyl orthoslicate (TEOS).The as-prepared samples were characterized by transmission electron microscopy (TEM),X-ray diffraction (XRD),Fourier-transform infrared spectroscopy (FTIR),and ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy.The results indicated that compared with the as-prepared pure ceria nanoparticles,the red-shift phenomenon occurred for Ti-doped ceria nanoparticles with Ti incorporation.Meanwhile,the absorption intensity in the UV light region slightly decreased and transmission rate in visible light region was somewhat enhanced.In comparison with the silica-coated CeO2 nanopowders,the silica-coated Ce0.95Ti0.05O2 nanopowders displayed the same absorption intensity in the UV light region,broader UV absorption band and higher transmission rate in visible light region.

  1. The Influence of Silica Nanoparticles on Ionic Liquid Behavior: A Clear Difference between Adsorption and Confinement

    Directory of Open Access Journals (Sweden)

    Guozhong Wu

    2013-10-01

    Full Text Available The phase behaviors of ionic liquids (ILs confined in nanospace and adsorbed on outer surface of nanoparticles are expected to be different from those of the bulk. Anomalous phase behaviors of room temperature ionic liquid tributylhexadecylphosphonium bromide (P44416Br confined in ordered mesoporous silica nanoparticles with average pore size 3.7 nm and adsorbed on outer surface of the same silica nanoparticles were reported. It was revealed that the melting points (Tm of confined and adsorbed ILs depressed significantly in comparison with the bulk one. The Tm depressions for confined and adsorbed ILs are 8 °C and 14 °C, respectively. For comparison with the phase behavior of confined P44416Br, 1-butyl-3-methylimidazolium bromide (BmimBr was entrapped within silica nanopores, we observed an enhancement of 50 °C in Tm under otherwise similar conditions. The XRD analysis indicates the formation of crystalline-like phase under confinement, in contrast to the amorphous phase in adsorbed IL. It was confirmed that the behavior of IL has clear difference. Moreover, the complex π-π stacking and H-bonding do not exist in the newly proposed phosphonium-based IL in comparison with the widely studied imidazolium-based IL. The opposite change in melting point of P44416Br@SiO2 and BmimBr@SiO2 indicates that the cationic species plays an important role in the variation of melting point.

  2. Enhancing water flux of thin-film nanocomposite (TFN membrane by incorporation of bimodal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2016-03-01

    Full Text Available Modern reverse osmosis (RO/nanofiltration (NF membranes are primarily made of thin-film composites (TFC fabricated through interfacial polymerization of m-phenylene diamine (MPD and trimesoyl chloride (TMC on a polysulfone (PSF supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm with different internal pore structures were synthesized and incorporated into the polyamide (PA thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM, atomic force microscopy (AFM, and attenuated total reflection Fourier transform infrared (ATR FT-IR spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm. This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.