WorldWideScience

Sample records for monodisperse polystyrene nanoparticles

  1. A novel method for preparing monodispersed polystyrene nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIU Kaiyi; WANG Zhaoqun

    2007-01-01

    A preparation manner for monodispersed polystyrene(PS)nanoparticles polymerized by using a novel addition procedure of a monomer is suggested.In systems containing a smaller amount of surfactant compared with conventional microemulsion polymerization,the polymerization processes consists of three stages:adding dropwise the first part of the monomer for a few minutes at 80℃ and polymerizing for 1 h;adding collectively the residual part of the monomer and polymerizing at the same temperature for another 1 h;and then polymerizing at 85℃ for another 1 h.Based on discussions on the nucleation mechanism of particles in the polymerization system,the influences of monomer weight added dropwise,and amounts of initiator and emulsifier on the size and distribution of PS particles were investigated.PS nanoparticles with smaller diameter such as a number-average diameter of 18.7 nm and better monodispersity were obtained since the dropped styrene amount was suitable under 20wt-% emulsifier amount and 3wt-% initiator amount based on the monomer.

  2. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    Science.gov (United States)

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods.

  3. Synthesis of monodisperse crosslinked polystyrene microspheres

    Institute of Scientific and Technical Information of China (English)

    Jiang Kai; Chen Sheng-Li; Dong Peng; Liu Renxiao

    2008-01-01

    Monodisperse crosslinked polystyrene (CPS) particles were prepared through the normal emulsion polymerization method by adding crosslinker-divinylbenzene (DVB) into the reaction system after polystyrene (PS) particles grew to ~80% of the final size. When the amount of crosslinker DVB added was less than 6.17 wt% based on styrene, the prepared CPS particles were spherical and uniform and the size of the CPS particles could be predicted through the normal emulsion method. The glass transition temperature (Tg) of the prepared CPS particles was higher than that of un-crosslinked PS particles and, the more crosslinker that was added, the higher the Tg of CPS Particles. The prepared CPS particles had strong resistance to organic solvents.

  4. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongation...

  5. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  6. MONODISPERSED AND NANOSIZED DENDRIMER/POLYSTYRENE LATEX PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Changfeng Yi; Zushun Xu; Warren T. Ford

    2004-01-01

    Emulsion polymerization of styrene was carried out using dendrimer DAB-dendr-(NH2)64 as seed. The size and size distribution of the emulsion particles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effects of emulsion polymerization conditions on the preparation of emulsion particle were investigated. It has been found that the nanosized dendrimer/polystyrene polymer emulsion particles obtained were in the range of 26~64 nm in diameter, and were monodisperse; the size and size distribution of emulsion particles were influenced by the contents of dendrimer DAB-dendr-(NH2)64, emulsifier and initiator, as well as the pH value.

  7. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  8. Growth Kinetics of Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Fan Li

    2013-01-01

    Full Text Available Dispersion polymerization has been widely applied to the synthesis of monodisperse micron-sized polymer colloidal spheres. Many efforts have been devoted to studying the influence of initial conditions on the size and uniformity of the resultant microspheres, aiming to synthesize micron-size monodisperse colloidal spheres. However, the inner contradiction between the size and the size distribution of colloidal spheres hinders the realization of this goal. In this work, we drew our attention from the initial conditions to the growth stage of dispersion polymerization. We tracked the size evolution of colloidal sphere during the dispersion polymerization, through which we established a kinetic model that described the relationship between the monomer concentration and the reaction time. The model may provide a guideline to prepare large polymer colloidal spheres with good monodispersity by continuous monomer feeding during the growth stage to maintain the concentration of monomer at a constant value in a dispersion polymerization process.

  9. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    polystyrene melt with a molecular weight of 390 kg/mole (PS390K). The measurements have all been preformed on a Filament Streching Rheometer (FSR) equipped with an oven: A cylindrical test sample is placed between two parallel, circular plates and stretched. A load cell measures the transmitted force...

  10. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    polystyrene melt with a molecular weight of 390 kg/mole (PS390K). The measurements have all been preformed on a Filament Streching Rheometer (FSR) equipped with an oven: A cylindrical test sample is placed between two parallel, circular plates and stretched. A load cell measures the transmitted force...

  11. Synthesis of 3-D ordered macroporous silicate using the template formed from monodispersed polystyrene latex

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the template formed from monodispersed polystyrene (PS) latex, a modified fast sol-gel process was employed to synthesize a three-dimensional ( 3-D ) ordered macroporous silica material after removing the template by calcination at high temperature. It was indicated that there existed highly ordered packed pores within the whole silica material by SEM morphology observation. It was also found that the pores were interconnected. The pore size could be controlled mainly by varying the particle size of the latex ranging from 101 to 102 nm. The formation process of the ordered pores was also preliminarily discussed.

  12. Synthesis and antimicrobial activity of monodisperse copper nanoparticles.

    Science.gov (United States)

    Kruk, Tomasz; Szczepanowicz, Krzysztof; Stefańska, Joanna; Socha, Robert P; Warszyński, Piotr

    2015-04-01

    Metallic monodisperse copper nanoparticles at a relatively high concentration (300 ppm CuNPs) have been synthesized by the reduction of copper salt with hydrazine in the aqueous SDS solution. The average particles size and the distribution size were characterized by Dynamic Light Scattering (DLS), Nanosight-Nanoparticle Tracking Analysis (NTA). The morphology and structure of nanoparticles were investigated using Scanning Electron Microscopy (SEM). The chemical composition of the copper nanoparticles was determined by X-ray Photoelectron Spectroscopy (XPS). Monodisperse copper nanoparticles with average diameter 50 nm were received. UV/vis absorption spectra confirmed the formation of the nanoparticles with the characteristic peak 550 nm. The antimicrobial studies showed that the copper nanoparticles had high activity against Gram-positive bacteria, standard and clinical strains, including methicillin-resistant Staphylococcus aureus, comparable to silver nanoparticles and some antibiotics. They also exhibited antifungal activity against Candida species. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process

    Institute of Scientific and Technical Information of China (English)

    LI Peng; GUAN Jianguo; ZHANG Qingjie; ZHAO Wenyu

    2005-01-01

    Polymer-protected monodisperse nickel nanoparticles were synthesized by a modified polyol reduction method in the presence of poly ( N-vinyl- 2-pyrrolidone ). These nanoparticles were characterized by transmission electron microscopy (TEM), X- ray diffraction ( XRD ), selected area electron diffraction ( SAED ), as well as vibrating sample magnetometer (VSM). The experimental results show that the addition of PVP and the concentration of NaOH have strong influences on the size, agglomeration and uniformity of nanoparticles. In the presence of PVP and NaOH with low concentrations, monodisperse nickel nanoparticles with average diameters about 42 nm were obtained and characterized to be pure nickel crystalline with fcc structure. Secondary structures such as clusters, loops, and strings resulted from magnetic interactions between particles were observed. The chemical interaction between the PVP and nickel nanoparticles was found by FTIR. The saturation magnetization ( Ms ), remanent magnetization (Mr) and coercivity ( Hc ) of these nickel nanoparticles are lower than those of bulk nickel.

  14. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  15. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles

    NARCIS (Netherlands)

    Feng, Lili; Cohen Stuart, Martien; Adachi, Yasuhisa

    2015-01-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and

  16. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  17. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    SHEN Cheng-Min; HUI Chao; YANG Tian-Zhong; XIAO Cong-Wen; CHEN Shu-Tang; DING Hao; GAO Hong-Jun

    2008-01-01

    @@ Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L1o structure and the particles are ferromagnetic at room temperature.

  18. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene.

    Science.gov (United States)

    Xia, Guanglin; Tan, Yingbin; Chen, Xiaowei; Sun, Dalin; Guo, Zaiping; Liu, Huakun; Ouyang, Liuzhang; Zhu, Min; Yu, Xuebin

    2015-10-21

    Monodisperse MgH2 nanoparticles with homogeneous distribution and a high loading percent are developed through hydrogenation-induced self-assembly under the structure-directing role of graphene. Graphene acts not only as a structural support, but also as a space barrier to prevent the growth of MgH2 nanoparticles and as a thermally conductive pathway, leading to outstanding performance.

  19. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Peng; TANG Shao-Chun; MENG Xiang-Kang

    2009-01-01

    Silver nanoparticles with an average size of about 2Onto are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method.The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  20. Monodisperse lignin fractions as standards in size-exclusion analysis: comparison with polystyrene standards.

    Science.gov (United States)

    Botaro, Vagner Roberto; Curvelo, Antonio Aprígio da Silva

    2009-05-01

    The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin.

  1. A Facile Solvothermal Synthesis of Monodisperse Ni Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YU Peng-fei; CUI Bin; ZHANG Yan; SHI Qi-zhen

    2008-01-01

    A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.

  2. Solvent: A Key in Digestive Ripening for Monodisperse Au Nanoparticles

    Science.gov (United States)

    Wang, Peng; Qi, Xuan; Zhang, Xuemin; Wang, Tieqiang; Li, Yunong; Zhang, Kai; Zhao, Shuang; Zhou, Jun; Fu, Yu

    2017-01-01

    This work has mainly investigated the influence of the solvent on the nanoparticles distribution in digestive ripening. The experiments suggested that the solvents played a key role in digestive ripening of Au nanoparticles (Au NPs). For the benzol solvents, the resulting size distribution of Au NPs was inversely related to the solvent polarity. It may be interpreted by the low Gibbs free energy of nanoparticles in the high polarity medium, which was supposedly in favor of reducing the nanoparticles distribution. Through digestive ripening in the highly polar benzol solvent of p-chlorotoluene, monodisperse Au NPs with relative standard deviation (RSD) of 4.8% were achieved. This indicated that digestive ripening was an effective and practical way to prepare high-quality nanoparticles, which holds great promise for the nanoscience and nanotechnology.

  3. Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John

    Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.

  4. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  5. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian

    2014-01-01

    We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the ...

  6. Oral exposure to polystyrene nanoparticles effects iron absorption

    Science.gov (United States)

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron trans...

  7. Kinetics of successive seeding of monodisperse polystyrene latexes. I - Initiation via potassium persulfate. II - Azo initiators with and without inhibitors

    Science.gov (United States)

    Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.

    1986-01-01

    The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.

  8. Interaction of apo cytochrome c with sulfonated polystyrene nanoparticles.

    Science.gov (United States)

    Liang, Li; Yao, Ping; Gong, Jie; Jiang, Ming

    2004-04-13

    Stable nanoparticle dispersion in aqueous solutions was obtained with partially sulfonated polystyrene. The hydrophobic association of the backbone chains and phenyl groups is balanced by the electrostatic repulsion of the sulfonate groups on the particle surface. The size distribution of the sulfonated polystyrene particles in relation to concentration, degree of sulfonation and chain length, and pH was characterized by dynamic laser light-scattering. The structure and morphology of the particles were characterized with fluorescence and atom force microscopy. Highly sulfonated polystyrene particles can form large complex particles with positively charged protein, apo cytochrome c. Dynamic laser light-scattering and atom force microscopy studies show that the size and distribution of the complex particles depend on the relative amount of apo cytochrome c and sulfonated polystyrene. When sulfonated polystyrene is in excess, apo cytochrome c interacts with sulfonated polystyrene particles forming stable complexes and excessive sulfonated polystyrene particles bind to the periphery of the complexes preventing them from further aggregation. When apo cytochrome c is in excess, apo cytochrome c links the complexes forming much larger particles. Fluorescence study demonstrates that the hydrophobicity/hydrophility of the complex particles is relative to the ratio of apo cytochrome c and sulfonated polystyrene, degree of sulfonation, and pH. Apo cytochrome c not only can neutralize the negative charges on the surface of sulfonated polystyrene particles, but may also insert into the cores disrupting the original structure of sulfonated polystyrene particles.

  9. Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Kheirandish, Saeid; Hassager, Ole

    2005-01-01

    Elongational behavior of four narrow molar mass distribution polystyrene melts of masses 50 000, 100 000, 200 000, and 390 000, g/mol, respectively was investigated up to Hencky strains of 5. All melts show strain hardening behavior. For the two highest molar mass polystyrenes, strain hardening s...

  10. Polystyrene nanoparticles affect Xenopus laevis development

    Energy Technology Data Exchange (ETDEWEB)

    Tussellino, Margherita; Ronca, Raffaele [University of Naples Federico II, Department of Biology (Italy); Formiggini, Fabio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Marco, Nadia De [University of Naples Federico II, Department of Biology (Italy); Fusco, Sabato; Netti, Paolo Antonio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Carotenuto, Rosa, E-mail: rosa.carotenuto@unina.it [University of Naples Federico II, Department of Biology (Italy)

    2015-02-15

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  11. Polystyrene nanoparticles affect Xenopus laevis development

    Science.gov (United States)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-02-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay- Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the "corona" effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  12. Ultrasonically Aided Electrospray source for monodisperse, charged nanoparticles

    Science.gov (United States)

    Song, Weidong

    This dissertation presents a new method of producing nearly monodisperse electrospray using charged capillary standing waves. This method, based on the Ultrasonically Aided Electrospraying (UAE) technology concept invented by the author, includes the steps of dispensing a liquid on the top surface of a diaphragm so as to form a liquid film on the surface of the diaphragm, setting the diaphragm into vibration using piezoelectric transducers so as to induce capillary standing waves in the liquid film, applying electric charge to the capillary standing waves so that electrospray is extracted from the crests of the capillary standing waves. Theoretical analysis on the formation of charged particles from charged capillary standing waves at critically stable condition is performed. An experimental UAE system is designed, built, and tested and the performance of this new technology concept is assessed. Experimental results validate the capabilities of the UAE concept. The method has several applications including electric space propulsion, nano particulate technologies, nanoparticle spray coating and painting techniques, semiconductor fabrication and biomedical processes. Two example applications in electric space propulsion and nanoparticle spray coating are introduced.

  13. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  14. Autoadhesion of High-Molecular-Weight Monodisperse Glassy Polystyrene at unexpected low temperatures

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Healing of symmetric interfaces of amorphous anionically polymerized high- and ultra-high-molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight-average molecular weight M-w from 102.5 (M-w/M-n = 1.05) to 1110 kg/ mol (M-w/M-n = 1.15) was followed at a constant...

  15. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shichuan; Zhang, Tonglai; Tang, Runze; Qiu, Hao [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Caiqin [Shandong Special Industry Group Co., Ltd, Shandong 255201 (China); Zhou, Zunning [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-04-01

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (M{sub s}) of 97.979 emu/g and retentivity (M{sub r}) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material. - Highlights: • A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work. • The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes. • The superparamagnetic NaCit–Fe{sub 3}O{sub 4} samples have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. • The relevant formation mechanisms of the two types of samples are proposed.

  16. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    OpenAIRE

    Zhen Yin; Yining Zhang; Kai Chen; Jing Li; Wenjing Li; Pei Tang; Huabo Zhao; Qingjun Zhu; Xinhe Bao; Ding Ma

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the s...

  17. Preparation of Monodisperse Nanoparticle of Layered Double Hydroxides and Polyoxyethylene Sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Huizhong; QIN Lianjie; ZHANG Hong; YANG Qinzheng; YANG Jing

    2005-01-01

    In order to obtain the bio-molecule/ LDHs nanocomposites having regular crystal structure,three nanocomposites of layered double hydroxides and polyoxyethylene sulfates were prepared by ion-exchange method. TEM analysis reveals that the monodisperse rigid .sphere of approximately 200 nm in diameter could be gotten when the intergallery anion was PEGS-400. Such monodisperse nanoparticle could be used as a promising precursor for preparing bio-molecule/LDHs nanocomposites.

  18. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  19. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet; Ojha, Animesh K. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004 (India); Srivastava, Manish, E-mail: 84.srivastava@gmail.com, E-mail: manish-mani84@rediffmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Singh, Jay [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Yashpal, Madhu [Electron Microscope Facility, Department of Anatomy Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Materny, Arnulf [Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Campus Ring, 28759 Bremen (Germany)

    2015-02-15

    In the present study, monodispersed CeO{sub 2} nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce{sup 4+} into Ce{sup 3+} at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm{sup -1} for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce{sup 3+} ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO{sub 2} samples.

  20. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.

    Science.gov (United States)

    Fan, Wen; Yan, Wei; Xu, Zushun; Ni, Hong

    2012-02-01

    Chitosan nanoparticles have been extensively studied for drug and gene delivery. In this paper, monodisperse, low molecular weight (LMW) chitosan nanoparticles were prepared by a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent. The objective of this study was to solve the problem of preparation of chitosan/TPP nanoparticles with high degree of monodispersity and stability, and investigate the effect of various parameters on the formation of LMW chitosan/TPP nanoparticles. It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process. The optimized nanoparticles exhibited a mean hydrodynamic diameter of 138 nm with a polydispersity index (PDI) of 0.026 and a zeta potential of +35 mV, the nanoparticles had good storage stability at room temperature up to at least 20 days.

  1. Synthesis and application of monodisperse oligo(oxyethylene)-grafted polystyrene resins for solid-phase organic synthesis.

    Science.gov (United States)

    Lumpi, Daniel; Braunshier, Christian; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-07-14

    In a preliminary investigation by our group, we found that poly(styrene-oxyethylene) graft copolymers (PS-PEG), for example, TentaGel resins, are advantageous for gel-phase (13)C NMR spectroscopy. Because of the solution-like environment provided by the PS-PEG resins, good spectral quality of the attached moiety can be achieved, which is useful for nondestructive on-resin analysis. The general drawbacks of such resins are low loading capacities and the intense signal in the spectra resulting from the PEG linker (>50 units). Here, we describe the characterization of solvent-dependent swelling and reaction kinetics on a new type of resin for solid-phase organic synthesis (SPOS) that allows an accurate monitoring by gel-phase NMR without the above disadvantages. A series of polystyrene-oligo(oxyethylene) graft copolymers containing monodisperse PEG units (n = 2-12) was synthesized. A strong correlation between the linker (PEG) length and the line widths in the (13)C gel-phase spectra was observed, with a grafted PEG chain of 8 units giving similar results in terms of reactivity and gel-phase NMR monitoring to TentaGel resin. Multistep on-resin reaction sequences were performed to prove the applicability of the resins in solid-phase organic synthesis.

  2. Mono-dispersed cross-linked polystyrene micro-spheres prepared by seed swelling polymerization method

    Institute of Scientific and Technical Information of China (English)

    Dongsha WANG; Yanjun LIU

    2008-01-01

    A two-step swelling procedure was adopted to synthesize mono-dispersed and highly cross-linked poly (St-divinylbenzene) particles with PSt micro-spheres (1.80 μmin diameter). The PSt micro-spheres were prepared by a dispersion polymerization method and used as seeds. The effects of monomer concentration, ratio of ethanol to water, swelling reagents, crosslinking reagents, swelling temper-ature and agitation speed on particle size were investigated in detail. The morphologies and size distributions of these micro-spheres were examined by SEM and particle size analysis (PSA). The Tg of the micro-spheres was measured by DSC. The results indicate that the particles (6.20 μm in diameter) exhibit excellent mono dispersed property and high crosslinking degree when the concentration of the swelling reagent was 25%, the concentration of the cross-linking reagents was 23%, the swelling temperature was 30℃ and the stirring speed was 150 r/min.

  3. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles

    Science.gov (United States)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Hevyk, V. B.; Yakibchuk, P. M.; Gektin, A. V.; Voloshinovskii, A. S.

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF2 nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF2 nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF2 nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF2 nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF2 nanoparticles by polystyrene.

  4. Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol.The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanoparticles was investigated.X-ray diffraction (XRD),transmission electron microscopy (TEM),and high resolution transmission electron microscopy (HRTEM) were employed to characterize the nickel particles are spherical in shape and are not agglomerated.A possible extensive mechanism of nickel nanoparticle formation has been suggested.

  5. Autoadhesion of High-Molecular-Weight Monodisperse Glassy Polystyrene at unexpected low temperatures

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    -bulk corresponding to a second-order phase transition temperature). To our knowledge, this is the first observation of such nature, which gives further evidence of the lowering of the T-g at polymeric surfaces and the persistence of this effect at early stages of healing of polymer-polymer interfaces.......Healing of symmetric interfaces of amorphous anionically polymerized high- and ultra-high-molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight-average molecular weight M-w from 102.5 (M-w/M-n = 1.05) to 1110 kg/ mol (M-w/M-n = 1.15) was followed at a constant...... healing temperature, T-h, well below the glass transition temperature of the polymer bulk [Tg-bulk = 105 - 106degreesC as measured by differential scanning calorimeter (DSC)]. The bonded interfaces were shear fractured in tension on an Instron tester at ambient temperature. Autoadhesion at symmetric HMW...

  6. PREPARATION OF MONODISPERSE POLYSTYRENE MICROSPHERES BY SHELL POROUS GLASS-SUSPENSION POLYMERIZATION%用多孔玻璃膜管-悬浮聚合法制备单分散性聚苯乙烯微球

    Institute of Scientific and Technical Information of China (English)

    范星河; 谢晓峰

    2001-01-01

    Monodisperse polystyrene microspheres are prepared by shell porous glass(SPG)-suspension polymerization. The influences of SPG on size and size dispersity of the microspheres are investigated. The properties of the microspheres are studied by GPC, TEM and SEM. The results indicate that the polystyrene microspheres possess definite monodispersibity and their particle size is in the range of 5~12μm.

  7. Conventional and microwave hydrothermal synthesis of monodispersed metal oxide nanoparticles at liquid-liquid interface

    Science.gov (United States)

    Monodispersed nanoparticles of metal oxide including ferrites MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3, Ta2O5 etc. have been synthesized using a water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure uses readily availab...

  8. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.

    Science.gov (United States)

    Hazarika, Mousumi; Arunbabu, Dhamodaran; Jana, Tushar

    2010-11-15

    We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology.

  9. Controlled Synthesis and Characterization of Monodisperse Fe3O4 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    SHI,Rongrong; GAO,Guanhua; YI,Ran; ZHOU,Kechao; QIU,Guanzhou; LIU,Xiaohe

    2009-01-01

    Monodisperse Fe3O4 nanoparticles were successfully synthesized through the thermal decomposition of iron acetylacetonate in octadecene solvent in the presence of oleic acid and oleylamine.The influences of experimental parameters,such as reacting temperature,amounts and kinds of surfactants,solvents,oleic acid and oleylamine,on the size and shape of monodisperse Fe3O4 nanoparticles were discussed.The phase structures,morphology,and size of the as-prepared products were investigated in detail by X-ray diffraction (XRD),transmission electron microscopy (TEM),selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM).Magnetic property was measured using a vibrating sample magnetometer (VSM) at room temperature,which revealed that Fe3O4 nanoparticles were of ferromagnetism with a saturation magnetization (Ms) of 74.0 emu/g and coercivity (Hc) of 72.6 Oe.

  10. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    Science.gov (United States)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  11. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles

    Science.gov (United States)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Gektin, A. V.; Voloshinovskii, A. S.

    2016-02-01

    Luminescence-kinetic properties of polystyrene composites based on BaF2 nanoparticles were studied. The electron emission from the nanoparticles due to the photoelectric effect is the main luminescence excitation mechanism in the case of polystyrene composites loaded with small BaF2 nanoparticles (~20 nm). Scintillation pulse of polystyrene composites possesses only fast decay component with the time constant τ~2 ns, and its emission intensity considerably exceeds the one for pure polystyrene scintillator upon the X-ray excitations.

  12. Luminescent and kinetic properties of the polystyrene composites based on BaF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya Street, 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Avenue, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya Street, 79005 Lviv (Ukraine)

    2016-02-21

    Luminescence-kinetic properties of polystyrene composites based on BaF{sub 2} nanoparticles were studied. The electron emission from the nanoparticles due to the photoelectric effect is the main luminescence excitation mechanism in the case of polystyrene composites loaded with small BaF{sub 2} nanoparticles (~20 nm). Scintillation pulse of polystyrene composites possesses only fast decay component with the time constant τ~2 ns, and its emission intensity considerably exceeds the one for pure polystyrene scintillator upon the X-ray excitations.

  13. Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2007-04-01

    Metal-oxide-semiconductor capacitors containing various densities of ex situ produced, colloidal, highly monodisperse, spherical, 1nm silicon nanoparticles were fabricated and evaluated for potential use as charge storage elements in future nonvolatile memory devices. The capacitance-voltage characteristics are well behaved and agree with similarly fabricated zero-nanoparticle control samples and with an ideal simulation. Unlike larger particle systems, the demonstrated memory effect exhibits effectively pure hole storage. The nature of charging, hole type versus electron type may be understood in terms of the characteristics of ultrasmall silicon nanoparticles: large energy gap, large charging energy, and consequently a small electron affinity.

  14. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  15. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.

    Science.gov (United States)

    Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) Ω m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  16. Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    FU YunZhi; DU YuKou; YANG Ping; LI JinRu; JIANG Long

    2007-01-01

    We describe here that fine control of nanoparticle shape and size can be achieved by systematic variation of experimental parameters in the seeded growth procedure in aqueous solution. Cubic and spherical gold nanoparticles are obtained respectively. In particularly, the Au cubes are highly monodisperse in 33±2 nm diameter. The experimental methods involve the preparation of Au seed particles and the subsequent addition of an appropriate quantity of Au seed solution to the aqueous growth solutions containing desired quantities of CTAB and ascorbic acid (AA). Here, AA is a weak reducing agent and CTAB is not only a stable agent for nanoparticles but also an inductive agent for leading increase in the face of nanoparticle. Ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) are used to characterize the nanoparticles. The results show that the different size gold nanoparticles displayed high size homogenous distribution and formed mono-membrane at the air/solid interface.

  17. Synthesis of mono-dispersed Fe-Co nanoparticles with precise composition control

    Science.gov (United States)

    Wang, Yufeng; Zheng, Yi; Hu, Shuchun

    2017-01-01

    Monodispersed Fe-Co nanoparticles are synthesized by reducing FeCl2 and CoCl2 in diphenyl ether, with n-butyllithium as reducing agent and oleic acid as surfactant. The body centered cubic (BCC) crystal structure of Fe-Co nanoparticles is confirmed by both XRD patterns and TEM diffraction patterns. The average nanoparticle size is 10 nm at the reported experimental condition. The magnetization of the Fe-Co increases with increased cobalt atomic percentage. XPS technique is used to investigate the surface chemical states of Fe-Co nanoparticles. Finally, the composition of Fe-Co nanoparticles is investigated through EDX, confirming the molar ratio of Fe/Co in nanoparticles could be accurately controlled by changing the composition of the precursors.

  18. Microfluidic synthesis of monodisperse Cu nanoparticles in aqueous solution.

    Science.gov (United States)

    Ke, Te; Zeng, Xiao-Fei; Wang, Jie-Xin; Le, Yuan; Chu, Guang-Wen; Chen, Jian-Feng; Shao, Lei

    2011-06-01

    The continuous production of Cu nanoparticles with a particle size of 2-5 nm was conducted by sodium borohydride reduction of copper sulfate in aqueous solution in a tube-in-tube microchannel reactor (TMR), which consists of an inner tube and an outer tube with the reaction performed in the annular microchannel between these two tubes. The as-prepared Cu nanoparticles were compared with those obtained by a conventional batch synthesis process by using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy. Due to the highly intensified micromixing effects in the TMR, Cu nanoparticles prepared by this route exhibits a smaller particle size, narrower size distribution and better stability in air. The TMR shows an excellent ability of preparing high-quality Cu nanoparticles in mild conditions. In addition, with the unique microchannel structure, the throughput capability of the TMR for the production of Cu nanoparticles is up to several liters per minute.

  19. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States); Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States); Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-06-22

    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  20. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  1. Direct Dry-Grinding Synthesis of Monodisperse Lipophilic CuS Nanoparticles.

    Science.gov (United States)

    Li, Yajuan; Scott, Julie; Chen, Yi-Tzai; Guo, Liangran; Zhao, Mingyang; Wang, Xiaodong; Lu, Wei

    2015-07-15

    Copper sulfide nanoparticles, effective absorbers of near-infrared light, are recently attracting broad interest as a photothermal coupling agent for cancer therapy. Lipophilic copper sulfide nanoparticles are preferred for high performance biomedical applications due to high tissue affinity. Synthesis of lipophilic copper sulfide nanoparticles requires complicated multi-step processes under severe conditions. Here, we describe a new synthetic process, developed by direct dry-grinding of copper(II) acetylacetonate with sulfur under ambient environment at low temperature. The formed CuS nanoparticles are of uniform size, ~10 nm in diameter, and are monodispersed in chloroform. Each covellite CuS nanocrystal surface is modified with oleylamine through hydrogen bonding between sulfur atoms and amine groups of oleylamine. The nanoparticles demonstrate near-infrared light absorption for photothermal applications. The synthetic methodology described here is more convenient and less extreme than previous methods, and should thus greatly facilitate the preparation of photothermal lipophilic copper sulfide nanomaterials for cancer therapy.

  2. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Jing Wen [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); Saunders, Martin [Centre for Microscopy, Characterisation and Analysis, University of Western Australia (Australia); Lim, Lee-Yong, E-mail: lee.lim@uwa.edu.au [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); School of Biomedical, Biomolecular and Chemical Sciences, 35 Stirling Hwy, Crawley 6009 (Australia)

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  3. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  4. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  5. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    Science.gov (United States)

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  6. Sulfonated Poly(styrene) Chains Grafted on Magnetic Nanoparticles

    Science.gov (United States)

    Jiao, Yang; Yevelev, Anton; Parra, Javier; Akcora, Pinar; Stevens Institute of Technology Team

    2014-03-01

    Iron oxide nanoparticles functionalized with poly(styrene) (PS) chains at various grafting densities and loadings present stable and ordered nanostructures for tuning the mechanical and conductive properties in polymer composites. Strings, spherical and anisotropic clusters and well-dispersed particles are achieved with PS-grafted Fe3O4 nanoparticles in PS matrices upon varying the system parameters. In this work, we report the effect of sulfonic group locations on the aggregation state of polymer-grafted nanoparticles. Structures formed by the random and diblock copolymers of PS-poly(styrene sulfonate) (PSS) grafted particles will be discussed with small-angle x-ray scattering (SAXS) measurements in solution and melts. The conformational changes in PS-grafted chains and ion-containing grafts will be also presented in small-angle neutron-scattering (SANS) results to understand the role of polymer on the assembly of particles at the low grafting density. We acknowledge support by NSF-CAREER-DMR (#1048865).

  7. Self-Organization of CdS Nanoparticles in Polystyrene Film

    Institute of Scientific and Technical Information of China (English)

    梁海春; 向红; 容敏智; 章明秋; 曾汉民; 王树峰; 龚旗煌

    2002-01-01

    Self-organization of nano-CdS particles in polystyrene can be observed by encapsulating the particles with ndodecyl mercaptan owing to a strong electron transfer interaction between the modified CdS nanoparticles and aliphatic carbons in polystyrene. Consequently, ultraviolet/visible absorption edge of the treated nanoCdS/polystyrene composites is further blueshifted in addition to the shift caused by the quantum size effect, and the fluorescence emission peak of the composite becomes redshifted and narrow.

  8. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  9. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone.

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-02

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ∼100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ∼100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering-volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  10. Porous TiO2 Assembled from Monodispersed Nanoparticles

    OpenAIRE

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-01-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending...

  11. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  12. Facile synthesis of monodisperse thermally immiscible Ag–Ni alloy nanoparticles at room temperature

    Indian Academy of Sciences (India)

    S Tabatabaei; S K Sadrnezhaad

    2014-10-01

    Ag and Ni are immiscible, mainly due to their large lattice mismatch. This paper reports on their nanoscale formation of solid solution at room temperature by simple reduction reactions which lead to the amorphous Ag–Ni alloy nanoparticles (ANPs) with mono-disperse distribution. Microscopic and spectroscopic studies confirmed dependence of the alloy composition on size of nanoparticles. In the presence of different ligands such as sodium citrate, polyvinyl alcohol and potassium carbonate a mixture of silver oxide and Ag–Ni ANPs was achieved. Stoichiometry of the Ag–Ni ANPs was also found to be strongly dependent on ligands of the reduction reaction and further study shows without any ligand 100% Ag–Ni ANPs was observed in the system. Using Tetrakis hydroxymethyl phosphonium chloride resulted in construction of near-uniform ANPs in the easily controllable conditions of the present alloying procedure. Nanoparticles having up to 65% Ni were observed for the first time in this research.

  13. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract

    Science.gov (United States)

    Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-01-01

    A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248

  14. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method

    Directory of Open Access Journals (Sweden)

    Kazem Naghavi

    2013-04-01

    Full Text Available Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0 to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1, allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology.

  15. Direct dry-grinding synthesis of monodisperse lipophilic CuS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yajuan; Scott, Julie; Chen, Yi-Tzai; Guo, Liangran; Zhao, Mingyang; Wang, Xiaodong [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); Lu, Wei, E-mail: weilu@uri.edu [Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI 02881 (United States); School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-07-15

    Copper sulfide nanoparticles, effective absorbers of near-infrared light, are recently attracting broad interest as a photothermal coupling agent for cancer therapy. Lipophilic copper sulfide nanoparticles are preferred for high performance biomedical applications due to high tissue affinity. Synthesis of lipophilic copper sulfide nanoparticles requires complicated multi-step processes under severe conditions. Here, we describe a new synthetic process, developed by direct dry-grinding of copper(II) acetylacetonate with sulfur under ambient environment at low temperature. The formed CuS nanoparticles are of uniform size, ∼10 nm in diameter, and are monodispersed in chloroform. Each covellite CuS nanocrystal surface is modified with oleylamine through hydrogen bonding between sulfur atoms and amine groups of oleylamine. The nanoparticles demonstrate near-infrared light absorption for photothermal applications. The synthetic methodology described here is more convenient and less extreme than previous methods, and should thus greatly facilitate the preparation of photothermal lipophilic copper sulfide nanomaterials for cancer therapy. - Highlights: • We make lipophilic CuS nanoparticles by mechanical grinding method in large scale. • The reaction condition is studied to obtain high yield and uniform size. • The synthesis does not need nitrogen protection or high temperature. • Lipophilic CuS nanoparticles show significant near-infrared absorbance.

  16. Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical microscopy

    Science.gov (United States)

    Röding, Magnus; Zagato, Elisa; Remaut, Katrien; Braeckmans, Kevin

    2016-06-01

    We present an approximate Bayesian computation scheme for estimating number concentrations of monodisperse diffusing nanoparticles in suspension by optical particle tracking microscopy. The method is based on the probability distribution of the time spent by a particle inside a detection region. We validate the method on suspensions of well-controlled reference particles. We illustrate its usefulness with an application in gene therapy, applying the method to estimate number concentrations of plasmid DNA molecules and the average number of DNA molecules complexed with liposomal drug delivery particles.

  17. A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [ORNL; Peng, Sheng [Brown University; Lee, Youngmin [Brown University; Wang, Chao [Brown University; Yin, Hongfeng [ORNL; Sun, Shouheng [ORNL

    2008-01-01

    Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl{sub 4} {center_dot} 3H{sub 2}O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at -45 C.

  18. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Immobilization of the atom transfer radical polymerization(ATRP)macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate(TDI),after which the residual isocyanate groups were converted into ATRP macroinitiators.Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined,densely grafted outer polystyrene by ATRP,which was initiated by the as-synthesized silica-based macroinitiator.FTIR,NMR and gel permeation chromatography(GPC)were used to characterize the polystyrene/silica hybrid particles.

  19. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Immobilization of the atom transfer radical polymerization (ATRP) macroinitiators at the silica nanoparticle surfaces was achieved through surface modification with excess toluene-2,4-diisocynate (TDI), after which the residual isocyanate groups were converted into ATRP macroinitiators. Structurally well-defined polystyrene chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene by ATRP, which was initiated by the as-synthesized silica-based macroinitiator. FTIR, NMR and gel permeation chro-matography (GPC) were used to characterize the polystyrene/silica hybrid particles.

  20. Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We describe here that fine control of nanoparticle shape and size can be achieved by systematic varia-tion of experimental parameters in the seeded growth procedure in aqueous solution. Cubic and spherical gold nanoparticles are obtained respectively. In particularly, the Au cubes are highly mono-disperse in 33±2 nm diameter. The experimental methods involve the preparation of Au seed particles and the subsequent addition of an appropriate quantity of Au seed solution to the aqueous growth solutions containing desired quantities of CTAB and ascorbic acid (AA). Here, AA is a weak reducing agent and CTAB is not only a stable agent for nanoparticles but also an inductive agent for leading increase in the face of nanoparticle. Ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) are used to characterize the nanoparticles. The results show that the different size gold nanoparticles displayed high size homogenous distribution and formed mono-membrane at the air/solid interface.

  1. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  2. DMSO as a solvent/ligand to monodisperse CdS spherical nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijun [China Pharmaceutical University, Physical Chemistry Lab, School of Science (China); Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education (China)

    2016-01-15

    Monodisperse CdS nanospheres assembled by small nanoparticles were prepared using dimethyl sulfoxide (DMSO) as a solvent through several routes including thermolysis of xanthate, the reaction of cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}) with thiourea, and interfacial reaction of CS{sub 2} and Cd(CH{sub 3}CO{sub 2}){sub 2}/DMSO. The corresponding products possessed the particle sizes ranging from around 35 to 45 nm, 63 to 73 nm, and 240 to 280 nm, respectively. These products presented uniform spherical morphology, which provide insights into the effect of DMSO on CdS morphology. DMSO, as an aprotic and polar solvent, possesses unique properties. The oxygen and sulfur atoms in DMSO can coordinate to metal ions on nanoparticles surface, and the high polarity of DMSO is favorable to fast reaction, nucleation, growth, and Ostwald ripening, forming monodisperse nanospheres with narrow size distribution. The influence of CdS size on its photocatalytic activity was evaluated using Rhodamine B (RhB) as a model compound under visible light irradiation.

  3. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    Science.gov (United States)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.

  4. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2009-06-01

    The magnetite nanoparticles were synthesized in an ethanol-water solution under ultrasonic irradiation from a Fe(OH)(2) precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol-water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol-water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol-water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe(2+) concentration in the magnetite cubic structure.

  5. Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Bin Du

    2015-01-01

    Full Text Available Insulating oil modified by nanoparticles (often called nanofluids has recently drawn considerable attention, especially concerning the improvement of electrical breakdown and thermal conductivity of the nanofluids. In this paper, three sized monodisperse Fe3O4 nanoparticles were prepared and subsequently dispersed into insulating vegetable oil to achieve nanofluids. The dispersion stability of nanoparticles in nanofluids was examined by natural sedimentation and zeta potential measurement. The electrical breakdown strength, space charge distribution, and several dielectric characteristics, for example, permittivity, dielectric loss, and volume resistivity of these nanofluids, were comparatively investigated. Experimental results show that the monodisperse Fe3O4 nanoparticles not only enhance the dielectric strength but also uniform the electric field of the nanofluids. The depth of electrical potential well of insulating vegetable oils and nanofluids were analyzed to clarify the influence of nanoparticles on electron trapping and on insulation improvement of the vegetable oil.

  6. Hydrothermal growth of highly monodispersed TiO2 nanoparticles: Functional properties and dye-sensitized solar cell performance

    Science.gov (United States)

    Navaneethan, M.; Nithiananth, S.; Abinaya, R.; Harish, S.; Archana, J.; Sudha, L.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.

    2017-10-01

    Monodispersed anatase TiO2 nanoparticles were synthesized by hydrothermal method using citric acid as a capping agent. The effect of citric acid and the growth time on the formation of TiO2, functional properties and dye-sensitized solar cell performances were investigated. X-ray diffraction pattern (XRD) and Raman spectroscopy results revealed that the TiO2 nanoparticles possess the anatase phase. Transmission electron microscopy (TEM) measurement revealed the formation of spherical nanoparticles with monodispersity in size and morphology. An average size of 14 nm was obtained for the growth period of 15 h. The maximum efficiency (η) of dye-sensitized solar cell was achieved for TiO2 nanoparticles grown for 15 h as 7.66% which was higher than that of commercial P25 TiO2 (5.23%) and uncapped nanoparticles (3.68%).

  7. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    Science.gov (United States)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular

  8. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-10

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  9. Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

    Science.gov (United States)

    Loos, Cornelia; Syrovets, Tatiana; Musyanovych, Anna; Mailänder, Volker; Landfester, Katharina; Nienhaus, G Ulrich

    2014-01-01

    Summary Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio–nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles. PMID:25671136

  10. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model

    NARCIS (Netherlands)

    Kloet, S.K.; Walczak, A.P.; Louisse, J.; Berg, H.H.J. van den; Bouwmeester, H.; Tromp, P.; Fokkink, R.G.; Rietjens, I.M.C.M.

    2015-01-01

    To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcino

  11. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    Monodisperse metal nanoparticles (NPs) with high activity and selectivity are among the most important catalytic materials. However, the intrinsic process to obtain well-dispersed metal NPs with tunable high density (ranging from 10(13) to 10(16) m(-2)) and thermal stability is not yet well under...

  12. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  13. Time Resolved Nucleation and Growth of Monodisperse FeOOH Nanoparticles Observed in situ

    Science.gov (United States)

    Legg, B. A.; Zhu, M.; Zhang, H.; Waychunas, G.; Banfield, J. F.

    2012-12-01

    The nucleation and growth of oxide minerals from aqueous solution is a poorly understood process. Complexities such as two-stage precipitation, phase transformation, and hydrolysis often inhibit simple interpretation. In this study, we track the thermally induced nucleation and growth of akaganeite (β-FeOOH) nanoparticles from FeCl3 solutions, using in situ time resolved small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Variations in reaction temperature (from 37 deg C to 80 deg C) and FeCl3 concentration (from 5 mM to 800 mM) produce systematic changes in nucleation rate, growth rate, particle size distribution, and aspect ratio. Low FeCl3 concentrations and high temperatures lead to formation of very small particles via rapid nucleation. (FeCl3 solutions are actually more supersaturated with respect to akaganeite when concentrations are low, due to the acid-base chemistry of ferric iron.) Increasing the FeCl3 concentration leads to large, highly monodisperse particles via size focused growth. Suspensions of highly monodisperse, elongated particles are found to self-organize into two dimensional colloidal crystals. The well-controlled growth processes in this system make it possible to conduct detailed kinetic modeling, and determine how both nucleation and growth rate respond to changes in the experimental conditions.

  14. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO.

    Science.gov (United States)

    Zhu, Wenlei; Michalsky, Ronald; Metin, Önder; Lv, Haifeng; Guo, Shaojun; Wright, Christopher J; Sun, Xiaolian; Peterson, Andrew A; Sun, Shouheng

    2013-11-13

    We report selective electrocatalytic reduction of carbon dioxide to carbon monoxide on gold nanoparticles (NPs) in 0.5 M KHCO3 at 25 °C. Among monodisperse 4, 6, 8, and 10 nm NPs tested, the 8 nm Au NPs show the maximum Faradaic efficiency (FE) (up to 90% at -0.67 V vs reversible hydrogen electrode, RHE). Density functional theory calculations suggest that more edge sites (active for CO evolution) than corner sites (active for the competitive H2 evolution reaction) on the Au NP surface facilitates the stabilization of the reduction intermediates, such as COOH*, and the formation of CO. This mechanism is further supported by the fact that Au NPs embedded in a matrix of butyl-3-methylimidazolium hexafluorophosphate for more efficient COOH* stabilization exhibit even higher reaction activity (3 A/g mass activity) and selectivity (97% FE) at -0.52 V (vs RHE). The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and selective electrocatalytic reduction of CO2 to CO.

  15. Determination of the Tracer Diffusion Coefficient of Soft Polystyrene Nanoparticles using Neutron Reflectivity

    Science.gov (United States)

    Imel, Adam; Miller, Brad; Holley, Wade; Baskaran, Durairaj; Mays, Jimmy; Dadmun, Mark

    2015-03-01

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and depend intimately on the dispersion of the nanoparticles. We examine the diffusion of soft, organic nanoparticles, which disperse in a polymer matrix due to the interpenetration of polymer chains and particles and the reduction in the depletion of entropy in the system. The impact of the presence of soft nanoparticles on the diffusion coefficient of polystyrene chains has recently been determined with neutron reflectivity. This was completed by monitoring the interdiffusion of deuterated and protonated polystyrene nanocomposite bilayers with and without the soft nanoparticles dispersed throughout both layers and extracting the diffusion coefficient from the one-dimensional solution to Fick's second law of diffusion. In this work, we extend this method to bilayer systems with only the soft nanoparticles as one of the layers and a linear deuterated polystyrene as an adjacent layer. The development of this method allows us to determine the tracer diffusion coefficient of the soft polystyrene nanoparticles for the first time by analyzing the mutual diffusion coefficient from Fick's second law and the fast and slow modes theories for diffusion.

  16. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing.

    Science.gov (United States)

    Thomassen, Leen C J; Aerts, Alexander; Rabolli, Virginie; Lison, Dominique; Gonzalez, Laetitia; Kirsch-Volders, Micheline; Napierska, Dorota; Hoet, Peter H; Kirschhock, Christine E A; Martens, Johan A

    2010-01-05

    For the investigation of the interaction of nanoparticles with biomolecules, cells, organs, and animal models there is a need for well-characterized nanoparticle suspensions. In this paper we report the preparation of monodisperse dense amorphous silica nanoparticles (SNP) suspended in physiological media that are sterile and sufficiently stable against aggregation. SNP sols with various particle sizes (2-335 nm) were prepared via base-catalyzed hydrolysis and polymerization of tetraethyl orthosilicate under sterile conditions using either ammonia (Stober process (1) ) or lysine catalyst (Lys-Sil process (2) ). The series was complemented with commercial silica sols (Ludox). Silica nanoparticle suspensions were purified by dialysis and dispersed without using any dispersing agent into cell culture media (Dulbecco's Modified Eagle's medium) containing antibiotics. Particle sizes were determined by dynamic light scattering. SNP morphology, surface area, and porosity were characterized using electron microscopy and nitrogen adsorption. The SNP sols in cell culture medium were stable for several days. The catalytic activity of the SNP in the conversion of hydrogen peroxide into hydroxyl radicals was investigated using electron paramagnetic resonance. The catalytic activity per square meter of exposed silica surface area was found to be independent of particle size and preparation method. Using this unique series of nanoparticle suspensions, the relationship between cytotoxicity and particle size was investigated using human endothelial and mouse monocyte-macrophage cells. The cytotoxicity of the SNP was strongly dependent on particle size and cell type. This unique methodology and the collection of well-characterized SNP will be useful for further in vitro studies exploring the physicochemical determinants of nanoparticle toxicity.

  17. Evaporative purification to produce highly monodisperse polymers: Application to polystyrene for n =3 -13 and quantification of Tg from oligomer to polymer

    Science.gov (United States)

    Zhu, S.; Chai, Y.; Forrest, J. A.

    2017-07-01

    We demonstrate the use of selective thermal evaporation to separate and purify small molecular weight polymers into highly monodisperse polymers over an extended range of polymerization index. By exploiting the calculated dependence of polymer vapor pressure on polymerization index N and temperature T , we can isolate individual components (N -mers) of an initially polydisperse mixture. To demonstrate this ability, we consider polystyrene samples of Mw=600 g/mol and Mw=890 g/mol with narrow molecular weight distributions, as well as a Mw=1200 g/mol sample with a broader distribution. In each case we are able to separate the sample into milligram quantities of many different components. Using this technique, we have been able to isolate N -mers from 3 to 13. We use differential scanning calorimetry to measure the Tg values of these components, and find that the components have the same Tg values independent of the Mw or polydispersity of the sample they originate from. We find that even initially narrow molecular weight distributions have many different components whose Tg values can differ by more than 50 K. Calculations suggest the isolated components have Mw/Mn values less than 1.001 and through a second iteration of the process could become as low as 1.000 003. The measured Tg values for the N -mers as well as large N polymers are well described by a simple relation derived from the Fox equation for the Tg of mixtures.

  18. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Directory of Open Access Journals (Sweden)

    Lewinski Nastassja

    2011-01-01

    Full Text Available Abstract An in depth analysis of gold nanoparticle (AuNP synthesis and size tuning, utilizing carbon monoxide (CO gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min.

  19. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications

    Science.gov (United States)

    Araújo-Neto, R. P.; Silva-Freitas, E. L.; Carvalho, J. F.; Pontes, T. R. F.; Silva, K. L.; Damasceno, I. H. M.; Egito, E. S. T.; Dantas, Ana L.; Morales, Marco A.; Carriço, Artur S.

    2014-09-01

    We report a simple and low cost methodology to synthesize sodium oleate coated magnetite nanoparticles for hyperthermia applications. The system consists of oleate coated magnetite nanoparticles with large susceptibility (1065 emu/gT), induced by the dipolar inter-particle interaction, with a magnetic core diameter in the 6 nm-12 nm size range. In aqueous medium, the nanoparticles agglomerate to form a monodisperse system, exhibiting a mean hydrodynamic diameter of 60.6 nm±4.1 nm, with a low average polydispersity index of 0.128±0.003, as required for intravenous applications. The system exhibits promising efficiency for magnetic hyperthermia, with a specific absorption rate of 14 W/g at a low field amplitude of 15.9 kA/m and frequency of 62 kHz. In a 50 mg/mL density in 1 mL, the temperature rises to 42.5 °C in 1.9 min.

  20. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  1. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  2. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  3. Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor.

    Science.gov (United States)

    Li, Yuanyuan; Liu, Shoujie; Yao, Tao; Sun, Zhihu; Jiang, Zheng; Huang, Yuying; Cheng, Hao; Huang, Yuanyuan; Jiang, Yong; Xie, Zhi; Pan, Guoqiang; Yan, Wensheng; Wei, Shiqiang

    2012-10-14

    Synthesis of monodisperse small Au nanoparticles in a controllable manner is of great importance for fundamental science and technical applications. Here, we report a "precursor continuous-supply" strategy for controllable synthesis of 0.9-3.3 nm Au nanoparticles with a narrow size distribution of 0.1-0.2 nm, using a weak reductant to slow-down the reducing rate of AuClPPh(3) precursor in ethanol. Time-dependent X-ray absorption and UV-Vis absorption measurements revealed that owing to the joint use of AuClPPh(3) and ethanol, the remnant AuClPPh(3) was self-supplied and the precursor concentration was maintained at a level near to its equilibrium solubility (ca. 1.65 mmol L(-1)) in ethanol. Hence the nucleation duration was extended that focused the initial size distribution of the Au clusters. With reaction going on for 58 min, most of AuClPPh(3) with a nominal Au concentration of 17.86 mmol L(-1) was converted to ethanol-soluble Au clusters with a size of about 1.0 nm, resulting in a high-yield synthesis.

  4. Synthesis of monodisperse nimesulide nanoparticles in microemulsions E170/isopropyl myristate/water/n-butanol (or isopropanol).

    Science.gov (United States)

    Debuigne, F; Cuisenaire, J; Jeunieau, L; Masereel, B; Nagy, J B

    2000-01-01

    Nanoparticles of nimesulide have been synthesized in two systems of microemulsion: E170/isopropyl myristate/water/n-butanol (or isopropanol). Nanoparticles are monodisperse. In the two microemulsions, the size of the nanoparticles is comprised between 45 and 60 A and also seems to be independent of the factor R ([water]/[E170]) and of the concentration of the nimesulide solubilized in chloroform. The constancy of the size suggests that the size is controlled by thermodynamic stabilization of the nanoparticles with the surfactant. The nature of the cosurfactant does not have an obvious influence on the nanoparticle size. The nanoparticles are instantaneously formed and stay stable during a long period of time (several months).

  5. X-ray excited luminescence of polystyrene-based scintillator loaded with LaPO4-Pr nanoparticles

    Science.gov (United States)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Gektin, A. V.; Voloshinovskii, A. S.

    2016-10-01

    Polystyrene film nanocomposites of 0.3 mm thickness with embedded LaPO4-Pr nanoparticles (40 wt. %) have been synthesized. The luminescent and kinetic properties of these polystyrene composites with embedded LaPO4-Pr nanoparticles upon pulse X-ray excitation have been studied. The luminescence intensity of this polystyrene material significantly increases as it is loaded with inorganic LaPO4-Pr nanoparticles. Nanocomposite films reveal luminescence spectra typical for polystyrene activators (p-Terphenyl and POPOP) and two components of decay time kinetics of luminescence with 12 ns and 2.8 ns time constants, depending on nanoparticle sizes. The component with 12 ns decay constant arises due to the radiative transfer of the 5d-4f-emission of the Pr3+ ions in the LaPO4 nanoparticles to the polystyrene. The decay component with the time constant 2.8 ns originates from luminescence of polystyrene matrix excited by electrons emitted from nanoparticles due to the photoeffect. This nonradiative mechanism of energy transfer from nanoparticles to polystyrene matrices is determinative for nanoparticles, as their sizes are smaller than a mean free path of an electron.

  6. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun; Li, Wei; Chen, Qiang [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oil was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.

  7. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.

    Science.gov (United States)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders; Linse, Sara; Malmendal, Anders; Cedervall, Tommy

    2015-01-06

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them.

  8. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  9. Composite Electroplating to Obtain Ni-ZrO2 Nanocomposite Coatings Containing Monodispersed ZrO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; HOU Feng-yan; GUO He-tong

    2004-01-01

    The Zirconia nanoparticles are dispersed well in the plating bath using polyelectrolyte dispersant and NiZrO2 nanocomposite coatings containing monodispersed ZrO2 nanoparticles are successfully prepared under DC electrodeposition condition. The effects of the dispersant concentration on the dispersibility of Zirconia nanoparticles in the plating bath and the hardness of nanocomposite coatings have been investigated. The results shows that the hardness of nanocomposite coatings are strongly influenced by the dispersion state of ZrO2 nanoparticles in the composite coatings and only a very low volume percent of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating.

  10. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

    Science.gov (United States)

    Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.

    2011-04-01

    Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (˜30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.

  11. Magnetic Behaviour and Heating Effect of Fe3O4 Ferrofluids Composed of Monodisperse Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Ying; DOU Yong-Hua; ZHANG Ling; GU Hong-Chen

    2007-01-01

    Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18 nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour,whereas the others display hysteresis properties and the coercivity increases with the increasing particle size.The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.

  12. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

    Science.gov (United States)

    He, Ming; Pang, Xinchang; Liu, Xueqin; Jiang, Beibei; He, Yanjie; Snaith, Henry; Lin, Zhiqun

    2016-03-18

    Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.

  13. Assessment of phototoxicity, skin irritation, and sensitization potential of polystyrene and TiO2 nanoparticles

    Science.gov (United States)

    Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Hyeok Choi, Byeong; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon; Son, Sang Wook

    2011-07-01

    The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.

  14. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles.

    Science.gov (United States)

    Tian, Jia; Vana, Philipp

    2016-02-18

    Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors.

  15. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.

    Science.gov (United States)

    Zhang, Yu; Zhu, Pengli; Li, Gang; Zhao, Tao; Fu, Xianzhu; Sun, Rong; Zhou, Feng; Wong, Ching-ping

    2014-01-08

    Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.

  16. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, Laura [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Cano-Cortés, Victoria; Rodríguez, María J. [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Vélez, Celia; Melguizo, Consolación, E-mail: melguizo@ugr.es [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Sánchez-Martín, Rosario M., E-mail: rmsanchez@ugr.es [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Prados, Jose [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain)

    2015-01-15

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer.

  17. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    Science.gov (United States)

    Cabeza, Laura; Cano-Cortés, Victoria; Rodríguez, María J.; Vélez, Celia; Melguizo, Consolación; Sánchez-Martín, Rosario M.; Prados, Jose

    2015-01-01

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer.

  18. N-halamine-decorated polystyrene nanoparticles based on 5-allylbarbituric acid: from controllable fabrication to bactericidal evaluation.

    Science.gov (United States)

    Dong, Alideertu; Huang, Zhen; Lan, Shi; Wang, Qin; Bao, Sarina; Siriguleng; Zhang, Yanling; Gao, Ge; Liu, Fengqi; Harnoode, Chokto

    2014-01-01

    N-halamine-based antibacterial polystyrene nanoparticles with different particle size ranged from 91.5 nm to 562.5 nm were facilely fabricated by surfactant-free emulsion polymerization with 5-allylbarbituric acid served as N-halamine precursor. Effect of experimental parameters such as monomer concentration, initiator concentration, and ionic strength on particle size was investigated systematically. N-halamine-based antibacterial polystyrene nanoparticles showed enhanced antibacterial activity against both Gram-positive species Staphylococcus aureus and Gram-negative species Pseudomonas aeruginosa compared with bulk powder N-halamine. Biocidal activity of N-halamine-based antibacterial polystyrene nanoparticles can be tailored effectively by tuning particle size. Stability and bactericidal activity of N-halamine-based antibacterial polystyrene nanoparticles was detected as a function of extending period.

  19. Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications.

    Science.gov (United States)

    Zhang, Xin-Sheng; Wang, Jie-Xin; Xu, Ke; Le, Yuan; Chen, Jian-Feng

    2011-04-01

    Monodisperse Ag@SiO2 core-shell structured nanoparticles were firstly utilized as a novel corrosion inhibitor for marine anticorrosion applications. The related marine anticorrosion properties were evaluated with an electrochemical noise (ECN) analysis during 2 weeks of accelerated immersion tests in natural seawater with the addition of various inorganic salts and nutriments. The experimental results indicate that the corrosion activity is markedly reduced by nearly 1-3 orders of magnitude owing to the introduction of Ag@SiO2 core-shell nanoparticles into coating. The inhibition efficiency of corrosion can reach as high as about 99%. More importantly, such a coating exhibits an excellent long-term sustained marine anticorrosion effect. So it could be reasonably inferred that silver cores as active inhibitors effectively prevent the corrosion damage from microorganisms, while silica shells act as a good protection for silver nanoparticles, delay the release of silver ions, and also function as the corrosion inhibiting action for inorganic salts. Therefore, this would make monodisperse Ag@SiO2 core-shell nanoparticles a potential and promising corrosion inhibitor for developing future advanced multifunctional coatings.

  20. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  1. Preparation of Size-tunable, Highly Monodisperse PVP-Protected Pt-nanoparticles by Seed-mediated Growth

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, Matthias Michael; Jones, Louis C.; Somorjai, Gabor A.

    2008-04-02

    We demonstrate a preparative method which produces highly-monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrollidone (PVP). Slow addition of the Pt-salt first will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  2. Monodisperse polyvinylpyrrolidone-coated CoFe{sub 2}O{sub 4} nanoparticles: Synthesis, characterization and cytotoxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangshuo, E-mail: wgs8136@163.com; Ma, Yingying, E-mail: bzhjgcmyy@163.com; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    Graphical abstract: - Highlights: • Monodisperse cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared with various additions of polyvinylpyrrolidone (PVP) by a facile sonochemical method. • PVP-coated CoFe{sub 2}O{sub 4} showed relatively well dispersion and homogeneous shape with narrow size distribution. • PVP-coated CoFe{sub 2}O{sub 4} exhibited superparamagnetism with moderate saturation magnetization and hydrophilic character at room temperature. • Negligible cytotoxicity of PVP-coated CoFe{sub 2}O{sub 4} was observed even at high sample concentration after 24 h treatment. - Abstract: In this study, monodisperse cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe{sub 2}O{sub 4} were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe{sub 2}O{sub 4} showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe{sub 2}O{sub 4} with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe{sub 2}O{sub 4} even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe{sub 2}O{sub 4} nanoparticles hold great potential in a variety of biomedical applications.

  3. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.

    Science.gov (United States)

    Seo, Minseok; Matsuura, Naomi

    2014-10-28

    Multifunctional medical agents based on imaging or therapy nanoparticles (NPs) incorporated into perfluorocarbon (PFC) droplets are promising new agents for cancer detection and treatment. For the first time, monodisperse PFC nanodroplets labeled with NPs have been produced. Lipophilic, as-synthesized, hydrocarbon-stabilized NPs are directly miscibilized into lipophobic PFCs using a removable cosolvent, diethyl ether (DEE), which eliminates the need of the typical time-consuming and expertise-specific NP surface modification steps previously required for NP incorporation into PFCs. This NP-DEE/PFC solution is then used to synthesize monodisperse, micrometer-scale, DEE-infused NP-PFC precursor droplets in water using microfluidics. After precursor microdroplet generation, the DEE cosolvent is removed by dissolution and evaporation, resulting in dramatically smaller, monodisperse, NP-labeled nanodroplets, with final droplet sizes far smaller than the minimum droplet size limit of the microfluidic system, and easily controlled by the amount of DEE mixed in the PFC phase prior to precursor droplet synthesis. Using this technique, unmodified lipophilic quantum dot (QD) NPs were integrated into monodisperse and PFC nanodroplets 165 times smaller in volume than the precursor microdroplets, with dimensions down to 470 nm. The final droplet sizes scaled with the PFC concentrations in the precursor microdroplets, and the QDs remain localized within the droplets after DEE is removed from the system. This method is robust and versatile, and it comprises a platform technology for other unmodified lipophilic NPs and molecules to be incorporated into different types of PFC droplets for the production of new NP-PFC hybrid agents for medical imaging and therapy applications.

  4. Formation of nanoparticles during melt mixing a thermotropic liquid crystalline polyester and sulfonated polystyrene ionomers

    Science.gov (United States)

    Lee, Hyuksoo; Zhu, Lei; Weiss, R. A.

    2006-03-01

    The formation of nanoparticles and the mechanism of their formation in a blend of a thermotropic liquid crystalline polyester (LCP) and the zinc salt of a lightly sulfonated polystyrene ionomer (Zn-SPS) were investigated using Fourier transform infrared, thermogravimetric analysis, and gas chromatograph-mass spectroscopy. Transmission electron microscopy and wide-angle X-ray scattering were used to study the morphology of the blends and structure of nanoparticles. The origin of nanoparticle formation appeared to be related to the development of phenyl acetate chain ends on the LCP that arose due to a chemical reaction between the LCP and residual catalytic amounts of zinc-acetate and/or acetic acid that were present from the neutralization step in the preparation of the ionomer. The origin of formation and kinetics of the nano-particle formation and the mechanical and rheological properties of these nanocomposites are briefly discussed.

  5. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  6. Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility

    Institute of Scientific and Technical Information of China (English)

    LI Lin; HE XiWen; CHEN LangXing; ZHANG YuKui

    2009-01-01

    In this research,a surface imprinting strategy has been adopted in protein imprinting.Bovine hemoglobin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been synthesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA)as functional and cross-linking monomers.SuperparamagneUc molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution.The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles.The morphology,adsorption,and recognition properties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy,X-ray diffraction,thermogravimetric analysis,and vibrating sample magnetometer.Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and comparatively low nonspecific adsorption.The imprinted superparamagnetlc nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field,thus avoiding some problems of the bulk polymer.

  7. Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition prop-erties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and compara-tively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoid-ing some problems of the bulk polymer.

  8. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-28

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  9. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  10. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  11. CO ppb sensors based on monodispersed SnOx:Pd mixed nanoparticle layers: Insight into dual conductance response

    Science.gov (United States)

    Aruna, I.; Kruis, F. E.; Kundu, S.; Muhler, M.; Theissmann, R.; Spasova, M.

    2009-03-01

    This study reports the modifications in CO sensing of SnOx nanoparticle layers by utilizing monodispersed Pd nanoparticles. The distinct advantage of monosized particles and contaminant-free samples with open porosity in addition to size effects resulted in improved CO sensing with decrease in Pd nanoparticle size to 5 nm, decreasing the lowest detection levels of CO using SnOx-based sensor technology down to 10 ppb (parts per billion) in dry synthetic air. The homogeneously mixed nanoparticle layers also exhibit discrimination capability between CO and ethanol in dry air as a manifestation of the dual conductance response. Detailed x-ray photoelectron spectroscopy studies clearly reveal "Mars-van Krevelen" as the key mechanism responsible for the observed sensing in mixed nanoparticle layers. The interfacial/surface PdO formed upon pretreatment in air is continuously "consumed" and "reformed" upon exposure, respectively, to CO and synthetic air. In contrast to the case of ethanol exposure with n-type response, the Pd aided reduction of tin oxide surface in CO ambient leads to p-type response. The sensors of the present study have a wide range of promising applications from air quality control to food and fuel industries.

  12. Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ernawati Lusi

    2017-03-01

    Full Text Available A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-ylpropane] di-hydrochloride (VA-044 as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

  13. Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles

    Science.gov (United States)

    Vadivel, M.; Babu, R. Ramesh; Ramamurthi, K.; Arivanandhan, M.

    2017-03-01

    In this work, a facile chemical synthesis of polystyrene (PS) added cobalt ferrite (CoFe2O4) magnetic nanoparticles by co-precipitation method is reported and the role of PS concentrations (1, 2, 3, 4 and 5 wt%) on the structural, morphological, dielectric and magnetic properties of CoFe2O4 nanoparticles is investigated. Formation of single phase cubic inverse spinel structure is confirmed by X-ray diffraction and Raman spectral analyses. Transmission electron microscopy studies show that the size of CoFe2O4 nanoparticles can be controlled by varying of PS concentration. Dielectric constant is enhanced due to increase in the PS concentrations in CoFe2O4 nanoparticles. Vibrating sample magnetometer measurements elucidate the enhanced saturation magnetization, coercivity and remanent magnetization in 1, 2 and 3 wt% of PS added CoFe2O4 nanoparticles. Hence the results obtained in this work evidently show that the addition of PS as a surfactant in the synthesis of CoFe2O4 nanoparticles remarkably modify the size of the particles.

  14. Reversible Thermochromic Nanocomposites Based on Thiolate-Capped Silver Nanoparticles Embedded in Amorphous Polystyrene

    Directory of Open Access Journals (Sweden)

    Francesca Nicolais

    2009-09-01

    Full Text Available Technologically useful reversible thermochromic materials can be prepared using very simple polymer-embedded nanostructures. In particular, silver nanoparticles capped by long-chain alkyl-thiolate molecules (i.e., Agx(SCnH2n+1y, with n > 10 spontaneously organize in aggregates because of the interdigitation phenomenon involving the linear alkyl chains bonded at surfaces of neighboring nanoparticles. Owing to the alkylchain interdigitation, nanoparticles very close to each other result and an interaction among their surface plasmon resonances may take place. Surface plasmon interaction causes a splitting of the absorption band whose characteristics depend on the aggregate shape. Since shape-less aggregates are generated, a multiple-splitting of the silver surface plasmon absorption band is observed, which causes a broad absorption spreading on the whole visible spectral region. Amorphous polystyrene containing interdigitated silver nanoparticles has a dark-brown or black coloration, depending on the nanoparticle numerical density, but since the inter-particle distance slightly increases at melting point of interdigitation crystallites a reversible termochromic effect is observed at this special temperature. In particular, the material coloration changes from dark-brown to yellow which is the coloration produced by the surface plasmon absorption of isolated silver nanoparticles. This reversible thermochromism can be finely controlled by modifying the structure of thiolate groups, and precisely, the strength of interactions acting inside the interdigitation crystallites.

  15. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  16. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  17. Light-induced growth of monodisperse silver nanoparticles with tunable SPR properties and wavelength self-limiting effect

    Science.gov (United States)

    Zheng, Xianliang; Lombardi, John R.

    2008-08-01

    We present a technique for the tunable synthesis of a variety of monodisperse silver nanoparticles. Utilizing different optical wavelengths to irradiate initially grown seed crystals, the size and shape of the products can be controlled. Monitoring the absorption spectrum during growth, we observe that initially the absorption maximum shifts to longer wavelengths and broadens, indicating increasing particle size and dispersion. Remarkably, this effect gradually comes to a halt and reverses, displaying a shift to shorter wavelengths and simultaneously narrower bandwidths, until on completion, a final size and relatively narrow distribution is reached. The final morphology is found to depend on control of the laser wavelength and power. Discs, triangular prisms as well as pyramidal and pentagonal prisms may be produced. A process based on a wavelength dependent self-limiting mechanism governed by the surface plasmon resonance controlling the photochemical reduction of particles is suggested. By a similar mechanism, we show that by using a sodium lamp instead of a laser as an excitation source, a monodisperse sample of nanotetrahedra can be produced.

  18. Manufacturing and Morphological Analysis of Composite Material of Polystyrene Nanospheres/Cadmium Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pratama Jujur Wibawa

    2013-03-01

    Full Text Available A very simple nanocomposite material has been in-situ manufactured from an aqueous polystyrene nanospheres dispersion and cadmium (Cd metal nanoparticles. The manufacturing was performed by using a high frequency of 40 kHz ultrasonic (US agitation for 45 minute at atmospheric pressure and at room temperature 20 oC. No chemical reducing agent and surfactant added in this manufacturing technique due to the US could reduce Cd2+ ions of cadmium nitrate tetrahydrate to Cd atomic metals nanoparticles whereas water molecules could act as a pseudo stabilizer for the manufactured material. A thin film was manufactured from aqueous colloidal nanocomposite material of Polystyrene nanospheres/Cd metal nanoparticles (PSNs/CdMNp fabricated on a hydrophilic silicon wafer. The thin film was then characterized by a JEOL-FESEM for its surface morphology characteristic and by ATR-FTIR spectrometry for its molecular change investigation. It could be clearly observed that surface morphology of the thin film material was not significantly changed under 633 nm wavelength continuous laser radiation exposure for 20 minute. In addition, its ATR-FTIR spectra of wave number peaks around 3400 cm-1 have been totally disappeared under the laser exposure whereas that at around 699 cm-1 and 668 cm-1 have not been significantly changed. The first phenomenon indicated that the hydrogen bond existed in PSNs/CdMNp material was collapsed by the laser exposure. The second phenomena indicated that the PSNs phenyl ring moiety was not totally destroyed under the laser exposure. It was suspected due to the existence of Cd nanoparticles covered throughout the spherical surface of PSNs/CdMNp material particles. Therefore a nice model of material structure of the mentioned PSNs/CdMNp nanocomposite material could be suggested in this research. It could be concluded that this research have been performed since the material structure model of the manufactured PSNs/CdMNp nanocomposite could be

  19. Facile fabrication of Pickering emulsion polymerized polystyrene/laponite composite nanoparticles and their electrorheology.

    Science.gov (United States)

    Kim, Young Jae; Liu, Ying Dan; Choi, Hyoung Jin; Park, Soo-Jin

    2013-03-15

    Polystyrene (PS)/laponite composite nanoparticles were fabricated using a surfactant-free Pickering emulsion polymerization method, in which emulsions of styrene dispersed in water were stabilized by hydrophilic laponite modified with cetyltrimethylammonium bromide. The PS/laponite nanoparticles, of which their surface was covered compactly by laponite clay platelets, were observed by scanning electron microscopy. Fourier-transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis confirmed their chemical composition, crystallographic structure, and thermal properties and weight loss percentage of the laponite located on the surface of the PS particle, respectively. When an external electrical field was applied, the chain-like structure of the laponite coated nano-sized PS particle exhibiting electrorheological characteristics was observed by optical microscopy. The electrorheological performance of the bulk properties was also examined using a rotational rheometer equipped with a high voltage generator.

  20. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  1. Time and Temperature Dependence of CdS Nanoparticles Grown in a Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    F. Antolini

    2012-01-01

    Full Text Available Luminescent CdS nanocrystals embedded in a polystyrene matrix were successfully prepared. The in situ growth of CdS QDs was realized by thermal treatment of Cd bis(thiolate/polymer foil at different times and temperatures (240°C and 300°C of annealing, in order to evaluate their influence on the quantum dots growth process. As a general trend, the increasing of time and temperature of annealing induces a rise of the CdS nanocrystals size into the polymeric matrix. The size distribution, morphology, and structure of the CdS nanoparticles were analysed with HRTEM and XRD experiments. UV-Vis and PL data are strongly size-dependent and were used to investigate the particles' growth process, too. The CdS nanoparticles behavior in solution indicated a general trend of QDs to aggregation. This predisposition was clearly displayed by DLS measurements.

  2. Nearly Monodispersion CoSm Alloy Nanoparticles Formed by an In-situ Rapid Cooling and Passivating Microfluidic Process

    Directory of Open Access Journals (Sweden)

    Henry Laurence

    2009-01-01

    Full Text Available Abstract An in siturapid cooling and passivating microfluidic processhas been developed for the synthesis of nearly monodispersed cobalt samarium nanoparticles (NPs with tunable crystal structures and surface properties. This process involves promoting the nucleation and growth of NPs at an elevated temperature and rapidly quenching the NP colloids in a solution containing a passivating reagent at a reduced temperature. We have shown that Cobalt samarium NPs having amorphous crystal structures and a thin passivating layer can be synthesized with uniform nonspherical shapes and size of about 4.8 nm. The amorphous CoSm NPs in our study have blocking temperature near 40 K and average coercivity of 225 Oe at 10 K. The NPs also exhibit high anisotropic magnetic properties with a wasp-waist hysteresis loop and a bias shift of coercivity due to the shape anisotropy and the exchange coupling between the core and the thin oxidized surface layer.

  3. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  4. Antibacterial Additive for Polystyrene Based on Silver Nanoparticles Supported on Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Miguel A. Waldo-Mendoza

    2016-01-01

    Full Text Available Silver nanoparticles supported on titanium dioxide nanoparticles (Ag/TiO2 were incorporated and evaluated as antibacterial additive for polystyrene materials. These particles were synthesized using a deposition-precipitation method by adding silver nitrate as metallic precursor, sodium hydroxide as reducing agent, and commercial TiO2 (P25 as support. Rectangular pieces of polystyrene (PS containing 100, 300, 500, and 700 ppm (wt.% of the additive were made using an extrusion-injection molding process, and they were evaluated for their antibacterial properties against Escherichia coli using the Pour Plate method. Particles were distributed on the PS surface, and PS pieces presented a good antibacterial efficiency at 100, 300, and 500 ppm and decreased for 700 ppm due to an additive agglomeration on the PS surface. These results validate the antibacterial properties of Ag/TiO2, determine a concentration limit at which the additive is well distributed on the PS surface, and assess the importance of Ag in this system.

  5. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Science.gov (United States)

    2012-01-01

    Background Nanoparticles (NPs) are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS) NPs of different sizes (20, 40 and 100 nm) in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher. PMID:23006133

  6. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Directory of Open Access Journals (Sweden)

    Varela Juan A

    2012-09-01

    Full Text Available Abstract Background Nanoparticles (NPs are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS NPs of different sizes (20, 40 and 100 nm in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher.

  7. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles.

    Science.gov (United States)

    Han, Xiao; Huang, Shiming; Wang, Yilong; Shi, Donglu

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol-gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk-shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection.

  8. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.

    Science.gov (United States)

    Mitzel, Michael R; Sand, Stefanie; Whalen, Joann K; Tufenkji, Nathalie

    2016-04-01

    Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments.

  9. Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion

    Science.gov (United States)

    Kim, Sung-Kon; Nguyen, Ngoc A.; Wie, Jeong Jae; Park, Ho Seok

    2015-05-01

    Nanoscale interfaces can modify the phase transition behaviors of polymeric materials. Here, we report the double glass transition temperature (Tg) behavior of sulfonated polystyrene (sPS) by the inclusion of 14 nm amine-functionalized silica (NH2-SiO2) nanoparticles, which is different from the single Tg behaviors of neat sPS and silica (SiO2)-filled sPS. The inclusion of 20 wt% NH2-SiO2 nanoparticles results in an increase of Tg by 9.3 °C as well as revealing a second Tg reduced by 44.7 °C compared to the Tg of neat sPS. By contrast, when SiO2 nanoparticles with an identical concentration and size to NH2-SiO2 are dispersed, sPS composites possess a single Tg of 7.3 °C higher than that of the neat sPS. While a nanoscale dispersion is observed for SiO2 nanoparticles, as confirmed by microscopic and X-ray scattering analyses, NH2-SiO2 nanoparticles show the coexistence of micron-scale clustering along with a nanoscale dispersion of the individual nanoparticles. The micro-phase separation contributes to the free volume induced Tg reduction by the plasticization effect, whereas the Tg increase originates from the polymer segment mobility constrained by nanoconfinement and the rigid amorphous fractions deriving from strong polymer-particle interactions.Nanoscale interfaces can modify the phase transition behaviors of polymeric materials. Here, we report the double glass transition temperature (Tg) behavior of sulfonated polystyrene (sPS) by the inclusion of 14 nm amine-functionalized silica (NH2-SiO2) nanoparticles, which is different from the single Tg behaviors of neat sPS and silica (SiO2)-filled sPS. The inclusion of 20 wt% NH2-SiO2 nanoparticles results in an increase of Tg by 9.3 °C as well as revealing a second Tg reduced by 44.7 °C compared to the Tg of neat sPS. By contrast, when SiO2 nanoparticles with an identical concentration and size to NH2-SiO2 are dispersed, sPS composites possess a single Tg of 7.3 °C higher than that of the neat sPS. While a

  10. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model

    Science.gov (United States)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Diener, Pierre-André; Maeder-Althaus, Xenia; Maurizi, Lionel; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula

    2015-01-01

    Background Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. Objectives In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. Methods We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. Results We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. Conclusions Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers. Citation Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. 2015. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human

  11. Separation of Gases Using Ultra-Thin Porous Layers of Monodisperse Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied.

  12. Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Anil K [ORNL; Doktycz, Mitchel John [ORNL; Wang, Wei [ORNL; Moon, Ji Won [ORNL; Gu, Baohua [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

  13. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  14. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.

    Science.gov (United States)

    Nishioka, Masateru; Miyakawa, Masato; Kataoka, Haruki; Koda, Hidekazu; Sato, Koichi; Suzuki, Toshishige M

    2011-06-01

    Continuous synthesis of silver nanoparticles based on a polyol process was conducted using a microwave-assisted flow reactor installed in a cylindrical resonance cavity. Silver nitrate (AgNO(3)) and poly(N-vinylpyrrolidone) (PVP) dissolved in ethylene glycol were used respectively as a silver metal precursor and as a capping agent of nanoparticles. Ethylene glycol worked as the solvent and simultaneously as the reductant. Silver nanoparticles of narrow size distributions were synthesized steadily for 5 h, maintaining almost constant yield (>93%) and quality. The reaction was achieved within 2.8 s of residence time, although nanoparticles were not formed under this flow rate by conventional heating. A narrower particle size distribution was realized by the increased flow rate of the reaction solution. Nanoparticles of 9.8 nm average size with a standard deviation of 0.9 nm were synthesized at the rate of 100 ml h(-l).

  15. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  16. Core@shell Poly(n-butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation.

    Science.gov (United States)

    Bonetti, Simone; Farina, Matteo; Mauri, Michele; Koynov, Kaloian; Butt, Hans-Jürgen; Kappl, Michael; Simonutti, Roberto

    2016-04-01

    Poly(n-butylacrylate)@polystyrene nanoparticles behaving as a capsule-based sealing nanoadditive are synthesized through an optimized semicontinuous emulsion polymerization protocol. Solid state time-domain (1)H-NMR and (13)C magic angle spinning (MAS) NMR analysis suggest strong phase separation. Line width of (13)C resonances in cross polarization and single pulse experiment MAS-NMR spectra indicates that the peculiar mobility of each phase is preserved at the nanoscale. Atomic force spectroscopy (AFM) shows the permanence of spherical shape in absence of solvent (i.e., subsequent to strong capillary and surface forces) up to moderate external load, as well as the possibility of plastically deforming the polystyrene shell and ultimately triggering the nanoparticle flow at higher force loads. The breakdown characteristic of the nanoparticle shows for the first time baroplastic behavior on a single particle with precise biphasic core@shell morphology.

  17. Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

    Directory of Open Access Journals (Sweden)

    P. Safaei

    2016-01-01

    Full Text Available The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact polystyrene matrix. The effect of TiO2 nanoparticles loading on membrane performance was investigated. The separation performance of synthesized membranes was investigated in separation of CO2 from CO2/N2 mixture. Effect of feed pressure and TiO2 content on separation of CO2 was studied. The results revealed that increase of feed pressure decreases flux of gases through the mixed matrix membrane. The results also confirmed that the best separation performance can be obtained at TiO2 nanoparticles loading of 7 wt.%.

  18. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    K C Barick; D Bahadur

    2006-11-01

    The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.

  19. Preparation and Characterization of Monodisperse Polystyrene Microspheres%单分散性聚苯乙烯微球的制备与表征

    Institute of Scientific and Technical Information of China (English)

    万纪强; 石志琪

    2012-01-01

    Appropriate amount of sodium styrene sulfonate is introduced into the system of styrene emulsion polymerization in copolymerization by using emulsifier-free emulsion polymerization. The polymerization process is divided into two stages, in the first stage the ratio of sodium styrene sulfonate and styrene is the key factor which determines latex diameter and the monodispersity. When the reaction achieves high conversion rate, the second stage's monomer mixture is added into the reactant. The ratio of the sodium styrene sulfonate and styrene in this stage determines the particle's final surface charge density. Through the above two stages by emulsifier-free emulsion polymerization, latex particle of particle size of 100~400nm, good monodispersity, high surface charge density with the core-shell structure is successfully prepared. On this foundation, the influence of the ratio of styrene and sodium styrene sulfonate in the first stage on latex particle diameter and the influence of latex particle diameter on the microsphere's surface charge density are discussed.%利用无皂乳液聚合[1,2],在苯乙烯的乳液聚合体系中引入适量的苯乙烯磺酸钠参与共聚合.聚合过程中分两阶段料,第一阶段中苯乙烯磺酸钠与苯乙烯的比例是决定乳胶粒粒径及单分散性的关键因素.当反应达到较高的转化率时,加入第二阶段单体混合物,此阶段中的苯乙烯磺酸钠与苯乙烯的比例决定了最终胶粒表面电荷密度.利用上述两阶段无皂乳液聚合法制备了粒径在100~400nm,单分散性较好,表面电荷密度较高并且具有核壳结构的乳胶粒.在此基础上,讨论了的第一阶段中苯乙烯和苯乙烯磺酸钠的比例对乳胶粒粒径的影响以及乳胶粒粒径对微球表面电荷密度的影响.

  20. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  1. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail: wolfgang.kautek@univie.ac.at

    2005-12-15

    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  2. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.

    Science.gov (United States)

    Kloet, Samantha K; Walczak, Agata P; Louisse, Jochem; van den Berg, Hans H J; Bouwmeester, Hans; Tromp, Peter; Fokkink, Remco G; Rietjens, Ivonne M C M

    2015-10-01

    To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus.

  3. Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures

    Science.gov (United States)

    Yenice, Zuleyha; Karg, Matthias; von Klitzing, Regine

    2013-01-01

    Adjusting the inter-particle distances in ordered nanoparticle arrays can create new nano-devices and is of increasing importance to a number of applications such as nanoelectronics and optical devices. The assembly of negatively charged polystyrene (PS) nanoparticles (NPs) on Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, quaternized PDMAEMA brushes and Si/PEI/(PSS/PAH)2, was studied using dip- and spin-coating techniques. By dip-coating, two dimensional (2-D), randomly distributed non-close packed particle arrays were assembled on Si/PEI/(PSS/PAH)2 and PDMAEMA brushes. The inter-particle repulsion leads to lateral mobility of the particles on these surfaces. The 200 nm diameter PS NPs tended to an inter-particle distance of 350 to 400 nm (center to center). On quaternized PDMAEMA brushes, the strong attractive interaction between the NPs and the brush dominated, leading to clustering of the particles on the brush surface. Particle deposition using spin-coating at low spin rates resulted in hexagonal close-packed multilayer structures on Si/PEI/(PSS/PAH)2. Close-packed assemblies with more pronounced defects are also observed on PDMAEMA brushes and QPDMAEMA brushes. In contrast, randomly distributed monolayer NP arrays were achieved at higher spin rates on all polyelectrolyte architectures. The area fraction of the particles decreased with increasing spin rate. PMID:23787476

  4. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  5. Preparation of Chitosan/Polystyrene Sulfonate Multilayered Composite Metal Nanoparticles and Its Application.

    Science.gov (United States)

    Xiong, Fangxin; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    Metal-Chitosan (CTS) composite was first synthesized through the metal composition of chitosan (CTS) and metal ions. The formed composite was alternately deposited on the base with sodium polystyrene sulfonate (PSS) through a layer-by-layer self-assembling technique, followed by an in situ reduction by sodium borohydride to produce a polyelectrolyte nanocomposite thin film containing metal nanoparticles. Assembly, surface morphology and electrochemical properties of the composite membrane were analyzed by UV-visible absorption spectroscopy (UV-vis), atomic force microscopy (AFM) and cyclic voltammetry (CV). The UV-Vis results indicated that the absorbance of the multilayer film at the characteristic absorption peak increased as the membrane bilayers increased, in a good linear relationship, which demonstrated that the multilayer film was uniformly assembled on the base. AFM images showed that the surface of the multilayer thin-film composite had some degree of roughness and metal nanoparticles of 10-20 nm in size were generated on the membrane. The CV results indicated that the metal nanocomposite film had excellent electrocatalytic activity to glucose and had a potential for applications in electrochemical sensors.

  6. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages.

    Science.gov (United States)

    van Pomeren, M; Brun, N R; Peijnenburg, W J G M; Vijver, M G

    2017-09-01

    In ecotoxicology, it is continuously questioned whether (nano)particle exposure results in particle uptake and subsequent biodistribution or if particles adsorb to the epithelial layer only. To contribute to answering this question, we investigated different uptake routes in zebrafish embryos and how they affect particle uptake into organs and within whole organisms. This is addressed by exposing three different life stages of the zebrafish embryo in order to cover the following exposure routes: via chorion and dermal exposure; dermal exposure; oral and dermal exposure. How different nanoparticle sizes affect uptake routes was assessed by using polystyrene particles of 25, 50, 250 and 700nm. In our experimental study, we showed that particle uptake in biota is restricted to oral exposure, whereas the dermal route resulted in adsorption to the epidermis and gills only. Ingestion followed by biodistribution was observed for the tested particles of 25 and 50nm. The particles spread through the body and eventually accumulated in specific organs and tissues such as the eyes. Particles larger than 50nm were predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish embryos. Embryos exposed to particles via both epidermis and intestine showed highest uptake and eventually accumulated particles in the eye, whereas uptake of particles via the chorion and epidermis resulted in marginal uptake. Organ uptake and internal distribution should be monitored more closely to provide more in depth information of the toxicity of particles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  8. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, Agata P. [Wageningen University, Division of Toxicology (Netherlands); Hendriksen, Peter J. M. [RIKILT Wageningen UR (Netherlands); Woutersen, Ruud A. [TNO Earth, Life and Social Sciences (Netherlands); Zande, Meike van der; Undas, Anna K.; Helsdingen, Richard [RIKILT Wageningen UR (Netherlands); Berg, Hans H. J. van den; Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands); Bouwmeester, Hans, E-mail: hans.bouwmeester@wur.nl [RIKILT Wageningen UR (Netherlands)

    2015-05-15

    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

  9. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts

    Science.gov (United States)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-08-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

  10. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.

    Science.gov (United States)

    Gao, Lei; Nishikata, Takashi; Kojima, Keisuke; Chikama, Katsumi; Nagashima, Hideo

    2013-12-01

    Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water- and organo-dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4-nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4-nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo-dispersible gold nanoparticles.

  11. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts.

    Science.gov (United States)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-08-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

  12. Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Ekkapongpisit M

    2012-04-01

    Full Text Available Maneerat Ekkapongpisit1,*, Antonino Giovia1,*, Giuseppina Nicotra1, Matteo Ozzano1, Giuseppe Caputo2,3, Ciro Isidoro1 1Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; 2Department of Chemistry, University of Turin, Turin, 3Cyanine Technology SpA, Torino, Italy *These authors contributed equally to this workBackground: For a safe ‘in vivo’ biomedical utilization of nanoparticles, it is essential to assess not only biocompatibility, but also the potential to trigger unwanted side effects at both cellular and tissue levels. Mastocytes (cells having secretory granules containing cytokines, vasoactive amine, and proteases play a pivotal role in the immune and inflammatory responses against exogenous toxins. Mastocytes are also recruited in the tumor stroma and are involved in tumor vascularization and growth.Aim and methods: In this work, mastocyte-like rat basophilic leukemia (RBL cells were used to investigate whether carboxyl-modified 30 nm polystyrene (PS nanoparticles (NPs and naked mesoporous silica (MPS 10 nm NPs are able to label the secretory inflammatory granules, and possibly induce exocytosis of these granules. Uptake, cellular retention and localization of fluorescent NPs were analyzed by cytofluorometry and microscope imaging.Results: Our findings were that: (1 secretory granules of mastocytes are accessible by NPs via endocytosis; (2 PS and MPS silica NPs label two distinct subpopulations of inflammatory granules in RBL mastocytes; and (3 PS NPs induce calcium-dependent exocytosis of inflammatory granules.Conclusion: These findings highlight the value of NPs for live imaging of inflammatory processes, and also have important implications for the clinical use of PS-based NPs, due to their potential to trigger the unwanted activation of mastocytes.Keywords: secretory lysosomes, inflammation, nanoparticles, vesicular traffic

  13. Fabrication of monodisperse FePt rate at Au core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D.H. [Institute of Physics, Academia Sinica, Taipei 115 (China); Hung, D.S. [Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111 (China); Ho, C.S.; Wang, J.W. [Department of Chemical Engineering, Tunghai University, Taichung 407 (China); Yao, Y.D. [Department of Materials Engineering, Tatung University, Taipei 104 (China)

    2007-12-15

    Hydrophobic FePt rate at Au core-shell nanoparticles were chemically synthesized and with controllable surface-function properties. The enhanced optical property is due to the contribution of Au shell. The surface modification of FePt rate at Au nanoiparticles by using 11-mercaptoundecanoic acid (MUA) was hydrophilic through ligand exchange and with good biocompatibility for future multi-functional applications. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Reflection electron energy loss spectroscopy as efficient technique for the determination of optical properties of polystyrene intermixed with gold nanoparticles

    Science.gov (United States)

    Deris, Jamileh; Hajati, Shaaker

    2017-01-01

    The electronic properties (electron inelastic cross section, energy loss function) of a nano-metalized polystyrene obtained by reflection electron energy loss spectroscopy (REELS) in a previous study [J. Deris, S. Hajati, S. Tougaard, V. Zaporojtchenko, Appl. Surf. Sci. 377 (2016) 44-47], which relies on the Yubero-Tougaard method, were used in the complementary application of Kramers-Kronig transformation to determine its optical properties such as the real part (ε1) and imaginary part (ε2) of the dielectric function (ε), refractive index (n), coefficients of extinction (k), reflection (R) and absorption (μ). The degree of intermixing of polystyrene thin film and gold nanoparticles of sizes 5.5 nm was controlled by annealing the sample to achieve a morphology in which the nanoparticles were homogeneously distributed within polystyrene. It is worth noting that no data are available on the optical properties of metalized polymers such as gold nanoparticles intermixed with polystyrene. Therefore, this work is of high importance in terms of both the sample studied here and the method applied. The advantage of the method applied here is that no information on the lateral distribution of the nanocomposite sample is required. This means that the REELS technique has been presented here to suitably, efficiently and easily obtain the optical properties of such nano-metalized polymer in which the metal nanoparticles have been vertically well distributed (homogeneous in depth). Therefore, for vertically homogeneous and laterally inhomogeneous samples, it is possible to make REELS imaging by scanning the sample and thus to make an image of their optical properties.

  15. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.

    Science.gov (United States)

    Nasser, Fatima; Lynch, Iseult

    2016-03-30

    Nanoparticles (NPs) are defined as having at least one external dimension between 1 and 100 nm. Due to their small size, NPs have a large surface area to volume ratio giving them unique characteristics that differ from bulk material of the same chemical composition. As a result these novel materials have found numerous applications in medical and industrial fields with the result that environmental exposure to NPs is increasingly likely. Similarly, increased reliance on plastic, which degrades extremely slowly in the environment, is resulting in increased accumulation of micro-/nano-plastics in fresh and marine waters, whose ecotoxicological impacts are as yet poorly understood. Although NPs are well known to adsorb macromolecules from their environment, forming a biomolecule corona which changes the NP identity and how it interacts with organisms, significantly less research has been performed on the ecological corona (eco-corona). Secretion of biomolecules is a well established predator-prey response in aquatic food chains, raising the question of whether NPs interact with secreted proteins, and the impact of such interaction on NP uptake and ecotoxicity. We report here initial studies, including optimisation of protocols using carboxylic-acid and amino modified spherical polystyrene NPs, to assess interaction of NPs with biomolecules secreted by Daphnia magna and the impact of these interactions on NP uptake, retention and toxicity towards Daphnia magna. Daphnia magna are an important environmental indicator species who may be especially sensitive to nanoparticles (NPs) as a result of being filter-feeders. This paper demonstrates for the first time that proteins released by Daphnia magna create an eco-corona around polystyrene NPs which causes heightened uptake of the NPs and consequently increases toxicity. The secreted protein eco-corona also causes the NPs to be less efficiently removed from the gut of D. magna and NPs remaining in the gut of D. magna

  16. Fast, microwave-assisted synthesis of monodisperse HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roo, Jonathan De; Keukeleere, Katrien De; Feys, Jonas; Lommens, Petra [Ghent University, Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis (SCRiPTS) (Belgium); Hens, Zeger [Ghent University, Physics and Chemistry of Nanostructures (PCN) (Belgium); Driessche, Isabel Van, E-mail: Isabel.VanDriessche@ugent.be [Ghent University, Sol-Gel Centre for Research on Inorganic Powders and Thin Films Synthesis (SCRiPTS) (Belgium)

    2013-07-15

    A conventional solvothermal synthesis was compared to a microwave-assisted method for the synthesis of HfO{sub 2} nanoparticles. In a microwave, the reaction could be completed in 3 h, compared to 3 days in an autoclave. In the microwave synthesis, the ensemble of particles was found to have a better size dispersion and a smaller average size (4 nm). The reaction mechanism was investigated and proof for an ether elimination process was provided. Post-synthetic modification with dopamine or dodecanoic acid permitted the suspension of the synthesized particles in both polar and apolar solvents, which is an advantage for further processing.

  17. A novel magneto-fluorescent microsphere: Preparation and characterization of polystyrene-supported Fe3O4 and CdS nanoparticles

    Science.gov (United States)

    Kaboudin, Babak; Ghaderian, Abolfazl

    2013-10-01

    Novel sulfonated polystyrene microsphere containing Fe3O4 and CdS nanoparticles have been prepared and characterized. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, VSM data, EDS, and photoluminescence spectroscopy. The presence of the magnetic nanoparticles (Fe3O4) and CdS nanoparticles on the polystyrene microspheres has been demonstrated. Cadmium diethyl dithiophosphate (CDDP) has been used as a 3 in 1 precursor (cadmium, sulfur, and ligand source) for the synthesis of high-quality CdS nanoparticles on polystyrene microsphere containing Fe3O4 nanoparticles. This novel composite exhibits both fluorescence and magnetism properties that may be used in a novel bioprobe.

  18. A novel magneto-fluorescent microsphere: Preparation and characterization of polystyrene-supported Fe{sub 3}O{sub 4} and CdS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaboudin, Babak, E-mail: kaboudin@iasbs.ac.ir; Ghaderian, Abolfazl

    2013-10-01

    Novel sulfonated polystyrene microsphere containing Fe{sub 3}O{sub 4} and CdS nanoparticles have been prepared and characterized. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, VSM data, EDS, and photoluminescence spectroscopy. The presence of the magnetic nanoparticles (Fe{sub 3}O{sub 4}) and CdS nanoparticles on the polystyrene microspheres has been demonstrated. Cadmium diethyl dithiophosphate (CDDP) has been used as a 3 in 1 precursor (cadmium, sulfur, and ligand source) for the synthesis of high-quality CdS nanoparticles on polystyrene microsphere containing Fe{sub 3}O{sub 4} nanoparticles. This novel composite exhibits both fluorescence and magnetism properties that may be used in a novel bioprobe.

  19. Production of Structural Colors with High Contrast and Wide Viewing Angles from Assemblies of Polypyrrole Black Coated Polystyrene Nanoparticles.

    Science.gov (United States)

    Yang, Xiaoming; Ge, Dengteng; Wu, Gaoxiang; Liao, Zhiwei; Yang, Shu

    2016-06-29

    Structural color with wide viewing angles has enormous potential applications in pigment, ink formulation, displays, and sensors. However, colors obtained from colloidal assemblies with low refractive index contrast or without black additives typically appear pale. Here, we prepare polypyrrole (PPy) black coated polystyrene (PS) nanoparticles and demonstrate well-defined colors with high color contrast and wide viewing angles under ambient light. Depending on the loading of pyrrole during polymerization, PPy nanogranules of different sizes and coverages are grafted to the surface of PS nanoparticles. The bumpy particles can self-assemble into quasi-amorphous arrays, resulting in low angle dependent structure colors under ambient light. The color can be tuned by the size of the PS nanoparticles, and the presence of the PPy black on PS nanoparticles enhances the color contrast by suppressing incoherent and multiple scattering.

  20. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts

    Science.gov (United States)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-01-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle–cell interactions itself. PMID:27877820

  1. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.

    Directory of Open Access Journals (Sweden)

    Tiago dos Santos

    Full Text Available Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer, A549 (lung carcinoma and 1321N1 (brain astrocytoma. Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.

  2. Fabrication of color changeable polystyrene spheres decorated by gold nanoparticles and their label-free biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yuetong; Lu Wensheng; Jiang Long, E-mail: jiangl@iccas.ac.cn [Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-02-26

    A novel and simple method for gold nanoshell synthesis with controllable core and shell sizes is reported here. A new 'tree-shape' surfactant bis(amidoethyl-carbamoylethyl) octadecylamine (C18N3) was synthesized and used as the glue for the fast combination of gold nanoparticles and the subsequent gold shell outside. The functionalized polystyrene (PS) cores were covered by a surfactant (PS-C18N3) bilayer. The presence of the surfactant double layer played the role of 'glue' in this method, so that upon controlling the amount of surfactant, it was possible to achieve: the manipulation of gold seed density on the PS-C18N3 spheres, the preparation of PS-Au hybrid structures, and a red-shift in the extinction absorption from 520 to 750 nm. Besides, the as-prepared PS-Au composites supported on a glass substrate exhibited excellent effectiveness in the molecular recognition of human-immunoglobulin G (h-IgG) and goat anti-human-immunoglobulin G (goat anti-h-IgG), showing a rapid response within 20 min with a low detection limit of 10 ng ml{sup -1}. This demonstrates that PS-Au prepared and assembled using our method is potentially useful as a nanosensor platform for immunoassay.

  3. Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles

    Science.gov (United States)

    Deville, Sarah; Hadiwikarta, Wahyu Wijaya; Smisdom, Nick; Wathiong, Bart; Ameloot, Marcel; Nelissen, Inge; Hooyberghs, Jef

    2017-01-01

    CD34+ hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon. PMID:28138242

  4. Cytotoxicity of functionalized polystyrene latex nanoparticles toward lactic acid bacteria, and comparison with model microbes

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Toshiyuki, E-mail: nomura@chemeng.osakafu-u.ac.jp; Kuriyama, Yuta; Tokumoto, Hayato; Konishi, Yasuhiro [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2015-02-15

    The cytotoxicity and colloidal behavior of surface-functionalized polystyrene latex (PSL) nanoparticles (NPs) (nominal diameter: 100 nm) toward a model gram positive bacterium Lactococcus lactis JCM 5805 were examined. Nearly all the L. lactis cells exposed to the negatively charged PSL NPs survived because the surface of the bacterial cell was charged negatively, and the NPs therefore hardly adhere to the cell surface. In contrast, the positively charged PSL NPs adhered to the L. lactis cell surface but were not entrapped within the cell, and cell death subsequently occurred. The bacterial growth curves after the toxic NP exposure suggested that NP toxicity did not affect the specific growth phase, but did affect lag time. These results indicated that the cells were damaged by the cell disruption that resulted from the adhesion of the NPs to the cell surface. Finally, the cytotoxicity of the toxic, positively charged PSL NPs toward L. lactis was compared with that displayed toward a model gram negative bacterium Escherichia coli and a model eukaryote Saccharomyces cerevisiae. The cytotoxic behaviors of NPs on L. lactis and E. coli were similar, and depended not on the bacterial surface structure, but rather the environmental ionic strength. In contrast, the cytotoxicity of the prokaryote bacteria was higher than that toward the model eukaryote S. cerevisiae. The difference between the NP sensitivities of the prokaryote and eukaryote resulted from the prokaryote’s lack of an endocytotic pathway.

  5. Cytotoxicity of functionalized polystyrene latex nanoparticles toward lactic acid bacteria, and comparison with model microbes

    Science.gov (United States)

    Nomura, Toshiyuki; Kuriyama, Yuta; Tokumoto, Hayato; Konishi, Yasuhiro

    2015-02-01

    The cytotoxicity and colloidal behavior of surface-functionalized polystyrene latex (PSL) nanoparticles (NPs) (nominal diameter: 100 nm) toward a model gram positive bacterium Lactococcus lactis JCM 5805 were examined. Nearly all the L. lactis cells exposed to the negatively charged PSL NPs survived because the surface of the bacterial cell was charged negatively, and the NPs therefore hardly adhere to the cell surface. In contrast, the positively charged PSL NPs adhered to the L. lactis cell surface but were not entrapped within the cell, and cell death subsequently occurred. The bacterial growth curves after the toxic NP exposure suggested that NP toxicity did not affect the specific growth phase, but did affect lag time. These results indicated that the cells were damaged by the cell disruption that resulted from the adhesion of the NPs to the cell surface. Finally, the cytotoxicity of the toxic, positively charged PSL NPs toward L. lactis was compared with that displayed toward a model gram negative bacterium Escherichia coli and a model eukaryote Saccharomyces cerevisiae. The cytotoxic behaviors of NPs on L. lactis and E. coli were similar, and depended not on the bacterial surface structure, but rather the environmental ionic strength. In contrast, the cytotoxicity of the prokaryote bacteria was higher than that toward the model eukaryote S. cerevisiae. The difference between the NP sensitivities of the prokaryote and eukaryote resulted from the prokaryote's lack of an endocytotic pathway.

  6. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    Science.gov (United States)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  7. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A., E-mail: nettipa@unina.it [Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care atCRIB (Italy)

    2011-09-15

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50-60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  8. Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions.

    Science.gov (United States)

    Nomura, Toshiyuki; Tani, Shuji; Yamamoto, Makoto; Nakagawa, Takumi; Toyoda, Shunsuke; Fujisawa, Eri; Yasui, Akiko; Konishi, Yasuhiro

    2016-04-01

    The effects of surface physicochemical properties of functionalized polystyrene latex (PSL) nanoparticles (NPs) and model filamentous fungi Aspergillus oryzae and Aspergillus nidulans cultivated in different environment (aqueous and atmospheric environment) on the colloidal behavior and cytotoxicity were investigated in different isotonic solutions (154 mM NaCl and 292 mM sucrose). When the liquid cultivated fungal cells were exposed to positively charged PSL NPs in 154 mM NaCl solution, the NPs were taken into A. oryzae, but not A. nidulans. Atomic force microscopy revealed that the uptake of NPs was more readily through the cell wall of A. oryzae because of its relatively softer cell wall compared with A. nidulans. In contrast, the positively charged PSL NPs entirely covered the liquid cultivated fungal cell surfaces and induced cell death in 292 mM sucrose solution because of the stronger electrostatic attractive force between the cells and NPs compared with in 154 mM NaCl. When the agar cultivated fungal cells were exposed to the positively charged PSL NPs, both fungal cells did not take the NPs inside the cells. Contact angle measurement revealed that the hydrophobin on the agar cultivated cell surfaces inhibited the uptake of NPs because of its relatively more hydrophobic cell surface compared with the liquid cultivated cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  10. THE ADSORPTION OF LINEAR POLY(N-ISOPROPYLACRYLAMIDE) CHAINS ON SURFACTANT-FREE POLYSTYRENE NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Jun Gao; Tengjiao Hu; Yubao Zhang; Pei Li; Chi Wu

    1999-01-01

    The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-free polystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymer on the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperature change. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS)measurements. In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAM adsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer was accurately measured. For a given particle concentration, the adsorption increases as the PNIPAM concentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer is reciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling of the chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy change estimated from the adsorption at 25℃ and 30℃ is slightly positive, indicating that the adsorption involves the coil-to-globule transition of the chains on the surface.

  11. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells.

    Science.gov (United States)

    Monti, Daria Maria; Guarnieri, Daniela; Napolitano, Giuliana; Piccoli, Renata; Netti, Paolo; Fusco, Sabato; Arciello, Angela

    2015-01-10

    Recent years have witnessed an unprecedented growth in the number of applications—such as drug delivery, nutraceuticals and production of improved biocompatible materials—in the areas of nanoscience and nanotechnology. Engineered nanoparticles (NPs) are an important tool for the development of quite a few of these applications. Despite intense research activity, mechanisms regulating the uptake of NPs into cells are not completely defined, being the phenomenon dramatically influenced by physico-chemical properties of NPs and cell-specific differences. Since the cellular uptake of NPs is a prerequisite for their use in nanomedicine, the definition of their internalization pathway is crucial. For this reason, we used 44 nm polystyrene NPs as a model to analyze the uptake and endocytosis pathways in primary human renal cortical epithelial (HRCE) cells, which play a key role in the clearance of drugs. NPs were found not to affect the viability and cell cycle progression of HRCE cells. Distinct internalization pathways were analyzed by the use of drugs known to inhibit specific endocytosis routes. Analyses, performed by confocal microscopy in combination with quantitative spectrofluorimetric assays, indicated that NPs enter HRCE cells through multiple mechanisms, either energy-dependent (endocytosis) or energy-independent.

  12. Fabrication of Sesame Sticks-like Silver Nanoparticles/Polystyrene Hybridnanotubes and Their Catalytic Effects

    Science.gov (United States)

    Peng, Fang; Wang, Qi; Shi, Rongjia; Wang, Zeyi; You, Xin; Liu, Yuhong; Wang, Fenghe; Gao, Jay; Mao, Chun

    2016-12-01

    A novel and efficient catalyst is one of the goals in the material field, and the involvement of nanoscience and technology has brought new vigor to the development of catalyst. This research aimed to develop a simple two-step route to fabricate Fe3O4@PS/PDA-Ag hybridnanotubes with size-controllable and highly dispersed silver nanoparticles (NPs). First, Fe3O4@PS nanotubes of a sound mechanical property were prepared using polystyrene (PS)/toluene solution containing highly dispersed oleic acid modified Fe3O4 particles in a commercial AAO template. Next, the facile technique was used to form in situ silver NPs on the surface of magnetic PS (Fe3O4@PS) nanotubes through dopamine coating. The catalytic effects of the prepared Fe3O4@PS/PDA-Ag hybridnanotubes with highly dispersed AgNPs were characterized using a range of analytical methods, including transmission electron microscopy, thermogravimetric analysis, UV-Visible spectroscopy, and X-ray diffraction. It was found that such prepared Fe3O4@PS/PDA-Ag hybridnanotubes had a large specific surface area. They possessed excellent activities in catalyzing the reduction of 4-nitrophenol (4-NP) by NaBH4 in the aqueous phase. Furthermore, they were readily separated from fluid and retrieved by an external magnet. Their catalyst activity and recyclability demonstrated that this approach we proposed had the potential to become a new idea and route for catalytic platform.

  13. Comparison of polystyrene nanoparticles and UV-inactivated antigen-displaying adenovirus for vaccine delivery in mice

    Science.gov (United States)

    2013-01-01

    Background Inert nanoparticles are attracting attention as carriers for protein-based vaccines. Here we evaluate the immunogenicity of the model antigen ovalbumin delivered on polystyrene particles and directly compare particulate delivery with adenovirus-based immunization. Findings Mice were vaccinated with soluble ovalbumin, ovalbumin-coated polystyrene particles of different sizes, or an adenovirus-based expression-display vector that encodes and displays a pIX-ovalbumin fusion protein. Antibody responses were clearly higher when ovalbumin was administered on polystyrene particles compared to soluble protein administration, regardless of the particle size. Compared to adenovirus-based immunization, antibody levels were lower if an equivalent amount of protein was delivered, and no cellular immune response was detectable. Conclusions We demonstrate in a side-by-side comparison that inert nanoparticles allow for the reduction of the administered antigen amount compared to immunization with soluble protein and induce strongly enhanced antibody responses, but responses are lower compared to adenovirus-based immunization. PMID:23560981

  14. Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB).

    Science.gov (United States)

    Yildiz, Yunus; Erken, Esma; Pamuk, Handan; Sert, Hakan; Sen, Fatih

    2016-06-01

    Herein, monodisperse platinum (0) nanocatalyst assembled on reduced graphene oxide (Pt(0)@RGO) was easily and reproducibly prepared by the double solvent reduction method at room temperature. Pt(0)@RGO was characterized by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM) measurements that verify the formation of monodisperse Pt (0) nanoparticles on RGO. The catalytic and electrocatalytic performances of Pt(0) @ RGO in terms of activity, isolability and reusability were investigated for both methanol oxidation and the dehydrocoupling of dimethylamine-borane (DMAB) in which Pt(0)@RGO was found to be highly active and reusable heterogeneous catalyst even at room temperature. The prepared nanoparticles can also electrocatalyze methanol oxidation with very high electrochemical activities (5.64 A/cm2 at 0.58 V for methanol). The activation energy (Ea), activation enthalpy (ΔH#), and activation entropy (ΔS#) for DMAB dehydrogenation were calculated to be 59.33 kJ mol(-1), 56.79 kJ mol(-1) and -151.68 J mol(-1) K(-1), respectively. The exceptional stability of new Pt(0) @ RGO nanoparticles towards agglomeration, leaching and CO poisoning allow these particles to be recycled and reused in the catalysis of DMAB dehydrogenation and methanol oxidation. After four subsequent reaction and recovery cycles, Pt(0) @ RGO retained ≥ 75% activity towards the complete dehydrogenation of DMAB.

  15. Solution-Stable Colloidal Gold Nanoparticles via Surfactant-Free, Hyperbranched Polyglycerol-b-polystyrene Unimolecular Templates.

    Science.gov (United States)

    Iocozzia, James; Lin, Zhiqun

    2016-07-19

    Hyperbranched polyglycerol-block-polystyrene copolymers, denoted HPG-b-PS, are synthesized and employed as a new and effective unimolecular template for synthesizing colloidal gold (Au) nanoparticles. The coordination of noble metal precursors with polyether within the inner HPG core and subsequent in situ reduction enables the formation of well-dispersed and stable PS-capped Au nanoparticles. The inner HPG core is produced via ring opening multibranching polymerization (ROMBP) and subsequently converted into atom transfer radical polymerization (ATRP) macroinitiators for the controlled growth of polystyrene (PS) arms possessing low polydispersity (PDI < 1.31). An initial investigation into the templating parameters of HPG-b-PS was undertaken by producing templates with different arm numbers (98 and 117) and different PS chain lengths (i.e., molecular weight = 3500-13400 g/mol). It was found that the PS chain length and solvent conditions affect the quality of the resulting PS-capped colloidal Au nanoparticles. This work demonstrates, for the first time, a simple, lower-cost approach for templating nonpolar solvent-soluble PS-capped Au nanoparticles on the order of 10-30 nm in diameter.

  16. Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres.

    Science.gov (United States)

    Uchida, Takako; Yoshikawa, Takayasu; Tamura, Mamoru; Iida, Takuya; Imura, Kohei

    2016-09-15

    Optical properties of a gold nanoparticle trimer assembly coupled with gold-coated hexagonally close-packed polystyrene microspheres were investigated by linear and nonlinear spectroscopy. The observed reflection spectrum shows multiple peaks from the visible to near-infrared spectral regions. The spectroscopic properties were also examined by a finite-difference time-domain simulation. We found that the optical response of plasmons excited in the gold nanoparticle trimers was significantly modulated by strong coupling of the plasmons and the photonic mode induced in the gold-coated polystyrene assembly. Two-photon induced photoluminescence and Raman scattering from the sample were investigated, and both signals were significantly enhanced at the gold nanoparticle assembly. The simulations reveal that the electric fields can be enhanced site-selectively, not only at the interstitial sites in the nanoparticle assembly but also at the gaps between the particle and the gold film due to plasmonic interactions, by tuning the wavelength and are responsible for the strong optical responses.

  17. Enhanced polystyrene surface mobility under carbon dioxide at low temperature for nanoparticle embedding control

    NARCIS (Netherlands)

    Yang, Qiuyan; Xu, Qun; Loos, Katja

    2015-01-01

    The surface properties of polystyrene (PS) films under carbon dioxide (CO2) were studied via a particle embedding technique at quite a low temperature range (308 to 323 K) in which polystyrene is typically considered to be in a glassy state without CO2. Atomic force microscope (AFM) technique with a

  18. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    Science.gov (United States)

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  19. Synthesis of monodisperse MFe{sub 2}O{sub 4} (M = Fe and Zn) nanoparticles for polydiethylsiloxane-based ferrofluid with a solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Zhuang, Lin, E-mail: stszhl@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Zhang, Yong [Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Shen, Hui [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-09-15

    Highlights: • MFe{sub 2}O{sub 4} nanoparticles were synthesized through a facile solvothermal method. • The relationship between viscosity and temperature of the polydiethylsiloxane-based ferrofluid is discussed. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 73.06 emu/g at room temperature. - Abstract: Monodisperse MFe{sub 2}O{sub 4} (M = Fe, Zn) nanoparticles were successfully synthesized for the application of polydiethylsiloxane-based (PDES) ferrofluids (FFs) via a novel solvothermal method, with which 1-octanol and 1-octanamine act as binary solvent, oleic acid (OA) as the surfactant and metal acetylacetonate [M(acac){sub 3}](M = Fe and Zn) as the metal source. X-ray diffractometer confirms that the resultant nanoparticles are pure MFe{sub 2}O{sub 4} with a spinel structure. Infrared spectroscopy indicates that oleic acid is bound to the surface of MFe{sub 2}O{sub 4} through a covalent bond between carboxylate (COO{sup −}) and metal cations. The ratio of 1-octanol and 1-octanamine plays a key role in the formation of the sphere-shaped morphology. Transmission electron microscopy (TEM) images confirm that the Fe{sub 3}O{sub 4} particles are of 4–11 nm with good monodispersity and a narrow size distribution. The saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles with sizes of 7 nm can reach up to 73.06 emu/g. Polydiethylsiloxane-based (PDES) FFs show relatively smaller changes of the viscosity with low temperatures (from −7 to 20 °C) than the polydimethylsiloxane-based (PDMS) FFs. For FFs applications, the relationship between viscosity and temperature is also discussed.

  20. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers

    Science.gov (United States)

    Negoda, Alexander; Kim, Kwang-Jin; Crandall, Edward D.; Worden, Robert M.

    2014-01-01

    A diverse range of molecular interactions can occur between engineered nanomaterials (ENM) and biomembranes, some of which could lead to toxic outcomes following human exposure to ENM. In this study, we adapted electrophysiology methods to investigate the ability of 20 nm polystyrene nanoparticles (PNP) to induce pores in model bilayer lipid membranes (BLM) that mimic biomembranes. PNP charge was varied using PNP decorated with either positive (amidine) groups or negative (carboxyl) groups, and BLM charge was varied using dioleoyl phospholipids having cationic (ethylphosphocholine), zwitterionic (phosphocholine), or anionic (phosphatidic acid) headgroups. Both positive and negative PNP induced BLM pores for all lipid compositions studied, as evidenced by current spikes and integral conductance. Stable PNP-induced pores exhibited ion selectivity, with the highest selectivity for K+ (PK/PCl ~ 8.3) observed when both the PNP and lipids were negatively charged, and the highest selectivity for Cl− (PK/PCl ~ 0.2) observed when both the PNP and lipids were positively charged. This trend is consistent with the finding that selectivity for an ion in channel proteins is imparted by oppositely charged functional groups within the channel’s filter region. The PK/PCl value was unaffected by the voltage-ramp method, the pore conductance, or the side of the BLM to which the PNP were applied. These results demonstrate for the first time that PNP can induce ion-selective pores in BLM, and that the degree of ion selectivity is influenced synergistically by the charges of both the lipid headgroups and functional groups on the PNP. PMID:23747366

  1. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Science.gov (United States)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-02-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  2. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    Science.gov (United States)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  3. Nanofiltration membranes of poly(styrene-co-chloro-methylstyrene)-grafted-DGEBA reinforced with gold and polystyrene nanoparticles for water purification

    Science.gov (United States)

    Kausar, Ayesha; Siddiq, Muhammad

    2015-10-01

    The matrix material for nanofiltration membranes was prepared through chemical grafting of poly(styrene-co-chloromethylstyrene) (PSCMS) to DGEBA using hexamethylenediamine as linker. The phase inversion technique was used to form PSCMS-g-DGEBA membranes. This effort also involves the designing of gold nanoparticles and its composite nanoparticles with polystyrene microspheres as matrix reinforcement. The nanoporous morphology was observed at lower filler content and there was formation of nanopattern at increased nanofiller content. The tensile strength was improved from 32.5 to 35.2 MPa with the increase in AuNPs-PSNPs loading from 0.1 to 1 wt%. The glass transition temperature was also enhanced from 132 to 159 °C. The membrane properties were measured via nanofiltration set-up. Higher pure water permeation flux, recovery, and salt rejection were measured for novel membranes. PSCMS-g-DGEBA/AuNPs-PSNPs membrane with 1 wt% loading showed flux of 2.01 mL cm-2 min-1 and salt rejection ratio of 70.4 %. Efficiency of the gold/polystyrene nanoparticles reinforced membranes for the removal of Hg2+ and Pb2 was found to be 99 %. Novel hybrid membranes possess fine characteristics to be utilized in industrial water treatment units.

  4. Photophysical study of blue-light excitable ternary Eu(III) complexes and their encapsulation into polystyrene nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Räsänen, Markus, E-mail: mpvras@utu.fi [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland); Takalo, Harri [DHR Finland Oy, Innotrac Diagnostics, Biolinja 12, FIN-20750 Turku (Finland); Soukka, Tero [Department of Biochemistry/Biotechnology, University of Turku, FIN-20014 Turku (Finland); Haapakka, Keijo; Kankare, Jouko [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland)

    2015-04-15

    In this work, 14 ternary Eu(III) complexes were studied by means of spectroscopy. The studied Eu(III) complexes consisted of Lewis bases (4′-(4-diethylaminophenyl)-2,2′:6′,2″-terpyridine (L{sup 8}) or 1,10-phenanthroline (L{sup 9})) and differently substituted β-diketones. The ternary complexes with L{sup 8} show the excitation peak at 405 nm and the quantum yield even 76%. The brightest ternary complex at the 405 nm excitation was Eu(L{sup 3}){sub 3}L{sup 8} while Eu(L{sup 7}){sub 3}L{sup 8} (HL{sup 3}=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, HL{sup 7}=1-(9-ethyl-9H-carbazol-3-yl)-4,4,5,5,5-pentafluoro-1,3-pentanedione) was found to be the brightest at the ligand-centred excitation maximum. The ternary complexes were studied mainly in toluene as the model environment for the polystyrene nanoparticle cavities. The complexes were successfully loaded into the polystyrene nanoparticles enabling their bioanalytical application in aqueous environment. The encapsulation of the complexes preserved, or even enhanced, their good photophysical features. - Highlights: • Ternary Eu{sup 3+} complexes with some β-diketone and substituted terpyridine were studied. • Ternary complexes with substituted terpyridine showed blue-light excitability. • Ternary complexes were successfully loaded into the polystyrene nanoparticles. • Encapsulation of the complexes preserved their good photophysical features.

  5. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Science.gov (United States)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  6. Preparation and characterization of nanocomposites of natural rubber with polystyrene and styrene-methacrylic acid copolymer nanoparticles

    Directory of Open Access Journals (Sweden)

    T. Nuruk

    2012-06-01

    Full Text Available Composites of natural rubber (NR/vinyl polymer nanoparticles as polystyrene (PS and poly(styrenemethacrylic acid (P(S-MAA were prepared by heterocoagulation technique. The polymer nanoparticles were prepared by emulsifier-free emulsion polymerizations at 70°C using potassium persulfate as initiator. Under acidic condition where positive charge was present on the NR latex (NRL surface, the nanoparticles having negative charge mainly from sulfate group of initiator were able to adsorb on the NRL surface, the electrostatic interaction being the driving force. The scanning electron micrographs showed that the polymer nanoparticles are homogenously distributed throughout NR matrix as nanoclusters with an average size of about 500 and 200 nm for PS and P(S-MAA, respectively. The mechanical properties of NR/PS and NR/P(S-MAA composite films were compared with the NR host. The nanocomposites, particularly when the polymer nanoparticles are uniformly dispersed, possess significantly enhanced mechanical properties strongly depending on the morphology of the nanocomposites.

  7. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets.

    Science.gov (United States)

    Fuchs, Ann-Kathrin; Syrovets, Tatiana; Haas, Karina A; Loos, Cornelia; Musyanovych, Anna; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2016-04-01

    Macrophages are key regulators of innate and adaptive immune responses. Exposure to microenvironmental stimuli determines their polarization into proinflammatory M1 and anti-inflammatory M2 macrophages. M1 exhibit high expression of proinflammatory TNF-α and IL-1β, and M2 promote tissue repair, but likewise support tumor growth and cause immune suppression by expressing IL-10. Thus, the M1/M2 balance critically determines tissue homeostasis. By using carboxyl- (PS-COOH) and amino-functionalized (PS-NH2) polystyrene nanoparticles, the effects of surface decoration on the polarization of human macrophages were investigated. The nanoparticles did not compromise macrophage viability nor did they affect the expression of the M1 markers CD86, NOS2, TNF-α, and IL-1β. By contrast, in M2, both nanoparticles impaired expression of scavenger receptor CD163 and CD200R, and the release of IL-10. PS-NH2 also inhibited phagocytosis of Escherichia coli by both, M1 and M2. PS-COOH did not impair phagocytosis by M2, but increased protein mass in M1 and M2, TGF-β1 release by M1, and ATP levels in M2. Thus, nanoparticles skew the M2 macrophage polarization without affecting M1 markers. Given the critical role of the M1 and M2 polarization for the immunological balance in patients with cancer or chronic inflammation, functionalized nanoparticles might serve as tools for reprogramming the M1/M2 polarization.

  8. High Content Analysis Provides Mechanistic Insights on the Pathways of Toxicity Induced by Amine-Modified Polystyrene Nanoparticles

    Science.gov (United States)

    Anguissola, Sergio; Garry, David; Salvati, Anna; O'Brien, Peter J.; Dawson, Kenneth A.

    2014-01-01

    The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney, macrophages, glia, and neuronal cells were exposed to 50 nm amine-modified polystyrene (PS-NH2) NPs previously reported to induce apoptosis and to 50 nm sulphonated and carboxyl-modified polystyrene NPs that were reported to be silent. All cell lines apart from Raw 264.7 executed apoptosis in response to PS-NH2 NPs, showing specific sequences of EC50 thresholds; lysosomal acidification was the most sensitive parameter. Loss of mitochondrial membrane potential and plasma membrane integrity measured by High Content Analysis resulted comparably sensitive to the equivalent OECD-recommended assays, allowing increased output. Analysis of the acidic compartments revealed good cerrelation between size/fluorescence intensity and dose of PS-NH2 NPs applied; moreover steatosis and phospholipidosis were observed, consistent with the lysosomal alterations revealed by Lysotracker green; similar responses were observed when comparing astrocytoma cells with primary astrocytes. We have established a platform providing mechanistic insights on the response to exposure to nanoparticles. Such platform holds great potential for in vitro screening of nanomaterials in highthroughput format. PMID:25238162

  9. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles.

    Science.gov (United States)

    Anguissola, Sergio; Garry, David; Salvati, Anna; O'Brien, Peter J; Dawson, Kenneth A

    2014-01-01

    The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney, macrophages, glia, and neuronal cells were exposed to 50 nm amine-modified polystyrene (PS-NH2) NPs previously reported to induce apoptosis and to 50 nm sulphonated and carboxyl-modified polystyrene NPs that were reported to be silent. All cell lines apart from Raw 264.7 executed apoptosis in response to PS-NH2 NPs, showing specific sequences of EC50 thresholds; lysosomal acidification was the most sensitive parameter. Loss of mitochondrial membrane potential and plasma membrane integrity measured by High Content Analysis resulted comparably sensitive to the equivalent OECD-recommended assays, allowing increased output. Analysis of the acidic compartments revealed good cerrelation between size/fluorescence intensity and dose of PS-NH2 NPs applied; moreover steatosis and phospholipidosis were observed, consistent with the lysosomal alterations revealed by Lysotracker green; similar responses were observed when comparing astrocytoma cells with primary astrocytes. We have established a platform providing mechanistic insights on the response to exposure to nanoparticles. Such platform holds great potential for in vitro screening of nanomaterials in highthroughput format.

  10. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells

    Science.gov (United States)

    Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse

    2014-02-01

    A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and

  11. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Matyushin, A. A. [Ministry of Public Health of the Russian Federation, First Moscow State Medical University (Russian Federation); Khotina, I. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Shtykova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  12. Monodispersed Silica Nanospheres Encapsulating Fe3O4 and LaF3:Eu3+ Nanoparticles for MRI Contrast Agent and Luminescent Imaging

    Science.gov (United States)

    Tian, Yang; Yu, Binbin; Yang, Hong-Yu; Liao, Ji

    2013-03-01

    Bifunctional nanospheres of silica encapsulating Fe3O4 and LaF3:Eu nanoparticles were synthesized in a reverse microemulsion solution. The nanospheres were perfectly monodispersed with a small diameter of 20 nm. The composition of the bifunctional nanospheres was confirmed by powder X-ray diffraction. Their magnetic and luminescent properties were measured at room temperature. The relaxation efficiency and T2-weighted images showed the high-performance for the product as a resonance imaging contrast agent. In addition, a qualitative cell uptake in human cervical cancer HeLa cells demonstrated that the SFLE nanospheres were efficiently up-taken into cytosol. Taken together, these findings suggest that the SiO2/Fe3O4-LaF3:Eu3+ nanospheres are good luminescence probes for bio-imaging.

  13. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    Directory of Open Access Journals (Sweden)

    Ekkapongpisit M

    2012-07-01

    Full Text Available Maneerat Ekkapongpisit,1 Antonino Giovia,1 Carlo Follo,1 Giuseppe Caputo,2,3 Ciro Isidoro11Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale “A Avogadro”, Novara, 2Dipartimento di Chimica dell’Università di Torino, Torino, 3Cyanine Technology SpA, Torino, ItalyBackground and methods: Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm, type of material (mesoporous silica versus polystyrene, and surface charge functionalization (none, amine groups, or carboxyl groups on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles.Results: We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles.Conclusion: These data highlight the importance of considering both the

  14. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Naik, R. E-mail: naik@physics.wayne.edu; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl{sub 2}, (2) FeCl{sub 3}, (3) 2FeCl{sub 2}:FeCl{sub 3}, (4) 9FeCl{sub 2}:CoCl{sub 2}, and (5) 4FeCl{sub 2}:CoCl{sub 2} to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), {sup 57}Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: {gamma}-Fe{sub 2}O{sub 3}, CoFe{sub 2}O{sub 4}, and perhaps a minor Fe{sub 3}O{sub 4} phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T{sub B}) ranging from 20 K to room temperature.

  15. Transport and retention of TiO2 and polystyrene nanoparticles during drainage from tall heterogeneous layered columns

    Science.gov (United States)

    Hoggan, James L.; Sabatini, David A.; Kibbey, Tohren C. G.

    2016-11-01

    Recent developments in nanotechnology have seen an increase in the use of manufactured nanomaterials. Although their unique physicochemical properties are desirable for many products and applications, concern continues to exist about their environmental fate and potential to cause risk to human and ecological health. The purpose of this work was to examine one aspect of nanomaterial environmental fate: transport and retention in the unsaturated zone during drainage. The work made use of tall segmented columns packed with layers of two different porous media, one medium sand and one fine sand. The use of tall columns allowed drainage experiments to be conducted where the water table remained within the height of the column, permitting control of final saturation profiles without the need for capillary barrier membranes which can potentially complicate analyses. Experiments were conducted with titanium dioxide (TiO2) and polystyrene nanomaterials. For the strongly negatively-charged polystyrene nanomaterials, little retention was observed under the conditions studied. For the TiO2 nanomaterials, results of the work suggest that while saturated fine sand layers may retain more nanomaterials than saturated coarse sand layers, significantly greater retention is possible in unsaturated media. Furthermore, unsaturated medium sand layers exhibited significantly greater retention than adjacent saturated fine sand layers when present at low saturations high above the water table. Retention by unsaturated media were found to correlate strongly with elevation. Free drainage experiments including both primary and secondary drainages in homogeneous columns showed evidence of redistribution during imbibition and secondary drainage, but still showed substantial unsaturated retention of TiO2 nanoparticles high in the column, despite re-saturation with- and drainage of nanoparticle-free water.

  16. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    Science.gov (United States)

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  17. Formation of cagelike sulfonated polystyrene microspheres via swelling-osmosis process and loading of CdS nanoparticles.

    Science.gov (United States)

    Weng, Hanqin; Huang, Xuefeng; Wang, Mozhen; Ji, Xiang; Ge, Xuewu

    2013-12-10

    In this report, we studied the formation mechanism of cagelike polymer microspheres fabricated conveniently and efficiently through a swelling-osmosis process of sulfonated polystyrene (SPS) microspheres in a ternary mixed solvent (water/ethanol/heptane). The scanning electron microscopy and transmission electron microscopy observations indicated that the morphology of the final cagelike SPS microspheres is mainly controlled by the composition of the mixed solvent and the swelling temperature. Considering the solubility parameters of related reagents and the low interface tension of heptane and the aqueous solution of ethanol (only 6.9 mN/m), we confirm that the porogen procedure starts from the swelling of SPS microspheres by heptane, followed by the osmosis process of water molecules into the swollen SPS microspheres forced by the strong hydrophilicity of -SO3H group. The water molecules permeated into SPS microspheres will aggregate into water pools, which form the pores after the microspheres are dried. These prepared cagelike SPS microspheres are further served as the scaffold for the in situ generated CdS nanoparticles under γ-ray radiation. The CdS/SPS composite microspheres show good fluorescence performance. This work shows that the cagelike SPS microspheres have a wide industrial application prospect due to their economical and efficient preparation and loading nanoparticles.

  18. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines.

    Science.gov (United States)

    Kang, Taehee; Park, Chulhun; Lee, Beom-Jin

    2016-12-01

    Cancer cells in the tumor microenvironment are affected by fluid shear stress generated by blood flow in the vascular microenvironment and interstitial flows in the tumor microenvironment. Thus, we investigated how fluidic shear stress affects cellular uptake as well as the endocytosis mechanism of nanoparticles using a biomimetic microfluidic system that mimics the human dynamic environment. Positively charged amino-modified polystyrene nanoparticles (PSNs) at 100 μg/mL were delivered to cancer cells under static and biomimetic dynamic conditions (0.5 dyne/cm(2)). Additionally, the experiment was done in the presence of endocytosis inhibitors specific for one of the endocytosis pathways. To evaluate cellular uptake of cationic PSNs, the fluorescence intensity of cationic PSNs in cancer cells was measured by flow cytometer and fluorescence images were taken using confocal laser scanning microscopy. Cancer cells in dynamic conditions exhibited higher cellular uptake of PSNs and showed different cellular uptake mechanisms compared with those in static conditions. From these results, it suggested that biomimetic dynamic conditions stimulated specific endocytosis and prompted cellular uptake. It was also important to consider fluidic shear stress as one of the critical factors because cellular uptake and drug delivery could play a key role in cancer cells and metastasis.

  19. High proton-conducting organic/inorganic nanocomposite films based on sulfonated polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene and silica nanoparticles.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2013-12-01

    Sulfonated polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene (S-polySEPS) was prepared by sulfonation at the phenyl groups of the polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene (polySEPS) containing 65% styrene groups for proton exchange membrane. High proton-conducting S-polySEPS/silica nanocomposite films were produced by direct-mixing of nanosilica particles with the S-polySEPS copolymer. The TEM image of the S-polySEPS/silica nanocomposite films showed that the silica particles were very-well dispersed within the S-polySEPS matrix. Also, the XRD patterns showed the presence of the nano-scaled silica particles. Moreover, the nano-scaled silica particles played an important role in the prepared organic/inorganic nanocomposite properties such as proton conductivity, thermal stability, water content and ion exchange capacity (IEC). The S-polySEPS/silica 1 wt% (1.41 x 10(-1) S/cm) and 2 wt% (9.9 x 10(-2) S/cm) nanocomposite films had higher proton conductivity than Nafion 117 (9.8 x 10(-2) S/cm) at the temperature of 90 degrees C. The FT-IR analysis was used to verify the sulfonation of the S-polySEPS copolymer. The TGA analysis was carried out to investigate the thermal stability of the S-polySEPS/silica nanocomposite films.

  20. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    Science.gov (United States)

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.

  1. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  2. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    Science.gov (United States)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  3. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Huan [State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by {sup 1}H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria.

  4. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    NARCIS (Netherlands)

    Walczak, A.P.; Hendriksen, P.J.M.; Woutersen, R.A.; Zande, M. van der; Undas, A.K.; Helsdingen, R.; Berg, H.H.J. van den; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polys

  5. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.

    Science.gov (United States)

    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong

    2013-08-20

    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage.

  6. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus.

    Science.gov (United States)

    Canesi, L; Ciacci, C; Bergami, E; Monopoli, M P; Dawson, K A; Papa, S; Canonico, B; Corsi, I

    2015-10-01

    Polymeric nanoparticles can reach the marine environment from different sources as weathering of plastic debris and nanowaste. Nevertheless, few data are available on their fate and impact on marine biota. Polystyrene nanoparticles (PS NPs) can be considered as a model for studying the effects of nanoplastics in marine organisms: recent data on amino-modified PS NPs (PS-NH2) toxicity in sea urchin embryos underlined that marine invertebrates can be biological targets of nanoplastics. Cationic PS NPs have been shown to be toxic to mammalian cells, where they can induce apoptotic processes; however, no information is available on their effects and mechanisms of action in the cells of marine organisms. In this work, the effects of 50 nm PS-NH2 were investigated in the hemocytes of the marine bivalve Mytilus galloprovincialis. Hemocytes were exposed to different concentrations (1, 5, 50 μg/ml) of PS-NH2 suspension in ASW. Clear signs of cytoxicity were evident only at the highest concentrations (50 μg/ml). On the other hand, a dose dependent decrease in phagocytic activity and increase in lysozyme activity were observed. PS-NH2 NPs also stimulated increase in extracellular ROS (reactive oxygen species) and NO (nitric oxide) production, with maximal effects at lower concentrations. Moreover, at the highest concentration tested, PS-NH2 NPs induced apoptotic process, as evaluated by Flow cytometry (Annexin V binding and mitochondrial parameters). The results demonstrate that in marine invertebrates the immune function can represent a significant target for PS-NPs. Moreover, in Mytilus hemocytes, PS-NH2 NPs can act through mechanisms similar to those observed in mammalian cells. Further research is necessary on specific mechanisms of toxicity and cellular uptake of nanoplastics in order to assess their impact on marine biota.

  7. Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene

    Indian Academy of Sciences (India)

    Shugang Wang; Yaoxian Li; Jie Bai; Qingbiao Yang; Yan Song; Chaoqun Zhang

    2009-10-01

    The major objective of this work was to detect the change of photoluminescence (PL) intensity of CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electrospinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyltrimethylammonium bromide (CTAB), and finally, transferred into PS matrix to form CdTe/PS nanofibres by electrospinning. Then, CdTe/PS nanofibres were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe their morphology and distribution, respectively. The selective area electronic diffraction (SAED) pattern proved that the CdTe NPs were cubic lattice. The PL spectrum indicated that CdTe NPs have been transferred into PS nanofibres, and the PL intensity of CdTe NPs in the nanofibres was even higher than that before CdTe NPs were introduced into PS nanofibres. Moreover, X-ray photoelectron spectra (XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB, and PS acted as a dispersant in the process of electrospinning.

  8. Influence of α-amylase template concentration on systematic entrapment of highly stable and monodispersed colloidal gold nanoparticles

    Science.gov (United States)

    Ananth, A. Nitthin; Ananth, A. Nimrodh; Jose, Sujin P.; Umapathy, S.; Mathavan, T.

    2016-01-01

    Nano gold / α-amylase colloidal dispersions of profound stability were made using simple procedure with a conventional reducing agent. The surface plasmon resonance of the gold nanocrystals was used to quantify the extent of the dispersion stability and functionalization. It is found that the reduced gold nanoparticles were trapped into the protein network without denaturation the structure of α-amylase protein. This kind of entrapment of particles into the protein network prevents clustering of individual gold nanoparticles (6.42 nm ± 0.92 nm) by acting as a natural spacer. Systematic entrapment was facilitated by the affinity of gold to the sulfur moieties (Au-S) in the protein structure.

  9. Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: modulable tools for the encapsulation and controlled release of pharmaceuticals.

    Science.gov (United States)

    Mendez-Ardoy, Alejandro; Gómez-García, Marta; Gèze, Annabelle; Putaux, Jean-Luc; Wouessidjewe, Denis; Ortiz Mellet, Carmen; Defaye, Jacques; García Fernández, José M; Benito, Juan M

    2012-07-01

    Selective chemical functionalization of cyclodextrins (CDs) is a readily amenable methodology to produce amphiphilic macromolecules endowed with modulable self-organizing capabilities. Herein, the synthesis of well-defined amphiphilic CD derivatives, with a "skirt-type" architecture, that incorporate long-chain fatty esters at the secondary hydroxyl rim and a variety of chemical functionalities (e. g. iodo, bromo, azido, cysteaminyl or isothiocyanato) at the primary hydroxyls rim is reported. Nanoprecipitation of the new CD facial amphiphiles, or binary mixtures of them, resulted in nanoparticles with average hydrodynamic diameters ranging from 100 to 240 nm that were stable in suspension for several months. The precise size, zeta potential and topology of the nanoparticles are intimately dependent on the functionalization pattern at the CD scaffold. Highly efficient molecular encapsulation capabilities of poorly bioavailable drugs such as diazepam (DZ) were demonstrated for certain derivatives, the drug release profile being dependent on the type of formulation (nanospheres or nanocapsules). The efficiency and versatility of the synthetic strategy, together with the possibility of exploiting the reactivity of the functional groups at the nanoparticle surface, offer excellent opportunities to further manipulate the carrier capabilities of this series of amphiphilic CDs from a bottom-up approach.

  10. Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis

    Science.gov (United States)

    De Temmerman, Pieter-Jan; Verleysen, Eveline; Lammertyn, Jeroen; Mast, Jan

    2014-10-01

    Particle-tracking analysis (PTA) in combination with systematic imaging, automatic image analysis, and automatic data processing is validated for size measurements. Transmission electron microscopy (TEM) in combination with a systematic selection procedure for unbiased random image collection, semiautomatic image analysis, and data processing is validated for size, shape, and surface topology measurements. PTA is investigated as an alternative for TEM for the determination of the particle size in the framework of the EC definition of nanomaterial. The intra-laboratory validation study assessing the precision and accuracy of the TEM and PTA methods consists of series of measurements on three gold reference materials with mean area-equivalent circular diameters of 8.9 nm (RM-8011), 27.6 nm (RM-8012), and 56.0 nm (RM-8013), and two polystyrene materials with modal hydrodynamic diameters of 102 nm (P1) and 202 nm (H1). By obtaining a high level of automation, PTA proves to give precise and non-biased results for the modal hydrodynamic diameter in size range between 30 and 200 nm, and TEM proves to give precise and non-biased results for the mean area-equivalent circular diameter in the size range between 8 and 200 nm of the investigated near-monomodal near-spherical materials. The expanded uncertainties of PTA are about 9 % and are determined mainly by the repeatability uncertainty. This uncertainty is two times higher than the expanded uncertainty of 4 % obtained by TEM for analyses on identical materials. For the investigated near-monomodal and near-spherical materials, PTA can be used as an alternative to TEM for measuring the particle size, with exception of 8.9 nm gold, because this material has a size below the detection limit of PTA.

  11. Preparation and surface functionalisation of poly(styrene maleimide) nanoparticles for bacterial detection

    CSIR Research Space (South Africa)

    Barnard, A

    2012-10-01

    Full Text Available .kashan.co.za] INTRODUCTION The detection of bacteria in water is essential for the prevention of water-borne disease outbreaks. Conventionally, culturing methods are used to detect bacteria in water, whereby the number of bacteria present in a sample is multiplied to a... to the particle surfaces for attachment of fluorescent markers and antibodies. Figure 1: Process diagram of proposed development method of nanoparticles for bacteria detection Particle characterisation was performed with transmission electron microscopy (TEM...

  12. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    OpenAIRE

    Fröhlich Eleonore; Meindl Claudia; Roblegg Eva; Ebner Birgit; Absenger Markus; Pieber Thomas R

    2012-01-01

    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polysty...

  13. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...

  14. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational viscos...

  15. Preparation of monodisperse magnetic polymer microspheres by swelling and thermolysis technique.

    Science.gov (United States)

    Yang, Chengli; Shao, Qian; He, Jie; Jiang, Biwang

    2010-04-06

    A novel process for the preparation of monodisperse magnetic polymer microspheres by uniquely combining swelling and thermolysis technique was reported. The monodisperse polystyrene microspheres were first prepared by dispersion polymerization and swelled in chloroform. Then, ferric oleate was dispersed in chloroform as a precursor and impregnated into the swollen polymer microspheres. Subsequently, the iron oxide nanoparticles were formed within the polymer matrix by thermal decomposition of ferric oleate. The morphology, inner structure, and magnetic properties of the magnetic polymer microspheres were studied with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), and superconducting quantum interference device (SQUID) magnetometer. The results showed that the average diameter of the magnetic polymer microspheres was 5.1 microm with a standard deviation of 0.106, and the magnetic polymer microspheres with saturation magnetization of 12.6 emu/g exhibited distinct superparamagnetic characteristics at room temperature. More interestingly, the magnetite nanoparticles with a spinel structure are evenly distributed over the whole area of the polymer microspheres. These magnetic polymer microspheres have potential applications in biotechnology.

  16. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid

    Science.gov (United States)

    Ho, Sally Fae; Mendoza-Garcia, Adriana; Guo, Shaojun; He, Kai; Su, Dong; Liu, Sheng; Metin, Önder; Sun, Shouheng

    2014-05-01

    MPd (M = Co, or Cu) nanoparticles (NPs) were synthesized by borane-amine reduction of metal acetylacetonates. The size of the MPd NPs was controlled at 3.5 nm and their compositions were tuned by the molar ratios of the metal precursors. These MPd NPs were active catalysts for electrochemical oxidation of formic acid and the Cu30Pd70 NPs showed the highest mass activity at 1192.9 A gPd-1, much higher than 552.6 A gPd-1 obtained from the 3.5 nm Pd NPs. Our synthesis provides a facile route to MPd NPs, allowing further investigation of MPd NP catalysts for electrochemical oxidation and many other chemical reactions.MPd (M = Co, or Cu) nanoparticles (NPs) were synthesized by borane-amine reduction of metal acetylacetonates. The size of the MPd NPs was controlled at 3.5 nm and their compositions were tuned by the molar ratios of the metal precursors. These MPd NPs were active catalysts for electrochemical oxidation of formic acid and the Cu30Pd70 NPs showed the highest mass activity at 1192.9 A gPd-1, much higher than 552.6 A gPd-1 obtained from the 3.5 nm Pd NPs. Our synthesis provides a facile route to MPd NPs, allowing further investigation of MPd NP catalysts for electrochemical oxidation and many other chemical reactions. Electronic supplementary information (ESI) available: Detailed synthetic and electrochemical analysis procedures, and XRD of the NPs. See DOI: 10.1039/c4nr01107d

  17. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    Science.gov (United States)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  18. Reaction of monocytes to polystyrene and silica nanoparticles in short-term and long-term exposures†

    Science.gov (United States)

    Mrakovcic, Maria; Meindl, Claudia; Roblegg, Eva; Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) are increasingly used in industrial, health and consumer products. In addition to the intended effects, NPs may also cause cell damage. Typical cytotoxicity assays assess short-term effects in adherent cells but do not evaluate longer exposure times and do not focus on cells in suspension. Since NPs are not removed easily from the organism, non-biodegradable NPs may persist in the systemic circulation and affect monocyte function at low concentrations. To mimic this situation, THP-1 monocytes were exposed to low concentrations of plain polystyrene particles (PPP) in different sizes for short (24 h) and prolonged (16 d) time periods. CELLine CL350, a small two-chamber bioreactor, and sub-culturing in flasks were compared regarding prolonged cytotoxicity testing. Uptake rates of the particles, cytotoxicity screening assays, and interleukin secretion were used for the identification of adverse effects. After 24 h, 50 μg ml−1 20 nm PPP did not affect cellular viability and interleukin secretion, while at higher concentrations the cytotoxicity of PPP (20 nm-500 nm) was correlated to surface area. After 16 d of exposure at 50 μg ml−1 20 nm PPP, the decrease in cell number and the increase in interleukins were significant. 200 nm PPP, by contrast, caused only minimal effects. Due to lower reproducibility, CELLine proved to be less suitable for the assessment as compared to sub-culturing in flasks. After prolonged exposure, silica Aerosil OX50 particles also were more cytotoxic towards THP-1 monocytes. The data suggest that prolonged exposure to NPs leads to cytotoxicity at low doses and that induction of cell death may be involved in the observed pro-inflammatory action of NPs. PMID:26005565

  19. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles.

    Science.gov (United States)

    Terranova, Lisa; Dragusin, Diana Maria; Mallet, Romain; Vasile, Eugeniu; Stancu, Izabela-Cristina; Behets, Catherine; Chappard, Daniel

    2017-02-01

    Non-biodegradable porous polystyrene (PS) scaffolds, composed of microfibers, have been prepared by electrospinning for the reconstruction of large bone defects. PS microfibers were prepared by incorporating β-TCP grains inside the polymer or grafting gold nanoparticles surface functionalized with mercaptosuccinic acid. Cytocompatibility of the three types of scaffolds (PS, β-TCP-PS and Au-PS) was studied by seeding human mesenchymal stem cells. Biocompatibility was evaluated by implanting β-TCP-PS and Au-PS scaffolds into a critical size (4mm) calvarial defect in mice. Calvaria were taken 6, 9, and 12 weeks after implantation; newly formed bone and cellular response was analyzed by microcomputed tomography (microCT) and histology. β-TCP-PS scaffolds showed a significantly higher cell proliferation in vitro than on PS or Au-PS alone; clearly, the presence of β-TCP grains improved cytocompatibility. Biocompatibility study in the mouse calvaria model showed that β-TCP-PS scaffolds were significantly associated with more newly-formed bone than Au-PS. Bone developed by osteoconduction from the defect margins to the center. A dense fibrous connective tissue containing blood vessels was identified histologically in both types of scaffolds. There was no inflammatory foci nor giant cell in these areas. AuNPs aggregates were identified histologically in the fibrosis and also incorporated in the newly-formed bone matrix. Although the different types of PS microfibers appeared cytocompatible during the in vitro experiment, they appeared biotolerated in vivo since they induced a fibrotic reaction associated with newly formed bone.

  20. Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation.

    Science.gov (United States)

    Balbi, Teresa; Camisassi, Giulia; Montagna, Michele; Fabbri, Rita; Franzellitti, Silvia; Carbone, Cristina; Dawson, Kenneth; Canesi, Laura

    2017-11-01

    The potential release of nanoparticles (NPs) into aquatic environments represents a growing concern for their possible impact on aquatic organisms. In this light, exposure studies during early life stages, which can be highly sensitive to environmental perturbations, would greatly help identifying potential adverse effects of NPs. Although in the marine bivalve Mytilus spp. the effects of different types of NPs have been widely investigated, little is known on the effects of NPs on the developing embryo. In M. galloprovincialis, emerging contaminants were shown to affect gene expression profiles during early embryo development (from trocophorae-24 hpf to D-veligers-48 hpf). In this work, the effects of amino-modified polystyrene NPs (PS-NH2) on mussel embryos were investigated. PS-NH2 affected the development of normal D-shaped larvae at 48 hpf (EC50 = 0.142 mg/L). Higher concentrations (5-20 mg/L) resulted in high embryotoxicity/developmental arrest. At concentrations ≅ EC50, PS-NH2 affected shell formation, as shown by optical and polarized light microscopy. In these conditions, transcription of 12 genes involved in different biological processes were evaluated. PS-NH2 induced dysregulation of transcription of genes involved in early shell formation (Chitin synthase, Carbonic anhydrase, Extrapallial Protein) at both 24 and 48 hpf. Decreased mRNA levels for ABC transporter p-glycoprotein-ABCB and Lysozyme were also observed at 48 hpf. SEM observations confirmed developmental toxicity at higher concentrations (5 mg/L). These data underline the sensitivity of Mytilus early embryos to PS-NH2 and support the hypothesis that calcifying larvae of marine species are particularly vulnerable to abiotic stressors, including exposure to selected types of NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Facile Method for Preparation of Silica Coated Monodisperse Superparamagnetic Microspheres

    Directory of Open Access Journals (Sweden)

    Xuan-Hung Pham

    2016-01-01

    Full Text Available This paper presents a facile method for preparation of silica coated monodisperse superparamagnetic microsphere. Herein, monodisperse porous polystyrene-divinylbenzene microbeads were prepared by seeded emulsion polymerization and subsequently sulfonated with acetic acid/H2SO4. The as-prepared sulfonated macroporous beads were magnetized in presence of Fe2+/Fe3+ under alkaline condition and were subjected to silica coating by sol-gel process, providing water compatibility, easily modifiable surface form, and chemical stability. FE-SEM, TEM, FT-IR, and TGA were employed to characterize the silica coated monodisperse magnetic beads (~7.5 μm. The proposed monodisperse magnetic beads can be used as mobile solid phase particles candidate for protein and DNA separation.

  2. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  3. Size-dependent filtration of nanoparticles on porous films composed by polystyrene microsphere monolayers and applications in site-selective deposition of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Weidong [Jilin University, State Key Laboratory of Supramolecular Structure and Materials (China); Zhou, Tieli [Changchun University, College of Food Engineering and Landscape Architecture (China); Sun, Chengbin; Tao, Yanchun; Lu, Fei; Wang, Xu; Zhao, Bing, E-mail: zhaob@mail.jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials (China); Cui, Yinqiu, E-mail: cuiyq@jlu.edu.cn [Jilin University, School of Life Sciences (China)

    2015-10-15

    Composite films composed of polystyrene (PS) microsphere monolayers and gold (Au) and/or silver (Ag) nanoparticles (NPs) decorations were prepared by a novel size-dependent filtration effect on close-packed PS microsphere arrays. The uniform pores inlaid in the PS monolayer films acted as the transport tunnels for NPs. The steric restriction induced by the size of the pores was used as a main strategy to fabricate hybrid micro/nano films, which were composed of PS microspheres with inhomogeneous anisotropic decorations. The Au and Ag NPs were used as the building blocks to decorate the PS microspheres through a layer-by-layer self-assembly technique with the aid of polyelectrolyte coupling agents. Only the small particles which could pass through the micropores could reach to and deposit on the inner surfaces of the PS microsphere monolayer films. Large particles remained on the outside and could only deposit on the outer surfaces. Thus, the inhomogeneous anisotropic decoration was obtained. This study provides a novel strategy for fabricating anisotropic micro/nanostructures by the size-dependent filtration effect of NPs on porous films and has the potential in applications of anisotropic self-assembly, sensor, and surface modifications at nanoscale.

  4. 单分散聚苯乙烯胶体颗粒的界面电性质研究%The Study of Monodisperse Polystyrene Microsphere’s interface electrical properties

    Institute of Scientific and Technical Information of China (English)

    刘丽; 严亚; 陈启明

    2007-01-01

      以过硫酸钾(KPS)为引发剂,以水为反应介质,采用无皂乳液聚合工艺,制备出粒径在500nm左右单分散(分散系数<5%)聚苯乙烯微球.所制备的聚苯乙烯微球为光滑的球形颗粒.研究发现;由无皂乳液聚合法制备的胶体颗粒其ζ电势在不同的离子强度下随pH的变化曲线均出现平台pH6~10.5,说明在一定的离子强度和pH条件下,聚苯乙烯胶乳的ζ电势具有良好的稳定性.聚苯乙烯胶乳有望作为具有一定电势值的标准颗粒.%  The water systems have been exploited as dispersion medium in soap-free polymerizing of polystyrene (PS) using potassium persulfate as an initiator.The size of particles is round 500nm(coefficient of variation<5%). The study on the curves of Zeta-potential (ζ) versus pH in different ionic strength showed that the polystyrene colloidal particles prepared by soap-free emulsion polymerization are rather stable theirζ-potential were invariable with the pH varied from 6 to 10.5, so the PS microspheres could be as a model particlesfor itsζ-potential value.

  5. Surface charge determines the lung inflammogenicity: A study with polystyrene nanoparticles.

    Science.gov (United States)

    Kim, Jeongeun; Chankeshwara, Sunay V; Thielbeer, Frank; Jeong, Jiyoung; Donaldson, Ken; Bradley, Mark; Cho, Wan-Seob

    2016-01-01

    Surface functionalization is a routine process to improve the behavior of nanoparticles (NPs), but the induced surface properties, such as surface charge, can produce differential toxicity profiles. Here, we synthesized a library of covalently functionalized fluorescent polymeric NPs (F-PLNPs) to evaluate the role of surface charge on the acute inflammation and the localization in the lung. Guanidinium-, acetylated-, zwitterionic-, hydroxylated-, PEGylated-, carboxylated- and sulfated-F-PLNPs were synthesized from aminated-F-PLNP. The primary particle sizes were identical, but the hydrodynamic sizes ranged from 210 to 345 nm. Following surface functionalization, the F-PLNPs showed diverse zeta potentials from -41.2 to 31.0 mV, and each F-PLNP showed a single, narrow peak. Pharyngeal aspiration with these eight types of F-PLNPs into rats produced diverse acute lung inflammation, with zeta potentials of the F-PLNPs showing excellent correlation with acute pulmonary inflammation parameters including the percentage of polymorphonuclear leukocytes (R(2) = 0.90, p < 0.0001) and the levels of interleukin-1β (R(2) = 0.83, p < 0.0001) and of cytokine-induced neutrophil chemoattractant-3 (R(2) = 0.86, p < 0.0001). These results imply that surface charge is a key factor influencing lung inflammation by functionalized polymeric NPs, which further confirms and extends the surface charge paradigm that we reported for pristine metal oxide NPs. This demonstrates that the surface charge paradigm is a valuable tool to predict the toxicity of NPs.

  6. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin

    Directory of Open Access Journals (Sweden)

    Masarudin MJ

    2015-12-01

    Full Text Available Mas Jaffri Masarudin,1 Suzanne M Cutts,2 Benny J Evison,3 Don R Phillips,2 Paul J Pigram4 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia; 3Department of Chemical Biology and Therapeutics, St Jude Children's Hospital, Memphis, TN, USA; 4Department of Physics, La Trobe University, Melbourne, Victoria, Australia Abstract: Development of parameters for the fabrication of nanosized vectors is pivotal for its successful administration in therapeutic applications. In this study, homogeneously distributed chitosan nanoparticles (CNPs with diameters as small as 62 nm and a polydispersity index (PDI of 0.15 were synthesized and purified using a simple, robust method that was highly reproducible. Nanoparticles were synthesized using modified ionic gelation of the chitosan polymer with sodium tripolyphosphate. Using this method, larger aggregates were mechanically isolated from single particles in the nanoparticle population by selective efficient centrifugation. The presence of disaggregated monodisperse nanoparticles was confirmed using atomic force microscopy. Factors such as anions, pH, and concentration were found to affect the size and stability of nanoparticles directly. The smallest nanoparticle population was ~62 nm in hydrodynamic size, with a low PDI of 0.15, indicating high particle homogeneity. CNPs were highly stable and retained their monodisperse morphology in serum-supplemented media in cell culture conditions for up to 72 hours, before slowly degrading over 6 days. Cell viability assays demonstrated that cells remained viable following a 72-hour exposure to 1 mg/mL CNPs, suggesting that the nanoparticles are well tolerated and highly suited for biomedical applications. Cellular uptake studies using fluorescein isothiocyanate-labeled CNPs showed that cancer cells

  7. Role of the interfacial area for structure and dynamics in polymer nanocomposites: molecular dynamics simulations of polystyrene with silica nanoparticles of different shapes

    Science.gov (United States)

    Liu, Shengyuan; Böhm, Michael C.; Müller-Plathe, Florian

    2016-10-01

    Polystyrene nanocomposites containing a fraction of silica nanoparticles of different geometries (sphere, cube and regular tetrahedron) have been investigated by coarse-grained molecular dynamics simulations. Structural and dynamic properties of the polymer chains in the presence of the nanoparticles have been analyzed as a function of the nanoparticle mass fraction and geometrical shape. It has been found that the dimension of the polymer chains in the interphase expands due to the polymer-nanoparticle interaction. Their global dimension (averaged over the whole sample), however, shrinks when increasing the total surface area of the nanoparticles. The conformational changes of polymer chains in the interphase are monitored by a chain orientation parameter. The profiles of the chain dimension and orientation as a function of their distance from the nanoparticle center of mass show that the interphase thickness is roughly equal to the radius of gyration of the polymer chains. Moreover, the dynamic behavior of the polymer chains in nanocomposites is analyzed by the center of mass diffusion coefficient, the relaxation time of the chain end-to-end vector and the characteristic escape time of the polymer chains from the interphase. Compared with neat polymers, both the global and local chain dynamics in nanocomposites are hindered with an increasing nanoparticle mass fraction and with an increasing surface area. The local chain dynamics in the interphase is stronger affected by the surface area of the nanoparticles than the global one. Specifically, the global diffusion coefficient of polymer chains is almost linearly reduced with the total surface area of the nanoparticles, whereas the global relaxation time of the chain end-to-end vector increases almost linearly with it. The interphase relaxation time of the polymer chains increases superlinearly with the surface area of an individual nanoparticle. Additionally, the characteristic escape time of polymer chains from

  8. Multilevel charging and discharging mechanisms of nonvolatile memory devices based on nanocomposites consisting of monolayered Au nanoparticles embedded in a polystyrene layer

    Science.gov (United States)

    Yeol Yun, Dong; Hyun Lee, Nam; Seong Kim, Hak; Wook Lee, Sang; Whan Kim, Tae

    2014-01-01

    Capacitance-voltage (C-V) curves for Al/Au nanoparticles embedded in a polystyrene (PS) layer/p-Si devices at 300 K showed a metal-insulator-semiconductor behavior with flat-band voltage shifts of the C-V curves due to the existence of charge trapping. Memory windows between 2.6 and 9.9 V were observed at different sweep voltages, indicative of multilevel behavior. Capacitance-time measurements demonstrated that the charge-trapping capability of Au nanoparticles embedded in a PS layer was maintained for retention times larger than 1 × 104 s without significant degradation. The multilevel charging and discharging mechanisms of the memory devices are described on the basis of the experimental results.

  9. A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann

    2008-01-01

    The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...

  10. Amorphous Ni-P Hollow Spheres Prepared by Self-assembly of Ni-P Nanoparticles on Polystyrene Beads

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The first preparation of amorphous Ni-P/PS (polystyrene) core-shell and Ni-P hollow microspheres was per-formed using a surface seeding-electroless plating method. The preliminary magnetic properties of the amorphous Ni-P hollow sphere were investigated and compared with those of the Ni hollow sphere.

  11. Size-tunable and monodisperse Tm³⁺/Gd³⁺-doped hexagonal NaYbF₄ nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging.

    Science.gov (United States)

    Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N

    2014-08-27

    Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.

  12. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell

    KAUST Repository

    Qi, Genggeng

    2010-05-11

    Monodispersed HMSs with tunable particle size and shell thickness were successfully synthesized using relatively concentrated polystyrene latex templates and a silica precursor in a weakly basic ethanol/water mixture. The particle size of the capsules can vary from 100 nm to micrometers. These highly engineered monodispersed capsules synthesized by a facile and scalable process may find applications in drug delivery, catalysis, separationm or as biological and chemical microreactors. © 2010 American Chemical Society.

  13. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Vodnik, Vesna V., E-mail: vodves@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com [Institute of Chemistry, Technology and Metallurgy (ICTM)-Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Džunuzović, Enis S., E-mail: edzunuzovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Marinović-Cincović, Milena T., E-mail: milena@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jeremić, Katarina, E-mail: kjeremic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  14. Polystyrene Prints

    Science.gov (United States)

    O'Malley, William

    1969-01-01

    Discussed are the exciting advantages and possibilities of using polystyrene trays found in meat packaging for printmaking. Among them are ease of use, low cost and quick availability of materials, beautiful textural effects. Procedures are explained for various age levels. (BF)

  15. Polystyrene-graphene oxide (GO) nanocomposite synthesized by interfacial interactions between RAFT modified GO and core-shell polymeric nanoparticles.

    Science.gov (United States)

    Yeole, Niranjan; Kutcherlapati, S N Raju; Jana, Tushar

    2015-04-01

    Here we report simple and robust one-pot method for the preparation of polystyrene (PS)/graphene oxide (GO) nanocomposite using reversible addition fragmentation chain transfer (RAFT) modified GO in surfactant free emulsion polymerization (SFEP). The results suggested that ionic comonomer, styrene sulfonate sodium salt (SS-Na), concentration plays vital role in forming PS/GO nanocomposite. X-ray and electron diffraction studies suggest that there is no recombination of GO sheets when moderate SS-Na concentration is used, resulting complete exfoliation of GO sheets in the PS/GO nanocomposite. The formation of core-shell particles in which PS is the core and polystyrene sulfonate sodium salt (PSS-Na) is the shell, and the specific interactions between functional groups of GO and PSS-Na are attributed as the driving forces for the PS/GO nanocomposite formation.

  16. Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier In Vitro.

    Science.gov (United States)

    Gregori, Maria; Bertani, Daniela; Cazzaniga, Emanuela; Orlando, Antonina; Mauri, Michele; Bianchi, Alberto; Re, Francesca; Sesana, Silvia; Minniti, Stefania; Francolini, Maura; Cagnotto, Alfredo; Salmona, Mario; Nardo, Luca; Salerno, Domenico; Mantegazza, Francesco; Masserini, Massimo; Simonutti, Roberto

    2015-12-01

    In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors.

  17. Engineered monodisperse mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R.S.; Small, J.H.; Lagasse, R.R.; Schroeder, J.L.; Jamison, G.M.

    1997-08-01

    Porous materials technology has developed products with a wide variety of pore sizes ranging from 1 angstrom to 100`s of microns and beyond. Beyond 15{angstrom} it becomes difficult to obtain well ordered, monodisperse pores. In this report the authors describe efforts in making novel porous material having monodisperse, controllable pore sizes spanning the mesoporous range (20--500 {angstrom}). They set forth to achieve this by using unique properties associated with block copolymers--two linear homopolymers attached at their ends. Block copolymers phase separate into monodisperse mesophases. They desired to selectively remove one of the phases and leave the other behind, giving the uniform monodisperse pores. To try to achieve this the authors used ring-opening metathesis polymerization to make the block copolymers. They synthesized a wide variety of monomers and surveyed their polymers by TGA, with the idea that one phase could be made thermally labile while the other phase would be thermally stable. In the precipitated and sol-gel processed materials, they determined by porosimetry measurements that micropores, mesopores, and macropores were created. In the film processed sample there was not much porosity present. They moved to a new system that required much lower thermal treatments to thermally remove over 90% of the labile phase. Film casting followed by thermal treatment and solvent extraction produced the desired monodisperse materials (based solely on SEM results). Modeling using Density Functional Theory was also incorporated into this project. The modeling was able to predict accurately the domain size and spacing vs. molecular weight for a model system, as well as accurate interfacial thicknesses.

  18. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles

    NARCIS (Netherlands)

    Bhattacharjee, S.; Ershov, D.S.; Islam, M.A.; Kämpfer, A.M.; Maslowska, K.A.; Gucht, van der J.; Alink, G.M.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.

    2014-01-01

    Surface charge is often hypothesized to influence toxicity of nanoparticles (NPs) including polymeric nanoparticles (PNPs) while oxidative stress is considered to be an important mode of action (MOA) for such toxicity. In order to investigate the role of membrane disturbance and oxidative stress in

  19. Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles.

    Science.gov (United States)

    Yu, Xi; Yang, Hongshun

    2017-02-15

    A detection method using polystyrene-coated magnetic nanoparticles based extraction technique coupled to HPLC was developed for trace amount of pyrethroids residue detection in vegetable matrixes. The recoveries for five kinds of commonly used pyrethroids were in the range of 91.6%-116.2%. The sensitivity and precision of the method were satisfactory with the limits of detection and limits of quantification in the range of 0.0200-0.0392ngg(-1) and 0.072-0.128ngg(-1), respectively. The intra-day and inter-day relative standard deviations for the recoveries of the analytes were lower than 6.8% and 10.7%, respectively. The nanoparticles can be washed and recycled after use. The results indicate that the developed method was efficient, fast, economical and environmentally friendly. The method was successfully applied to detect the pyrethroids residue in ten pairs of commonly consumed organic and conventional fresh vegetables in Singapore. Pyrethroids residue was detected in four kinds of conventional vegetables and one kind of organic vegetable.

  20. Manipulation of polystyrene nanoparticles on a silicon wafer in the peak force tapping mode in water: pH-dependent friction and adhesion force

    Energy Technology Data Exchange (ETDEWEB)

    Schiwek, Simon; Stark, Robert W., E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian, E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de [Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Heim, Lars-Oliver [Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany)

    2015-03-14

    The friction force between nanoparticles and a silicon wafer is a crucial parameter for cleaning processes in the semiconductor industry. However, little is known about the pH-dependency of the friction forces and the shear strength at the interface. Here, we push polystyrene nanoparticles, 100 nm in diameter, with the tip of an atomic force microscope and measure the pH-dependency of the friction, adhesion, and normal forces on a silicon substrate covered with a native silicon dioxide layer. The peak force tapping mode was applied to control the vertical force on these particles. We successively increased the applied load until the particles started to move. The main advantage of this technique over single manipulation processes is the achievement of a large number of manipulation events in short time and in a straightforward manner. Geometrical considerations of the interaction forces at the tip-particle interface allowed us to calculate the friction force and shear strength from the applied normal force depending on the pH of an aqueous solution. The results clearly demonstrated that particle removal should be performed with a basic solution at pH 9 because of the low interaction forces between particle and substrate.

  1. Studies on Preparation of Polystyrene Nanoparticles%聚苯乙烯纳米粒子的制备研究进展

    Institute of Scientific and Technical Information of China (English)

    严洁; 徐保明; 李镇; 赵婷

    2012-01-01

    尺寸在10~100 nm左右的聚合物纳米粒子是胶体和材料科学研究中的一个热点,它在光学、催化、微电子、涂料、粘合剂、生物材料和医药等领域都有广泛的应用。白色透明的聚苯乙烯纳米粒子,扩大了其在生物、光学方面的应用,前景广阔。综述了1979年以来国内外12种合成工艺方法,分析了其优缺点。%The polymer nano-particles with the size of 10~100 nm is focus on the research of colloid and material science,which is widely used in the fields of optics,catalysis,micro-electronics,coatings,adhesives,biological materials and medicine,etc.The white and transparent polystyrene nano-particles has expanded its application in the fields of biology and optics,and it has great prospect in the future.Twelve synthetic methods of domestic and overseas researches from 1979 were reviewed.Their advantages and disadvantages were analyzed.

  2. Current characteristics of λ-DNA molecules/polystyrene nanoparticles in TBE buffer solution through micro/nanofluidic capillaries under DC electric field

    Science.gov (United States)

    Duan, Yifei; Zhao, Wei; Xue, Jing; Sun, Dan; Wang, Kaige; Wang, Guiren; Li, Junjie; Bai, Jintao; Gu, Changzhi

    2017-03-01

    In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate single bio-molecules and analyze their characteristics. To accurately and flexibly control the movement of single-molecule within micro/nanofluidic channels which are the basic components of Lab-chips, the current signals in micro/nanocapillaries filled with solutions of DNA molecules or polystyrene (PS) nanoparticles are systematically studied. Experimental results indicate that the current response along the micro/nanocapillaries can be significantly influenced by the diameter of the capillaries and the pH value of the solutions. Specifically, when there is only a pure (TBE) solution, the electric conductance does not monotonically decrease with decreasing the diameter of the capillaries, but slightly increases with decreasing the capillary diameter. When λ-DNA molecules or PS nanoparticles are added into the TBE buffer, the size effect on the electric conductance of the solutions are quite different. Although in the former, the electric conductance behaves differently from that in the pure TBE solution and decreases with the decreasing diameter, in the latter, the change is similar to that in the pure TBE solution. Besides, an abnormal ‘falling’ of the electric conductance is observed in a capillary with diameter of 200 nm. The investigation will significantly enhance the understanding on the electric properties of the solutions of biomolecules and particles in micro/nanofluidics. This is especially helpful for designing functional Lab-chip devices.

  3. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size.

    Science.gov (United States)

    Marchetti, Magda; Shaffer, Milo S P; Zambianchi, Martina; Chen, Shu; Superti, Fabiana; Schwander, Stephan; Gow, Andrew; Zhang, Junfeng Jim; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2015-02-05

    The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    Science.gov (United States)

    2016-05-23

    synthesized by controlling Tetraethyl orthosilicate (TEOS) and ammonia solution concentration. The composites were used as nanoparticles fillers in...important to synthesize the uniform and monodisperse magnetic nanoparticles. So, we, as a team of this collaboration project, focused on synthesizing ...uniform and monodisperse magnetic nanoparticles. First, we synthesized silica-coated monodisperse iron oxide nanoparticles (≈ 30 nm) sent to

  5. Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells.

    Science.gov (United States)

    Unciti-Broceta, Asier; Johansson, Emma M V; Yusop, Rahimi M; Sánchez-Martín, Rosario M; Bradley, Mark

    2012-05-31

    We have developed miniaturized heterogeneous Pd(0)-catalysts (Pd(0)-microspheres) with the ability to enter cells, stay harmlessly within the cytosol and mediate efficient bioorthogonal organometallic chemistries (e.g., allylcarbamate cleavage and Suzuki-Miyaura cross-coupling). This approach is a major addition to the toolbox available for performing chemical reactions within cells. Here we describe a full protocol for the synthesis of the Pd(0)-microspheres from readily available starting materials (by the synthesis of size-controlled amino-functionalized polystyrene microspheres), as well as for their characterization (electron microscopy and palladium quantitation) and functional validation ('in solution' and 'in cytoplasm' conversions). From the beginning of the synthesis to functional evaluation of the catalytic device requires 5 d of work.

  6. Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB).

    Science.gov (United States)

    Erken, Esma; Yildiz, Yunus; Kilbaş, Benan; Sen, Fatih

    2016-06-01

    Highly efficient nearly monodisperse Pt NPs catalyze C1 to C3 alcohol oxidation with very high electrochemical activities and provides one of the highest catalytic activities (TOF = 21.50 h(-1)) in the dehydrogenation of DMAB at room temperature. The exceptional stability towards agglomeration, leaching and CO poisoning for the prepared catalyst allow these particles to be recycled and reused in the catalysis of both DMAB dehydrogenation and C1 to C3 alcohol oxidation. After four subsequent reaction and recovery cycles, catalyst retained ≥ 80% activity towards the complete dehydrogenation of DMAB. The prepared catalyst structures were determined by the X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) respectively.

  7. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    Science.gov (United States)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  8. Polystyrene nanoparticles in the presence of (ethylene oxide)13(propylene oxide)30(ethylene oxide)13, N,N-dimethyloctylamine-N-oxide and their mixtures. A calorimetric and dynamic light scattering study.

    Science.gov (United States)

    De Lisi, R; Lazzara, G; Milioto, S; Muratore, N

    2008-02-14

    Polystyrene nanoparticles were synthesized by emulsion polymerization of styrene. They were functionalized using the conventional surfactant N,N-dimethyloctylamine-N-oxide (ODAO), the tri-block copolymer (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) (L64) and their mixtures. To this purpose, dynamic light scattering and calorimetric experiments were carried out and provided information consistent to each other. The L64 adsorption is Langmuir-type in the copolymer dilute regime and generates complex structures at larger concentrations. In the region where ODAO is in the unimeric state, the adsorption process is cooperative leading to hemi-micelle formation at the polystyrene nanoparticle/water interface. In the concentrated region (above the critical micellar concentration), ODAO forms micelles which interact with the solid substrate most likely through ion-dipole forces. The ODAO addition to the dispersion containing polystyrene particles already wrapped by L64 creates an ODAO thickness around the dispersed particles the size of which is equal to that in the absence of the copolymer, but is built at much lower concentrations. A plausible interpretation of this behavior is that the adsorbed L64 confers to the nanoparticles surface novel properties which enhance the attractive forces with the ODAO molecules.

  9. Polystyrene Microbeads by Dispersion Polymerization: Effect of Solvent on Particle Morphology

    Directory of Open Access Journals (Sweden)

    Lei Jinhua

    2014-01-01

    Full Text Available Polystyrene microspheres (PS were synthesized by dispersion polymerization in ethanol/2-Methoxyethanol (EtOH/EGME blend solvent using styrene (St as monomer, azobisisobutyronitrile (AIBN as initiator, and PVP (polyvinylpyrrolidone K-30 as stabilizer. The typical recipe of dispersion polymerization is as follows: St/Solvent/AIBN/PVP = 10 g/88 g/0.1 g/2 g. The morphology of polystyrene microspheres was characterized by the scanning electron microscopy (SEM and the molecular weights of PS particles were measured by the Ubbelohde viscometer method. The effect of ethanol content in the blend solvent on the morphology and molecular weight of polystyrene was studied. We found that the size of polystyrene microspheres increased and the molecular weight of polystyrene microspheres decreased with the decreasing of the ethanol content in the blend solvent from 100 wt% to 0 wt%. What is more, the size monodispersity of polystyrene microspheres was quite good when the pure ethanol or pure 2-Methoxyethanol was used; however when the blend ethanol/2-Methoxyethanol solvent was used, the polystyrene microspheres became polydisperse. We further found that the monodispersity of polystyrene microspheres can be significantly improved by adding a small amount of water into the blend solvent; the particles became monodisperse when the content of water in the blend solvent was up to 2 wt%.

  10. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.

    Science.gov (United States)

    Guo, Huizhang; Chen, Yuanzhi; Chen, Xiaozhen; Wen, Ruitao; Yue, Guang-Hui; Peng, Dong-Liang

    2011-05-13

    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  11. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  12. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.

  13. Synthesis of highly monodispersed teardrop-shaped core–shell SiO{sub 2}/TiO{sub 2} nanoparticles and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lihong; Zhou, Yifeng, E-mail: yifengzhou@126.com; Nie, Wangyan; Song, Linyong; Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn

    2015-10-01

    Graphical abstract: - Highlights: • Uniform chitosan coated magnetic mesoporous silica nanoparticles (CMMSNs) were successfully synthesized. • The CMMSNs were applied to highly efficient methylene blue (MB) dyes removal, and the saturated adsorption capacity of MB was 43.03 mg/g. • The MB adsorption kinetic and adsorption isotherm analysis were studied. • The CMMSNs had a saturation magnetization of 12.6 emu/g and could be easily separated by a magnet after dye adsorption. - Abstract: In this study, teardrop-shaped SiO{sub 2}/TiO{sub 2} nanoparticles (TST-NPs) with core–shell structure were fabricated from tetraethoxysilane (TEOS) and tetrabutyl titanate (TBT) by sol–gel method. And these nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy. Photocatalytic activity of teardrop-shaped SiO{sub 2}/TiO{sub 2} nanoparticles after calcination (CST-NPs) was studied towards degradation of methylene blue under sunlight irradiation. The result showed that CST-NPs possessed good photocatalytic activity. The photocatalytic mechanism was also studied by adding different capture agent. Results showed that addition of 0.003 M of I{sup −} decreased the degradation of MB more than same amount of Ag{sup +}, indicating that the photogenerated holes may play a more essential role than photoinjected electrons in the oxidation of MB.

  14. Green Synthesis and Characterization of Monodispersed Gold Nanoparticles: Toxicity Study, Delivery of Doxorubicin and Its Bio-Distribution in Mouse Model.

    Science.gov (United States)

    Mukherjee, Sudip; Sau, Samaresh; Madhuri, Durga; Bollu, Vishnu Sravan; Madhusudana, Kuncha; Sreedhar, Bojja; Banerjee, Rajkumar; Patra, Chitta Ranjan

    2016-01-01

    In the present article, we report the in vitro and in vivo delivery of doxorubicin using biosynthesized gold nanoparticles (b-Au-PP). Gold nanoparticles were synthesized by a simple, fast, efficient, environmentally friendly and economical green chemistry approach using an extract of Peltophorum pterocarpum (PP) leaves. Because the biosynthesized b-Au-PP was highly stable in various physiological buffers for several weeks and biocompatible in both in vitro and in vivo systems, we designed and developed a biosynthesized gold nanoparticle (b-Au-PP)-based drug-delivery system (DDS) using doxorubicin (Dox) (b-Au-PP-Dox). Both b-Au-PP and b-Au-PP-Dox were thoroughly characterized using several analytical tools. Administration of doxorubicin-loaded DDS (b-Au-PP-Dox) resulted in a significant inhibition of the proliferation of cancer cells (A549, B16F10) in vitro and of tumor growth in an in vivo model compared to doxorubicin alone. Furthermore, we found that the cellular uptake and release of Dox in the nanoconjugated form (b-Au-PP-Dox) were faster than the uptake and release of unconjugated Dox. The in vivo toxicity study did not show any significant changes in the hematology, serum clinical biochemistry or histopathology in the C57BL6/J female mice after consecutive intraperitoneal (IP) injections over a period of seven days. To the best of our knowledge, our study is the first to report the application of a biosynthesized gold nanoparticle-based DDS for cancer therapy in an animal model, in addition to a detailed in vivo toxicity study. Together, the results demonstrate that a biosynthesized gold nanoparticle-based drug-delivery system (b-Au-PP-Dox) could be used in the near future as an alternative cost-effective treatment strategy for cancer therapy.

  15. Synthesis of 3D ordered porous polystyrene using silica template

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A rigid colloidal silica template was formed by self-assembly ofthe monodispersed silica spheres prepared according to St-ber method. The silica template is highly ordered, which was verified by bright color effect due to Bragg diffraction and the results of SEM. The free radical polymerization of styrene was allowed within the interstices of the rigid template to result in the formation of the three- dimensional periodic silica/polystyrene nano-composites. The titled porous polystyrene was prepared by chemical decom- position of the template with concentrated aqueous hydro- fluoric acid. Scanning electron microscopy characterization showed that the macroporous polystyrene has ordered arrays of the uniform pores replicated from the template. Moreover, it was found that the morphology of the as-synthesized macroporous polystyrene was greatly affected by the connectivity of the silica spheres treated under different conditions.

  16. Controllable synthesis of monodisperse MnO nanoparticles%单分散MnO纳米粒子的可控制备

    Institute of Scientific and Technical Information of China (English)

    刘新杰; 张智军; 杨祖培

    2013-01-01

    研究了不同实验条件对MnO纳米粒子尺寸和形貌调控的影响.采用高温分解法以油酸锰为前驱体成功可控制备了3 nm、6 nm、10 nm、20 nm等多种粒径的MnO纳米粒子,并通过透射电子显微镜对其进行了表征.结果表明:反应温度、表面活性剂用量、溶剂用量等对纳米粒子的大小都有一定的影响.随着反应温度的升高,MnO纳米粒子的尺寸逐渐增加,而表面活性剂的用量增大则导致MnO纳米粒子的尺寸变小,增加溶剂用量有利于合成较大尺寸的MnO纳米粒子.此外,还分别用CTAB、DMSA、多巴胺等对MnO纳米粒子进行修饰,结果显示表面经亲水性处理后纳米粒子增加了水溶性,使其更好地用于生物成像和载药.%The morphology of manganese oxide (MnO) nanoparticles significantly affects their properties and various applications.In this paper,we report controllable synthesis and characterization of MnO nanoparticles (3 nm,6 nm,10 nm,20 nm) through the hightemperature decomposition approach.Our results showed that the reaction temperature,the amount of surfactants and solvent affect the size of the nanoparticles.MnO nanoparticles size increases with temperature and solvent content.However,increase of surfactants leads to decrease in the particle size.Finally,we modified the MnO nanoparticles with CTAB,DMSA and dopamine to render their aqueous solubility,which is essential for their biological applications.

  17. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  18. The self-assembled Ru(bpy)3(PF6)2 nanoparticle on polystyrene microfibers and its application for ECL sensing.

    Science.gov (United States)

    Luo, Jiaojiao; Zhou, Cuisong; Shi, Yalin; Zhang, Lei; Xiao, Dan

    2013-10-21

    Ruthenium nanoparticle tris(2,2'-bipyridyl)ruthenium(II) bis(hexafluorophosphate) (Ru(bpy)3(PF6)2, RuNP) was self-assembled on polystyrene (PS) electrospun microfibers. The formation of RuNP is attributed to the sulfonated PS (SPS) microfibers' high adsorptive capability of 94% for Ru(bpy)3(2+), as well as the strong interaction between the Ru(bpy)3(2+) and ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6). The RuNP/SPS microfibers exhibited an enhanced electrochemiluminescence (ECL) emission, 2.3 times higher than that from Ru(bpy)3(2+)/SPS microfibers and 6.6 times higher than that from Ru(bpy)3(2+)/SPS continuous thin films. It is worthy of note that, as a result of the hydrophobic nature of the RuNP, the transfer of water-insoluble α-naphthol is accelerated, and thus the α-naphthol ECL quenching efficiency is enhanced. An ECL sensor based on the RuNP/SPS microfibers was fabricated and used to detect low concentrations of α-naphthol. The detection limit was of 1.0 nM (S/N > 3), and the linear response ranged from 0 to 18 μM. This sensor has been successfully applied to measure the α-naphthol content in pesticide carbaryl samples. Our work provides a very simple and cost-effective method to fabricate RuNP on polymer microfibers with great potential in the field of chemo/biosensors.

  19. A one-step method to coat polystyrene particles with an organo-silica shell and their functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tian-Song, E-mail: dengts@pku.edu.cn [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Bongard, Hans-Josef [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Marlow, Frank, E-mail: marlow@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany)

    2015-07-15

    A facile method of coating polystyrene (PS) particles with organo-silica and their functionalization was presented. By adding the organo-silane precursor into PS aqueous solution in presence of ammonia, an organo-silica shell could be coated on PS particles directly. This method has several characteristics. First, only one process, one precursor and one solvent were used. Second, the organic groups could be varied from methyl, propyl, vinyl, to mercaptopropyl. The third is the tunable shell thickness with a high monodispersity. The organo-silica shells are further functionalized. The PS@vinyl-SiO{sub 2} particles were used to assemble colloidal crystals, and further modified with bromine, resulting in tunable photonic band gaps. PS@mercaptopropyl-SiO{sub 2} particles allow the encapsulation of Au nanoparticles. The resulting 2.2 nm Au particles were stable at 550 °C and well-distributed in the whole SiO{sub 2} shell with a loading up to 20 wt%. - Graphical abstract: Display Omitted - Highlights: • Demonstrated a one-step controllable coating method of organo-SiO{sub 2} on polystyrene. • The Br-modified PS@vinyl-SiO{sub 2} colloidal crystal has tunable photonic band gaps. • PS@mercaptopropyl-SiO{sub 2} particles allow the encapsulation of small Au nanoparticles.

  20. Efficient functionalization of poly(styrene) beads immobilized metal nanoparticle catalysts for the reduction of crystal violet

    Indian Academy of Sciences (India)

    Eagambaram Murugan; Paramasivam Shanmugam

    2015-06-01

    Three types of new bead-shaped heterogeneous nanoparticle (NP) catalysts were synthesized by simplified procedures and studied for continuous reduction of crystal violet (CV) dye. The stabilizing agent, viz., 2-acryloxyethyltrimethyl ammonium chloride (PAC) was functionalized efficiently onto the surface of insoluble poly(styrene)-co-(vinyl benzyl chloride) beads (PS–PVBC) through surface-initiated atom transfer radical polymerization (SI-ATRP) to obtain insoluble bead matrix having intense surface functional groups labelled as PS–PVBC--PAC. These PS–PVBC–PAC beads in turn were used as a common matrix for individual immobilization of AgNPs, AuNPs and PdNPs by following the simple chemical reaction/reduction methods to yield the corresponding bead-shaped heterogeneous NP catalysts, viz., PS–PVBC--PAC–AgNPs, PS–PVBC--PAC–AuNPs and PS–PVBC--PAC–PdNPs. These catalysts were characterized by UV–Vis, FT-IR, SEM/EDAX and HRTEM techniques. The catalytic activity of these three types of catalysts were examined through the reduction of CV using NaBH4 as a reducing agent and it was observed that all these catalysts effectively accelerated the reaction. The superior catalyst, viz., PS–PVBC--PAC–AuNPs was again used for detail kinetic studies of the same reduction reaction.

  1. Unusual Emission of Polystyrene-Based Alternating Copolymers Incorporating Aminobutyl Maleimide Fluorophore-Containing Polyhedral Oligomeric Silsesquioxane Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohamed Gamal Mohamed

    2017-03-01

    Full Text Available In this study, we synthesized an unusual 2-aminobutyl maleimide isobutyl polyhedral oligomeric silsesquioxane (MIPOSS-NHBu monomer lacking conventional fluorescent groups. We then prepared poly(styrene-alt-2-aminobutyl maleimide isobutyl POSS [poly(S-alt-MIPOSS-NHBu] and poly(4-acetoxystyrene-alt-2-aminobutyl maleimide isobutyl POSS [poly(AS-alt-MIPOSS-NHBu] copolymers through facile free radical copolymerizations using azobisisobutyronitrile as the initiator and tetrahydrofuran as the solvent. A poly(4-hydroxystyrene-alt-2-aminobutyl maleimide isobutyl POSS [poly(HS-alt-MIPOSS-NHBu] copolymer was prepared through acetoxyl hydrazinolysis of poly(AS-alt-MIPOSS-NHBu. We employed 1H, 13C, and 29Si nuclear magnetic resonance spectroscopy; Fourier transform infrared spectroscopy; differential scanning calorimetry; and photoluminescence spectroscopy to investigate the structures and the thermal and optical properties of the monomers and novel POSS-containing alternating copolymers. Intramolecular hydrogen bonding between the amino and dihydrofuran-2,5-dione group and clustering of the locked C=O groups from the POSS nanoparticles in the MIPOSS-NHBu units restricted the intramolecular motion of the polymer chain, causing it to exhibit strong light emission. As a result, the MIPOSS-NHBu monomer and the poly(AS-alt-MIPOSS-NHBu copolymer both have potential applicability in the detection of metal ions with good selectivity.

  2. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  3. Application of “Boomerang” Linear Polystyrene-Stabilized Pd Nanoparticles to a Series of C-C Coupling Reactions in Water

    Directory of Open Access Journals (Sweden)

    Atsushi Ohtaka

    2015-02-01

    Full Text Available The application of a catch-and-release system for soluble Pd species between water (reaction medium and polystyrene (polymer support was examined in the Suzuki coupling reaction with 2-bromothiophene and the Heck reaction with styrene or bromobenzene. Although a slight increase in particle size was observed by TEM after re-stabilization of the Pd species on linear polystyrene, no agglomeration was observed.

  4. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-08-01

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of HE was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (TN) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus

  5. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Science.gov (United States)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang; Luo, Jianbin; Liu, Dong

    2016-08-01

    We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe3O4 (OA-Fe3O4) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe3O4 NPs were then used as seeds, on which the red upconversion luminescent shell (Mn2+-doped NaYF4:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe3O4 cores were uniformly coated with a Mn2+-doped NaYF4:Yb/Er shell, and the bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs were monodispersed. Furthermore, the Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs exhibited a saturated magnetization value of 6.2 emu/g and emitted red luminescence under a 980 nm laser. The obtained bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs may find potential applications in drug targeting, bioseparation, and diagnostic analysis. The synthetic method may be employed for the preparation of other bifunctional nanomaterials.

  6. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    Science.gov (United States)

    Nicolet, Anaïs; Meli, Felix; van der Pol, Edwin; Yuana, Yuana; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; de Boeck, Bert; Fokkema, Vincent; Bergmans, Rob; Nieuwland, Rienk

    2016-03-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods.

  7. Ag 纳米粒子表面 BSA 隔离层对聚苯乙烯荧光的增强效应%Fluorescence enhancement effect of polystyrene by BSA isolation layer at surface of Ag nanoparticles

    Institute of Scientific and Technical Information of China (English)

    梁真飞; 王欢; 刘顺鹏; 张斯; 黄海亮; 易国斌

    2015-01-01

    Spherical silver (Ag)nanoparticles with the average diameter 50-65 nm were synthesized by oxida-tion-reduction process.The morphology and monodispersity of the Ag nanoparticles was characterized by scan-ning electron microscope (SEM).Ag/bovine serum albumin (BSA)core-shell structure nanoparticles approxi-mately 80.8 nm in effective diameter were fabricated by deposition method and self-assembling onto Ag nanop-articles.The results of SEM,transmission electron microscope (TEM),X-ray diffraction (XRD)and fluores-cence emission spectra (FL)showed that BSA effectively coated on the surface of Ag nanoparticles,and Ag/BSA core-shell structured nanoparticles had good monodispersity.Furthermore,fluorescence intensity of PS en-hanced from 100 to 6 000 by Ag/BSA core-shell structured nanoparticles.The results showed that BSA isolation layer had significant enhancement effect on fluorescence intensity of PS near the surface of Ag.%通过氧化还原法制备了粒径处于50~65 nm的球形银(Ag)纳米粒子,采用扫描电子显微镜(SEM)分析其形貌及单分散性。在 Ag 纳米粒子基础上采用沉积自组装法合成了有效粒径为80.8 nm 的Ag/牛血清白蛋白(BSA)核壳结构纳米粒子。结合SEM、透射电子显微镜(TEM)、X 射线衍射(XRD)和荧光发射光谱(FL)分析发现,BSA 有效地包覆在 Ag纳米粒子的外层,Ag/BSA 核壳结构纳米粒子单分散性良好,加入 Ag/BSA 核壳结构纳米粒子的聚苯乙烯(PS)的荧光强度从100增强到6000。研究结果表明, BSA 隔离层对位于 Ag 表面附近的 PS 分子的荧光强度有显著的增强效应。

  8. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Maisser, Anne, E-mail: a.maisser@tudelft.nl [Delft University of Technology (Netherlands); Attoui, Michel B. [LISA, UMR CNRS University Paris Est Creteil, University Paris-Diderot (France); Ganan-Calvo, Alfonso M. [Universidad de Sevilla, ESI (Spain); Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2013-01-15

    A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride-both show strong electrolytic behavior-have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

  9. Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity

    Science.gov (United States)

    Wang, Yuan; Fang, Hua-Bin; Zheng, Yan-Zhen; Ye, Rongqin; Tao, Xia; Chen, Jian-Feng

    2015-11-01

    A high-efficiency visible-light-driven photocatalyst composed of homogeneously distributed Au nanoparticles (AuNPs) well-defined on hierarchical ZnO microspheres (ZMS) via a controllable layer-by-layer self-assembly technique is demonstrated. The gradual growth of the characteristic absorption bands of Au loaded on ZnO in the visible light region with an increasing number of assemblies indicates the enhancement of the light harvesting ability of the ZMS/Au composites as well as the reproducibility and controllability of the entire assembly process. Results on the photoelectrochemical performance characterized by EIS and transient photocurrent response spectra indicate that the ZMS/Au composites possess increased photoinduced charge separation and transfer efficiency compared to the pure ZMS film. As a result, the hybrid composites exhibited enhanced decomposition activity for methylene blue and salicylic acid as well as antibacterial activity in killing S. aureus and E. coli under visible light irradiation. It can be noted that well-distributed Au components even at a rather low Au/ZnO weight ratio of ~1.2% also exhibited extraordinary photocatalysis. Such a facile and controllable self-assembly approach may be viable for preparing high-performance visible-light-driven ZMS/Au photocatalysts in a simple and controllable way, and consequently, the technology may extend to other plasmon-enhanced heterostructures made of nanostructured semiconductors and noble metals for great potential application in environmental protection.A high-efficiency visible-light-driven photocatalyst composed of homogeneously distributed Au nanoparticles (AuNPs) well-defined on hierarchical ZnO microspheres (ZMS) via a controllable layer-by-layer self-assembly technique is demonstrated. The gradual growth of the characteristic absorption bands of Au loaded on ZnO in the visible light region with an increasing number of assemblies indicates the enhancement of the light harvesting ability of

  10. Incorporation of pyrene in polypyrrole/polystyrene magnetic beads.

    Science.gov (United States)

    Głowala, Paulina; Budniak, Adam; Krug, Pamela; Wysocka, Barbara; Berbeć, Sylwia; Dec, Robert; Dołęga, Izabela; Kacprzak, Kamil; Wojciechowski, Jarosław; Kawałko, Jakub; Kępka, Paweł; Kępińska, Daria; Kijewska, Krystyna; Mazur, Maciej

    2014-10-15

    Pyrene, a fluorescent dye, was incorporated into polystyrene particles coated with polypyrrole. The incorporation was achieved by treating the polypyrrole/polystyrene (PPy/PS) beads in a tetrahydrofuran (THF) solution of the pyrene fluorophore followed by rinsing with methanol. The polystyrene cores of the beads swell in THF, allowing penetration of pyrene molecules into the polystyrene structure. The addition of methanol causes contraction of the swollen polystyrene, which encapsulates the dye molecules inside the beads. It is shown that the polypyrrole coating is permeable with respect to both the dye and the solvent, allowing the transport of molecules between the polystyrene cores and the contacting solution. The polypyrrole adlayer can be used as a matrix for the incorporation of magnetic nanoparticles. Embedded particles provide magnetic functionality to the PPy/PS beads. It is demonstrated that the pyrene-loaded beads can be manipulated with an external magnetic field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis and self-assembly of Chitosan-g-Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles

    KAUST Repository

    Francis, Raju S.

    2015-01-01

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity.

  12. Synthesis and self-assembly of chitosan-g-polystyrene copolymer: a new route for the preparation of heavy metal nanoparticles.

    Science.gov (United States)

    Francis, Raju; Baby, Deepa K; Gnanou, Yves

    2015-01-15

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity.

  13. Effect of Mixed Solvent on Fabrication, Morphology and Monodispersity of Microspheres with Hydrophobic Poly(butyl methacrylate) Shells

    Institute of Scientific and Technical Information of China (English)

    XIAO Xincai; LU Cheng

    2012-01-01

    Monodisperse microspheres (mean diameter 200-300 nm) with polystyrene cores and poly(acrylamide-co-buty1 methacrylate) shells were prepared by using a free radical polymerization method.Moreover,the effect of mixed solvent on the preparation,morphology and monodispersity was investigated.The experimental results showed that solubility parameter of butyl methacrylate and solvent affected mainly the molding of monodisperse core-shell microspheres.When the microspheres were fabricated in a sequential synthesis process,addition of hydrophilic and organic solvent including butyl methacrylate led to spherical degree of the particles becoming worse,and the mean diameter of the microspheres decreased and the monodispersity became better with increasing the crosslinker methylenebisacrylamide dosage.

  14. Fabrication of Macro-porous β-zeolite by Using Colloidal Polystyrene Spheres as a Template

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A β-zeolite/polystyrene composite material was synthesized by co-deposition of mono-disperse polystyrene spheres and nano β-zeolite particles in aqueous suspension on a vertical substrate. Macro-porous β-zeolite was obtained after the polystyrene template was removed by calcination. The micro/macro-pore structure of the prepared β-zeolite was highly ordered. In comparison with other assembly methods, the co-deposition method could obtain a highly ordered macro-porous material with relatively large zeolite filling particles, and therefore the co-deposition of particles with different size is a promising method for the fabrication of macro-porous materials.

  15. 单分散磁性纳米粒子固定化猪胰脂肪酶的研究%STUDY ON LIPASE IMMOBILIZATION ON MONODISPERSE MAGNETIC NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    朱浩; 侯晨; 李彦锋

    2011-01-01

    A simple, effective, green and economic approach of lipase immobilization is provided in this article. Single-crystal,hydrophilic, biocompatible Fe3O4magnetic nanoparticles as good carriers were prepared via a solvothermal reduction method. Microsphere diameters were observed to be about 200 nm by transmission electron microscopy ( TEM ). Superior monodispersity was demonstrated, and saturation magnetization was found to be 83.7 emug-1 . The resulting products were modified directly with γ-aminopropyltriethoxysilane (APTS). Porcine pancreas lipase ( PPL) was covalently immobilized on the obtained particles using glutaraldehyde as a coupling reagent. The enzymatic activities of free and immobilized PPL were measured by titration of fatty acid which came from the hydrolysis of olive oil and the amount of protein was determined by the Bradford method using bovine serum albumin ( BSA) as a standard. The factors related with the activity of the immobilized lipase on prior carriers, such as the pH value of the immobilized reaction, the concentration of glutaraldehyde and the amount of enzyme were investigated. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme. High activity recovery (54. 8% ) of the immobilized lipase was achieved and the amount of protein was up to 120 mg/g. This immobilized lipase can be reused 10 times with the enzymatic activity remained above 90% .%借助溶热法制备了一种亲水及生物相容良好的Fe3O4磁性纳米粒子,用γ-氨丙基三乙氧基硅烷直接对所得磁性粒子表面改性,然后用戊二醛偶联法制得了固定化猪胰脂肪酶.表征研究显示,所得磁性粒子粒径约200 nm,具有良好的单分散性和磁响应性.考察了戊二醛浓度、给酶量和反应时间对脂肪酶固定化过程的影响,并通过游离酶与固定化酶的比较研究了所得固定化酶的性质.所得固定化猪胰脂肪酶呈现出优异的热稳定性

  16. A Polystyrene Primer.

    Science.gov (United States)

    Daniel, Robert A.

    1985-01-01

    One of the most common disposable materials in our society is polystyrene, of which grocery store meat trays, egg cartons, and several kinds of protective packing materials are made. Describes the characteristics of five different polystyrenes and some suggested uses for art classes. (RM)

  17. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium

    Science.gov (United States)

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-02-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  18. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  19. Structural disorder versus spin canting in monodisperse maghemite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kubickova, S.; Vejpravova, J., E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); Niznansky, D. [Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Albertov 2030, 128 40 Prague (Czech Republic); Morales Herrero, M. P. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ins de la Cruz 3, Campus de Cantoblanco, 28049 Madrid (Spain); Salas, G. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ins de la Cruz 3, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid (Spain)

    2014-06-02

    Monodisperse maghemite nanoparticles with diameter ranging from 7 to 20 nm were examined by the In-field Mössbauer Spectroscopy (IFMS) in varying external magnetic field up to 6 T. Surprisingly, the small-sized particles (7 nm) exhibit nearly no spin canting in contrast to the larger particles with lower surface-to-volume ratio. We demonstrate that the observed phenomenon is originated by lower relative crystallinity of the larger particles with different internal structure. Hence, the persistence of the 2nd and 5th absorption lines in the IFMS cannot be unambiguously assigned to the surface spins.

  20. PREPARATION OF POLYSTYRENE/SiO2 COMPOSITE NANOPARTICLES BEARING SULFONIC GROUPS ON THE SURFACE VIA EMULSION COPOLYMERIZATION USING A POLYMERIZABLE EMULSIFIER

    Institute of Scientific and Technical Information of China (English)

    Yi-zhang Chen; Zhao-xia Guo; Jian Yu; Mao-sheng Zhan

    2009-01-01

    Functionalized PS/SiO2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifier α olefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some extent via a two-stage procedure.

  1. Preparation of Silver-Coated Polystyrene Composite Particles

    Institute of Scientific and Technical Information of China (English)

    陈卓; 詹鹏; 章建辉; 王振林; 章维益; 闵乃本

    2003-01-01

    We report a feasible approach to the preparation of monodispersed metal-shell composite microspheres based on a combination of surface reaction and surface seeding techniques. The method was implemented for coating polystyrene (PS) spheres with silver shell having a variable thickness by controlling the amount of reagents in the reaction procedure. These composite spherical particles in dimensions of the submicrometer range may become attractive building blocks for the creation of metallo-dielectric photonic band gap materials when they are organized into crystals.

  2. Monodisperse silica nanoparticles coated with gold nanoparticles as a sorbent for the extraction of phenol and dihydroxybenzenes from water samples based on dispersive micro-solid-phase extraction: Response surface methodology.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2015-08-01

    A selective and sensitive method was developed based on dispersive micro-solid-phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high-performance liquid chromatography with UV detection. SiO2 , SiO2 @MPTES, and SiO2 @MPTES@Au nanoparticles (MPTES = 3-mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett-Burman design. The significant variables optimized by a Box-Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1-500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.

  3. SYNTHESIS OF POLYSTYRENE/TiO2 CORE-SHELL MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Lin-lin Guo; Ge Gao; Xiao-li Liu; Feng-qi Liu

    2009-01-01

    TiO2-coated polystyrene nanoparticles were prepared in a simple way.First,functional PS particles were synthesized by copolymerizing one kind of polymerizable surfactant with styrene.Then the stable dispersions of polystyrene nanoparticles were used as templates,and polystyrene nanoparticles were coated with titania by in situ hydrolysis of tetra-n-butyl titanate (TBT).No surface treatment and centrifugation/redispersion cycle process were needed during the whole experiment.Isolated PS spheres with uniform coatings of titania were obtained when water concentration was lower than a certain level.

  4. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.

    Science.gov (United States)

    Adams, Sarah M; Campione, Salvatore; Caldwell, Joshua D; Bezares, Francisco J; Culbertson, James C; Capolino, Filippo; Ragan, Regina

    2012-07-23

    Near-field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle-based cluster assemblies have exhibited signal enhancements in surface-enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low-cost fabrication methods. Here an innovative method is developed for fabricating self-organized clusters of metal nanoparticles on diblock copolymer thin films as SERS-active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self-organized chemically functionalized poly(methyl methacrylate) domains on polystyrene-block-poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub-10-nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 10⁹ while simultaneously producing uniform signal enhancements in point-to-point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full-wave electromagnetic simulations. Reusability for small-molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non-lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.

  5. OBSERVATION OF ENERGY DISSIPATION PEAK IN POLYSTYRENE MELT ABOVE Tg

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper two different kinds of dynamic mechanical techniques (inversed torsion pendulum and energy dissipation apparatus) were used to study the dynamic behavior of atactic monodisperse polystyrene above glass transition.The plots of energy dissipation versus temperature were presented for two atactic polystyrene samples. An apparent energy dissipation peak occurred above Tg in each plot measured by the inversed torsion pendulum, and simultaneously the sample was found to flow assuredly at the moment. To exclude the influence of the flow and demonstrate there was a peak indeed above Tg, the energy dissipation apparatus was used, in which the samples were put into a cup. An obvious peak appeared,and it was in agreement with the peak observed by the inversed torsion pendulum. On basis of the results measured by the two kinds of apparatus, a conclusion is drawn that a peak occurrs above Tg, which gives a manifestation for the existence of the liquid-liquid transition.

  6. Preparation of polystyrene microspheres for laser velocimetry in wind tunnels

    Science.gov (United States)

    Nichols, Cecil E., Jr.

    1987-01-01

    Laser Velocimetry (L/V) had made great strides in replacing intrusive devices for wind tunnel flow measurements. The weakness of the L/V has not been the L/V itself, but proper size seeding particles having known drag characteristics. For many Langley Wind Tunnel applications commercial polystyrene latex microspheres suspended in ethanol, injected through a fluid nozzle provides excellent seeding but was not used due to the high cost. This paper provides the instructions, procedures, and formulations for producing polystyrene latex monodisperse microspheres of 0.6, 1.0, 1.7, 2.0, and 2.7 micron diameters. These are presently being used at Langley Research Center as L/V seeding particles.

  7. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  8. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  9. Monodisperse Ru Nanoparticles in [Bmim]BF4:Preparation and Application in Benzene Selective Hydrogenation%离子液体[Bmim]BF4中单分散Ru纳米粒子的制备及选择加氢性能

    Institute of Scientific and Technical Information of China (English)

    魏珺芳; 王延吉; 励娟; 薛伟

    2011-01-01

    The monodisperse Ru nanoparticles were prepared by chemical reduction method in 1-butyl-3-methyl limidizaolium tetrafluoroborate ([BMim]BF4). The prepared Ru nanoparticles were characterized by XRD as hexagonal close packed structure and no diffraction peak from oxidation products. TEM analysis of these nanoparticles shows that the monodisperse Ru nanoparticles prepared by positive dripping method disperse in the ionic liquids with diameter less than 5 nm. The Ru nanoparticles prepared by reverse dripping method agglomerate with diameter more than 10 nm. FTIR results indicate that a physically absorbed layer of ionic liquid is evident on the surface of Ru nanoparticles. TG results indicate that the ionic liquid serves not only as a protective agent or stabilizing agent to inhibit the aggregation of Ru nanoparticles, but also a modification agent adsorbed on the Ru nanoparticles. Results of benzene selective hydrogenation show that benzene conversion is relatively high in the reaction system with water, however the selectivity of cyclohexene is low, only 14.5% at 27.3% benzene conversion in the same system.%采用化学还原法在离子液体1-丁基-3-甲基咪唑四氟硼酸盐([BMim]BF4)中制备了单分散纳米金属Ru粒子.采用X射线衍射(XRD)、透射电镜(TEM)、傅里叶红外光谱(FTTR)及热重(TG)对所制备样品的形貌和结构进行了表征.XRD表征结果显示:在[BMim]BF4中制备的Ru具有六方紧密堆积结构,无氧化物峰出现;TEM结果显示:采用正滴法制备的Ru纳米粒子为球形颗粒,呈现良好的单分散状态,粒径分布窄,为2~5 nm,而采用反滴法制备的Ru纳米粒子则发生了严重的团聚,团聚体粒径大于10 nm;FTIR表征表明:Ru纳米粒子表面存在[BMjm]BF4液体层,分析二者之间存在较强的物理吸附作用,[BMim]BF4在Ru纳米粒子的制备中起到了修饰剂和保护剂的双重作用,这一推论通过TG分析得到了进一步验证.将分散于[BMim]BF4的Ru纳

  10. 单分散、规则球形Au@SiO_2核-壳纳米粒的制备及光谱研究%Preparation and Spectrum Study of Monodispersed Regular Spherical Au@SiO_2 Core-Shell Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    姚祖福; 黄可龙; 于金刚; 郭军; 李艳华; 方东

    2009-01-01

    Using 3-mercaptopropyhrimethoxysilane as linker,single gold nanoparticle was successfully encapsulated by silicon oxide shell,and Au@SiO_2 core-sheU nanoparticles were prepared.The nanocomposites were spherical and monodispersal.The gold nanoparticle located at the center of silica nano-sphere.No congregating gold nanoparticles were embedded in one silica sphere.The morphologies of the samples were characterized by transmission electron microscopy(TEM).The chemical contents of the samples were analyzed using energy diffraction X-ray(EDX)spectroscopy.And their optical properties were studied.%采用3-巯基丙基三甲氧基硅烷作为联结剂,成功将单个金纳米粒子包在氧化硅壳中,制得Au@SiO_2核壳纳米粒子;该复合纳米粒子形貌呈球形、单分散性较好,金纳米粒子位于氧化硅球的中心.无团聚的金纳米粒子包覆在氧化硅壳中.采用透射电镜(TEM)对样品的形貌进行了表征,通过能量散射X-射线能谱(EDX)分析了目标物的化学成分,并对所得核壳纳米粒子的光谱性质进行了研究.

  11. Supply Deficit of Polystyrene

    Institute of Scientific and Technical Information of China (English)

    Gao Chunyu

    2007-01-01

    @@ 1 Stable demand growth worldwide The operating rate of polystyrene units has stayed around 80% globally since 2000. Production capacity reached 19.36 million t/a, output was 15.7 million tons, consumption was 15.53 million tons and the operating rate was 81.1% in 2005.

  12. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    Science.gov (United States)

    2012-01-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating. PMID:23176612

  13. Electro-Responsive Polystyrene Shape Memory Polymer Nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Zhang, L.; Pei, Y.T.; Luo, J.K.; Tao, S.W.; Hosson, J.Th.M. De; Fu, Y.Q.

    2012-01-01

    Microstructure, thermo-mechanical, electrical properties and shape recovery efficiency of carbon nano-particles (CNPs) enhanced polystyrene (PS) nanocomposites were characterized. Dynamic mechanical thermal analysis showed an increase in glass transition temperature (T-g) and enhancement of the stor

  14. WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates.

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Sang-Joon; Cho, Hee-Jin; Jang, Ji-Soo; Lin, Yi-Min; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo

    2016-02-17

    A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors.

  15. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection

    Directory of Open Access Journals (Sweden)

    Sanghee Kim

    2012-01-01

    Full Text Available A solid-phase immunoassay of polystyrene-encapsulated semiconductor nanoparticles was demonstrated for cardiac troponin I (cTnI detection. CdSe/ZnS coreshells were encapsulated with a carboxyl-functionalized polystyrene nanoparticle to capture the target antibody through a covalent bonding and to eliminate the photoblinking and toxicity of semiconductor luminescent immunosensor. The polystyrene-encapsulated CdSe/ZnS fluorophores on surface-modified glass chip identified cTnI antigens at the level of ~ng/mL. It was an initial demonstration of diagnostic chip for monitoring a cardiovascular disease.

  16. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón

    2015-01-01

    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  17. Synthesis of a Novel Surfactant with Two Alkyl Tail-Chains (DDOBA) and Fabrication of Hydrophobic Gold Nanoparticles with High Monodispersity%新型双链表面活性剂DDOBA的合成与高单分散性憎水纳米金的制备

    Institute of Scientific and Technical Information of China (English)

    韩莹; 朱露; 沈明; 李恒恒

    2013-01-01

    3,4-Didodecyloxybenzylamine (DDOBA), a novel surfactant with two alkyl tail-chains, was designed and synthesized. DDOBA-capped hydrophobic gold nanoparticles were successful y fabricated using formic acid as a reducing agent in a DDOBA/n-butanol/n-heptane/formic acid/HAuCl4·4H2O water/oil (W/O) microemulsion system under microwave irradiation. DDOBA-stabilized gold nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The experimental results showed that DDOBA not only participated in the formation of a stable W/O microemulsion system, but also became a good protecting agent for gold nanoparticles. Within an appropriate concentration range of components in the W/O microemulsion system, hydrophobic gold nanoparticles with high monodispersity can be obtained using this experimental method and automatical y form large areas of ordered monolayer built with DDOBA-capped gold nanoparticles at the air/water interface.%  自行设计合成了新颖的苄胺型双链表面活性剂3,4-双十二烷氧基苄胺(DDOBA)。利用DDOBA/正丁醇/正庚烷/甲酸/HAuCl4·4H2O自发形成的水/油(W/O)型微乳液作为微反应器,通过微波辐射下的甲酸还原法成功制备了DDOBA保护的憎水性金纳米粒子,并通过紫外-可见(UV-Vis)光谱、透射电镜(TEM)、高分辨透射电镜(HR-TEM)和X射线衍射(XRD)等方法进行了表征和分析。结果显示, DDOBA既可参与形成稳定的W/O型(油包水型)微乳液,又可作为金纳米粒子的良好保护剂。在合适的微乳液体系组成范围内,用本实验方法可以获得高单分散性的憎水性金纳米粒子,并能在空气/水界面上自动形成大面积短程有序的纳米金二维自组装膜。

  18. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

    OpenAIRE

    Damasco, Jossana A.; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N.

    2014-01-01

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentr...

  19. Polystyrene/MoS{sub 2}@oleylamine nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Altavilla, Claudia; Ciambelli, Paolo [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 134 84084 Fisciano (Italy); Centre NANO MATES, University of Salerno, 84084 Fisciano (Italy); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB), National Research Council (CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy)

    2014-05-15

    The effects of adding different concentrations of MoS{sub 2}@oleylamine nano particles on the thermal and mechanical properties of polystyrene (PS) nanocomposites have been investigated. X-ray diffraction and optical microscopy were used to characterize the morphology of the resulting nanocomposites. The thermal stability of the nanocomposites has been characterized by thermogravimetric analysis. It has been found that the MoS{sub 2}@oleylamine nanoparticles have a good compatibility with the PS matrix forming homogeneous dispersion even at high concentrations. The PS/MoS{sub 2}@oleylamine nanocomposites showed enhanced thermal stability in comparison with neat polystyrene.

  20. Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres

    OpenAIRE

    Jiang, Xingmao; Bao, Lihong; Cheng, Yung-Sung; Dunphy, Darren R.; Li, Xiaodong; Brinker, C. Jeffrey

    2011-01-01

    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and und...

  1. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, William W [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Chang, Emmanuel [Department of Bioengineering, Rice University, Houston, TX 77005 (United States); Sayes, Christie M [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Drezek, Rebekah [Department of Bioengineering, Rice University, Houston, TX 77005 (United States); Colvin, Vicki L [Department of Chemistry, Rice University, Houston, TX 77005 (United States)

    2006-09-14

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals.

  2. Fluorescent Polystyrene Sulfonate for Polyelectrolyte Studies

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Zhang, Donghui; Russo, Paul

    2012-02-01

    The slow-mode decay found by dynamic light scattering for polyelectrolytes in low-salt conditions has perplexed investigators since its first observation. Many characterization methods have suggested temporary or transient aggregation, although there is still no consensus on the cause. Many different polyelectrolytes demonstrate the slow-mode decay, but the sodium salt of polystyrene sulfonate (NaPSS) is the most popular choice for study. Commercially available NaPSS may have hydrophobic patches due to incomplete sulfonation leading to associations apart from any putative ionic mechanisms. Therefore, essentially full sulfonation, or ``patchless'', NaPSS should be synthesized. To facilitate fluorescence measurements, which can provide new insights to the slow-mode phenomenon, the material must be rendered fluorescent (F-NaPSS). Several approaches to F-NaPSS have appeared; some labeled a previously synthesized NaPSS without concern for its hydrophobic patches. Other strategies include a free radical copolymerization of styrene sulfonate and a vinyl amine to provide side chains viable for labeling. This method is successful, but yields only small amounts of nearly monodisperse polymer after fractionation. In this presentation, a high-yield synthesis of fully sulfonated, low-polydispersity, fluorescently tagged polymer will be discussed.

  3. Fabrication of monodispersive nanoscale alginate–chitosan core–shell particulate systems for controlled release studies

    Energy Technology Data Exchange (ETDEWEB)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed, E-mail: memedduman@gmail.com [Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division (Turkey)

    2014-12-15

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core–shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  4. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    Science.gov (United States)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  5. Elongational dynamics of multiarm polystyrene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann

    2009-01-01

    The startup of uni-axial elongational flow followed by stress relaxation and reversed bi-axial flow has been measured for a branched polystyrene melt with narrow molar mass distribution using the filament stretching rheometer. The branched polystyrene melt was a multiarm A(q)-C-C-A(q) pom-pom pol...

  6. Packing Products: Polystyrene vs. Cornstarch

    Science.gov (United States)

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  7. Spontaneous Breakup of Extended Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Yu, Kaijia

    2011-01-01

    We apply continuum mechanical based, numerical modeling to study the dynamics of extended monodisperse polymer melts during the relaxation. The computations are within the ideas of the microstructural ‘‘interchain pressure’’ theory. The computations show a delayed necking resulting in a rupture...

  8. 高度单分散聚乙烯基倍半硅氧烷球形纳米粒子的制备及性能%Preparation and Properties of Highly Monodisperse Spherical Poly (vinylsilsesquioxane) Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    陈连喜; 李洁; 李曦; 翟鹏程; 张江涛; 张中明

    2013-01-01

    在水溶液中,以乙烯基三乙氧基硅烷(VTES)为前驱体,氨水(NH3·H2O)为催化剂,在表面活性剂十二烷基苯磺酸钠(SDBS)存在下,通过溶胶一凝胶法成功合成了具有不同粒径、高度单分散的聚乙烯基倍半硅氧烷(PVSQ)球形纳米粒子.研究结果表明,催化剂NH3·H2O与表面活性剂SDBS的用量对PVSQ的粒径和粒径分布影响很大,而前驱体VTES的用量对PVSQ的粒径无明显影响.通过场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)及热重(TG)分析对产物的形貌、粒径和粒径分布、结构及热性能进行了表征.%In aqueous solution,highly monodisperse spherical poly (vinylsilsesquioxane) (PVSQ) particles with various sizes have been prepared successfully in the presence of surfactant sodium dodecyl benzene sulfonate(SDBS) using vinyl triethoxysilane (VTES) as precursor and ammonia hydroxide as catalyst by sol-gel method.The research results show that the amounts of catalyst(NH3· H2O) and surfactant(SDBS) have great effects on size and size distribution of PVSQ.However,the amount of precursor(VTES) has unobvious effect on size and size distribution of PVSQ.The shape,size and size distribution,structure,surface property and thermal behavior of the resulting products were analyzed and characterized by field emission scanning electron microscope(FESEM),Fourier transform infrared spectroscopy (FTIR),X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis(TGA),respectively.

  9. Nonlinear Spectroscopu of Nanoparticle/Aqueous Interface

    Science.gov (United States)

    2010-10-01

    experiments at air/water interfaces have measured:polarity at a polystyrene sulfonate /water interface,acid-base equilibria at polystyrene nanoparticle...water interface. 2009, Abstracts, 238th ACS National Meeting, Washington, D.C. Polarity of polystyrene colloid/aqueous interface with second harmonic...electrostatic potential, the pH, and the acid-base equilibrium of the carboxyl (-COOH) functional group fixed at the surface of polystyrene carboxyl

  10. Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A.

    Science.gov (United States)

    Rekos, Kyriazis; Kampouraki, Zoi Christina; Samanidou, Victoria; Deliyanni, Eleni

    2016-04-01

    Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A. Kyriazis Rekos1, Zoi Christina Kampouraki1, Victoria Samanidou2, Eleni Deliyanni1 1 Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece 2 Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece The aim of this work was to prepare and characterize novel composites of magnetic activated carbon or magnetic graphene oxide with polystyrene (GO/PSm), through one step simple and effective route. Μagnetite nanoparticles, prepared in the laboratory, were dispersed in the presence of activated carbon (C) or graphene oxide (GO) in a polystyrene (PS) solution in dimethylformamide, at elevated temperature, for the fabrication of the magnetite-Carbon-PS (C-PSm) and magnetite- Graphene Oxide-PS (GO-PSm) hybrid-nanoparticles. For comparison, C-PS and GO-PS composites were also prepared in the same route. The nanocomposites were tested for their sorption ability for an endocrine disruptor, bisphenol A. The effect of solution pH, initial concentration, contact time and temperature were examined. The magnetic graphite oxide-polystyrene presented higher adsorption capacity (100 mg/g) than the non magnetic composites (70 mg/g), as well as than initial graphite oxide (20 mg/g). FTIR, XRD, BET, TGA, VSM and SEM were performed in order to investigate the role of the PS on the better adsorption performance of the mGO-PS nanocomposites. The characterization with these techniques revealed the possible interactions of the surface functional groups of activated carbon and/or graphite oxide with polystyrene that resulted in the better performance of the magnetic nanocomposites for bisphenol A adsorption.

  11. Photoassisted Fenton degradation of polystyrene.

    Science.gov (United States)

    Feng, Hui-Min; Zheng, Jia-Chuan; Lei, Ngai-Yu; Yu, Lei; Kong, Karen Hoi-Kuan; Yu, Han-Qing; Lau, Tai-Chu; Lam, Michael H W

    2011-01-15

    Fenton and photoassisted Fenton degradation of ordinary hydrophobic cross-linked polystyrene microspheres and sulfonated polystyrene beads (DOWEX 50WX8) have been attempted. While the Fenton process was not able to degrade these polystyrene materials, photoassisted Fenton reaction (mediated by broad-band UV irradiation from a 250 W Hg(Xe) light source) was found to be efficient in mineralizing cross-linked sulfonated polystyrene materials. The optimal loadings of the Fe(III) catalyst and the H(2)O(2) oxidant for such a photoassisted Fenton degradation were found to be 42 μmol-Fe(III) and 14.1 mmol-H(2)O(2) per gram of the sulfonated polystyrene material. The initial pH for the degradation was set at pH 2.0. This photoassisted Fenton degradation process was also able to mineralize commonly encountered polystyrene wastes. After a simple sulfonation pretreatment, a mineralization efficiency of >99% (by net polymer weight) was achieved within 250 min. The mechanism of this advanced oxidative degradation process was investigated. Sulfonate groups introduced to the surface of the treated polystyrene polymer chains were capable of rapidly binding the cationic Fe(III) catalyst, probably via a cation-exchange mechanism. Such a sorption of the photoassisted Fenton catalyst was crucial to the heterogeneous degradation process.

  12. SYNTHESIS AND PROPERTIES OF POLYSTYRENE/LAPONITE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Wan-guo Hou; Wei-an Zhao; Dong-xiang Li

    2004-01-01

    Exfoliated polystyrene (PS)/laponite nanocomposites were prepared successfully. The characteristic d001diffraction peak of organo-laponite disappeared in the XRD patterns of nanocomposites, indicating that the laponite layers were exfoliated and the ordered crystal structure of laponite was destroyed because of the styrene polymerization. TEM observations showed that the exfoliated laponite primary particles were dispersed randomly in the PS matrix with lateral dimensions from 1 nm to 10 nm. SEM results showed that the PS/laponite nanocomposite particles were almost monodispersed spheres with the size of about 120 nm. Because of the interaction between PS and laponite nanolayers, the nanocomposites exhibited higher thermal stability and glass transition temperature when compared to pure PS.

  13. Dynamics and Morphology of Sulfonated Polystyrene Ionomers by Dielectric Spectroscopy

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen I.; Runt, James

    2009-03-01

    The dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized forms, were investigated using broadband dielectric spectroscopy. The influences of acid content, counterion type (Zn, Na and Cs), degree of neutralization, and microphase separated morphology on segmental and local dynamics, as well as on Maxwell -- Wagner -- Sillars interfacial polarization, were examined. Ionomers prepared from SPS containing 1.9 mol% sulfonic acid species exhibit a broader segmental process indicative of a considerably broader distribution of local environments, as compared to those in unneutralized SPS. Moreover, multiple segmental relaxations were identified in the dielectric spectra of Zn and Na neutralized SPS (1.9 mol%) ionomers, likely indicating two distinct environments arising from ion clustering. A combination of STEM imaging and X-ray scattering confirmed the presence of monodisperse spherical ionic aggregates that were homogeneously distributed in the polymer matrix.

  14. Dynamics of Sulfonated Polystyrene Ionomers by Dielectric Relaxation Spectroscopy

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen; Runt, James

    2010-03-01

    Broadband dielectric spectroscopy was used to investigate the dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized form. This study seeks to elucidate the role of counter ion type (Zn, Na, and Cs), degree of sulfonation (9 and 6%), and ion cluster morphology on the relaxation phenomena of SPS. Degree of neutralization and ion type have been found to significantly impact the breadth and time scale of the segmental relaxation process. High temperature relaxation processes, tentatively proposed to arise from Maxwell-Wagner-Sillars interfacial polarization and a hydrogen bonding relaxation, have also been identified. Bands in the sulfonate stretching region of FTIR spectra reveal information about ion coordination in the local aggregate environment. A combination of scanning transmission electron microscopy imaging and X-ray scattering confirmed the presence of homogeneously distributed, nearly monodisperse spherical ionic aggregates in the polymer matrix.

  15. STUDY ON SYNTHESIS OF SELF CORSS LINKED POLYSTYRENE LATEX MICROSPHERES

    Institute of Scientific and Technical Information of China (English)

    DaiLizong; ZouYousi; 等

    1997-01-01

    Emulsifier-free emulsion polymerization of styrene in the presence of β-hydroxy propyl acrylate was studied.The emulsifier-free self cross linked polystyrene latex microspheres was obtained.Monomer conversion is higher than 90% when [St],[β-HPA],[KPS] is 2.66,0.228,and 5.8×10-3mol/L respectively under 80℃ for 5h.The mono-dispersed latex particle diameter and colloidal particle concentration were given as D=0.23um,N=3.13×1013/cm3 by TEM analyse,The factors of influencing latex stability were discussed.Thecopolymer was characterized by IR and dissolution experiment.The apparent activation energy of polymerization and polymerization rate constant were obtained to be 78.7KJ/mol and 514.4/mol.s respectively.

  16. Characterisation of nanoplastics during the degradation of polystyrene

    OpenAIRE

    Lambert, Scott; Wagner, Martin

    2016-01-01

    The release of plastics into the environment has been identified as an important issue for some time. Recent publications have suggested that the degradation of plastic materials will result in the release of nano-sized plastic particles to the environment. Nanoparticle tracking analysis was applied to characterise the formation of nanoplastics during the degradation of a polystyrene (PS) disposable coffee cup lid. The results clearly show an increase in the formation of nanoplastics over tim...

  17. Crystallization phenomena of isotactic polystyrene

    NARCIS (Netherlands)

    Lemstra, Peter Jan

    1975-01-01

    In this thesis the crystallization behavior of isotactic polystyrene has been described. The kinetics of the crystallization process and the crystalline structure were studied both for crystallization in the bulk and from dilute solutions. ... Zie Summary

  18. Casting Using A Polystyrene Pattern

    Science.gov (United States)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  19. Template synthesis of monodisperse carbon nanodots

    Science.gov (United States)

    Kurdyukov, D. A.; Eurov, D. A.; Stovpiaga, E. Yu.; Kirilenko, D. A.; Konyakhin, S. V.; Shvidchenko, A. V.; Golubev, V. G.

    2016-12-01

    Monodisperse carbon nanodots in pores of mesoporous silica particles are obtained by template synthesis. This method is based on introducing a precursor (organosilane) into pores, its thermal decomposition with formation of carbon nanodots, and the template removal. Structural analysis of the nanomaterial has been performed, which showed that carbon nanodots have an approximately spherical form and a graphite-like structure. According to dynamic light scattering data, the size of carbon nanodots is 3.3 ± 0.9 nm.

  20. Slip and flow dynamics of polydisperse thin polystyrene films.

    Science.gov (United States)

    Sabzevari, Seyed Mostafa; McGraw, Joshua D.; Jacobs, Karin; Wood-Adams, Paula M.

    2015-03-01

    We investigate the slip of binary and ternary mixtures of nearly monodisperse polystyrene samples on Teflon-coated (AF2400) silicon wafers using dewetting experiments. Binary mixtures of long and short chains along with ternary mixtures with a fixed weight-average molecular weight Mw but different number-average molecular weight Mn were prepared. Thin films of ca. 200 nm were spin coated on mica from polymer solutions and transferred to Teflon substrates. Above the glass transition temperature Tg the films break up via nucleation and growth of holes. The hole growth rate and rim morphology are monitored as a function of Mn and annealing protocol of the films before transfer to Teflon substrates. Slip properties, accessed using hydrodynamic models, and flow dynamics are then examined and compared. We found that the rim morphology and slip of polystyrene blends on Teflon depends on the molecular weight distribution. Similarly, flow dynamics is affected by the presence of short chains in mixture. Moreover, we can provoke differences in slip by choosing appropriate annealing and film transfer protocols for PS films that have first been spin cast on mica surfaces.

  1. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Monodisperse polystyrene (PS) colloidal spheres were successfully prepared through emulsifier-free emulsion polymerization by controlling the polymerization reaction time, ionic strength of the system, concentration of the ionic copolymer (sodium p-styrenesulfonate) and other factors. The PS colloidal spheres were assembled into colloidal crystals whose structures were mainly face-centered cubic (fcc) close-packed. Then FDTD method was used to calculate the color-rendering characteristics of the colloidal crystals surface. The calculated results were consistent with the experimental results.

  2. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    Science.gov (United States)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  3. Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xiaofei; Wang Hanjie [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China); Jiang Xinguo [Fudan University, School of Pharmacy (China); Chang Jin, E-mail: jinchang@tju.edu.c [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China)

    2010-06-15

    We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.Graphical AbstractA simple and rapid liposome method was reported to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by polymeric surfactant, octadecyl quaternized carboxymethyl chitosan (OQCMC), and cholesterol. Hydrophilic Fe{sub 3}O{sub 4} ferrofluid and hydrophobic magnetic nanoparticles can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. Hydrophobic drug indomethacin can be encapsulated into this MCPL with high encapsulating efficiency and with controlled release profile by changing the number of polymeric lipid layer.

  4. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang, E-mail: polymerzf@swun.cn; Luo, Jianbin; Liu, Dong

    2016-08-15

    Graphical abstract: An efficient hydrothermal method was used to fabricate the superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2(*)+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures through a seed-growth procedure. Then using PEG phosphate ligand to displace oleate from the as-synthesized NPs, hydrophilic Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs with good water solubility are obtained. - Highlights: • Homogeneous size distribution of magnetic-upconversion core@shell structured nanoparticles (NPs) were synthesized. • The core@shell nanostructures were obtained by seed-growth method. • The oleic acid coated Fe{sub 3}O{sub 4} NPs were used as seeds and cores. • The magnetic-upconversion NPs emitted red luminescence under a 980 nm laser. • Synthesized magnetic-upconversion NPs were phase transferred using ligand exchange process. - Abstract: We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe{sub 3}O{sub 4} (OA-Fe{sub 3}O{sub 4}) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe{sub 3}O{sub 4} NPs were then used as seeds, on which the red upconversion luminescent shell (Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe{sub 3}O{sub 4} cores were uniformly coated with a Mn{sup 2+}-doped NaYF{sub 4}:Yb

  5. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres.

    Science.gov (United States)

    Cao, Feng; Li, Dongxu

    2010-03-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe(3+), which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 degrees C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  6. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  7. 21 CFR 177.1640 - Polystyrene and rubber-modified polystyrene.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances... polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polystyrene and rubber-modified polystyrene....

  8. Microfluidic Production of Monodisperse Perfluorocarbon Microdroplets

    Science.gov (United States)

    Li, David; Schalte, Kevin; Fowlkes, J. Brian; Bull, Joseph

    2010-11-01

    Acoustic droplet vaporization (ADV) is process in which liquid perfluorocarbon (PFC) microdroplets are vaporized using focused ultrasound to form gas bubbles that are approximately 125 times larger in volume. Gas embolotherapy is a novel cancer treatment that uses ADV in vivo to strategically form gas emoboli, which can lodge in the microcirculation and starve tumors. Current methods to produce PFC microdroplets, such has high speed shaking or sonication, result in polydisperse droplet distributions where a fraction of droplets fall within the 2-10 microns range. In the clinical application with such a droplet distribution, large droplets are filtered by the lungs and small droplets result in bubbles that are too small to lodge in the tumor vasculature. Consequently, there is a need for a monodisperse droplet distribution. A microfluidic based device has been developed in order to produce such monodisperse PFC microdroplets. The device used hydrodynamic flow focusing to create droplets with a mean diameter less than 10 microns in diameter. This work is supported by NIH grant R01EB006476.

  9. Application of monodispersive anion exchangers in sorption and separation of y3+ from Nd3+ and Sm3+ complexes with dcta

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolody(n)ska

    2008-01-01

    Rare earth complexes with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA) of the Ln(dcta)- ype exhibited an unusual sequence of affinity on the polystyrene anion exchangers: pm3+>Nd3+>Sm3+>pr3+>Ce3+>Eu3+>Gd3+>La3+>Sc3+>Tb3+>Dy3+>Ho3+>y3+>Er3+>Tm3+>yb3+>Lu3+[1]. Taking into account the position of Y3+, Sm3+, and Nd3+ in this affinity series, for the monodispersive polystyrene anion exchangers, Lewafit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP 500, Lewatit MonoPlus MP 64,and for the heterodispersive anion exchanger, Lewatit MP 62, the weight (Dg,) and bed (Dv) distribution coefficients of these complexes and working ion exchange capacities (Cw) were determined. Based on these values, purifications of Y3+ from Nd3+ and y3+ from Sm3+ in the macro-micro component system on these anion exchangers were studied. The application potential of this method was highlighted for the separation of yz3+ in the presence of Nd3+ and Sm3+. With 1 L of monodispersive and strongly basic polystyrene gel anion exchanger Lewatit MonoPlus M 500 in the acetate form, it is possible to obtain approximately 79 g Y2O3 purified from Nd2O3 and 70 g Y2O3 purified from Sm2O3 in the same process condition.

  10. STUDIES ON POLYSILOXANE-POLYSTYRENE COMPOSITE LATEXES

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying; LIU Xianglian; YU Yunzhao

    1994-01-01

    Polysiloxane-polystyrene composite latexes were prepared by two-stage emulsion polymerization. Polymerization of styrene in swollen polysiloxane latex particles were studied.Formation of simple polystyrene particle in the 2nd-stage polymerization depends on the particle size of the 1st-stage latex and the polymerization temperature. Polystyrene domains in the vulcanizates reinforce the silicone rubbers effectively.

  11. Dielectric response of polystyrene - BaTiO3 nanocomposites

    Science.gov (United States)

    Korotkova, Tatyana N.; Sysoev, Oleg I.; Belov, Pavel A.; Emelianov, Nikita A.; Velyaev, Yury O.; Mandalawi, Wissam M. Al; Korotkov, Leonid N.

    2016-07-01

    The series of composite materials based on polystyrene and non-ferroelectric BaTiO3 nanoparticles ((1-x)PS-xBT, where the volume concentration x = 0-1.0) was prepared. Their dielectric properties were studied within the temperature range 20-160 °C at the frequency of 100 kHz. It is found that an increase in the barium titanate concentration leads to increase of the both dielectric permittivity (ɛ) and dielectric losses (tgδ). The concentration dependence of ɛ can be described by the modified Kerner model. It was found that the glass transition in polystyrene matrix is diffused and its temperature is increased with concentration x.

  12. Inter-laboratory performance between two nanoparticle air filtration systems using scanning mobility particle analyzers

    Science.gov (United States)

    Lore, Michael B.; Sambol, Anthony R.; Japuntich, Daniel A.; Franklin, Luke M.; Hinrichs, Steven H.

    2011-04-01

    The performance of two aerosol testing systems, at two different laboratories (University of Nebraska Medical Center—UNMC and 3M Company), was compared to evaluate which calibration procedures minimized variability in filter testing of nanoparticles. Both charged electret and uncharged flat-web fibrous filters were used with Scanning Mobility Particle Sizers to give upstream and downstream size distributions and calculate filter penetration. Challenge aerosols were polydisperse nanoparticles of sodium chloride (NaCl) ranging from approximately 10-300 nm and monodisperse polystyrene latex (PSL) spheres of preselected sizes, including 40, 60, 100, and 200 nm. The implementation of optimized procedures resulted in comparable filtration performance at the two testing sites with challenges of NaCl particles and PSL spheres. The penetration results for the uncharged filter were nearly identical for both challenges, while lower penetration through the charged filter was observed with NaCl aerosol, probably due to differences in NaCl and PSL dielectric constants. Results showed that reproducible, comparable nanoparticle filtration data could be achieved between two separate laboratories when sources of error and proper calibration procedures were addressed.

  13. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  14. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  15. From Polymeric Nanoparticles to Dye-containing Photonic Crystals:Synthesis,Self-assembling,Optical Features, Possible Applications

    Institute of Scientific and Technical Information of China (English)

    A.V.Yakimansky; A.Yu.Menshikova; N.N.Shevchenko; A.G.Bazhenova; S.K.Sazonov; A.I.Vedernikov; S.P.Gromov; V.A.Sazhnikov; M.V.Alfimov

    2007-01-01

    1 Results Self-assembling of monodisperse polymeric nanoparticles is a perspective method of obtaining photonic crystalline materials for optoelectronics,telecommunication industry and optosensorics.For tuning optical characteristics of photonic crystals it is advisable to functionalize nanoparticles by dyes absorbing or emitting light in the vicinity of the photonic band gap,which position depends on the nanoparticle diameter.To prepare monodisperse nanoparticles with the dye-functionalyzed surface emu...

  16. Monodisperse microdroplet generation and stopping without coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  17. Tracer Diffusion of Polystyrene in Lightly Sulfonated Polystyrene

    Science.gov (United States)

    Xu, Chen; Zhou, Nancy; Burghardt, Wesley; Winey, Karen; Composto, Russell

    2005-03-01

    The tracer diffusion coefficient D^* of deuterated polystyrene (d-PS) (Mw = 65,900 g/mol) in lightly sulfonated polystyrene (P(S-SSx)) (Mw = 65,000 g/mol) as a function of sulfonation mole fraction (x) was measured by forward recoil spectrometry (FRES). For x sulfonation, according to D^* = Do exp(-0.14 Ns), where Ns is the number of sulfuric acid groups per chain. This slowing-down is attributed to an increase in the monomeric friction coefficient which increases with sulfonation. The diffusion mechanism includes both reptation and constraint release. The monomeric friction coefficient for d-PS in P(S-SSx) is compared with the coefficient for P(S-SSx) measured by rheology.

  18. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    Directory of Open Access Journals (Sweden)

    Shinichi Kinugasa

    2012-01-01

    Full Text Available Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex by dynamic light scattering (DLS was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF using multi-angle light scattering (MALS with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS.

  19. Self-assembly of Carboxyl Functionalized Polystyrene Nanospheres into Close-packed Monolayers via Chemical Adsorption

    Institute of Scientific and Technical Information of China (English)

    LI,Zhi-Wei(李志伟); ZHOU,Jing-Fang(周静芳); ZHANG,Zhi-Jun(张治军); DANG,Hong-Xin(党鸿辛)

    2004-01-01

    The polyacrylic acid functionalized polystyrene nanospheres were synthesized and self-assembled into irregular,densely packed monolayers in non-aqueous media. The polymer nanoparticles were chemically adhered to substrates. The morphologies of the resulting films were investigated. The impact of the volume fraction of alcohol in the mixed solvents on the particle adsorption and fabrication of nanosphere assembled films was examined.

  20. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics.

    Science.gov (United States)

    Yu, Xu; Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2015-04-07

    A simple and robust method for one-step synthesis of monodisperse functional polymeric microspheres was established by generation of reversed microemulsion droplets in aqueous phase inside microfluidic chips and controlled evaporation of the organic solvent. Using this method, water-soluble nanomaterials can be easily encapsulated into biodegradable Poly(D,L-lactic-co-glycolic acid) (PLGA) to form functional microspheres. By controlling the flow rate of microemulsion phase, PLGA polymeric microspheres with narrow size distribution and diameters in the range of ∼50-100 μm were obtained. As a demonstration of the versatility of the approach, high-quality fluorescent CdTe:Zn(2+) quantum dots (QDs) of various emission spectra, superparamagnetic Fe3O4 nanoparticles, and water-soluble carbon nanotubes (CNTs) were used to synthesize fluorescent PLGA@QDs, magnetic PLGA@Fe3O4, and PLGA@CNTs polymeric microspheres, respectively. In order to show specific applications, the PLGA@Fe3O4 were modified with polydopamine (PDA), and then the silver nanoparticles grew on the surfaces of the PLGA@Fe3O4@PDA polymeric microspheres by reducting the Ag(+) to Ag(0). The as-prepared PLGA@Fe3O4@PDA-Ag microspheres showed a highly efficient catalytic reduction of the 4-nitrophenol, a highly toxic substance. The monodisperse uniform functional PLGA polymeric microspheres can potentially be critically important for multiple biomedical applications.

  1. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  2. Small silicon, big opportunities: the development and future of colloidally-stable monodisperse silicon nanocrystals.

    Science.gov (United States)

    Mastronardi, Melanie L; Henderson, Eric J; Puzzo, Daniel P; Ozin, Geoffrey A

    2012-11-14

    Nanomaterials are becoming increasingly widespread in consumer technologies, but there is global concern about the toxicity of nanomaterials to humans and the environment as they move rapidly from the research laboratory to the market place. With this in mind, it makes sense to intensify the nanochemistry community's global research effort on the synthesis and study of nanoparticles that are purportedly "green". One potentially green nanoparticle that seems to be a most promising candidate in this context is silicon, whose appealing optical, optoelectronic, photonic, and biomedical attributes are recently gaining much attention. In this paper, we outline some of our recent contributions to the development of the growing field of silicon nanocrystals (ncSi) in order to stress the importance of continued study of ncSi as a green alternative to the archetypal semiconductor nanocrystals like CdSe, InAs, and PbS. While a variety of developments in synthetic methods, characterization techniques, and applications have been reported in recent years, the ability to prepare colloidally-stable monodisperse ncSi samples may prove to have the largest impact on the field, as it opens the door to study and access the tunable size-dependent properties of ncSi. Here, we summarize our recent contributions in size-separation methods to achieve monodisperse samples, the characterization of size-dependant property trends, the development of ncSi applications, and their potential impact on the promising future of ncSi.

  3. Towards large amounts of Janus nanoparticles through a protection-deprotection route.

    Science.gov (United States)

    Perro, Adeline; Reculusa, Stéphane; Pereira, Franck; Delville, Marie-Hélène; Mingotaud, Christophe; Duguet, Etienne; Bourgeat-Lami, Elodie; Ravaine, Serge

    2005-11-28

    Janus silica nanoparticles, regioselectively functionalized by two different chemical groups, were synthesized through a multistep procedure based on the use of a polystyrene nodule as a protecting mask.

  4. Purification of Nanoparticles by Size and Shape

    Science.gov (United States)

    Robertson, James D.; Rizzello, Loris; Avila-Olias, Milagros; Gaitzsch, Jens; Contini, Claudia; Magoń, Monika S.; Renshaw, Stephen A.; Battaglia, Giuseppe

    2016-06-01

    Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions.

  5. Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles

    Directory of Open Access Journals (Sweden)

    Gayduchenko Igor A.

    2016-01-01

    Full Text Available We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM and atomic-force microscopy (AFM. Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.

  6. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    Science.gov (United States)

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.

  7. Preparation of highly monodisperse fluorescent polymer particles by miniemulsion polymerization of styrene with a polymerizable surfactant.

    Science.gov (United States)

    Taniguchi, Tatsuo; Takeuchi, Naoki; Kobaru, Shotaro; Nakahira, Takayuki

    2008-11-01

    Miniemulsion polymerization of styrene (St) in the presence of a hydrophobe (hexadecane:HD) using a cationic polymerizable surfactant (N,N-dimethyl-N-n-dodecyl-N-2-methacryloyloxyethylammonium bromide:C(12)Br) and a cationic initiator (2,2'-azobis(2-amidinopropane) dihydrochloride:V50), called St/C(12)Br/V50 hereafter, proceeded efficiently compared with that using sodium dodecyl sulfate (SDS) and potassium persulfate (KPS), i.e., St/SDS/KPS, providing monodisperse polystyrene latex particles with a narrower particle size distribution. In St/C(12)Br/AIBN, where an oil-soluble initiator, i.e., 2,2'-azobisisobutyronitrile (AIBN), was used in place of V50, little changes in polymerization kinetics or in particle size distribution were observed, while a significant drop in polymerization rate and a broad particle size distribution were observed with St/SDS/AIBN. A polymerizable pyrene derivative (1-pyrenylmethyl methacrylate: PyMMA) was quantitatively incorporated into monodisperse latex particles in St/PyMMA/C(12)Br/V50 compared to pyrene (Py) in St/Py/C(12)Br/V50. Contrary to our expectation, however, increased excimer emission was observed with St/PyMMA/C(12)Br/V50 particles, indicating less evenly distributed pyrene chromophores in the particles. The fluorescence lifetime of pyrene chromophores in St/Py/C(12)Br/V50 particles was determined to be 286 ns, which was 17 times longer than that of pyrene in THF solution.

  8. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  9. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode

    Indian Academy of Sciences (India)

    K K Tintula; S Pitchumani; P Sridhar; A K Shukla

    2010-05-01

    Nano-sized Pt-Ru supported onto a mixed-conducting polymer composite comprising poly(3,4-ethylenedioxythiophene)-polystyrene sulphonic acid (PEDOT-PSSA) is employed as anode in a solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC) and its performance compared with the SPE-DMFC employing conventional Vulcan XC-72R carbon supported Pt-Ru anode. Physical characterization of the catalyst is conducted by Fourier-transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDAX) in conjunction with cyclic voltammetry and chronoamperometry. The study suggests that PEDOT-PSSA to be a promising alternative catalyst-support-material for SPE-DMFCs.

  10. DISPERSION STABILITY AND RHEOLOGICAL BEHAVIOR OF SUSPENSIONSOF POLYSTYRENE COATED FUMED SILICA PARTICLES IN POLYSTYRENE SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Xian-ze Yin; Ye-qiang Tan; Yi-hu Song; Qiang Zheng

    2012-01-01

    Polystyrene coated silica (SiO2@PS) core-shell composite particles with averaged diameter of about 290 nm were prepared by in situ emulsion polymerization of styrene on the surface of γ-methacryloxypropyltrimethoxysilane grafted SiO2 nanoparticles of 20-50 nm in diameter.Rheological behavior and dispersion stability of SiO2@PS suspension in 10 wt% PS solution were compared with suspensions of untreated SiO2 and silane modified SiO2 nanoparticles.Suspensions of the untreated and the silane modified SiO2 exhibited obvious shear thinning.The SiO2@PS suspension exhibits shear viscosity considerably smaller than suspensions of untreated and silane modified SiO2 at low shear rates.Transmission electron microscopy showed that the composite particles can uniformly and stably dispersc in PS solution compared to other suspensions,implying that the PS shell can effectively enhance the particle compatibility with PS macromolecules in solution.

  11. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  12. Metal Fe{sup 3+} ions assisted synthesis of highly monodisperse Ag/SiO{sub 2} nanohybrids and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nianchun; Xue, Feng [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yu, Xiang [Analytical and Testing Center, Jinan University, Guangzhou 510632 (China); Zhou, Huihua [Guangdong East Sunshine Pharmaceutical Co., Ltd., Dongguan 523871 (China); Ding, Enyong, E-mail: eyding@scut.edu.cn [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-02-15

    Graphical abstract: TEM images of the Ag/SiO{sub 2}-2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO{sub 2} spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO{sub 2} compared to other methods. Highlights: Black-Right-Pointing-Pointer We prepared homogeneous and mono-dispersed Ag/SiO{sub 2}-2 nanohybrids by adding Fe{sup 3+} ions. Black-Right-Pointing-Pointer The Ag/SiO{sub 2}-2 nanohybrids had core(SiO{sub 2})-shell(Ag) structure. Black-Right-Pointing-Pointer The Ag/SiO{sub 2}-2 nanohybrids exhibited excellent antibacterial activity against bacteria. Black-Right-Pointing-Pointer The reaction temperature was lower and the yield of Ag/SiO{sub 2}-2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO{sub 2} nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe{sup 3+} ion as a catalytic agent. The obtained Ag/SiO{sub 2}-2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe{sup 3+} ions into the reaction which Ag{sup +} reacted with N,N-dimethyl formamide (DMF) at 70 Degree-Sign C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO{sub 2} nanohybrids. The electron was transferred from the Fe{sup 2+} ion to the Ag{sup +} ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO{sub 2} nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy (UV-vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of Si

  13. Miscibility of Polystyrene and Lighted Sulfonated Polystyrene Blends

    Science.gov (United States)

    Zhou, N. C.; Burghardt, W. R.; Composto, R. J.

    2005-03-01

    The blend miscibility of deuterated polystyrene (dPS) and lighted sulfonated poly(styrene-ran-sulfonated polystyrene) (P (S-SS)) has been examined by forward recoil spectrometry (FRES). Equilibrium coexistence compositions were determined for dPS:P(S-SSx) blends where x is the mole percent of sulfonation.At x = 0.2%, the blends are fully miscible at 150°C to 190°C, while at x = 2.6% the system fully immiscible at the same temperatures. Intermediate levels of sulfonation (0.7, 1.0 and 1.2%) are partially miscible and exhibit an upper critical solution temperature (UCST). This behavior is attributed to the dilution of repulsive intra-molecular interaction between the ionic and non-ionic groups in the copolymer due to favorable interactions with the non-ionic group of the homopolymer PS. Estimates using the Flory-Huggins and the copolymer effect theories found a large ( 20) positive monomer-monomer interaction parameter between styrene and styrene sulfonate. This large interaction parameter might drive phase separation within a compositionally disperse random copolymers sample.

  14. PHOTOPHYSICAL STUDY OF SULFONATED POLYSTYRENE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jixiang; LI Hexian; WANG Guochang; WANG Yuexi; HE Binglin

    2004-01-01

    The photophysical properties of a series of sulfonated micromolecule (paratoluenesulfonic acid, HPTS) and macromolecules (linear and crosslinked polystyrene) have been studied by steady-state fluorescence spectra. The results indicate that the ground sulfonated ring associations can form in both the micromolecules and the macromolecules. The fluorescence spectra of the sulfonated crosslinked copolymers appear a red-shift when the copolymers change from hydrogen-type to sodium-type, and some new emission bands appear in the long-wavelength region. These results are explained in terms of synergetic effect of hydrogen bond, π-π interaction and crosslinking effect.

  15. Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres

    Science.gov (United States)

    Zehtabi-Oskuie, Ana; Bergeron, Jarrah Gerald; Gordon, Reuven

    2012-01-01

    We study the influence of fluid flow on the ability to trap optically a 20 nm polystyrene particle from a stationary microfluidic environment and then hold it against flow. Increased laser power is required to hold nanoparticles as the flow rate is increased, with an empirical linear dependence of 1 μl/(min×mW). This is promising for the delivery of additional nanoparticles to interact with a trapped nanoparticle; for example, to study protein-protein interactions, and for the ability to move the trapped particle in solution from one location to another. PMID:23236587

  16. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid.

    Science.gov (United States)

    Takahashi, Hayato; Nagao, Daisuke; Watanabe, Kanako; Ishii, Haruyuki; Konno, Mikio

    2015-05-26

    Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling.

  17. Rapid enumeration of phage in monodisperse emulsions.

    Science.gov (United States)

    Tjhung, Katrina F; Burnham, Sean; Anany, Hany; Griffiths, Mansel W; Derda, Ratmir

    2014-06-17

    Phage-based detection assays have been developed for the detection of viable bacteria for applications in clinical diagnosis, monitoring of water quality, and food safety. The majority of these assays deliver a positive readout in the form of newly generated progeny phages by the bacterial host of interest. Progeny phages are often visualized as plaques, or holes, in a lawn of bacteria on an agar-filled Petri dish; however, this rate-limiting step requires up to 12 h of incubation time. We have previously described an amplification of bacteriophages M13 inside droplets of media suspended in perfluorinated oil; a single phage M13 in a droplet yields 10(7) copies in 3-4 h. Here, we describe that encapsulation of reporter phages, both lytic T4-LacZ and nonlytic M13, in monodisperse droplets can also be used for rapid enumeration of phage. Compartmentalization in droplets accelerated the development of the signal from the reporter enzyme; counting of "positive" droplets yields accurate enumeration of phage particles ranging from 10(2) to 10(6) pfu/mL. For enumeration of T4-LacZ phage, the fluorescent signal appeared in as little as 90 min. Unlike bulk assays, quantification in emulsion is robust and insensitive to fluctuations in environmental conditions (e.g., temperature). Power-free emulsification using gravity-driven flow in the absence of syringe pumps and portable fluorescence imaging solutions makes this technology promising for use at the point of care in low-resource environments. This droplet-based phage enumeration method could accelerate and simplify point-of-care detection of the pathogens for which reporter bacteriophages have been developed.

  18. nanoparticles

    Science.gov (United States)

    Zhao, Yu; Li, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-06-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures.

  19. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  20. Coarse graining of polystyrene sulfonate

    Science.gov (United States)

    Perahia, Dvora; Agrawal, Anupriya; Grest, Gary S.

    2015-03-01

    Capturing large length scales in soft matter while retaining atomistic properties is imperative to computational studies. Here we develop a new coarse-grained model for polystyrene sulfonate (PSS) that often serves as a model system because of its narrow molecular weight distribution and defined degree of sulfonation. Four beads are used to represent polymer where the backbone, the phenyl group, and the sulfonated group are each represented by a different bead and the fourth one represents counterion, which is sodium in our case. Initial atomistic simulations of PSS melt with sulfonation levels of 2-10%, with a dielectric constant ɛ = 1 revealed a ``locked'' phase where motion of the polymer is limited. Dielectric constant of ɛ = 5 was used to accelerate the dynamics. Bonded interactions were obtained using Boltzmann inversion on the bonded distributions extracted from atomistic simulation. Non-bonded interaction of polystyrene monomer was taken from our previous work and potential of mean force was used as the initial guess for interaction of the ionic beads. This set of potential was subsequently iterated to get a good match with radial distribution functions. This potential and its transferability across dielectric constants and temperatures will be presented. Grant DE-SC007908.

  1. Radiation modified high impact polystyrene

    Science.gov (United States)

    Jelčić, Želimir; Ranogajec, Franjo

    2012-09-01

    The purpose of applying high energy (ionising) radiation with absorbed doses up to 1 MGy was to achieve controllable changes in mechanical properties of high impact polystyrene (PS-HI) and, at the same time, to investigate the possibility of using reprocessed irradiated polymeric material. Dielectric relaxation of a radiation modified high impact polystyrene (PS-HI) has been investigated by the time dependence of charging and discharging current. The transient currents for the irradiated PS-HI were well approximated by the power function of the logarithm of time and related to the fractal dimension. It was also shown that yield strength and tensile strength increase while elongation at break decreases with increasing absorbed dose. The specimen prepared by a post-irradiation moulding gave higher melt flow rate than those of specimen formed before irradiation. These results indicate that after radiation the system of PS-HI is reprocessable. It is concluded that an oxygen environment at the beginning of irradiation leads to enhanced chain scission at the expense of crosslinks via peroxide formation and causes oxidative degradation of the main polymer chain of irradiated PS-HI at a low absorbed dose. However, at higher absorbed doses the quasi-inert environment has been established and crosslinking, due to recombination of macroradicals, is dominant.

  2. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  3. Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Yongquan [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Zheng, Yansheng, E-mail: zhyansh88@163.com [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Lushan College of Guangxi University of Science and Technology, Liuzhou 545616, Guangxi (China); Hu, Chuanbo; Wang, Yong; He, Yi [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China); Gong, Yong [College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan (China); Mo, Qian [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi (China)

    2013-11-15

    In this paper, we report a simple and inexpensive method for fabricating modified-ZnO/polystyrene superhydrophobic surface on the cotton textiles. The surface wettability and topology of coating were characterized by contact angle measurement, Scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic -CH{sub 3} and -CF{sub 2}- group was introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to polystyrene was 7:3, the ZnO/polystyrene composite coating contact angle was 158°, coating surface with hierarchical micro/nano structures. Furthermore, the superhydrophobic cotton texiles have a very extensive application prospect in water–oil separation.

  4. Preparation of monodisperse, superparamagnetic, luminescent, and multifunctional PGMA microspheres with amino-groups

    Institute of Scientific and Technical Information of China (English)

    WANG WeiCai; ZHANG Qi; ZHANG BingBo; LI DeNa; DONG XiaoQing; ZHANG Lei; CHANG Jin

    2008-01-01

    Micron-sized, monodisperse, superparamagnetic, luminescent composite poly(glycidyl methacrylate) (PGMA) microspheres with functional amino-groups were successfully synthesized in this study. The process of preparation was as follows: preparation of monodisperse poly(glycidyl methacrylate) mi-crospheres by dispersion polymerization method; modification of poly(glycidyl methacrylate) micro-spheres with ethylene diamine to form amino-groups; impregnation of iron ions (Fe2+ and Fe3+) inside the microspheres and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O,4>) nanoparticles within the polymer microspheres; infusion of CdSe/CdS core-shell quantum dots (QDs) into magnetic polymer microspheres. Scanning electron microscopy (SEM) was used to char-acterize surface morphology and size distribution of composite microspheres. The average size of mi-crospheres was 1.42μm with a size variation of 3.8%, The composite microspheres were bright enough and easily observed using a conventional fluorescence microscope, The composite microspheres were easily separated from solution by magnetic decantation using a permanent magnet. The new multi-functional composite microspheres are promising to be used in a variety of bioanalytical assays in-volving luminescence detection and magnetic separation.

  5. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.

    Science.gov (United States)

    Yang, Songtao; Pelton, Robert

    2011-09-20

    The ability of polystyrene nanoparticles to facilitate the froth flotation of glass beads was correlated to the hydrophobicity of the nanoparticles. Contact angle measurements were used to probe the hydrophobicity of hydrophilic glass surfaces decorated with hydrophobic nanoparticles. Both sessile water drop advancing angles, θ(a), and attached air bubble receding angle measurements, θ(r), were performed. For glass surfaces saturated with adsorbed nanoparticles, flotation recovery, a measure of flotation efficiency, increased with increasing values of each type of contact angle. As expected, the advancing water contact angle on nanoparticle-decorated, dry glass surfaces increased with surface coverage, the area fraction of glass covered with nanoparticles. However, the nanoparticles were far more effective at raising the contact angle than the Cassie-Baxter prediction, suggesting that with higher nanoparticle coverages the water did not completely wet the glass surfaces between the nanoparticles. A series of polystyrene nanoparticles was prepared to cover a range of surface energies. Water contact angle measurements, θ(np), on smooth polymer films formed from organic solutions of dissolved nanoparticles were used to rank the nanoparticles in terms of hydrophobicity. Glass spheres were saturated with adsorbed nanoparticles and were isolated by flotation. The minimum nanoparticle water contact angle to give high flotation recovery was in the range of 51° < θ(np(min)) ≤ 85°.

  6. Preparation and characterization of monodispersed PS/Ag composite microspheres through modified electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yuehui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang Qinghua, E-mail: qhzhang@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-07-15

    A modified electroless silver-plating process has been devised for the preparation of monodispersed, polystyrene/silver (PS/Ag) composite microspheres with tunable shell thickness. Tailoring was achieved by altering the concentration of the silver precursor in the plating bath. PS/Ag composite microspheres were characterized by field-emission scanning electron microscopy, ultraviolet-visible absorption, X-ray diffraction and thermogravimetric analysis. The results showed that a dense, stable and uniform silver nanoshell was formed on the surface of PS microspheres in the presence of poly(vinylpyrrolidone) and glucose. The bulk conductivity of the PS/Ag composites increased from 1.16 S/m to 3.57 Multiplication-Sign 10{sup 4} S/m, corresponding to a shell thickness of 35-198 nm. The PS/Ag composite microspheres with diameters of ca. 3 {mu}m might have great potential to be used as fillers in anisotropic conductive films because of the uniform diameter, low density and good conductivity of the microspheres.

  7. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  8. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Science.gov (United States)

    Varela-Aramburu, Silvia; Wirth, Richard; Lai, Chian-Hui; Orts-Gil, Guillermo

    2016-01-01

    Summary Gold nanoclusters are small (1–3 nm) nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery. PMID:27826501

  9. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  10. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications

    Directory of Open Access Journals (Sweden)

    Linn Ingunn C. Sandberg

    2013-01-01

    Full Text Available Monodisperse polystyrene (PS spheres with controllable size have been synthesized by a straight forward and simple procedure. The as-synthesized PS spheres have a typical diameter ranging from ~180 nm to ~900 nm, where a reduced sphere size is obtained by increasing the polyvinylpyrrolidone (PVP/styrene weight ratio. The PS spheres function as sacrificial templates for the fabrication of hollow silica nanospheres (HSNSs for thermal insulation applications. By modifying the silica coating process, HSNSs with different surface roughness are obtained. All resulting HSNSs show typically a thermal conductivity of about 20 mW/(mK, indicating that the surface phonon scattering is probably not significant in these HSNS samples.

  11. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  12. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention.

    Science.gov (United States)

    Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y

    2011-07-15

    Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles.

  13. Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications

    NARCIS (Netherlands)

    Maan, A.A.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    Spontaneous droplet formation through Laplace pressure differences is a simple method for making monodisperse emulsions and is claimed to be suited for shear and temperature sensitive products, and those requiring high monodispersity. Techniques belonging to this category include (grooved) microchan

  14. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    Science.gov (United States)

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  15. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg...

  16. Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films

    Science.gov (United States)

    Makarova, T. L.; Zakharchuk, I.; Geydt, P.; Lahderanta, E.; Komlev, A. A.; Zyrianova, A. A.; Kanygin, M. A.; Sedelnikova, O. V.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2016-10-01

    Polystyrene/iron-filled multi-wall carbon nanotube composite films were prepared by solution processing, forge-rolling and stretching methods. Elongated iron carbide nanoparticles formed because of catalytic growth are situated inside the hollow cavity of the nanotubes. Magnetic susceptibility measurements as well as records of isothermal hysteresis loops performed in three perpendicular directions of magnetic field confirmed that the nanotubes have a preferential alignment in the matrix. Strong diamagnetic anisotropy in the composites emerges not only from the MWCNTs but also from the polystyrene matrix. The polymer sticks to the honeycomb lattice through the interaction of the π-orbitals of the phenyl ring and those of the carbon nanotube, contributing to anisotropic diamagnetic response. The contribution of iron nanoparticles to overall magnetic response strongly depends on nanotube concentration in the composite as well as on matrix-filler non-covalent stacking, which influences magnetic interparticle interactions.

  17. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.

    Science.gov (United States)

    Mor, Roi; Sivan, Alex

    2008-11-01

    Polystyrene, which is one of the most utilized thermoplastics, is highly durable and is considered to be non-biodegradable. Hence, polystyrene waste accumulates in the environment posing an increasing ecological threat. In a previous study we have isolated a biofilm-producing strain (C208) of the actinomycete Rhodococcus ruber that degraded polyethylene films. Formation of biofilm, by C208, improved the biodegradation of polyethylene. Consequently, the present study aimed at monitoring the kinetics of biofilm formation by C208 on polystyrene, determining the physiological activity of the biofilm and analyzing its capacity to degrade polystyrene. Quantification of the biofilm biomass was performed using a modified crystal violet (CV) staining or by monitoring the protein content in the biofilm. When cultured on polystyrene flakes, most of the bacterial cells adhered to the polystyrene surface within few hours, forming a biofilm. The growth of the on polystyrene showed a pattern similar to that of a planktonic culture. Furthermore, the respiration rate, of the biofilm, exhibited a pattern similar to that of the biofilm growth. In contrast, the respiration activity of the planktonic population showed a constant decline with time. Addition of mineral oil (0.005% w/v), but not non-ionic surfactants, increased the biofilm biomass. Extended incubation of the biofilm for up to 8 weeks resulted in a small reduction in the polystyrene weight (0.8% of gravimetric weight loss). This study demonstrates the high affinity of C208 to polystyrene which lead to biofilm formation and, presumably, induced partial biodegradation.

  18. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    National Research Council Canada - National Science Library

    Palomba, M; Carotenuto, G; Cristino, L; Di Grazia, M. A; Nicolais, F; De Nicola, S

    2012-01-01

    .... In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca...

  19. A flame-resistant modified polystyrene

    Science.gov (United States)

    Karle, D. W.; Kratze, R. H.; Pacioren, K. L.

    1975-01-01

    Several modified polystyrenes have been developed that are self-extinguishing in air. Information is included in report that also describes molding and fabrication properties, toxicology, and thermal behavior of the polymers.

  20. Thermoplastic polyurethanes with TDI-based monodisperse hard segments

    NARCIS (Netherlands)

    De, D.; Araichimani, A.; ten Hoopen, Hermina W.M.; Gaymans, R.J.

    2009-01-01

    Polyurethanes with PTMO soft segments and toluene diisocyanate diamide as urethane segment were studied. The toluene diisocyanate diamide urethane segment was monodisperse in length. The soft segment length was changed by extending PTMO with TDI units to a soft segment length varying from 2 250 to

  1. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite parti

  2. Alkyl-Functionalized Oxide-Free Silicon Nanoparticles: Synthesis and Optical Properties

    NARCIS (Netherlands)

    Rosso-Vasic, M.; Spruijt, E.; Lagen, van B.; Cola, de L.; Zuilhof, H.

    2008-01-01

    Highly monodisperse silicon nanoparticles (1.57 ± 0.21 nm) are synthesized with a covalently attached alkyl monolayer on a gram scale. Infrared spectroscopy shows that these silicon nanoparticles contain only a few oxygen atoms per nanoparticle. XPS spectra clearly show the presence of unoxidized Si

  3. Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, T.L., E-mail: Tatyana.makarova@lut.fi [Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland); Ioffe Institute, St Petersburg 194021 (Russian Federation); Zakharchuk, I.; Geydt, P.; Lahderanta, E. [Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland); Komlev, A.A. [St Petersburg State Electrotechnical University, St Petersburg 197376 (Russian Federation); Zyrianova, A.A. [Ioffe Institute, St Petersburg 194021 (Russian Federation); Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Sedelnikova, O.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Suslyaev, V.I [Tomsk State University, Tomsk 634050 (Russian Federation); Bulusheva, L.G.; Okotrub, A.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-10-01

    Polystyrene/iron-filled multi-wall carbon nanotube composite films were prepared by solution processing, forge-rolling and stretching methods. Elongated iron carbide nanoparticles formed because of catalytic growth are situated inside the hollow cavity of the nanotubes. Magnetic susceptibility measurements as well as records of isothermal hysteresis loops performed in three perpendicular directions of magnetic field confirmed that the nanotubes have a preferential alignment in the matrix. Strong diamagnetic anisotropy in the composites emerges not only from the MWCNTs but also from the polystyrene matrix. The polymer sticks to the honeycomb lattice through the interaction of the π-orbitals of the phenyl ring and those of the carbon nanotube, contributing to anisotropic diamagnetic response. The contribution of iron nanoparticles to overall magnetic response strongly depends on nanotube concentration in the composite as well as on matrix-filler non-covalent stacking, which influences magnetic interparticle interactions. - Highlights: • . Nanotube/polystyrene composites were prepared by stretching and forge-rolling methods. • Anisotropic response of the composites mainly comes from the phenyl aromatic rings. • Magnetism of iron-based nanoparticles is governed by interactions with the matrix.

  4. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  5. Characterisation of nanoplastics during the degradation of polystyrene.

    Science.gov (United States)

    Lambert, Scott; Wagner, Martin

    2016-02-01

    The release of plastics into the environment has been identified as an important issue for some time. Recent publications have suggested that the degradation of plastic materials will result in the release of nano-sized plastic particles to the environment. Nanoparticle tracking analysis was applied to characterise the formation of nanoplastics during the degradation of a polystyrene (PS) disposable coffee cup lid. The results clearly show an increase in the formation of nanoplastics over time. After 56 days' exposure the concentration of nanoplastics in the PS sample was 1.26 × 10(8) particles/ml (average particles size 224 nm) compared to 0.41 × 10(8) particles/ml in the control.

  6. Room temperature synthesis of water-repellent polystyrene nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yonggang; Jiang Dong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhang Xia; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Wang Qihua, E-mail: wangqh@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-09-15

    A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO{sub 2} nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO{sub 2} content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.

  7. Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin

    Science.gov (United States)

    Kibar, Güneş; Topal, Ahmet Emin; Dana, Aykutlu; Tuncel, Ali

    2016-09-01

    We report the preparation of silver-coated magnetic polymethacrylate core-shell nanoparticles for use in surface-enhanced Raman scattering based drug detection. Monodisperse porous poly (mono-2-(methacryloyloxy)ethyl succinate-co-glycerol dimethacrylate), poly (MMES-co-GDMA) microbeads of ca. 5 μm diameter were first synthesized through a multistage microsuspension polymerization technique to serve as a carboxyl-bearing core region. Microspheres were subsequently magnetized by the co-precipitation of ferric ions, aminated through the surface hydroxyl groups and decorated with Au nanoparticles via electrostatic attraction. An Ag shell was then formed on top of the Au layer through a seed-mediated growth process, resulting in micron-sized monodisperse microbeads that exhibit Raman enhancement effects due to the roughness of the Ag surface layer. The core-shell microspheres were used as a new substrate for the detection of amoxicillin at trace concentrations up to 10-8 M by SERS. The proposed SERS platform can be evaluated as a useful tool for the follow-up amoxicillin pollution and low-level detection of amoxicillin in aqueous media.

  8. Dynamics of Sulfonated Polystyrene Copolymers and Ionomers using Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Atorngitjawat, Pornpen; Runt, James

    2006-03-01

    The dynamics of sulfonated polystyrene (SPS) copolymers in acid and neutralized forms were investigated using broadband dielectric relaxation spectroscopy. SPS copolymers were synthesized by sulfonation of a monodisperse polystyrene to 1 and 7 mol %. Neutralization was achieved by exchanging the protons of the acid functionality with Na, Cs and Zn cations. Multiple relaxation processes were observed above the glass transition temperature of the neutralized and unneutralized materials. For the unneutralized copolymers, a `chemical relaxation' was observed at temperatures above the segmental process, arising from the presence of hydrogen bonding. For the ionomers, a Maxwell-Wagner-Sillars process was observed due to the presence of ionic clusters. The `chemical relaxation' followed Arrhenius behavior and its relaxation strength decreased significantly with increasing temperature. The relaxation times of the MWS process of all ionomers followed a VFT form. A local relaxation in the glassy state was observed for unneutalized copolymers and ionomers neutralized with monovalent cations, while it was suppressed for ionomers neutralized with divalent cations.

  9. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A; Swalih, P.K.A; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A; Anantharaman, A

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  10. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  11. Preparation of polystyrene/SiO2 nanocomposites by surface-initiated nitroxide-mediated radical polymerization

    Institute of Scientific and Technical Information of China (English)

    NI Gang; YANG Wu; BO Lili; GUO Hao; ZHANG Wenhao; GAO Jinzhang

    2006-01-01

    Polystyrene/SiO2 composite nanoparticles (PS-g-Silica) were prepared by an in-situ surface-initiated nitroxide-mediated radical polymerization. After SiO2 nanoparticles were treated by thionyl chloride (SOCl2), peroxide initiation groups were immobilized on their surfaces through a reaction with tertiary butyl hydroperoxide (TBHP). Then surface nitroxide-mediated radical polymerization was initiated and polystyrene was grafted on the surface of SiO2 particles. Composite nanoparticles were characterized by IR spectra, transmission electron microscopy (TEM), atomic force microscopy (AFM) and thermogravimetry (TGA) and the results indicated that the surface-initiated nitroxide-mediated radical polymerization could be successfully used to synthesize well-dispersive PS/SiO2 nanocomposites.

  12. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  13. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization

    Science.gov (United States)

    Lan, Fang; Liu, Ke-Xia; Jiang, Wen; Zeng, Xiao-Bo; Wu, Yao; Gu, Zhong-Wei

    2011-06-01

    Monodisperse superparamagnetic Fe3O4/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe3O4/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe3O4/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe3O4 nanoparticles. VSM and TGA showed that the Fe3O4/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g - 1 (total mass), which was only decreased by 17% compared with the initial bare Fe3O4 nanoparticles.

  14. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Science.gov (United States)

    Lu, Jianbo; Park, Bong Jun; Kumar, Bijandra; Castro, Mickaël; Choi, Hyoung Jin; Feller, Jean-François

    2010-06-01

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 Ω. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  15. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jianbo; Kumar, Bijandra; Castro, Mickael; Feller, Jean-Francois [Smart Plastics Group, European University of Brittany (UEB), LIMAT-B-UBS, Lorient 56321 (France); Park, Bong Jun; Choi, Hyoung Jin, E-mail: jean-francois.feller@univ-ubs.fr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2010-06-25

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 {Omega}. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  16. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn

    2015-08-01

    Highlights: • PS/PPy with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PPy by the fixation and continuous growth process. • Mercapto-groups played a role in the number and morphology of Au shell. • PS/PPy/Au had homogeneous and dense Au coatings with different shape. - Abstract: Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl{sub 4} solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  17. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  18. Polystyrene Chain Growth from Di-End-Functional Polyolefins for Polystyrene-Polyolefin-Polystyrene Block Copolymers

    Directory of Open Access Journals (Sweden)

    Chung Sol Kim

    2017-10-01

    Full Text Available Triblock copolymers of polystyrene (PS and a polyolefin (PO, e.g., PS-block-poly(ethylene-co-1-butene-block-PS (SEBS, are attractive materials for use as thermoplastic elastomers and are produced commercially by a two-step process that involves the costly hydrogenation of PS-block-polybutadiene-block-PS. We herein report a one-pot strategy for attaching PS chains to both ends of PO chains to construct PS-block-PO-block-PS directly from olefin and styrene monomers. Dialkylzinc compound containing styrene moieties ((CH2=CHC6H4CH2CH22Zn was prepared, from which poly(ethylene-co-propylene chains were grown via “coordinative chain transfer polymerization” using the pyridylaminohafnium catalyst to afford di-end functional PO chains functionalized with styrene and Zn moieties. Subsequently, PS chains were attached at both ends of the PO chains by introduction of styrene monomers in addition to the anionic initiator Me3SiCH2Li·(pmdeta (pmdeta = pentamethyldiethylenetriamine. We found that the fraction of the extracted PS homopolymer was low (~20% and that molecular weights were evidently increased after the styrene polymerization (ΔMn = 27–54 kDa. Transmission electron microscopy showed spherical and wormlike PS domains measuring several tens of nm segregated within the PO matrix. Optimal tensile properties were observed for the sample containing a propylene mole fraction of 0.25 and a styrene content of 33%. Finally, in the cyclic tensile test, the prepared copolymers exhibited thermoplastic elastomeric properties with no breakage up over 10 cycles, which is comparable to the behavior of commercial-grade SEBS.

  19. Facile synthesis of monodisperse functional magnetic dialdehyde starch nano-composite and used for highly effective recovery of Hg(II).

    Science.gov (United States)

    Wang, Yang; Zhang, Yun; Hou, Chen; Qi, Zhigang; He, Xinghua; Li, Yanfeng

    2015-12-01

    By covalently linking dialdehyde starch and amine functionalized Fe3O4 nanoparticle, and modifying with aminothiourea functional group, the novel monodisperse nano-composite has been successfully synthesized without any toxic crosslinking agent. The resulting nano-composite was characterized by means of the Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), X-ray diffraction (XRD), elemental analysis and vibrating sample magnetometer (VSM). As the new kind of low-cost and environmentally friendly adsorbent with the excellent monodispersity in aqueous phase, the obtained nano-composite has shown not only the good adsorption capacity for Hg(II) on high initial concentration, but also the strong removal ability on low concentration. Moreover, the unique selectivity for Hg(II) among the mixed metal ions solution and good regeneration performance of nano-composite has also been demonstrated by batch experiments.

  20. The Study of the Microbes Degraded Polystyrene

    Directory of Open Access Journals (Sweden)

    Zhi-Long Tang

    2017-01-01

    Full Text Available Under the observation that Tenebrio molitor and Zophobas morio could eat polystyrene (PS, we setup the platform to screen the gut microbes of these two worms. To take advantage of that Tenebrio molitor and Zophobas morio can eat and digest polystyrene as its diet, we analyzed these special microbes with PS plate and PS turbidity system with time courses. There were two strains TM1 and ZM1 which isolated from Tenebrio molitor and Zophobas morio, and were identified by 16S rDNA sequencing. The results showed that TM1 and ZM1 were cocci-like and short rod shape Gram-negative bacteria under microscope. The PS plate and turbidity assay showed that TM1 and ZM1 could utilize polystyrene as their carbon sources. The further study of PS degraded enzyme and cloning warrants our attention that this platform will be an excellent tools to explore and solve this problem.

  1. Au@polymer core-shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices.

    Science.gov (United States)

    Kim, Taesu; Kang, Hyunbum; Jeong, Seonju; Kang, Dong Jin; Lee, Changyeon; Lee, Chun-Ho; Seo, Min-Kyo; Lee, Jung-Yong; Kim, Bumjoon J

    2014-10-08

    In this paper, we report and discuss our successful synthesis of monodispersed, polystyrene-coated gold core-shell nanoparticles (Au@PS NPs) for use in highly efficient, air-stable, organic light-emitting diodes (OLEDs) and organic photovoltaics (OPVs). These core-shell NPs retain the dual functions of (1) the plasmonic effect of the Au core and (2) the stability and solvent resistance of the cross-linked PS shell. The monodispersed Au@PS NPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film that was located between the ITO substrate and the emitting layer (or active layer) in the devices. The incorporation of the Au@PS NPs provided remarkable improvements in the performances of both OLEDs and OPVs, which benefitted from the plasmonic effect of the Au@PS NPs. The OLED device with the Au@PS NPs achieved an enhancement of the current efficiency that was 42% greater than that of the control device. In addition, the power conversion efficiency was increased from 7.6% to 8.4% in PTB7:PC71BM-based OPVs when the Au@PS NPs were embedded. Direct evidence of the plasmonic effect on optical enhancement of the device was provided by near-field scanning optical microscopy measurements. More importantly, the Au@PS NPs induced a remarkable and simultaneous improvement in the stabilities of the OLED and OPV devices by reducing the acidic and hygroscopic properties of the PEDOT:PSS layer.

  2. Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction

    Directory of Open Access Journals (Sweden)

    Zhou Xinggui

    2009-01-01

    Full Text Available Abstract CdS-based nanocrystals (NCs have attracted extensive interest due to their potential application as key luminescent materials for blue and white LEDs. In this research, the continuous synthesis of monodisperse CdS NCs was demonstrated utilizing a capillary microreactor. The enhanced heat and mass transfer in the microreactor was useful to reduce the reaction temperature and residence time to synthesize monodisperse CdS NCs. The superior stability of the microreactor and its continuous operation allowed the investigation of synthesis parameters with high efficiency. Reaction temperature was found to be a key parameter for balancing the reactivity of CdS precursors, while residence time was shown to be an important factor that governs the size and size distribution of the CdS NCs. Furthermore, variation of OA concentration was demonstrated to be a facile tuning mechanism for controlling the size of the CdS NCs. The variation of the volume percentage of OA from 10.5 to 51.2% and the variation of the residence time from 17 to 136 s facilitated the synthesis of monodisperse CdS NCs in the size range of 3.0–5.4 nm, and the NCs produced photoluminescent emissions in the range of 391–463 nm.

  3. Synthesis and characterization of gold-deposited red, green and blue fluorescent silica nanoparticles for biosensor application.

    Science.gov (United States)

    Lee, Kyoung G; Wi, Rinbok; Park, Tae Jung; Yoon, Sun Hong; Lee, Jaebeom; Lee, Seok Jae; Kim, Do Hyun

    2010-09-14

    Fluorescent silica nanoparticles deposited with highly monodisperse gold nanoparticles (1-2 nm) were synthesized via the W/O method and intensive ultrasound irradiation. A large surface area of gold-doped fluorescent silica nanoparticle serves as a platform to immobilize a specific binding protein for biomolecules interaction in bioimaging applications.

  4. Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manal A. Awad

    2015-01-01

    Full Text Available A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs. The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3. The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS. The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM equipped with Energy Dispersive Spectroscopy (EDS in addition to Transmission Electron Microscopy (TEM. The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteria Staphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.

  5. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS

    Directory of Open Access Journals (Sweden)

    Omidi Mohammad Hassan

    2017-02-01

    Full Text Available In this work, a novel polystyrene/Fe3O4 nanocomposite prepared by in-situ method is presented. Magnetic Fe3O4 nanoparticles were encapsulated by polystyrene. The FT-IR spectra confirmed polystyrene/Fe3O4 nanocomposite preparation. The electrical properties of prepared nanocomposite were investigated by cyclic voltammetry (CV. The CV analysis showed good electrical conductivity of the synthesized nanocomposite. Magnetic properties of the nanocomposite were studied by vibrating sample magnetometer (VSM. The VSM analysis confirmed magnetic properties of the nanocomposite. The morphology and the size of the synthesized nanocomposite were investigated by field emission scanning electron microscope (FESEM. According to the VSM and CV results, such nanocomposite can be used in microelectromechanical systems.

  6. Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization.

    Science.gov (United States)

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Pham, Binh T T; Gody, Guillaume; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2016-03-14

    We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions. These nanoparticles offer the advantage of ease of preparation via a scaleable process, and the versatility of their synthesis makes them adaptable to a range of applications.

  7. Simulative calculation of bromo-polystyrene mechanical properties

    CERN Document Server

    Wang Chao; Tang Yong Jian

    2002-01-01

    The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed

  8. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    Science.gov (United States)

    Chen, Feng; Shi, Ruobing; Xue, Yun; Chen, Lei; Wan, Qian-Hong

    2010-08-01

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe 2O 3)/silica (SiO 2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe 3O 4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe 3O 4 to γ-Fe 2O 3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size ( dparticle=1.72 μm), high saturation magnetization ( Ms=17.22 emu/g), superparamagnetism ( Mr/ Ms=0.023), high surface area ( SBET=240 m 2/g), and mesoporosity ( dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO 2 nanoparticles, in which cubic γ-Fe 2O 3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/ A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  9. Facile method to synthesize oleic acid-capped magnetite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We described a simple one-step process for the synthesis of oleic acid-capped magnetite nanoparticles using the dimethyl sulfoxide(DMSO) to oxidize the precursor Fe~(2+) at 140℃.By adjusting the alkalinity of the reaction system,magnetite nanoparticles with two sizes of 4 and 7 nm could be easily achieved.And the magnetite nanoparticles coated by oleate were well-monodispersed in organic solvent.

  10. Elongational viscosity of multiarm (Pom-Pom) polystyrene

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer

    2006-01-01

    Two branched narrow molar mass distribution polystyrene melts have been synthesized: A multiarm A_nAA_n Pom-Pom polystyrene and AA_n asymmetric star polystyrene where n indicates the number of arms. The Pom-Pom and asymmetric star have molar masses 260 kg/mol and 255 kg/mol, respectively. The Pom...

  11. Influence of polystyrene and polyethylene packaging materials on food quality.

    NARCIS (Netherlands)

    Linssen, J.P.H.

    1992-01-01

    Polystyrene (PS) and polyethylene (PE) used for packaging of food were studied on their effect on product quality. Different types of PS were tested: General purpose polystyrene (GPPS), high impact polystyrene (HIPS, which contains a dispersed rubber phase) and several blends of these types. PS

  12. Elongational viscosity of multiarm (Pom-Pom) polystyrene

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer;

    2006-01-01

    Two branched narrow molar mass distribution polystyrene melts have been synthesized: A multiarm A_nAA_n Pom-Pom polystyrene and AA_n asymmetric star polystyrene where n indicates the number of arms. The Pom-Pom and asymmetric star have molar masses 260 kg/mol and 255 kg/mol, respectively. The Pom...

  13. Expanded Polystyrene Re-Expansion Analysis Following Impact Compression

    Science.gov (United States)

    2015-03-04

    USAARL Report No. 2015-08 Expanded Polystyrene Re-Expansion Analysis Following Impact Compression By Mark S. Adams Frederick Brozoski Katie...13 iv This page is intentionally left blank. 1 Introduction Expanded bead polystyrene (EPS) is widely...EPS energy attenuating liners typically have complex geometric shapes. However, the use of flat sheets of polystyrene facilitated the sample

  14. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents

    Science.gov (United States)

    Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, H. V.

    2015-06-01

    We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin

  15. Molecular modeling and simulation of atactic polystyrene/amorphous silica nanocomposites

    Science.gov (United States)

    Mathioudakis, I.; Vogiatzis, G. G.; Tzoumanekas, C.; Theodorou, D. N.

    2016-08-01

    The local structure, segmental dynamics, topological analysis of entanglement networks and mechanical properties of atactic polystyrene - amorphous silica nanocomposites are studied via molecular simulations using two interconnected levels of representation: (a) A coarse - grained level. Equilibration at all length scales at this level is achieved via connectivity - altering Monte Carlo simulations. (b) An atomistic level. Initial configurations for atomistic Molecular Dynamics (MD) simulations are obtained by reverse mapping well- equilibrated coarse-grained configurations. By analyzing atomistic MD trajectories, the polymer density profile is found to exhibit layering in the vicinity of the nanoparticle surface. The dynamics of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. Atomistic simulation results for the mechanical properties are compared to the experimental measurements and other computational works.

  16. Preparation of polystyrene/silica nanocomposites by radical copolymerization of styrene with silica macromonomer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.

  17. Polyethylene glycol-grafted polystyrene particles

    NARCIS (Netherlands)

    Meng, Fenghua; Engbers, Gerard H.M.; Feijen, Jan

    2004-01-01

    Densely pegylated particles that can serve as a model system for artificial cells were prepared by covalently grafting amino polyethylene glycol (PEG, molecular weight 3400 or 5000) onto carboxyl polystyrene particles (PS-COOH) using carbodiimide chemistry. PEG-modified particles (PS-PEG) were chara

  18. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Science.gov (United States)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  19. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  20. Influence of 50-nm polystyrene particles in inducing cytotoxicity in mice co-injected with carbon tetrachloride, cisplatin, or paraquat.

    Science.gov (United States)

    Shimizu, Y; Isoda, K; Tezuka, E; Yufu, T; Nagai, Y; Ishida, I; Tezuka, M

    2012-08-01

    The toxicity of nanomaterials has yet to be fully investigated. In particular, the interactions between nanomaterials and therapeutic drugs require further study. We investigated whether nano-sized polystyrene particles affect drug-induced toxicity. The particles, which are widely used industrially, had diameters of 50 (NPP50), 200 (NPP200) or 1000 (NPP1000) nm. The toxic chemicals tested were carbon tetrachloride, cisplatin (a popular anti-tumor agent), and a widely used herbicide, paraquat. Mice were treated intraperitoneally with either carbon tetrachloride (0.01 ml/kg), cisplatin (100 micromol/kg) or paraquat (50 mg/kg), with or without intravenous administration of polystyrene particles. All treatments in the absence of the nanoparticles were non-lethal and did not result in severe toxicity. However, when mice were injected with paraquat or cisplatin together with polystyrene particles, synergistic, enhanced toxicity was observed in mice injected with NPP50. These synergic effects were not observed in mice co-injected with NPP200 or NPP1000. These findings suggest that further evaluation of the interactions between polystyrene nano-particles and drugs is a critical prerequisite to the pharmaceutical application of nanotechnology.

  1. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.

    Science.gov (United States)

    Chen, Jiajun; Yano, Kazuhisa

    2013-08-28

    The widespread commercialization of today's plug-in hybrid and all electric vehicles will rely on improved lithium batteries with higher energy density, greater power, and durability.To take advantage of the high density of SnO2 anodes for Li ion batteries, we achieved a smart design of monodispersed SnO2/MSCS composite with very high content of SnO2 by a simple infiltration procedure. The synergistic effects of the unique nanoarchitecture of MSCS and the ultrafine size of SnO2 nanoparticle endowed the composite with superior electrochemical performance. Because of the high density of the composite resulting from its monodispersed submicrometer spherical morphology, an exceptionally high reversible lithium storage capacity (both gravimetric and volumetric), very close to the theoretical capacity (1491 mA h/g), can be achieved with good cyclability (capacity retention of 92.5% after 15 cycles). The SnO2/MSCS composite anode exhibited a high reversible average capacity of about 1200 mAh/g over 30 cycles at a current of 80 mAh/g, which corresponds to about 1440 mAh/cm(3) (practical volumetric capacity). In addition, a Coulombic efficiency close to 100% was achieved, and less than 25% first irreversible capacity loss was observed.

  2. Nonlinear branch-point dynamics of multiarm polystyrene

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Denberg, Martin

    2006-01-01

    Two branched polystyrene melts with narrow molar mass distribution have been synthesized: a multiarm An-C-C-An pom-pom polystyrene and an An-C asymmetric star polystyrene where n is the number of arms. The pom-pom and the asymmetric star have molar masses of Mw ) 300 kg/mol and Mw ) 275 kg...... polystyrene, the measured transient elongational viscosity is not consistent with a rheological constitutive equation that is separable in time and strain. Contrary to this situation, however, for pom-pom polystyrene, the transient elongational viscosity may be described by a time-strain separable...

  3. Frequency domain photon migration measurements of dense monodisperse charged lattices and analysis using solutions of Ornstein Zernike equations.

    Science.gov (United States)

    Dali, Sarabjyot S; Sevick-Muraca, Eva M

    2012-11-15

    Isotropic scattering coefficient measurements were made of monodisperse polystyrene lattices of two different diameters of 144 nm and 223 nm and at volume fractions ranging from 0.15 to 0.22, using frequency domain photon migration measurements at wavelengths of 660, 685, 785 and 828 nm. The isotropic scattering coefficient measurements were shown to be sensitive to the changing ionic strength (0.5-4 mM, NaCl equiv.) of the dispersions exhibiting hindered scattering owing to structure at the lowest ionic strength values. Monte Carlo simulations and numerical solution of the Ornstein Zernike equations were used to compute isotropic scattering coefficients for comparison to measured values. The interaction potential was modeled as a hard sphere Yukawa potential and the Hypernetted Chain closure was used to solve the OZ equation. Effective particle charges were found after renormalization of the bare particle charge and used to predict the isotropic scattering coefficient. The model data were found to follow similar trends as experimental measurements. The refractive index of the particles has found to be an important factor for predicting experimental isotropic scattering coefficient values. Published by Elsevier Inc.

  4. MONODISPERSE MICRON-SIZED POLYACRYLAMIDE PARTICLES SYNTHESIZED BY DISPERSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Xin Hou; Bo Gao; Zhe-guo Zhang; Kang-de Yao

    2007-01-01

    Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.

  5. Investigation of interphase effects in silica-polystyrene nanocomposites based on a hybrid molecular-dynamics-finite-element simulation framework

    Science.gov (United States)

    Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.

    2016-05-01

    A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.

  6. Optical phonon spectra of CdS crosslinked sulfonate polystyrene nanocomposites

    Science.gov (United States)

    Govani, Jayesh; Manciu, Felicia; Ortiz-Ón, S., , Col; Espe, Matthew; Ziolo, Ronald

    2007-03-01

    We have used IR transmission and FT-Raman spectroscopy to study optically active phonon modes of CdS nanoparticles synthesized in sulfonated polystyrene resin and obtained information about the morphology, crystallinity, and surface interactions. The dominant feature in the far-infrared region of CdS/polystyrene nanocomposites spectra is a sharp peak centered at 255 cm-1, which could be assigned to the transversal optical mode at the L edge of the Brillouin zone of CdS nanoparticles. Also, this vibrational line, based on theoretical core-shell model calculation, could be attributed to the presence of a very thin CdS shell layer. HRTEM images of the CdS nanocomposites show CdS nanoparticles of about 2.5 nm aligned in rows or strings on the polymer surface. Amorphous CdS is also present and may be seen surrounding the nanocrystalline regions. Complementary solid state ^113Cd NMR analysis will be presented as well.

  7. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Science.gov (United States)

    Boshui, Chen; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-01

    Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO3, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO3 were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO3 as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO3 were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO3 nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent tribological performances of SA/CeBO3 in rapeseed oil were attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species of B2O3, CeO2 and Fe2O3, and the adsorbates of SA/CeBO3 and rapeseed oil, on the tribo-surfaces.

  8. HIGH IMMOBILIZATION OF ANTIBACTERIAL MOIETIES ONTO MONODISPERSE MICROSPHERES BY DISPERSION POLYMERIZATION USING BICATIONIC VIOLOGEN SURFMER

    Institute of Scientific and Technical Information of China (English)

    Sheng-liu Wang; Xiao-fang Yang; Lian-ying Liu; Wan-tai Yang

    2012-01-01

    In order to achieve monodisperse particles with high content of antibacterial groups covalently bonded on surface,a bicationic viologen,N-hexyl-N'-(4-vinylbenzyl)-4,4'-bipyridinium bromide chloride (HVV) was devised as a surfmer in dispersion polymerization of styrene (St) using a mixture of methanol (or ethylene glycol) and water as media.Effects of content of HVV,its addition profile and composition of reaction media on particles size and incorporation of HVV moieties were mainly investigated.The attachment of silver and gold nanoparticles on particle surface under UV irradiation ascertained the surface-bonded HVV segments.SEM,TEM observations and XPS,zata potential measurements indicated that increase of initial HVV contents and addition of HVV (when polymerization had been performed for 3 h) led to grown particles and enhanced immobilization of HVV moieties.Using a mixture of ethylene glycol and water as reaction media,small particles (520-142 nm) with highly attached HVV moieties were prepared.Furthermore,antibacterial efficacy of the resultant particles against S.aureus was assayed,and particles with more HVV moieties anchored on surface demonstrated greater efficiency of antibacterial activity.

  9. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Controllable particles sizes of starch nanoparticles were synthesized via a precipitation in water-in-oil microemulsion approach. Microemulsion method offers the advantages of ultralow interfacial tension, large interfacial area, and being thermodynamically stable and affords monodispersed nanoparticles. The synthesis parameters such as stirring rates, ratios of oil/cosurfactant, oil phases, cosurfactants, and ratios of water/oil were found to affect the mean particle size of starch nanoparticles. Starch nanoparticles with mean particles sizes of 109 nm were synthesized by direct nanoprecipitation method, whereas by using precipitation in microemulsion approach, starch nanoparticles with smaller mean particles sizes of 83 nm were obtained.

  10. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NARCIS (Netherlands)

    Bhattacharjee, S.; Opstal, van E.J.; Alink, G.M.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/s

  11. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles

    NARCIS (Netherlands)

    Bhattacharjee, S.; Ershov, D.S.; Gucht, van der J.; Alink, G.M.; Rietjens, I.; Zuilhof, H.; Marcelis, A.T.M.

    2013-01-01

    A series of monodisperse (45 ± 5 nm) fluorescent nanoparticles from tri-block copolymers (polymeric nanoparticles (PNPs)) bearing different surface charges were synthesised and investigated for cytotoxicity in NR8383 and Caco-2 cells. The positive PNPs were more cytotoxic and induced a higher intrac

  12. Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres

    Science.gov (United States)

    Yang, Chong; Li, Qingsong; Tang, Limei; Xin, Kun; Bai, Ailing; Yu, Yingmin

    2015-12-01

    In the present study, monodisperse colloidal zinc oxide (ZnO) nanospheres were successfully synthesized via a newly developed two-stage solution method followed by facile calcination at various temperatures. The effects of calcination temperature on the structure, morphology, and optical properties as well as the photocatalytic activity of the as-made ZnO samples were investigated systematically by Fourier transform infrared spectrometry, X-ray diffraction, field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, diffuse reflectance UV-visible spectroscopy (DRS), photoluminescence, and related photocatalytic activity tests. The thermal decomposition was analyzed by thermogravimetric analysis. The crystallinity was found to gradually increase with increasing calcination temperature, whereas the decrease in the Brunauer-Emmett-Teller specific surface area of the samples with calcination may be ascribed to the increased particle size. The DRS results provided clear evidence for the decrease in band gap energy of ZnO samples with an increase in calcination temperature. The photoluminescence spectra demonstrated the calcination-dependent emission features, especially the UV emission intensity. In particular, the ZnO product calcined at 400 °C exhibited the highest photocatalytic activity, degrading methylene blue by almost 99.1% in 70 min, which is ascribed to the large specific surface area and pore volume, high electron-hole pair separation efficient, and great redox potential of the obtained ZnO nanoparticles. In addition, the production of photogenerated hydroxyl radicals (•OH) was consistent with the methylene blue degradation efficiency over the as-made ZnO nanoparticles. Using isopropanol as a hydroxyl radical scavenger, •OH was determined to be the main active oxygen species in the photocatalytic process. A possible mechanism of photodegradation under UV light irradiation also is proposed.

  13. Spectrometric characteristics of polystyrene scintillation films

    CERN Document Server

    Astvatsaturov, A R; Gavalyan, V B; Gavalyan, V G

    1999-01-01

    The spectrometric characteristics of five types of polystyrene scintillation films with thicknesses of 10, 30, 50 and 80 mu m and of analogous 250 mu m thick plates irradiated with sup 2 sup 3 sup 9 Pu, sup 2 sup 3 sup 8 Pu and sup 2 sup 2 sup 6 Ra sources of alpha-particles have been studied. The prospects of utilization of scintillation films as radiators for detection of heavy charged particles and measurement of their energy was experimentally shown.

  14. EXTRUDED POLYSTYRENE FOAM IN FLAT ROOFS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-09-01

    Full Text Available In our article we prove the necessity of applying thermal insulation with low water absorption and resistance and preserving mechanical and thermophysical properties in corrosive environment in flat roofs, where there is always a danger of penetrating condensed moisture into the structure. As such material we offered extruded polystyrene foam - heat-insulating polymer material with uniformly distributed closed cells. The products are used in the form of slab insulation and special items - for forming slopes and venting.

  15. Specific Uptake and Genotoxicity Induced by Polystyrene Nanobeads with Distinct Surface Chemistry on Human Lung Epithelial Cells and Macrophages

    Science.gov (United States)

    Kortulewski, Thierry; Grall, Romain; Gamez, Christelle; Blazy, Kelly; Aguerre-Chariol, Olivier; Chevillard, Sylvie; Braun, Anne; Rat, Patrice; Lacroix, Ghislaine

    2015-01-01

    Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects

  16. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages.

    Science.gov (United States)

    Paget, Vincent; Dekali, Samir; Kortulewski, Thierry; Grall, Romain; Gamez, Christelle; Blazy, Kelly; Aguerre-Chariol, Olivier; Chevillard, Sylvie; Braun, Anne; Rat, Patrice; Lacroix, Ghislaine

    2015-01-01

    Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects

  17. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

    Science.gov (United States)

    de Caro, Liberato; Altamura, Davide; Arciniegas, Milena; Siliqi, Dritan; Kim, Mee R.; Sibillano, Teresa; Manna, Liberato; Giannini, Cinzia

    2016-01-01

    Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films.

  18. Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres

    Science.gov (United States)

    Zhang, XiaoLei; Dai, ZhiGao; Zhang, XinGang; Dong, ShiLian; Wu, Wei; Yang, ShiKuan; Xiao, XiangHeng; Jiang, ChangZhong

    2016-12-01

    Micro/nanostructures have broad applications in diverse application fields, such as surface enhanced Raman spectroscopy (SERS), photocatalysis, field emission, photonic crystals, microfluidic devices, electrochemical devices, etc. Using polystyrene (PS) spheres formed monolayer colloidal crystal templates as masks, scaffolds, or molds with different materials growth techniques, many different periodic nanostructured arrays can be obtained with the building units varied from nanoparticles, nanopores, nanorings, nanorods, to nanoshells. Significant progresses have been made on the synthesis of micro/nanostructures with efficient SERS response. In this review, we mainly focus on the various PS template-based fabrication techniques in realizing micro/nanostructured arrays and the SERS applications.

  19. Monodisperse Femto- to Atto-liter Droplet Formation Using a Nano-Microchannel Interface

    NARCIS (Netherlands)

    Shui, Lingling; Berg, van den Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Suh, Kahp-Yang; Choo, Jaebum; Kim, Yong-Kweon

    2009-01-01

    We demonstrate the production of sub-micrometer diameter monodisperse droplets by using a nano-micro channel interface. A perfectly steady nanoscopic liquid filament can be formed by a geometric confinement which eventually gives rise to a stable production of nearly perfectly monodisperse droplets.

  20. Surface properties of poly(ethylene oxide)-based segmented block copolymers with monodisperse hard segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2009-01-01

    The surface properties of segmented block copolymers based on poly(ethylene oxide) (PEO) segments and monodisperse crystallizable tetra-amide segments were studied. The monodisperse crystallizable segments (T6T6T) were based on terephthalate (T) and hexamethylenediamine (6). Due to the crystallinity

  1. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  2. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    Science.gov (United States)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  3. Electrical property and water repellency of a networked monolayer film prepared from Au nanoparticles.

    Science.gov (United States)

    Shiigi, Hiroshi; Yamamoto, Yojiro; Yakabe, Hidetaka; Tokonami, Shiho; Nagaoka, Tsutomu

    2003-05-07

    Gold nanoparticles, modified with alkyl thiol, formed a film on polystyrene substrate, and it was found that the deposited film drastically changes its conductivity and hydrophobicity, depending on the alkyl chain length of the thiol used.

  4. Monodisperse cobalt ferrite nanomagnets with uniform silica coatings.

    Science.gov (United States)

    Dai, Qiu; Lam, Michelle; Swanson, Sally; Yu, Rui-Hui Rachel; Milliron, Delia J; Topuria, Teya; Jubert, Pierre-Olivier; Nelson, Alshakim

    2010-11-16

    Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles--which uses poly(acrylic acid) to bind to the nanoparticle surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor--was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.

  5. Raman Spectroscopy of Single Nanoparticles in a Double-Nanohole Optical Tweezer System

    CERN Document Server

    Jones, Steven; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal is observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification.

  6. Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system

    Science.gov (United States)

    Jones, Steven; Balushi, Ahmed A. Al; Gordon, Reuven

    2015-10-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal was observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification.

  7. Extensional Flow of a Polystyrene Boger Fluid Through a 4:1:4 Axisymmetric Contraction/Expansion

    Science.gov (United States)

    Rothstein, Jonathan P.; McKinley, Gareth H.

    1999-01-01

    The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice.

  8. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    Science.gov (United States)

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  9. Optomechanical characterization of freestanding stretchable nanosheet based on polystyrene-polybutadiene-polystyrene copolymer

    Science.gov (United States)

    Kumagai, Hayato; Sato, Nobutaka; Takeoka, Shinji; Sawada, Kazuaki; Fujie, Toshinori; Takahashi, Kazuhiro

    2017-01-01

    In this study, we fabricated a stretchable freestanding ultrathin sheet based on a polystyrene-polybutadiene-polystyrene (SBS) copolymer with entropy-driven elasticity and evaluated its optomechanical properties. The freestanding SBS sheet had a thickness of 675 nm and a size of 10.4 × 10.4 mm2 on a through hole of a poly(dimethylsiloxane) (PDMS) sheet. The measurement of the reflection spectra of the optical interference peaks of the stretched sheets revealed that the SBS nanosheet had a Poisson’s ratio of 0.5-0.68 for a 38% elastic strain, which is one order of magnitude greater than that of parylene.

  10. Abnormal Modulation of Dielectric Band Transmittance of Polystyrene Opal

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Yong; GONG Qi-Huang; CHENG Bing-Ying; ZHANG Dao-Zhong

    2005-01-01

    @@ The abnormal transmittance in the dielectric band edge of a polystyrene opal is observed and analysed. The transmittance is periodically modulated and the period of modulation varies with the wavelength, which destroys the perfect structure of the photonic band gap. The transmittance modulation originates from the propagation of the low order whispering-gallery mode excited in polystyrene spheres. These results indicate that the whisperinggallery mode has a great influence on practical applications of polystyrene opal.

  11. Selection of quasi-monodisperse super-micron aerosol particles

    Science.gov (United States)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  12. Monodisperse Clusters in Charged Attractive Colloids: Linear Renormalization of Repulsion.

    Science.gov (United States)

    Růžička, Štěpán; Allen, Michael P

    2015-08-11

    Experiments done on polydisperse particles of cadmium selenide have recently shown that the particles form spherical isolated clusters with low polydispersity of cluster size. The computer simulation model of Xia et al. ( Nat. Nanotechnol. 2011 , 6 , 580 ) explaining this behavior used a short-range van der Waals attraction combined with a variable long-range screened electrostatic repulsion, depending linearly on the volume of the clusters. In this work, we term this dependence "linear renormalization" of the repulsive term, and we use advanced Monte Carlo simulations to investigate the kinetically slowed down phase separation in a similar but simpler model. We show that amorphous drops do not dissolve and crystallinity evolves very slowly under linear renormalization, and we confirm that low polydispersity of cluster size can also be achieved using this model. The results indicate that the linear renormalization generally leads to monodisperse clusters.

  13. Synthesis of raspberry-like magnetic polystyrene microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhizhong [Key Laboratory of Molecular Engineering of Polymers (Ministry of Education), Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Xia Ao [Key Laboratory of Molecular Engineering of Polymers (Ministry of Education), Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Wang Changchun [Key Laboratory of Molecular Engineering of Polymers (Ministry of Education), Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)]. E-mail: ccwang@fudan.edu.cn; Yang Wuli [Key Laboratory of Molecular Engineering of Polymers (Ministry of Education), Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Fu Shoukuang [Key Laboratory of Molecular Engineering of Polymers (Ministry of Education), Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2007-06-15

    Raspberry-like magnetic polystyrene microspheres were prepared via soap-free emulsion polymerization using 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V50) as initiator. The effect of polymerization parameters, such as initiator type, initiator content and the feeding sequence on the particle size and morphology of magnetic polystyrene microspheres, were examined. The final magnetic polystyrene microspheres were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The experimental results showed that V50 was a suitable initiator for preparation of raspberry-like magnetic polystyrene microspheres.

  14. Abbe's number and Cauchy's constant of iodine and selenium doped poly (methylmethacrylate) and polystyrene composites

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Sheetal, E-mail: smehta-29@yahoo.com; Das, Kallol, E-mail: smehta-29@yahoo.com; Keller, Jag Mohan, E-mail: smehta-29@yahoo.com [Department of Physics, St. Aloysius College (Autonomous), Jabalpur-482001, Madhya Pradesh, India and Department of Physics and Electronics, Rani Durgawati University, Jabalpur-482001, Madhya Pradesh (India)

    2014-04-24

    Poly (methyl methacrylate) / Polystyrene and iodine / selenium hybrid matrixes have been prepared and characterized. Refractive index measurements were done at 390, 535, 590, 635 nm wavelengths. Abbe's number and Cauchy's constants of the iodine / selenium doped poly (methylmethacrylate) and polystyrene samples are being reported. The results also showed that the refractive index of the composite varies non-monotonically with the doping concentration at low iodine concentration or in the region of nanoparticles formation and is also dependent on thermal annealing.

  15. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  16. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres.

    Science.gov (United States)

    Guan, Guijian; Liu, Renyong; Mei, Qingsong; Zhang, Zhongping

    2012-04-10

    We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6-trinitrotoluene (TNT). PS spheres with surface-functionalized carboxyl-group layers could direct a selective imprinting polymerization on their surface through the hydrogen-bonding interactions between surface carboxyl groups and amino monomers. Meanwhile, homogeneous polymerization in the solution phase was completely prevented by stepwise polymerization. The overall process led to the formation of monodisperse molecularly imprinted core-shell microspheres, and was very successful in the preparation of organic polymer and inorganic xerogel shells. Furthermore, greater capacity and faster binding kinetics towards target species were achieved, because surface-imprinted sites ensured the complete removal of templates, good accessibility to target molecules, and low mass-transfer resistance. The results reported herein, concerning the production of high-quality molecularly imprinted products, could also form the basis for the formulation of a new strategy for the fabrication of various functional coating layers on colloidal spheres with potential applications in the fields of separations and chemical sensing.

  17. Synthesis and Characterization of Polystyrene/Nanosilica Organic-Inorganic Hybrid

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacryloxy propyltrimethoxysilane(MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate(SDS), hydroxypropyl methyl cellulose(HMPC), and poly(vinylpyrrolidone)(PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0.5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FTIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.

  18. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng; Shi Ruobing; Xue Yun; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.c [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2010-08-15

    A novel method is described for the preparation of superparamagnetic mesoporous maghemite (gamma-Fe{sub 2}O{sub 3})/silica (SiO{sub 2}) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe{sub 3}O{sub 4}) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe{sub 3}O{sub 4} to gamma-Fe{sub 2}O{sub 3} by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 deg. C feature spherical shape and uniform particle size (d{sub particle}=1.72 mum), high saturation magnetization (M{sub s}=17.22 emu/g), superparamagnetism (M{sub r}/M{sub s}=0.023), high surface area (S{sub BET}=240 m{sup 2}/g), and mesoporosity (d{sub pore}=6.62 nm). The composite microsphere consists of interlocked amorphous SiO{sub 2} nanoparticles, in which cubic gamma-Fe{sub 2}O{sub 3} nanocrystals are homogeneously dispersed and thermally stable against gamma- to alpha-phase transformation at temperatures up to 600 deg. C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A{sub 260}/A{sub 280} values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.

  19. Fabrication of nanochannels on polystyrene surface

    Science.gov (United States)

    Li, Dongqing

    2015-01-01

    Solvent-induced nanocrack formation on polystyrene surface is investigated experimentally. Solubility parameter and diffusion coefficient of alcohols are employed to elucidate the swelling and cracking processes as well as the crack size. Experimental results show that the crack size increases with the heating temperature, heating time, and the concentration and volume of the alcohols. A guideline on fabricating single smaller nanocracks on polymers by solvent-induced method is provided. Nanocracks of approximately 64 nm in width and 17.4 nm in depth were created and replicated onto PDMS (polydimethylsiloxane) slabs to form nanochannels. PMID:25945143

  20. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  1. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    discussion of emulsion stabilization and preparation. A historical review of multiple emulsions is presented subsequently and the stability mechanism is discussed in details with regard to the transportation kinetics of small molecules through the separating membrane of double emulsions. The principle, property and applications of liquid marbles are then summarized. Secondly, the preparation of monodisperse Pickering emulsions stabilized by soft PNIPAM-co-MAA microgels through SPG membrane emulsification is described. The influence of the membrane pore size, pH of the particle dispersion, particle size and the operating parameters of the membrane emulsification device on the size of the emulsion droplets was investigated systematically. The improvement in monodispersity of the emulsion droplets allows us to measure the release profiles of a small molecular dye and a larger nanoparticle through the colloidosomes. It is further demonstrated that the preparation of monodisperse emulsions stabilized by other types of soft particles allows us control the stability of the emulsion with a pH trigger and improved biocompatibility. Thirdly, the preparation of multiple emulsions stabilized by a special designed PEG-b-PS diblock copolymer with desired hydrophobicity by one-step method was presented. The ultra-stability of the as-obtained multiple emulsions was ascribed to the effective steric stabilization of the two interfaces with different polymer configurations at the interfaces. A series of diblock copolymer with increasing PS chain length was then synthesized to investigate the influence of asymmetry ratio on the type of emulsions prepared. It is found that the diblock copolymers with the asymmetry ratio of approximately 1 had the highest power to stabilize multiple emulsions. The multiple emulsions were demonstrated to be a promising platform for controlled release. In the end, particle-stabilized water-in-air liquid marbles were investigated. PSco-MAA nanoparticles synthesized

  2. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  3. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    Science.gov (United States)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  4. Lysozyme Catalyzes the Formation of Antimicrobial Silver Nanoparticles (POSTPRINT)

    Science.gov (United States)

    2009-04-01

    aseptics and therapeutic use in the future. KEYWORDS: antimicrobial · lysozyme · silver · nanoparticle · biocompatibility · biomineralization A RT IC LE VOL...protein that will adsorb to ionic and hydro- phobic surfaces, including metal surfaces.2124 After synthesis in methanol, lysozyme-stabilized nanoparti- cle...the strong ionic interactions be- tween metal nanoparticles normally make it difficult to achieve high concentrations of monodispersed and stable

  5. Colloidal crystals by electrospraying polystyrene nanofluids

    Science.gov (United States)

    2013-01-01

    This work introduces the electrospray technique as a suitable option to fabricate large-scale colloidal nanostructures, including colloidal crystals, in just a few minutes. It is shown that by changing the deposition conditions, different metamaterials can be fabricated: from scattered monolayers of polystyrene nanospheres to self-assembled three-dimensional ordered nanolayers having colloidal crystal properties. The electrospray technique overcomes the main problems encountered by top-down fabrication approaches, largely simplifying the experimental setup. Polystyrene nanospheres, with 360-nm diameter, were typically electrosprayed using off-the-shelf nanofluids. Several parameters of the setup and deposition conditions were explored, namely the distance between electrodes, nanofluid conductivity, applied voltage, and deposition rate. Layers thicker than 20 μm and area of 1 cm2 were typically produced, showing several domains of tens of microns wide with dislocations in between, but no cracks. The applied voltage was in the range of 10 kV, and the conductivity of the colloidal solution was in the range of 3 to 4 mS. Besides the morphology of the layers, the quality was also assessed by means of optical reflectance measurements showing an 80% reflectivity peak in the vicinity of 950-nm wavelength. PMID:23311494

  6. Filtration application from recycled expanded polystyrene.

    Science.gov (United States)

    Shin, C

    2006-10-01

    Water-in-oil emulsion with drop size less than 100 mum is difficult to separate. Coalescence filtration is economical and effective for separation of secondary dispersions. Coalescence performance depends on flow rate, bed depth, fiber surface properties, and drop size. The amount of surface area of the fibers directly affects the efficiency. A new recycling method was investigated in the previous work in which polystyrene (PS) sub-mum fibers were electro-spun from recycled expanded polystyrene (EPS). These fibers are mixed with micro glass fibers to modify the glass fiber filter media. The filter media are tested in the separation of water droplets from an emulsion of water droplets in oil. The experimental results in this work show that adding nanofibers to conventional micron sized fibrous filter media improves the separation efficiency of the filter media but also increases the pressure drop. An optimum in the performance occurs (significant increase in efficiency with minimal increase in pressure drop) with the addition of about 4% by mass of 500 nm diameter PS nanofibers to glass fibers for the filters.

  7. Monodisperse mesoporous anatase beads as high performance and safer anodes for lithium ion batteries

    Science.gov (United States)

    Rodriguez, Erwin F.; Chen, Dehong; Hollenkamp, Anthony F.; Cao, Lu; Caruso, Rachel A.

    2015-10-01

    To achieve high efficiency lithium ion batteries (LIBs), an effective active material is important. In this regard, monodisperse mesoporous titania beads (MMTBs) featuring well interconnected nanoparticles were synthesised, and their mesoporous properties were tuned to study how these affect the electrochemical performance in LIBs. Two pore diameters of 15 and 25 nm, three bead diameters of 360, 800 and 2100 nm, and various annealing temperatures (from 300 to 650 °C) were investigated. The electrochemical results showed that while the pore size does not significantly influence the electrochemical behaviour, the specific surface area and the nanocrystal size affect the performance. Also, there is an optimum annealing temperature that enhances electron transfer across the titania bead structure. The carbon content employed in the electrode was varied, showing that the bead diameter strongly influences the minimal content of the conductive carbon required to fabricate the electrode. As a general rule, the smaller the bead diameter, the more carbon was required in the electrode. A large energy capacity and high current rate performance were achieved on the MMTBs featuring high surface area, nano-sized anatase crystals and well-sintered connections between the nanocrystals. The high stability of these mesoporous structures was demonstrated by charge/discharge cycling up to 500 cycles. Devices constructed with the MMTBs retained more than 80% of the initial capacity, indicating an excellent performance.To achieve high efficiency lithium ion batteries (LIBs), an effective active material is important. In this regard, monodisperse mesoporous titania beads (MMTBs) featuring well interconnected nanoparticles were synthesised, and their mesoporous properties were tuned to study how these affect the electrochemical performance in LIBs. Two pore diameters of 15 and 25 nm, three bead diameters of 360, 800 and 2100 nm, and various annealing temperatures (from 300 to 650

  8. RESEARCHES OF WORKING LIFE OF FOAM POLYSTYRENE OF BUILDING APPOINTMENT

    Directory of Open Access Journals (Sweden)

    Guyumdzhjan Perch Pogosovich

    2012-09-01

    Full Text Available Results of experimental researches of physicomechanical properties of foam polystyrene thermal insulation materials are presented in article. The operational resource was defined on materials subject to ageing, action of liquid excited environments and atmospheric impacts. The destructive processes leading to destruction of foam polystyrene are revealed.

  9. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which a...

  10. Pegylated polystyrene particles as a model system for artificial cells

    NARCIS (Netherlands)

    Meng, Fenghua; Engbers, Gerard H.M.; Gessner, Andrea; Müller, Reiner H.; Feijen, Jan

    2004-01-01

    Pegylated polystyrene particles (PS-PEG) were prepared as a model system for artificial cells, by modification of carboxyl polystyrene particles (PS-COOH) with homo- and hetero-bifunctional polyethylene glycols (PEG, MW 1500, 3400, and 5000) containing an amino end group for immobilization and an am

  11. Dual-Purpose Millikan Experiment with Polystyrene Spheres

    Science.gov (United States)

    Wall, C. N.; Christensen, F. E.

    1975-01-01

    This procedure, using polystyrene spheres of specified diameter, renders the Millikan oil drop experiment more accurate than the conventional procedure of the polystyrene spheres, eliminates size estimation error, and removes the guesswork involved in assigning proper index integers to the observed charges. (MLH)

  12. Toxicity of 50-nm polystyrene particles co-administered to mice with acetaminophen, 5-aminosalicylic acid or tetracycline.

    Science.gov (United States)

    Isoda, K; Nozawa, T; Tezuka, M; Ishida, I

    2014-09-01

    We investigated whether nano-sized polystyrene particles affect drug-induced toxicity. The particles, which are widely used industrially, had diameters of 50 (NPP50), 200 (NPP200) or 1000 (NPP1000) nm. The toxic chemicals tested were acetaminophen (APAP), 5-aminosalicylic acid (5-ASA), tetracycline (TC), and sodium valproate (VPA). All treatments in the absence of the nanoparticles were non-lethal and did not result in severe toxicity. However, when mice were injected with APAP, 5-ASA or TC together with polystyrene particles, synergistic, enhanced toxicity was observed in mice injected with NPP50. These synergic effects were not observed in mice co-injected with NPP200 or NPP1000. On the other hand, co-administration of VPA and NPP50, NPP200 or NPP1000 did not elevate toxicity. The results show that NPP50 differs in hepatotoxicity depending on the drug co-administered. These findings suggest that further evaluation of the interactions between polystyrene nanoparticles and drugs is a critical prerequisite to the pharmaceutical application of nanotechnology.

  13. Interaction between polystyrene spheres by atomic force microscopy

    CERN Document Server

    Looi, L

    2002-01-01

    The interaction between a single polystyrene particle and a polystyrene substrate has been previously reported by a number of investigators. However, the effects of relative humidity, applied load and contact time on the adhesion of polystyrene surfaces have not been investigated and these effects are poorly understood. It is the primary aim of the current work to characterise the effect of the aforementioned parameters on the adhesion of polystyrene surfaces using atomic force microscopy. The polystyrene used in this study contained 1% of di-vinyl benzene as a cross-linking agent. From the work conducted using the custom-built instrument, the dependency of adhesion forces on the relative humidity is greatest at relative humidities above 60% where capillary forces cause a sharp increase in adhesion with increasing relative humidity. Hysteresis was observed in the solid-solid contact gradient of the accompanying force curves, suggesting non-elastic behaviour at the contact area of the surfaces

  14. Numerical test on polystyrene tunnel seismic-isolation material

    Directory of Open Access Journals (Sweden)

    He Jianping

    2016-09-01

    Full Text Available Stress-strain mechanical properties of polystyrene foam plastic material were tested under different loading conditions. An empirical constitutive model for describing metal materials was proposed for the polystyrene plastic foam. The static and dynamic tests results show that the ductility and watertightness of the polystyrene plastic foam are significantly improved. At the same time, in order to check its seismic-isolation property, the high-performance foam concrete as filling materials of Galongla tunnel in Tibet was simulated by FEM. The simulated results show that the polystyrene plastic foam can remarkably decrease the stress and the plastic zone in final lining, so it can effectively reduce the seismic damage of the tunnel. Considering the seismic-isolation property and low price of polystyrene plastic foam, it is a good reference for the anti-seismic design of tunnels in high intensity zones.

  15. Efficient thermolysis route to monodisperse Cu₂ZnSnS₄ nanocrystals with controlled shape and structure

    National Research Council Canada - National Science Library

    Zhang, Xiaoyan; Guo, Guobiao; Ji, Cheng; Huang, Kai; Zha, Chenyang; Wang, Yifeng; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2014-01-01

    Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals with tunable shape, crystalline phase, and composition are synthesized by efficient thermolysis of a single source precursor of mixed metal-oleate complexes in hot organic solvents...

  16. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available Monodispersed spherical core-shell particles of Cr/alpha-Cr2O3 cermet ACG coatings investigated within this contribution could be successfully employed in thermal converters. Their selectivity depends on their chemical, physical and structural...

  17. Multipod-like silica/polystyrene clusters

    Science.gov (United States)

    Désert, Anthony; Morele, Jérémy; Taveau, Jean-Christophe; Lambert, Olivier; Lansalot, Muriel; Bourgeat-Lami, Elodie; Thill, Antoine; Spalla, Olivier; Belloni, Luc; Ravaine, Serge; Duguet, Etienne

    2016-03-01

    Multipod-like clusters composed of a silica core and PS satellites are prepared according to a seeded-growth emulsion polymerization of styrene in the presence of size-monodisperse silica particles previously surface-modified with methacryloxymethyltriethoxysilane. Tuning the diameter and concentration of the silica seeds affords homogeneous batches of tetrapods, hexapods, octopods, nonapods and dodecapods with morphology yields as high as 80%. Three-dimensional reconstructions by cryo-electron tomography are presented on large fields for the first time to show the high symmetry and regularity of the clusters demonstrating the good control of the synthesis process. These synthesis experiments are visited again digitally, in order to successfully refine an original simulation model and better understand the correlation between the history of the cluster growth and the final composition of the cluster mixture. Finally, using the model as a predictive tool and varying the extra experimental conditions, e.g. the composition of the surfactant mixture and the styrene concentration, result in trapping other cluster morphologies, such as tripods.Multipod-like clusters composed of a silica core and PS satellites are prepared according to a seeded-growth emulsion polymerization of styrene in the presence of size-monodisperse silica particles previously surface-modified with methacryloxymethyltriethoxysilane. Tuning the diameter and concentration of the silica seeds affords homogeneous batches of tetrapods, hexapods, octopods, nonapods and dodecapods with morphology yields as high as 80%. Three-dimensional reconstructions by cryo-electron tomography are presented on large fields for the first time to show the high symmetry and regularity of the clusters demonstrating the good control of the synthesis process. These synthesis experiments are visited again digitally, in order to successfully refine an original simulation model and better understand the correlation between the

  18. Periodic jetting and monodisperse jet drops from oblique gas injection

    Science.gov (United States)

    McRae, Oliver; Gaillard, Antoine; Bird, James C.

    2017-07-01

    When air is blown in a straw or tube near an air-liquid interface, typically one of two behaviors is observed: a dimple in the liquid's surface, or a frenzy of sputtering bubbles, waves, and spray. Here we report and characterize an intermediate regime that can develop when a confined air jet enters the interface at an angle. This regime is oscillatory with a distinct characteristic frequency and can develop periodic angled jets that can break up into monodisperse aerosols. The underlying mechanisms responsible for this highly periodic regime are not well understood. Here we flow a continuous stream of gas through a tube near a liquid surface, observing both optically and acoustically the deformation of the liquid-air interface as various parameters are systematically adjusted. We show that the Kelvin-Helmholtz instability is responsible for the inception of waves within a cavity formed by the gas. Inertia, gravity, and capillary forces both shape the cavity and govern the frequency and amplitude of these gas-induced cavity waves. The flapping cavity focuses the waves into a series of periodic jets that can break up into droplets following the Rayleigh-Plateau instability. We present scaling arguments to rationalize the fundamental frequencies driving this system, as well as the conditions that bound the periodic regime. These frequencies and conditions compare well with our experimental results.

  19. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    Science.gov (United States)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  20. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    Science.gov (United States)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.