WorldWideScience

Sample records for monodisperse large porous

  1. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  2. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Du, Yi [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing (China); Lv, Dachao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Ye, Gang, E-mail: yegang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Wang, Jianchen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2014-06-01

    Graphical abstract: Macrocyclic receptors grafted to monodisperse porous polymer particles for Sr(II) capture. - Highlights: • Synthesis of novel selective Sr adsorbent grafted with macrocyclic receptors. • New monodisperse porous polymer particles used to promote Sr adsorption. • Comparative study and discussion on adsorption behaviour and mechanism. • A chromatographic process proposed for Sr separation in simulated HLLW. - Abstract: Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO{sub 3} media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW)

  3. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template

    Czech Academy of Sciences Publication Activity Database

    Grama, Silvia; Horák, Daniel

    2015-01-01

    Roč. 64, Suppl. 1 (2015), S11-S17 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : microspheres * monodisperse * silica Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64%20Suppl%201/64_S11.pdf

  4. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  5. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Science.gov (United States)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  6. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    Science.gov (United States)

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naveen, A. Nirmalesh, E-mail: nirmalesh.naveen@gmail.com; Selladurai, S. [Ionics Laboratory, Department of Physics, Anna University, Chennai-600025 (India)

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  9. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.

    Science.gov (United States)

    Zhang, Yu; Zhu, Pengli; Li, Gang; Zhao, Tao; Fu, Xianzhu; Sun, Rong; Zhou, Feng; Wong, Ching-ping

    2014-01-08

    Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.

  10. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    Science.gov (United States)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  11. Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Song, Huawei; Li, Na; Cui, Hao; Wang, Chengxin

    2014-01-01

    A facile way towards high rate and long lifespan anode materials based on SnO 2 and commercial multiwalled carbon nanotubes (MWCNTs) is readily achieved through a combination of activation and hydrothermal treatment. The former endows the MWCNTs with abundant hydrophilic radicals, while the latter guarantees intimate connection between SnO 2 and MWCNTs; eventually, monodisperse SnO 2 nanocrystals ca. 3 nm are firmly anchored on the MWCNTs without agglomeration. When used for lithium ion batteries (LIBs) anodes, the hybrid composite exhibits excellent cycling capability with high reversible capacity about 700 mAh g −1 (based on total weight of the composite) for 150 cycles at 0.1 A g −1 superior to both components involved. Besides large rates of 5 A g −1 with recoverable initial reversible capacity, it also last for more than 1000 cycles with little capacity decay, outperforming most SnO 2 based carbon nanotubes composites (SnO 2 /CNTs) so far. Insights into the electrochemical processes reveal the hybrid composite exhibits enhanced redox capacitance and interfacial capacitance in comparison with SnO 2 nanocrystals which indicate the perfect interfaces and robust structure of the hybrid composite

  12. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  13. Production of Monodisperse Nanoparticles and Application of Discrete-Monodisperse Model in Plasma Reactors

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Kim, Kyo-Seon; Zhao, Qian-Qiu

    2003-01-01

    The particle growth in plasma reactor were investigated by using the discrete-monodisperse (D-M) model for various process conditions. The monodisperse large sized particle distribution predicted by the D-M model are in good agreement with the large sized particles by the discrete-sectional model and also in the experiments by Shiratani et al. (1996). Some fractions of the small size particles are in a neutral state or even charged positively, but most of the large sized monodisperse particles are charged negatively. As the mass generation rate of monomers increases, the large sized particles grow more quickly and the production rate of nanoparticles of 100nm by plasma reactor increases. As the initial electron concentration or the monomer diameter increases, it takes longer time for the large sized particles to grow up to 100nm, but the large sized particle concentration of 100nm increases and the resulting production rate of large sized particles of 100nm increases. As the residence time increases, the time for the large sized particles to grow up to 100nm decreases and the large sized particle concentration of 100nm increases and, as a result, the production rate of large sized particles of 100nm increases. We propose that the plasma reactor can be a good candidate to produce monodisperse nanoparticles

  14. Unexpected large room-temperature ferromagnetism in porous Cu{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-05-15

    Porous Cu{sub 2}O films have been fabricated on porous anodic alumina substrates using DC-reactive magnetron sputtering with pure Cu targets, and unexpectedly large room temperature ferromagnetism has been observed in the films. The maximum saturation magnetic moment along the out-of-plane direction was as high as 94 emu/cm{sup 3}. Photoluminescence spectra show that the ferromagnetism originates with oxygen vacancies. The ferromagnetism could be adjusted by changing the concentration of oxygen vacancies through annealing in an oxygen atmosphere. These observations suggest that the origin of the ferromagnetism is due to coupling between oxygen vacancies with local magnetic moments in the porous Cu{sub 2}O films, which can occur either directly through exchange interactions between oxygen vacancies, or through the mediation of conduction electrons. Such a ferromagnet without the presence of any ferromagnetic dopant may find applications in spintronic devices. - Highlights: • Porous Cu{sub 2}O films were deposited on porous anodic alumina (PAA) substrates. • Significant room-temperature ferromagnetism has been observed in porous Cu{sub 2}O films. • Ferromagnetism of Cu{sub 2}O films exhibited different magnetic signals with the field. • The saturation magnetization is 94 emu/cm{sup 3} with an out-of-plane.

  15. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing [Tsinghua University, Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology (China)

    2017-02-15

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H{sub 2} system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  16. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-01-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H_2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  17. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    International Nuclear Information System (INIS)

    Wang Zhechen; Ding Xunlei; Ma Yanping; Xue Wei; He Shenggui; Xiao Wenchang

    2008-01-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  18. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    Science.gov (United States)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  19. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  20. Large scale modulation of high frequency acoustic waves in periodic porous media.

    Science.gov (United States)

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  1. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  2. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    Science.gov (United States)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  3. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  4. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  5. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  6. Superficially porous particles with 1000Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.

    Science.gov (United States)

    Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R

    2017-03-17

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  8. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    International Nuclear Information System (INIS)

    F Gaslain; J Parmentier; V Valtchev; J Patarin; C Vix Guterl

    2005-01-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter ≤ 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite β (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N 2 and CO 2 adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and compared to those

  9. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    Science.gov (United States)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  10. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  11. Large time behaviour of oscillatory nonlinear solute transport in porous media

    NARCIS (Netherlands)

    Duijn, van C.J.; Zee, van der S.E.A.T.M.

    2018-01-01

    Oscillations in flow occur under many different situations in natural porous media, due to tidal, daily or seasonal patterns. In this paper, we investigate how such oscillations in flow affect the transport of an initially sharp solute front, if the solute undergoes nonlinear sorption and,

  12. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts.

    Science.gov (United States)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.

  13. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.

  14. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO_2 capture

    International Nuclear Information System (INIS)

    Chang, Binbin; Zhang, Shouren; Yin, Hang; Yang, Baocheng

    2017-01-01

    Highlights: • Convenient and large-scale synthesis route for N-doped hierarchical porous carbon sphere. • The resultant own spherical morphology, tunable hierarchical porosity, high surface area. • The optimal material exhibits a high CO_2 capture capacity of 4.23 mmol g"−"1. • It shows a large voltage window of 1.8 V for symmetric cell in 0.5 M Na_2SO_4. - Abstract: Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO_2 capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl_2-impregnated RF resin spheres were carbonized in a NH_3 atmosphere at a temperature range of 600–800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl_2 dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl_2/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g"−"1 at a current density of 0.5 A g"−"1. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg"−"1 at a power density of 178.9 W kg"−"1 within a voltage window of 0 ∼ 1.8 V in 0.5 M Na_2SO_4 aqueous electrolyte. In addition, the CO_2 capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large micropore proportion prepared at 800 °C exhibited an exceptional CO_2 uptake

  15. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Knott, Alexander

    2016-01-01

    controlled primarily by the aerosol precursor solution and the production parameters during the aerosol generation - in particular the liquid feed rate and the frequency of the orifice. The final particle morphology is controlled by the precipitation conditions during the conversion from aerosol droplets to solid entities. Small changes to these parameters have a significant influence on the final geometry, size and morphology. The second part of this thesis deals with the characterization of microparticles. A selection of particles was chosen to present the developments over a period of 12 months. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) was used for various applications, e.g. to verify the elemental content and to assess the size and geometry of the particles. Combined Focused Ion Beam (FIB-SEM) studies revealed the presence of a porous inner structure for all solid particles. Hence, the resulting overall density was less than expected. Time of Flight Secondary Ionization Mass Spectrometry (TOF-SIMS) studies evaluated the elemental content and demonstrated the need for cleanliness since minute quantities of contaminations could be found in single particles. Micro Raman investigations were used to determine the crystallinity, crystal orientation and uranium species. The measurements showed that particles primarily consist of U_3O_8. Parts consist of Meta-schoepite and U(IV)-hydroxide which indicates residual water inside the crystal lattice. Micro Raman investigations were performed at CEA (Ile de France) and at the TU-Vienna. SIMS measurements were performed at Safeguards Analytical Services - Environmental Sample Laboratory (SGAS-ESL) on the Large Geometry-SIMS (LG-SIMS) with the scope to assess their performance as a QC material. Particles produced at Juelich were also compared directly against existing QC- and reference materials. Investigations and characterization assays on monodisperse microparticles indicate

  16. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO2 capture

    Science.gov (United States)

    Chang, Binbin; Zhang, Shouren; Yin, Hang; Yang, Baocheng

    2017-08-01

    Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO2 capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl2-impregnated RF resin spheres were carbonized in a NH3 atmosphere at a temperature range of 600-800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl2 dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl2/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g-1 at a current density of 0.5 A g-1. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg-1 at a power density of 178.9 W kg-1 within a voltage window of 0 ∼ 1.8 V in 0.5 M Na2SO4 aqueous electrolyte. In addition, the CO2 capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large micropore proportion prepared at 800 °C exhibited an exceptional CO2 uptake capacity at ambient pressures of up to 4.23 mmol g-1 at 0 °C.

  17. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. High Performance Affinity Chromatography of Antithrombin III Based on Monodisperse Poly (glycidyl methacrylate) Beads

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new approach for the separation of antithrombin III with high performance affinity chromatography (HPAC) was described. A novel monodisperse,non-porous,cross-linked poly (glycidyl methacrylate) beads (PGMA) were used as the affinity support. With the water-soluble carbodiimide,heparin was linked covalently to amino-PGMA-beads,which was prepared by amination of PGMA. The adsorbent obtained exhibits high binding activity to antithrombin III (ATIII),good resolution and excellent mechanical properties and can be used under high flow rate.

  19. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    Science.gov (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  20. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  1. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  2. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  3. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  4. The Generation And Properties Of Solid Monodisperse Aerosols Of ...

    African Journals Online (AJOL)

    A monodisperse aerosol generator (MAGE) was used to generate calibration or monodisperse aerosols containing stearic acid and carnauba wax. Some of the factors affecting the size of aerosol particles generated with the MAGE were determined. The factors include: temperature of operation of the MAGE, type and purity ...

  5. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Gao, Jihui, E-mail: gaojh@hit.edu.cn; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-30

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g{sup −1}. • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m{sup 2} g{sup −1}) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g{sup −1} at 0.5 A g{sup −1} and still 120 F g{sup −1} at a high rate of 30 A g{sup −1}. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg{sup −1} and 4.03 Wh kg{sup −1} with the corresponding power densities of 108 W kg{sup −1} and 6.49 kW kg{sup −1}, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  6. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  7. Physicomechanical properties of porous fiber materials and prediction of them

    International Nuclear Information System (INIS)

    Kostornov, A.G.; Galstyan, L.G.

    1985-01-01

    A comparison is presented of the experimentally determined values of certain properties of porous fiber materials obtained by the optimum method from monodisperse fibers of copper, nickel, and Nichrome of different diameters with the corresponding theoretical values. The electrical conductivity, tensile strength, and modulus of elasticity, the basic properties of a porous body, which are determined both by the structural characteristics of the elements and by the condition of the interparticle contacts, were considered

  8. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  9. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  10. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  11. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Alexander

    2016-07-01

    demonstrated that the particle size can be controlled primarily by the aerosol precursor solution and the production parameters during the aerosol generation - in particular the liquid feed rate and the frequency of the orifice. The final particle morphology is controlled by the precipitation conditions during the conversion from aerosol droplets to solid entities. Small changes to these parameters have a significant influence on the final geometry, size and morphology. The second part of this thesis deals with the characterization of microparticles. A selection of particles was chosen to present the developments over a period of 12 months. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) was used for various applications, e.g. to verify the elemental content and to assess the size and geometry of the particles. Combined Focused Ion Beam (FIB-SEM) studies revealed the presence of a porous inner structure for all solid particles. Hence, the resulting overall density was less than expected. Time of Flight Secondary Ionization Mass Spectrometry (TOF-SIMS) studies evaluated the elemental content and demonstrated the need for cleanliness since minute quantities of contaminations could be found in single particles. Micro Raman investigations were used to determine the crystallinity, crystal orientation and uranium species. The measurements showed that particles primarily consist of U{sub 3}O{sub 8}. Parts consist of Meta-schoepite and U(IV)-hydroxide which indicates residual water inside the crystal lattice. Micro Raman investigations were performed at CEA (Ile de France) and at the TU-Vienna. SIMS measurements were performed at Safeguards Analytical Services - Environmental Sample Laboratory (SGAS-ESL) on the Large Geometry-SIMS (LG-SIMS) with the scope to assess their performance as a QC material. Particles produced at Juelich were also compared directly against existing QC- and reference materials. Investigations and characterization assays

  12. Characterization of a monodispersed aerosol exposure system for beagle dogs

    International Nuclear Information System (INIS)

    Cannon, W.C.; Herring, J.P.; Craig, D.K.

    1978-01-01

    A monodispersed aerosol exposure system for dogs is described and data are presented on aerosol depositions in the exposure system which could affect the aerosol presented to the animals by reducing the concentration and changing the particle size distribution

  13. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  14. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    Science.gov (United States)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation

  15. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: binbinchang@infm.hhstu.edu.cn [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Henan Provincial Key Laboratory of Nano-composite and Application, Zhengzhou, Henan 450006 (China); Zhang, Shouren; Yin, Hang [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Henan Provincial Key Laboratory of Nano-composite and Application, Zhengzhou, Henan 450006 (China); Yang, Baocheng, E-mail: baochengyang@yahoo.com [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Henan Provincial Key Laboratory of Nano-composite and Application, Zhengzhou, Henan 450006 (China)

    2017-08-01

    Highlights: • Convenient and large-scale synthesis route for N-doped hierarchical porous carbon sphere. • The resultant own spherical morphology, tunable hierarchical porosity, high surface area. • The optimal material exhibits a high CO{sub 2} capture capacity of 4.23 mmol g{sup −1}. • It shows a large voltage window of 1.8 V for symmetric cell in 0.5 M Na{sub 2}SO{sub 4}. - Abstract: Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO{sub 2} capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl{sub 2}-impregnated RF resin spheres were carbonized in a NH{sub 3} atmosphere at a temperature range of 600–800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl{sub 2} dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl{sub 2}/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g{sup −1} at a current density of 0.5 A g{sup −1}. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg{sup −1} at a power density of 178.9 W kg{sup −1} within a voltage window of 0 ∼ 1.8 V in 0.5 M Na{sub 2}SO{sub 4} aqueous electrolyte. In addition, the CO{sub 2} capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large

  16. Fabrication of large-area self-organizing gold nanostructures on a porous Al2O3 template for application as a SERS-substrate

    DEFF Research Database (Denmark)

    Nielsen, Peter; Hassing, Søren; Albrektsen, Ole

    A new technique for fabrication of large-area self-organizing variably ordered gold nanostructures with sub-10 nm gaps on templates of hexagonally ordered porous anodic aluminum oxide is demonstrated. The size as well as the interparticle distance of the fabricated gold nanostructures are adjusted...... by application of various electrolytes used in anodization of the aluminum template and the thickness of gold sputter-coated on the pore layer. The fabricated substrates are characterized by SEM, and the applicability as SERS substrates is investigated by adsorption of rhodamine 6G on the nanostructures...

  17. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  18. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    International Nuclear Information System (INIS)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin

    2011-01-01

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO 3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10 -8 -8.76 x 10 -8 Ω m after thermal treatment at 160 0 C for 30 min, which was about five times that of bulk silver (1.586 x 10 -8 Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  19. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  20. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    Science.gov (United States)

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  3. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    Science.gov (United States)

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Segmented block copolymers with monodisperse aramide end-segments

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Segmented block copolymers were synthesized using monodisperse diaramide (TT) as hard segments and PTMO with a molecular weight of 2 900 g · mol-1 as soft segments. The aramide: PTMO segment ratio was increased from 1:1 to 2:1 thereby changing the structure from a high molecular weight multi-block

  5. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  6. CALCULATION OF LONG-TERM FILTRATION IN A POROUS MEDIUM

    Directory of Open Access Journals (Sweden)

    Ludmila I. Kuzmina

    2018-03-01

    Full Text Available he filtration problem in a porous medium is an important part of underground hydromechanics. Filtration of suspensions and colloids determines the processes of strengthening the soil and creating waterproof walls in the ground while building the foundations of buildings and underground structures. It is assumed that the formation of a deposit is dominated by the size-exclusion mechanism of pore blocking: solid particles pass freely through large pores and get stuck at the inlet of pores smaller than the diameter of the particles. A one-dimensional mathematical model for the filtration of a monodisperse suspension includes the equation for the mass balance of suspended and retained particles and the kinetic equation for the growth of the deposit. For the blocking filtration coefficient with a double root, the exact solution is given implicitly. The asymptotics of the filtration problem is constructed for large time. The numerical calculation of the problem is carried out by the finite differences method. It is shown that asymptotic approximations rapidly converge to a solution with the increase of the expansion order.

  7. Nonlinear Stress Relaxation of ``Quasi-monodisperse'' Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    Science.gov (United States)

    Watanabe, Hiroshi; Matsumiya, Yumi

    Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).

  8. Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    NARCIS (Netherlands)

    Harting, J.D.R.; Venturoli, M.; Coveney, P.V.

    2004-01-01

    Well–designed lattice Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed

  9. Preparation of uniform porous hydroxyapatite biomaterials by a new method

    International Nuclear Information System (INIS)

    Tang Yuejun; Tang Yuefeng; Lv Chuntang; Zhou Zhonghua

    2008-01-01

    In this paper, a new method of preparation of uniform porous hydroxyapatite biomaterials was reported. In order to obtain uniform porous biomaterials, disk samples were formed by the mixture of hydroxyapatite (HAP) powders and monodispersed polystyrene microspheres, and then HAP uniform porous materials with different diameter and different porosity (diameter: 436 ± 25 nm, 892 ± 20 nm and 1890 ± 20 nm, porosity: 46.5%, 41.3% and 34.7%, respectively) were prepared by sintering these disk samples at 1250 deg. C for 5 h. The pure phase of HAP powders fabricated by the hydrothermal technology was confirmed by X-ray diffraction (XRD). The surface and size distribution of pores in HAP biomaterials were observed by scanning electron microscopy (SEM), and the pore size distribution in porous HAP biomaterials was tested by mercury intrusion method

  10. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  11. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  12. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  13. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  14. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  15. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  16. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    Science.gov (United States)

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  17. Inhalable oridonin-loaded poly(lactic-co-glycolicacid large porous microparticles for in situ treatment of primary non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Lifei Zhu

    2017-01-01

    Full Text Available Non-small cell lung cancer (NSCLC accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolicacid (PLGA large porous microparticle (LPMP for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of ~10 µm, the aerodynamic diameter of the spheres was only 2.72 µm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGA LPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.

  18. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  20. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  1. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  2. Measurement and interpretation of growth and evaporation of monodispersed droplets in a shock tube

    Science.gov (United States)

    Peters, F.; Paikert, B.

    1994-01-01

    A special gasdynamic shock tube process in combination with a Mie light scattering method is used to study growth and subsequent evaporation of monodispersed droplets carried in argon or air. The droplets are generated by homogeneous nucleation and observed in the micrometer range (0.15-6 micrometer radius). Droplet concentrations range from 10-1000/cu mm. Four different substances, i.e. water, n-propanol, methanol and n-hexane are tested for a wide range of properties. A model covering the entire range between large (Kn much greater than 1) and small Knudsen numbers (K much less than 1) is applied to interpret the experimental data. Excellent agreement is found.

  3. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  4. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.

    Science.gov (United States)

    Xia, Yang; Xiao, Zhen; Dou, Xiao; Huang, Hui; Lu, Xianghong; Yan, Rongjun; Gan, Yongping; Zhu, Wenjun; Tu, Jiangping; Zhang, Wenkui; Tao, Xinyong

    2013-08-27

    Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.

  5. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  6. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  7. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  8. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  9. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  10. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots

    Science.gov (United States)

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W.; Zhou, Norman Y.

    2014-01-01

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm-2, no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm-2 range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the

  11. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.

    Science.gov (United States)

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W; Zhou, Norman Y

    2014-02-21

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm(-2), no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm(-2) range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.

  12. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize

    International Nuclear Information System (INIS)

    Sreeram, Kalarical Janardhanan; Indumathy, Ramasamy; Rajaram, Ananthanarayanan; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-01-01

    Synthesis of highly crystalline and monodisperse iron oxide nanoparticles is reported. The separation of Fe centers through site-specific binding to a polysaccharide-alginate matrix enables the generation of particles with a monodisperse or narrow size distribution character, resulting in transparent pigments. Site-specific interactions coupled with gel like character of alginate is proposed as the mechanism behind generation of lower particle sizes. Alginate-Fe complexes developed were subjected to heat treatment to provide for crystalline character and development of hematite (α-Fe 2 O 3 ). Conditions most ideal for achieving monodispersity and lower sizes have been optimized and confirmed through microscopic and photon correlation spectroscopic measurements

  13. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  14. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang; Zhang, Jiaming; Thoroddsen, Sigurdur T

    2013-01-01

    of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions

  15. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  16. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell

    KAUST Repository

    Qi, Genggeng

    2010-05-11

    Monodispersed HMSs with tunable particle size and shell thickness were successfully synthesized using relatively concentrated polystyrene latex templates and a silica precursor in a weakly basic ethanol/water mixture. The particle size of the capsules can vary from 100 nm to micrometers. These highly engineered monodispersed capsules synthesized by a facile and scalable process may find applications in drug delivery, catalysis, separationm or as biological and chemical microreactors. © 2010 American Chemical Society.

  17. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi{sub 2}Te{sub 2.5}Se{sub 0.5} hollow nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Biao; Wu, Yue [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA (United States); Ames Laboratory, Department of Energy, Ames, IA (United States); Feng, Tianli; Ruan, Xiulin [Department of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Agne, Matthias T.; Snyder, G. Jeffery [Department of Materials Science and Engineering, Northwestern University, Evanston, IL (United States); Zhou, Lin [Ames Laboratory, Department of Energy, Ames, IA (United States)

    2017-03-20

    To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi{sub 2}Te{sub 2.5}Se{sub 0.5} hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm x h 10 mm) with low κ (0.48 W m{sup -1} K{sup -1}) and the highest z T (1.18) among state-of-the-art Bi{sub 2}Te{sub 3-x}Se{sub x} materials. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  19. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  20. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  1. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  2. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental study on convective heat transfer with thin porous bodies

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Furuya, Masahiro

    2001-01-01

    Experimental studies are made on the convective heat transfer of three types of thin porous bodies. Heat transfer performances, flow patterns and temperature profiles near the porous bodies are compared with each other. The heat transfer performance of porous bodies with the largest pore diameter is large. It became clear that the high heat transfer performance depends on an excellent heat transportation ability inside the pore and near the surface of the porous bodies. (author)

  5. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  6. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianpeng [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Zheng, Xiaoyan; Li, Hui; Fan, Daidi [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Song, Zhanping [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Ma, Haixia [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China)

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO{sub 3}{sup 2−} (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO{sub 3}{sup 2−} doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO{sub 3}{sup 2−} doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone.

  7. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    International Nuclear Information System (INIS)

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-01-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2− (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2− doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO 3 2− doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone

  9. Retention studies in rats exposed to monodisperse aerosols of /sup 198/Au labeled carnauba wax particles

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; Bassi, P.; Belvisi, M.B.; Bianco, A.

    1981-01-01

    Rats were exposed to monodisperse carnauba wax aerosols labeled with colloidal /sup 198/Au and the retained activity was followed both in vivo and in the lungs of serially sacrified animals. In vitro and in vivo tests have shown low leaching rates of the label. The deposited activity could then be followed without correction for particle solubility. The activity in vivo shows a three-exponential decay, characterized by half-times of a few hours, one day, and one month corresponding to the clearance of the material deposited respectively in the extrathoracic airways, in the tracheo-bronchial, and in the alveolar regions. A correlation was found between long term cleared activity and particle size but no correlation was found between particle size and clearance half times in the size range investigated. Statistical evaluation of the activity vs time in vivo and in excised lungs has shown that the long term retained activity pertains to the alveolar region and, if a large number of animals is not used, more accurate data of pulmonary clearance can be obtained by in vivo measurements than by serial sacrifices.

  10. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  11. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  12. Photo-patterning of porous hydrogels for tissue engineering.

    Science.gov (United States)

    Bryant, Stephanie J; Cuy, Janet L; Hauch, Kip D; Ratner, Buddy D

    2007-07-01

    Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.

  13. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  14. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  15. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  16. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    Science.gov (United States)

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  17. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  19. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  20. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  1. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  2. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. K C BARICK and D BAHADUR*. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay,. Mumbai 400 076, India. Abstract. The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 ...

  3. Tri-block copolymers with mono-disperse crystallizable diamide segments: synthesis, analysis and rheological properties

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Tri-block copolymers with polyether mid-segments and mono-disperse amide end segments were synthesized, analyzed and some properties studied. The end segment was an aromatic diamide (diaramide, TΦB). The polyether mid-segment was a difunctional poly(tetramethylene oxide) (PTMO, 1000 and 2900 g/mol).

  4. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  5. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  6. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design, preparation, and application of ordered porous polymer materials

    International Nuclear Information System (INIS)

    Liu, Qingquan; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua; Shen, Shaohua; Duan, Yinxiang

    2014-01-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template

  8. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  9. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  10. A POROUS, LAYERED HELIOPAUSE

    Energy Technology Data Exchange (ETDEWEB)

    Swisdak, M.; Drake, J. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Opher, M., E-mail: swisdak@umd.edu, E-mail: drake@umd.edu, E-mail: mopher@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2013-09-01

    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  11. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  12. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  13. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  14. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    Science.gov (United States)

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    Science.gov (United States)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  16. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    International Nuclear Information System (INIS)

    Morcrette, Mélissa; Ortiz, Guillermo; Joisten, Hélène; Dieny, Bernard; Tallegas, Salomé; Baron, Thierry; Bsiesy, Ahmad; Tiron, Raluca; Hou, Yanxia; Lequien, Stéphane

    2017-01-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material. (paper)

  17. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  18. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun; Ju, Yanyun [Wuhan University of Technology, School of Materials Science and Engineering (China); Guo, Yi [Wuhan University of Technology, Center for Materials Research and Analysis (China); Xiong, Chuanxi; Dong, Lijie, E-mail: dong@whut.edu.cn [Wuhan University of Technology, School of Materials Science and Engineering (China)

    2017-03-15

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  19. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.

    Science.gov (United States)

    Lu, Lehui; Ai, Kelong; Ozaki, Yukihiro

    2008-02-05

    We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.

  20. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  1. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  2. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  3. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Lin Zhonghua [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Gu Pingying [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Zhou Jianzhang [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Yao Bingxing [Xiamen University, School of Life Sciences (China); Chen Guoliang; Fu Jinkun, E-mail: wenli_1976@163.co [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China)

    2009-02-15

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 {sup o}C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 {+-} 0.8 nm size were formed by using Bacillus megatherium D01.

  4. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  5. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    International Nuclear Information System (INIS)

    Wen Li; Lin Zhonghua; Gu Pingying; Zhou Jianzhang; Yao Bingxing; Chen Guoliang; Fu Jinkun

    2009-01-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 o C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  6. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  7. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  8. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  9. Porous squeeze-film flow

    KAUST Repository

    Knox, D. J.

    2013-11-14

    © 2013 © The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation, an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage.

  10. Enhanced supercapacitor performances using C-doped porous TiO{sub 2} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juanrong [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Ying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Liang, Jianzheng [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhu, Huijun, E-mail: H.Zhu@cranfieldac.uk [School of Energy, Environmental Technology and Agrifood, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Cao, Shunsheng [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-11-30

    Graphical abstract: - Highlights: • A facile, cost-effective strategy was reported to prepare porous anatase TiO{sub 2} materials. • C-doped porous TiO{sub 2} (C/TiO{sub 2}) was in situ synthesized without the addition of carbon precursors. • C/TiO{sub 2} manifested an enhanced capacitance than the commercial P25. - Abstract: Considerable efforts have been paid to develop electrochemical capacitors with energy storage capability in order to meet the demands of multifunctional electronics. Here we report a facile method to fabricate C-doped porous anatase TiO{sub 2}. This technique involves the preparation of monodisperse cationic polystyrene nanoparticles (CPN), following sequential deposition of tetrabutylorthotitanate (TBT), and directly carbonizing of CPN. Interestingly, during the process of carbonizing CPN, a phase transition of TiO{sub 2} will be happened and whist C-doped porous anatase TiO{sub 2} is in situ formed. When this porous C-doped TiO{sub 2} is used as electrode material to prepare electrochemical capacitor, it manifests a higher capacitance than the commercial P25, effectively broadening it potential for many practical applications.

  11. Fabricating porous silicon carbide

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  12. Dynamic dilution exponent in monodisperse entangled polymer solutions

    DEFF Research Database (Denmark)

    Shahid, T.; Huang, Qian; Oosterlinck, F.

    2017-01-01

    of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small-molecule......We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains....... In particular, we investigate the influence of both concentration and molar mass on the value of the effective dynamic dilution exponent determined from the level of the storage plateau at low and intermediate frequencies. We show that the experimental results can be quantitatively explained by considering...

  13. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  14. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  15. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  16. Component-Customizable Porous Rare-Earth-Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications.

    Science.gov (United States)

    Li, Cheng Chao; Rui, Xianhong; Wei, Weifeng; Chen, Libao; Yu, Yan

    2017-11-16

    Multicomponent porous colloidal spheres are of interest because they not only show a combination of the properties associated with all different components, but also usually present synergy effects. However, a combination of different components in a single porous sphere is still greatly challenged due to the different precipitation behaviors of each component. In this work, we have developed a general synthetic route to prepare several categories of porous monodisperse rare-earth (RE)-based colloidal spheres with customizable elemental compositions and a uniform element distribution. The two-step synthetic strategy is based on the integration of coordination chemistry precipitation of RE ions and a subsequent ion-exchange process, which steers clear of obstacles, such as differences in solubility product constant, that are to be found in traditional co-precipitation methods. Our approach provides a new mixing mechanism to realize homogeneous distribution of each element within the porous spheres. An array of binary, ternary, and even senary RE colloidal porous spheres with diameters of 500 nm to 700 nm has been successfully synthesized. Taking advantage of their good dispersibility, porosity, and customizable components, these porous RE oxide spheres show excellent catalytic activity for the reduction of 4-nitrophenol, and promising application in single-phase multifunctional bioprobes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electromechanical Response of Conductive Porous Structure

    Directory of Open Access Journals (Sweden)

    Hye-Mi So

    2015-01-01

    Full Text Available Porous conductors with large surface-volume ratios have been applied to a variety of fields, including absorbents, flexible heaters, and electrodes for supercapacitors. In this study, we implemented sensitive pressure sensors using the mechanical and electrical characteristics of conductive porous structures manufactured by immersing sponges into a carbon nanotube solution and then measured the change in resistance. When pressure was applied to conductive sponges, carbon nanotubes were attached to each other and the resistance was reduced by up to 20%. The carbon nanotube sponges, which were soft and had superior elasticity, were quickly stabilized without any changes taking place in their shape, and they showed consistent change in resistance during experiments of repetitive pressure. The pressure devices based on conductive porous sponges were connected to single-walled carbon nanotube field effect transistors (SWCNT-FETs and changes in their characteristics were investigated according to external pressure.

  18. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  19. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  20. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  1. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  2. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    Energy Technology Data Exchange (ETDEWEB)

    Kosch, Sebastian, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca [Department of Industrial and Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  3. Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties

    International Nuclear Information System (INIS)

    Kong Jing; Liu Wei; Wang Fenglong; Wang Xinzhen; Luan Liqiang; Liu Jiurong; Wang Yuan; Zhang Zijun; Itoh, Masahiro; Machida, Ken-ichi

    2011-01-01

    Monodispersed Ni flower-like architectures with size of 1-2 μm were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization (M s ) of 47.7 emu/g and a large coercivity (H cj ) of 332.3 Oe. The epoxy resin composites with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss cj ) of 332.3 Oe. → Efficient electromagnetic absorption (RL<-20 dB) was provided in 2.8-6.3 GHz.

  4. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  5. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  6. Foams in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  7. Porous material neutron detector

    Science.gov (United States)

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  8. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  9. Porous La0.6Sr0.4CoO3-δ thin film cathodes for large area micro solid oxide fuel cell power generators

    DEFF Research Database (Denmark)

    Garbayo, A.; Esposito, Vincenzo; Sanna, Simone

    2014-01-01

    Porous La0.6Sr0.4CoO3-δ thin films were fabricated by pulsed laser deposition for being used as a cathode for micro solid oxide fuel cell applications as MEMS power generators. Symmetrical La0.6Sr0.4CoO3-δ/ yttria-stabilized zirconia/La0.6Sr0.4CoO3-δ free-standing membranes were fabricated using ...

  10. Characterization of Monodispersed Iron Oxide Nanocrystals by XAS and MCD measurement

    International Nuclear Information System (INIS)

    Kim, J.-Y.; Noh, H.-J.; Park, B.-G.; Kim, T.-Y.; Park, J.-H.; Hyeon, T.; Park, J.; Kang, E.

    2004-01-01

    Full text: Nanoparticles have attracted so much attention because of their potential technological applications and abundance of scientifically interesting issues. In particular, magnetic nanoparticles are considered to be applicable to various magnetic devices such as terabit memory, ferrofluids, magnetocaloric refrigeration systems, blood cells, etc. With the development of nano-technology, variation of physical properties as a function of particle size is one of the most important issues, but has been rarely explored because of difficulty of the size control in synthesizing nanoparticles. Recently, some of us successfully synthesized high crystalline and monodisperse maghemite nanoparticles without a size selection process and research in this field seems to be promoted by one step. In this report, we present a systematic characterization of the monodispersed nanocrystalline γ - Fe 2 O 3 with the diameter of 13, 8 and 4 nm by measuring the x-ray absorption spectroscopy (XAS) and the x-ray magnetic circular dichroism(XMCD) spectra on Fe L edge. The spectra of the 4 nm nanoparticles are very similar to those of maghemite (γ - Fe 2 O 3 ). However, the spectra become close to those of magnetite (Fe 3 O 4 ) as the particle size becomes 8 and 13 nm. Considering that the maghemite and magnetite have the same spinel structure with different Fe vacancies, these results can be explained that the surface of nanoparticles has more vacancies than the core part, indicating that surface disorder increases as the particle size decreases

  11. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  12. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  13. Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply

    Science.gov (United States)

    Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre

    2005-07-01

    In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

  14. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  15. Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets

    Science.gov (United States)

    Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.

    2010-03-01

    Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.

  16. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    Science.gov (United States)

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  17. Porous metal for orthopedics implants

    OpenAIRE

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  18. Electrokinetics in porous media

    NARCIS (Netherlands)

    Luong, D.T.

    2014-01-01

    This thesis presents the PhD research on electrokinetics in porous media. Electrokinetic phenomena are induced by the relative motion between a fluid and a solid surface and are directly related to the existence of an electric double layer between the fluid and the solid grain surface.

  19. Crossflow type silicon microchannel substrate monodispersion oil-in-water emulsion manufacture; Kurosufuro gata shirikon maikuro chaneru kiban wo mochiita tanbunsan suchuyu emarushon no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro [Tohoku University, Miyagi (Japan). Graduate School; Komori, Hideai; Najima, Mitsutashi; Kikuchi, Yuji; Yonemoto, Toshikuni

    1999-05-05

    The new technique, which continuously produced the monodispersion oil-in-water (0/W) emulsion using the crossflow type silicon microchannel substrate, was developed. On the silicon monocrystal substrate, the watercourse as the liquid of the continuous phase flowed was produced, and the column of the equal slit of the size in both walls of the watercourse was precisely processed. By closing the upper part in the slit by the clamp of the flat glass board in the microchannel substrate, the microchannel column was formed. Through the microchannel, the oil droplet in which the size was even was formed by sending out the oil (triolein) in the water (0.3wt% sodium lauryl sulfate aqueous solution) of continuous phase which is flowing in respect of the watercourse. The size of the oil droplet is greatly dependent on the structure of the microchannel regulated by microchannel width, microchannel height and terrace length (the even part of which the microchannel exit was equipped). Monodispersion emulsion of 16,20 and 48 {mu}m at the average droplet diameter was formed by using microchannel substrate of the three types of which the structure differs. Droplet diameter decreased, when the substrate which formed large droplet of 48 {mu}m in which the water current quantity is 1.4x10{sup -2}mLmin{sup -1} was used, when the flow rate increased. However, there was no a flow rate at droplet diameter, even if it was made to change from 1.4x10{sup -2} to 2.4mLmin{sup -1}, 16 {mu}m 20 {mu}m small change. In all cases, the droplet size distribution was narrow, and the geometry standard deviation was under 1.03. (translated by NEDO)

  20. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles

    NARCIS (Netherlands)

    Feng, Lili; Cohen Stuart, Martien; Adachi, Yasuhisa

    2015-01-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and

  2. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting; Polavarapu, Lakshminarayana; Xu, Qing Hua; Ji, Wei; Zeng, Hua Chun

    2011-01-01

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse Aux

  3. Plasma-assisted synthesis of monodispersed and robust Ruthenium ultrafine nanocatalysts for organosilane oxidation and oxygen evolution reactions

    NARCIS (Netherlands)

    Gnanakumar, E.S.; Ng, W.; Filiz, B.C.; Rothenberg, G.; Wang, S.; Xu, H.; Pastor-Pérez, L.; Pastor-Blas, M.M.; Sepúlveda-Escribano, A.; Yan, N.; Shiju, N.R.

    2017-01-01

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO2 supports. This gives robust catalysts

  4. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  5. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  6. Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixue; Wang, Liang; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun; Wang, Erkang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 130022 Jilin, Changchun (China)

    2009-02-15

    Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H{sub 2}PtCl{sub 6}) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells. (author)

  7. Synthesis of Monodisperse Walnut-Like SnO2 Spheres and Their Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-01-01

    Full Text Available Novel walnut-like SnO2 spheres have been synthesized using a one-step hydrothermal reaction with SnCl2·2H2O and KOH as raw materials. The morphology, microstructure, and optical properties of the products were characterized by X-ray powder diffraction (XRD, Raman spectrum, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and ultraviolet-visible (UV-Vis absorption spectroscopy. The detailed studies revealed that these synthesized spheres are highly monodisperse and have a uniform size of approximately 250 nm. Photocatalytic activity of the prepared SnO2 spheres was evaluated by the degradation of methylene orange. The synthesized SnO2 spheres exhibited excellent photocatalytic degradation. In addition, a possible formation mechanism of the walnut-like nanostructures was proposed based on reaction time-dependent experiments.

  8. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  9. Monodispersed ZIF-8 particles with enhanced performance for CO2 adsorption and heterogeneous catalysis

    Science.gov (United States)

    Guan, Yebin; Shi, Juanjuan; Xia, Ming; Zhang, Jun; Pang, Zhenfeng; Marchetti, Alessandro; Wang, Xiaohong; Cai, Jingsong; Kong, Xueqian

    2017-11-01

    Monodispersed zeolitic imidazolate frameworks (ZIFs) were prepared with a simple method using dimethylsulfoxide (DMSO) as solvent. This method yields ZIF-8 nanoparticles with a narrow particle size distribution of 90-110 nm and the dispersion is highly stable against agglomeration. These particles have larger nanosized porosity and enhanced CO2 adsorption capability compared to ZIF-8 prepared with different solvents such as methanol or N, N-dimethyl formamide. Their uniform size and surface chemistry also lead to superior performance in the Knoevenagel condensation reactions. The ZIF-8 nanoparticles possess high thermal stability up to 550 °C and the preparation steps are easy for scaling up which are favorable for industrial applications.

  10. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  11. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  12. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hui [School of Science, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zhanghui14305@sohu.com; Duan Renguan [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li Fan [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tang Qing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li Wenchao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-07-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3.

  13. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    International Nuclear Information System (INIS)

    Zhang Hui; Duan Renguan; Li Fan; Tang Qing; Li Wenchao

    2007-01-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3

  14. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  15. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Science.gov (United States)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  16. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    Science.gov (United States)

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Directory of Open Access Journals (Sweden)

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  19. Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-01-01

    Full Text Available We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.

  20. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    International Nuclear Information System (INIS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-01-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au 13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au 8 -Au 11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Au n precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au 13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters. (paper)

  1. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  2. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    Science.gov (United States)

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  3. Refractive index contrast in porous silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)

    2009-07-15

    Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Photoelectrochemical performance of DSSC with monodisperse and polydisperse ZnO SPs

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuono, Ruri Agung, E-mail: r-agung-w@ep.its.ac.id; Risanti, Doty D., E-mail: r-agung-w@ep.its.ac.id [Department of Engineering Physics, Institut Teknologi Sepuluh Nopember (Indonesia); Shirosaki, Tomohiro; Nagaoka, Shoji [Kumamoto Industrial Research Institute (Japan); Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University (Japan)

    2014-02-24

    Zinc oxide, ZnO, is one of oxide semiconductors being used in DSSC. ZnO is promising material for having fairly higher energy band gap and much higher bulk electron mobility than that of anatase TiO{sub 2}, the most widely used semiconductor for DSSC photoelectrode. This study introduces the synthesis of ZnO by precipitation method. The synthesis involves ZnAc dihydrate and diethylene glycol (DEG) for the chemicals. Various size of ZnO spherical particles (SPs) are obtained in polydisperse and monodisperse particles. Monolayer and bilayer DSSCs are fabricated in sandwich structure and sensitized with N719 dye for 3 and 5 hours. Monolayer DSSC using monodisperse particles (422 nm) is able to generate highest conversion efficiency of 0.569% (V{sub oc} = 541.3 mV, J{sub sc} = 1.92 mA/cm{sup 2}, and fill factor of 54.78%). Bilayer DSSC, i.e. combined 422 - 185 nm ZnO layer, can optimize the photocurrent action spectra in UV regime leading to high conversion efficiency of 0.568 (V{sub oc} = 568.2 mV, J{sub sc} = 2.22 mA/cm{sup 2}, and fill factor of 47.25%). The longer sensitizing time does not always produce better conversion efficiency since it can induce the dissolution of Zn atoms and formation of Zn{sup 2+} - dye resisting the electron transport from dye to ZnO photoelectrode.

  5. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    Science.gov (United States)

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Wang, Feihu [Shanghai Jiao Tong University, School of Pharmacy (China); Guo, Yuan [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Chen, Rongjun, E-mail: rongjun.chen@imperial.ac.uk [Imperial College London, Department of Chemical Engineering (United Kingdom); Shen, Yuanyuan; Guo, Aijie; Liu, Jieying; Zhang, Xiao [Shanghai Jiao Tong University, School of Pharmacy (China); Zhou, Dejian, E-mail: d.zhou@leeds.ac.uk [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Guo, Shengrong, E-mail: srguo@sjtu.edu.cn [Shanghai Jiao Tong University, School of Pharmacy (China)

    2014-12-15

    This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA), or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without the addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1,005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO{sub 3}, respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition; however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with the amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelengths.

  7. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  8. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  9. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  10. Porous germanium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Xenon fractionation in porous planetesimals

    International Nuclear Information System (INIS)

    Zahnle, K.; Pollack, J.B.; Kasting, J.F.

    1990-01-01

    The distinctively fractionated Xe on Mars and Earth may have its root in a common source from which both planets accreted. We begin with Ozima and Nakazawa's hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals. We point out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. We show that enough fractionated Xe to supply the Earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, our hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula. The required planetesimals are large, representing a class of object now extinct in the solar system

  12. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  13. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  14. Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity

    International Nuclear Information System (INIS)

    Zhang, Nianchun; Xue, Feng; Yu, Xiang; Zhou, Huihua; Ding, Enyong

    2013-01-01

    Graphical abstract: TEM images of the Ag/SiO 2 -2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO 2 spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO 2 compared to other methods. Highlights: ► We prepared homogeneous and mono-dispersed Ag/SiO 2 -2 nanohybrids by adding Fe 3+ ions. ► The Ag/SiO 2 -2 nanohybrids had core(SiO 2 )-shell(Ag) structure. ► The Ag/SiO 2 -2 nanohybrids exhibited excellent antibacterial activity against bacteria. ► The reaction temperature was lower and the yield of Ag/SiO 2 -2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO 2 nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe 3+ ion as a catalytic agent. The obtained Ag/SiO 2 -2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe 3+ ions into the reaction which Ag + reacted with N,N-dimethyl formamide (DMF) at 70 °C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO 2 nanohybrids. The electron was transferred from the Fe 2+ ion to the Ag + ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO 2 nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy (UV–vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of SiO 2 spheres in Ag/SiO 2 -2 nanohybrids structure, the Ag nanoparticles were homogeneous and monodispersed. The results also indicated that the Ag/SiO 2 -2 nanohybrid had excellent antibacterial.

  15. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  16. Porous Polymeric Films from Microbubbles Generated Using a T-Junction Microfluidic Device.

    Science.gov (United States)

    Elsayed, M; Kothandaraman, A; Edirisinghe, M; Huang, J

    2016-12-20

    In this work, a simple microfluidic junction with a T geometry and coarse (200 μm diameter) capillaries was used to generate monodisperse microbubbles with an alginate polymer shell. Subsequently, these bubbles were used to prepare porous alginate films with good control over the pore structure. The lack of pore size, shape, and surface control in scalable forming of polymeric films is a major application-limiting drawback at present. Controlling the thinning process of the shell of the bubbles to tune the surface of the resulting structures was also explored. Films were prepared with nanopatterned surfaces by controlling the thinning of the bubble shell, with the aid of surfactants, to induce efficient bursting (fragmentation) of bubbles to generate nanodroplets, which become embedded within the film surface. This novel feature greatly expands and enhances the use of hydrophilic polymers in a wide range of biomedical applications, particularly in drug delivery and tissue engineering, such as studying cellular responses to different morphological surfaces.

  17. Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor

    NARCIS (Netherlands)

    Gitis, V.; Beerthuis, R.; Shiju, N.R.; Rothenberg, G.

    2014-01-01

    We show that gold nanoparticles catalyse the oxidation of organosilanes using water as oxidant at ambient conditions. Remarkably, monodispersions of small gold particles (3.5 nm diameter) and large ones (6-18 nm diameter) give equally good conversion rates. This is important because separating large

  18. Colloidal suspensions hydrodynamic retention mechanisms in model porous media

    International Nuclear Information System (INIS)

    Salehi, N.

    1996-01-01

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs

  19. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  20. Synthesis and optoelectronic properties of a monodispersed macrocycle oligomer consisting of three triarylamine units

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qinggang, E-mail: gangq0172@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China); Qian, Haiyan, E-mail: qianhaiy@163.com [College of Material Science and Technology, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhou, Yonghui; Li, Jun; Xiao, Huining [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China)

    2012-08-15

    A monodispersed macrocyclic oligomer constructed by three triarylmine units ((TPAT){sub 3}) was designed and readily synthesized from the monomer of 3-(4 Prime -(phenyl(4 Double-Prime -methylphenyl)amino)-phenyl)pentan-3-ol (TPAT) by means of a simple Friedel-Crafts alkylation reaction. The structure of the resultant macrocycle was examined using FT-IR, NMR and MALDI-TOF mass spectroscopy. Compared with 1,10-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) and tri-p-tolylamine (TTA), (TPAT){sub 3} possesses the three-dimensional chair conformation and the higher T{sub g}. In the photoluminescence (PL) spectrum of (TPAT){sub 3} film, there are no excimer emission peaks in the range of 400-550 nm region as those of TAPC and TTA. Besides an EL peak at 386 nm, the single-layer device occured only the 438 nm excimer emission peak, whose intensity increased with the excitation voltage increase. Using 1,3,5-Tris(N-phenylbenzimidazol-2-yl)-benzene (TPBI) as the electron-transporting layer, the resulting double-layer device ITO/(TPAT){sub 3} (40 nm)/TPBI (40 nm)/Mg:Ag (10:1; 50 nm)/Ag (100 nm) only exhibited a 438 nm maximum symmetrical emission peak under an excitation voltage of 14 V. However, as the applied voltage was increased from 14 V to 19 V, the intensity of the symmetrical curve with a 468 nm peak from exciplex emission gets stronger and stronger. In fact, the resultant emission curve was asymmetrical, due to the overlap of two symmetrical curves with 438 nm and 468 nm peaks, respectively. The maximum luminance and luminous efficiency are 2240 cd m{sup -2} at 18.8 V and 1.73 cd A{sup -1} at 1878 cd m{sup -2} (13.9 V). Highlights: Black-Right-Pointing-Pointer The monodispersed macrocyclic oligomer constructed by three triarylamine units was synthesized and characterized. Black-Right-Pointing-Pointer The PL of (TPAT){sub 3} film does not emerge TAPC and TTA's emission peaks of over 400 nm region. Black-Right-Pointing-Pointer The 438 nm emission peak was found from

  1. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  2. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    Science.gov (United States)

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  3. Xenon fractionation in porous planetesimals

    Science.gov (United States)

    Zahnle, Kevin; Pollack, James B.; Kasting, James F.

    1990-01-01

    The distinctively fractionated Xe on Mars and earth may have its root in a common source from which both planets accreted. Beginning with Ozima and Nakazawa's (1980) hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals, it is pointed out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. It is shown that enough fractionated Xe to supply the earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and Martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, the present hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula.

  4. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    Science.gov (United States)

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  5. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device.

    Science.gov (United States)

    Yamashita, Hitoyoshi; Morita, Masamune; Sugiura, Haruka; Fujiwara, Kei; Onoe, Hiroaki; Takinoue, Masahiro

    2015-04-01

    We report an easy-to-use generation method of biologically compatible monodisperse water-in-oil microdroplets using a glass-capillary-based microfluidic device in a tabletop mini-centrifuge. This device does not require complicated microfabrication; furthermore, only a small sample volume is required in experiments. Therefore, we believe that this method will assist biochemical and cell-biological experiments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Mechanisms of Complete Turbulence Suppression in Turbidity Currents Driven by Mono-Disperse and Bi-Disperse Suspensions of Sediment

    Directory of Open Access Journals (Sweden)

    Mrugesh S. Shringarpure

    2014-09-01

    Full Text Available Turbidity currents are submarine flows where the sediment fluid mixture (heavy current drives along the sloping ocean floor displacing the surrounding clear fluid (light ambient. Under the influence of gravity, the suspended sediments drive the current and at the same time settle down on the ocean bed. The interplay of turbulent mixing and settling sediments leads to stable stratification of sediments in the turbidity current. In previous studies (Cantero et al. 2009b; Cantero et al., 2009a; Cantero et al., 2012a; Talling et al., 2007 it was observed that strong settling tendency (large sediment sizes could cause complete turbulence suppression. In this study, we will analyse this process of complete turbulence suppression by means of direct numerical simulations (DNS of turbidity currents. In wall bounded unstratified flows, it has been long established that turbulence is sustained by the process of auto-generation of near-wall hairpin like and quasi-streamwise turbulent vortical structures. It was also identified that auto-generation is possible only when the strength of the turbulent structures is greater than a threshold value (Zhou et. al., 1996. Through quadrant analysis of Reynolds stress events and visualization of turbulent vortical structures, we observe that stratification by sediments lead to damping and spatial re-distribution of turbulent vortical structures in the flow. We propose that complete turbulence suppression is brought about by a total shutdown in the auto-generation process of the existing turbulent structures in the flow. We also identify three parameters – Reynolds number (Reτ, Richardson number (Riτ and sediment settling velocity (V˜z that quantify the process of turbulence suppression. A criterion for complete turbulence suppression is also proposed which can be defined as a critical value for RiτV˜z. This critical value is a function of Ret and based on simulations, experiments and field observations it

  7. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    Science.gov (United States)

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with

  8. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    Science.gov (United States)

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  9. Production of monodisperse respirable aerosols of 241AmO2 and evaluation of in vitro dissolution

    International Nuclear Information System (INIS)

    Boyd, H.A.; Raabe, O.G.; Peterson, P.K.

    1974-01-01

    A method is described for production of monodisperse (sigma//sub g/ less than 1.2) particles of 241 AmO 2 for use in inhalation experiments with dogs and rodents. The effects of physical and chemical factors on the production of polydisperse aerosols of 241 AmO 2 were studied and evaluated. The best aerosol was achieved when a suspension of americium hydroxide with 2.5 mg Am/ml at pH = 7.3 was aerosolized and passed through two heating columns in succession, the first at 300 0 C and the second at 1050 0 C. The particles were roughly spherical and had densities near 8 gm/cm 3 ; the aerosol AMAD and sigma/sub g/ were about 1.5 μm and 1.7, respectively. Monodisperse particles were separated and collected with the Lovelace Aerosol Particle Separator (LAPS) and subsequently suspended in deionized water with pH adjusted to 10.2 with NH 3 for nebulization to produce monodisperse aerosols for inhalation exposures. Particles collected on filters during inhalation experiments were used for evaluation of in vitro dissolution rates with two systems and various forms of a lung fluid simulant. The important role of phosphate ions in such dissolution systems was demonstrated, suggesting the potential for the equally important role of free phosphate in retarding dissolution of AmO 2 particles in the lung. (U.S.)

  10. Synthesis, characterization and magnetic properties of highly monodispersed PtNi nanoparticles

    International Nuclear Information System (INIS)

    Du, Juan-Juan; Yang, Yi; Zhang, Rong-Hua; Zhou, Xin-Wen

    2015-01-01

    In this paper, we report the controlled-synthesis of PtNi nanoparticles through galvanic displacement reaction and chemical reduction. The size, composition and morphology of the products are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), energy dispersed X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses. The structure and composition of the PtNi nanoparticles can be controlled by adjusting the synthetic conditions. The possible formation mechanism is obtained from the academic analysis and experimental studies. The results of the magnetic measurement illustrate that the PtNi nanoparticles show a superparamagnetic behavior with a blocking temperature (T B ) about 8.0 K. - Highlights: • Highly monodispersed PtNi nanoparticles were synthesized by galvanic displacement reaction. • The formation of Pt nanocrystals was the foremost step because of its self-catalysis effect. • The PtNi nanoparticles show a superparamagnetic behavior with a T B about 8.0 K

  11. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  12. Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2009-01-01

    Full Text Available Abstract Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM of PL (26 nm. Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.% of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585 was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm and high QY of PL (35–55%.

  13. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar; Li, Erqiang; Alfadhel, Ahmed; Zaher, A.; Kavaldzhiev, Mincho; Thoroddsen, Sigurdur T; Kosel, Jü rgen

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  14. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  15. Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life

    Science.gov (United States)

    Tang, Yongfu; Liu, Yanyan; Yu, Shengxue; Mu, Shichun; Xiao, Shaohua; Zhao, Yufeng; Gao, Faming

    2014-06-01

    A facile hydrothermal process with hexadecyltrimethyl ammonium bromide (CTAB) as the soft template is proposed to tune the morphology and size of cobalt hydroxide (Co(OH)2). Monodisperse β-phase Co(OH)2 nanowires with uniform size are obtained by controlling the CTAB content and the reaction time. Due to the uniform well-defined morphology and stable structure, the Co(OH)2 nanowires material exhibits high capacitive performance and long cycle life. The specific capacitance of the Co(OH)2 nanowires electrode is 358 F g-1 at 0.5 A g-1, and even 325 F g-1 at 10 A g-1. The specific capacitance retention is 86.3% after 5000 charge-discharge cycles at 2 A g-1. Moreover, the asymmetric supercapacitor is assembled with Co(OH)2 nanowires and nitrite acid treated activated carbon (NTAC), which shows an energy density of 13.6 Wh kg-1 at the power density of 153 W kg-1 under a high voltage of 1.6 V, and 13.1 Wh kg-1 even at the power density of 1.88 kW kg-1.

  16. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  17. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    Science.gov (United States)

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  18. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    Directory of Open Access Journals (Sweden)

    O. Yassine

    2016-01-01

    Full Text Available Responsive microgel poly(N-isopropylacrylamide or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.. In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µm at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  19. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica.

    Science.gov (United States)

    Malgras, Victor; Tominaka, Satoshi; Ryan, James W; Henzie, Joel; Takei, Toshiaki; Ohara, Koji; Yamauchi, Yusuke

    2016-10-13

    Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH 3 NH 3 PbBr x I x-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH 3 NH 3 PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

  20. Dosimetry of 239Pu in dogs that inhaled monodisperse aerosols of 239PuO2

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Muggenburg, B.A.; Hahn, F.F.; Mewhinney, J.A.; Seiler, F.A.; Boecker, B.B.; McClellan, R.O.

    1987-01-01

    Existing data from human exposure cases and experimental animal studies on the fate and dosimetry of inhaled insoluble Pu particles are inadequate to provide a comprehensive description and evaluation of the tissues at risk from the alpha radiations of Pu. To improve our knowledge of the dosimetry of inhaled insoluble 239 PuO 2 , this paper describes the uptake and retention of 239 Pu in the tissues of dogs that received single inhalation exposures to monodisperse aerosols of 239 PuO 2 . These data include times through 3 years after exposure. Using analytical functions fitted to each tissue data set, 1100-day radiation doses were calculated for lung, liver, skeleton, kidney, spleen, and tracheobronchial, mediastinal, sternal, hepatic, mandibular, and retropharyngeal lymph nodes. The dosimetry results suggest that the lung and lymph nodes associated with lymphatic drainage of the respiratory tract are the principal sites of alpha irradiation. However, the doses for the different respiratory tract lymph nodes vary by a factor of 2000, suggesting that assuming equivalent doses to respiratory tract lymph nodes is not appropriate. Other tissues receive radiation doses also but at levels one to three orders of magnitude less than the lung. Particle size dependence on uptake and retention was noted for the skeleton, mediastinal lymph nodes, hepatic lymph nodes, retropharyngeal lymph nodes, and mandibular lymph nodes

  1. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.

    Science.gov (United States)

    Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan

    2014-07-21

    This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.

  2. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  3. Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Vasiljevic, Branka; Stamenkovic, Vojislav R.; Senerovic, Lidija

    2014-01-01

    Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changed the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.

  4. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling

    International Nuclear Information System (INIS)

    Tan Mingqian; Wang Guilan; Ye Zhiqiang; Yuan Jingli

    2006-01-01

    Inorganic-organic hybrid titania-based nanoparticles covalently bound to a fluorescent Eu 3+ chelate of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl) chlorosulfo-o-terphenyl (BHHCT-Eu 3+ ) were synthesized by a sol-gel technique. A conjugate of BHHCT with 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (APTS) was used as a precursor for the nanoparticle preparation and monodisperse nanoparticles consisting of titania network and silica sub-network covalently bound to the Eu 3+ chelate were prepared by the copolymerization of APTS-BHHCT conjugate, titanium tetraisopropoxide (TTIP) and free APTS in EuCl 3 water-alcohol solution. The effects of reaction conditions on size and fluorescence lifetime of the nanoparticles were investigated. The characterizations by transmission electron microscopy and fluorometric methods indicate that the nanoparticles are near spherical and strongly fluorescent having a fluorescence quantum yield of 11.6% and a long fluorescence lifetime of ∼0.4 ms. The direct-introduced amino groups on the nanoparticle's surface by using free APTS in nanoparticle preparation facilitated the biolabeling process of the nanoparticles. The nanoparticle-labeled streptavidin (SA) was prepared and used in a sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) by using a 96-well microtiter plate as the solid phase carrier. The method gives a detection limit of 66 pg/ml for the PSA assay

  5. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  6. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    Science.gov (United States)

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  7. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    Science.gov (United States)

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  8. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  9. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  10. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  11. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  12. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  13. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  14. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Kumar, Pankaj [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Singh, Vaishali [University School of Basic and Applied Science (India); Kumar Mandal, Uttam [University of Chemical Technology, GGS Indraprastha University, Sector 16, Dwarka, Delhi 110403 (India); Kumar Kotnala, Ravinder [National Physical laboratory, New Delhi 110012 (India)

    2015-04-01

    Synthesization of monodisperse Ni, Zn-ferrite (Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}, x=1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0) nanocrystals has been achieved by the inverse microemulsion method using CTAB as surfactant and kerosene as an oil phase. The detailed characterization of the synthesized nanocrystals and measurement of the magnetic properties has been done by techniques like X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infrared spectroscopy (FITR) and Vibrating Sample Magnetometer (VSM) respectively. The relationship between the structure and composition of the nanocrystals with magnetic properties has been investigated. The nanocrystals size is found to be in the range 1–5 nm. The effect of Zn substitution on size and magnetic properties has been studied. It has been observed that magnetism changed from ferromagnetic at X= 0 to super paramagnetic to paramagnetic at X=1 as Zn concentration increased. The Curie temperature is found to decrease with an increase in Zn concentration. - Highlights: • Reverse microemulsion route is very facile route for synthesis of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrite. • Presence of Zn changes the structural and magnetic properties of the Zn substituted NiFe{sub 2}O{sub 4.} • The lattice constant increases with the increase in Zn substitution. • The curie temperature decreases with Zn concentration appreciably. • Magnetic behavior varies from ferromagnetic at x=0 to superparamagnetic to paramagnetic at x=1.

  15. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  16. Ambiguity assessment of small-angle scattering curves from monodisperse systems.

    Science.gov (United States)

    Petoukhov, Maxim V; Svergun, Dmitri I

    2015-05-01

    A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.

  17. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  18. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    International Nuclear Information System (INIS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-01-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag + (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO 3 ) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO 3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH 2 , −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  19. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  20. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate

  1. Vibrational modes of porous silicon

    International Nuclear Information System (INIS)

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  2. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  3. Positronium chemistry in porous materials

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Ito, K.; Oka, T.; Hirata, K.

    2007-01-01

    Porous materials have fascinated positron and positronium chemists for over decades. In the early 1970s it was already known that ortho-positronium (o-Ps) exhibits characteristic long lifetimes in silica gels, porous glass and zeolites. Since then, our understanding of Ps formation, diffusion and annihilation has been drastically deepened. Ps is now well recognized as a powerful porosimetric and chemical probe to study the average pore size, pore size distribution, pore connectivity and surface properties of various porous materials including thin films. In this paper, developments of Ps chemistry in porous materials undertaken in the past some 40 yr are surveyed and problems to be addressed in future are briefly discussed

  4. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  5. Upscaling of flow in porous media from a tracer perspective

    NARCIS (Netherlands)

    Berentsen, C.W.J.

    2003-01-01

    Most of our knowledge of flow in porous media is obtained at the pore and the macro scale. For reservoir scale modelling it is not practical to model the flow at these fine scales. Considering the usual objectives (e.g. large scale flow pattern and production forecast) it is undesirable to have to

  6. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets

    Science.gov (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin

    2018-02-01

    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  7. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  8. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2015-01-01

    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation....... The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static...... mixers, but in porous media....

  9. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  10. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    Science.gov (United States)

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  11. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  12. Significant room-temperature ferromagnetism in porous ZnO films: The role of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Porous ZnO films were deposited on porous anodic alumina substrates. • Significant ferromagnetism (FM) has been observed in porous ZnO films (110 emu/cm{sup 3}). • The strong magnetic anisotropy was observed in the porous ZnO films. • The origin of FM is attributed to the oxygen vacancy with a local magnetic moment. - Abstract: Pure porous ZnO films were prepared by direct current reactive magnetron sputtering on porous anodic alumina substrates. Remarkably large room-temperature ferromagnetism was observed in the films. The highest saturation moment along the out-of-plane direction was about 110 emu/cm{sup 3}. Experimental and theoretical results suggested that the oxygen vacancies and the unique porous structure of the films are responsible for the large ferromagnetism. There are two modes of coupling between oxygen vacancies in the porous ZnO films: (i) exchange interactions directly between the oxygen vacancies and (ii) with the mediation of conduction electrons. In addition, it was found that the magnetic moment of ZnO films can be changed by tuning the concentration of oxygen vacancies. These observations may be useful in the development of ZnO-based spintronics devices.

  13. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  14. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A. Martin [Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu (India); Kumar, R. Thilak, E-mail: manojthilak@yahoo.com [Periyar Arts College, Cuddalore-607001, Tamilnadu (India)

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37 eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).

  15. Pressure Sensitive Device Using Conductive and Porous Structures

    International Nuclear Information System (INIS)

    So, Hye-Mi; Chang, Won Seok; Park, Cheolmin

    2014-01-01

    Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple “dipping and drying” process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < 30 kΩ/sq. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance

  16. Pressure Sensitive Device Using Conductive and Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi; Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Park, Cheolmin [University of Science and Technology, Daejeon (Korea, Republic of)

    2014-07-15

    Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple “dipping and drying” process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < 30 kΩ/sq. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.

  17. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  18. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  19. a Fractal Network Model for Fractured Porous Media

    Science.gov (United States)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  20. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  1. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    Science.gov (United States)

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  2. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  3. Radiative properties effects on unsteady natural convection inside a saturated porous medium. Application for porous heat exchangers

    International Nuclear Information System (INIS)

    Abdesslem, Jbara; Khalifa, Slimi; Abdelaziz, Nasr; Abdallah, Mhimid

    2013-01-01

    The present article deals with a numerical study of coupled fluid flow and heat transfer by transient natural convection and thermal radiation in a porous bed confined between two-vertical hot plates and saturated by a homogeneous and isotropic fluid phase. The main objective is to study the effects of radiative properties on fluid flow and heat transfer behavior inside the porous material. The numerical results show that the temperature, the axial velocity, the volumetric flow rate and the convective heat flux exchanged at the channel's exit are found to be increased when the particle emissivity (ε) and/or the absorption coefficient (κ) increase or when the scattering coefficient (σ s ) and/or the single scattering albedo (ω) decrease. Furthermore, the amount of heat (Q c ) transferred to fluid and the energetic efficiency E c are found to be increased when there is a raise in the particle emissivity values. In order to improve the performance of heat exchanger, we proposed the model of a porous heat exchanger which includes a porous bed of large spherical particles with high emissivity as a practical application of the current study. - Highlights: • The temperature increases with the particle emissivity ε. • The volumetric flow rate and the convective heat flux exchanged increase with the particle emissivity ε. • The amount of heat transferred to fluid and the energetic efficiency increase with the particle emissivity ε. • A heat exchanger including a porous bed of spherical particles with high emissivity is proposed like a practical application

  4. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  5. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    Science.gov (United States)

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2011-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak T M 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  7. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  8. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Science.gov (United States)

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Arvind [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India); Singh, Vidya Nand; Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016 (India); Khare, Sunil Kumar, E-mail: skhare@rocketmail.com [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

    2011-08-30

    Highlights: {yields} An efficient process wherein remediated manganese is synthesized into nanoparticles. {yields} A microbial process for manganese nanoparticle synthesis from metal waste streams. {yields} Nanoparticles characterized as monodispersed, spherical and 4.62 {+-} 0.14 nm sized MnO{sub 2}. -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 {+-} 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  10. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Self-charging of 198Au-labeled monodisperse gold aerosols studied with a miniature electrical mobility spectrometer

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Raabe, O.G.; Boor, D.R.

    1976-01-01

    Knowledge of the electrostatic character of an aerosol may be essential in assessing its potential inhalation hazard. In inhalation studies with radioactive aerosols, the aerosol charge state may change in the course of transport due to the emission of α, β or γ radiations. This paper describes an experimental study of the self-charging of 198 Au-labeled aerosols of monodisperse gold spheres by β emission. A miniature aerosol electrical mobility spectrometer, suitable for use in inhalation studies with radioactive aerosols, was developed and used in this study. This device is relatively inexpensive, easy to manufacture and its contamination by radioactive material has been minimized. Using polystyrene latex spheres, ranging in diameter from 0.176 to 1.18 μm, the spectrometer was calibrated with flow rates ranging from 400 to 4800 ml/min. Experiments with two sizes of 198 Au-labeled monodisperse gold aerosols were performed. Results indicate that the radioactivity of an aerosol can cause self-charging and affect the charge distribution. (author)

  12. Controllable synthesis and upconversion emission of ultrasmall near-monodisperse lanthanide-doped Sr2LaF7 nanocrystals

    International Nuclear Information System (INIS)

    Mao, Yifu; Ma, Mo; Gong, Lunjun; Xu, Changfu; Ren, Guozhong; Yang, Qibin

    2014-01-01

    Highlights: • Apropos NaOH content facilitates the growth of pure phase Sr 2 LaF 7 NCs. • Yb 3+ doping is favorable to the formation of Sr 2 LaF 7 NCs with uniform size. • Ultrasmall near-monodispersed Sr 2 LaF 7 NCs(sub-10 nm) were synthesized for the first time. • Intense multicolor upconversion can be obtained by properly lanthanide doping. - Abstract: Fluorite phase Sr 2 LaF 7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of preparing conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were studied. The results reveal that just apropos NaOH content facilitates the growth of near-monodispersed pure phase Sr 2 LaF 7 NCs, and Yb 3+ doping is favorable to the formation of pure Sr 2 LaF 7 phase with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. Following appropriate lanthanide ions doping, the NCs show intense blue, yellow, and white-color UC emission under the excitation of a 980 nm laser. The energy transfer UC mechanisms for the fluorescent intensity were also investigated

  13. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    International Nuclear Information System (INIS)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-01-01

    Highlights: → An efficient process wherein remediated manganese is synthesized into nanoparticles. → A microbial process for manganese nanoparticle synthesis from metal waste streams. → Nanoparticles characterized as monodispersed, spherical and 4.62 ± 0.14 nm sized MnO 2 . -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 ± 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  14. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite (INRS), Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette (France); Thomas, Dominique, E-mail: sebastien.bau@inrs.fr [Laboratoire Reactions et Genie des Procedes (LRGP), groupe SAFE, 1 rue Grandville, BP 20041, 54001 Nancy Cedex (France)

    2011-07-06

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak{sup TM} 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  15. Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers

    DEFF Research Database (Denmark)

    Teva, Jordi; Davis, Zachary James; Hansen, Ole

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5-1 mm3) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases...... where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing...... for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH...

  16. Micromechanical analysis of porous SMA

    International Nuclear Information System (INIS)

    Sepe, V; Marfia, S; Sacco, E; Auricchio, F

    2015-01-01

    The present paper deals with computational micromechanical analyses of porous shape memory alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix including voids. A three-dimensional constitutive law is presented for the dense SMA able to reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for the different elastic properties of the austenite and martensite phases. Furthermore, a numerical procedure is developed and the overall behavior of the porous SMA is recovered studying a representative volume element. Comparisons between the numerical results, recovered using the proposed modeling, and experimental data available in the literature are presented. The case of closed and open porosity is investigated. Parametric studies have been conducted in order to investigate the influence of the porosity, the shape and orientation of the pores on the overall mechanical response and, mainly, on the energy absorption dissipation capability. (paper)

  17. Metrology of nanosize biopowders using porous silicon surface

    International Nuclear Information System (INIS)

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  18. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  19. Process of preparing tritiated porous silicon

    Science.gov (United States)

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  20. Porous silicon: X-rays sensitivity

    International Nuclear Information System (INIS)

    Gerstenmayer, J.L.; Vibert, Patrick; Mercier, Patrick; Rayer, Claude; Hyvernage, Michel; Herino, Roland; Bsiesy, Ahmad

    1994-01-01

    We demonstrate that high porosity anodically porous silicon is radioluminescent. Interests of this study are double. Firstly: is the construction of porous silicon X-rays detectors (imagers) possible? Secondly: is it necessary to protect silicon porous based optoelectronic systems from ionising radiations effects (spatial environment)? ((orig.))

  1. Crystallisation and structural studies of monodisperse nylon oligomers and related polymers

    International Nuclear Information System (INIS)

    Sikorski, P.T.

    2001-11-01

    Using electron and X-ray diffraction data, together with computerised molecular modeling, the structures of monodisperse nylon oligomers and related polymers have been investigated. Structural changes on heating were also studied. The molecules were crystallised from solution and their morphologies examined using optical and transmission electron microscopy. Lath-like lamellar crystals of the polyester poly-β-propiolactone were crystallised isothermally. The interpretation of the diffraction data with the use of molecular modeling led to the discovery of the new crystalline structure, the γ-structure. In the γ-structure, the polyester chain is in an all-trans conformation and the structure consists of a two-chain, basal-faced, orthorhombic unit cell. The setting angles, with respect to the a axis, are ± 51.5 deg for the corner and centre chains, respectively. The lamellae are 5 nm in thickness and the chains run orthogonal to the lamellar surface. The general fold direction is along the a-axis (long axis of the crystal) and the chain folds successively in the [110] and [11-bar0] directions. Three different nylon 4 6 oligomers were crystallised from solution using a range of crystallisation methods. The 4- and 8-amide molecules were found to form three-dimensional crystals, in which the crystal thickness was much greater than the molecular length. The structure was found to be different from the nylon 4 6 polymer reported previously. It was found that the type of hydrogen-bonded sheet formed by these molecules can influence the way in which these sheets stack to form crystals. In addition, a study of the 9-amide molecule showed that a particular type of hydrogen-bonded sheet, a-sheet, is preferred for nylon 4 6. This discovery suggests that an amide unit is found in the fold in the chain-folded nylon 4 6 polymer crystals, to allow the a-sheets to be formed. It is not a consequence of a need to form a stress-free fold. In the regular adjacent re-entry chain

  2. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  3. Porous squeeze-film flow

    KAUST Repository

    Knox, D. J.; Wilson, S. K.; Duffy, B. R.; McKee, S.

    2013-01-01

    surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch

  4. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1999-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...

  5. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  6. Porous Concrete and Its Application

    Directory of Open Access Journals (Sweden)

    V. V. Opekunov

    2005-01-01

    Full Text Available Some aspects of resource saving problem in the process of mass construction and operation of heated construction installations are considered in the paper. A special attention is paid to necessary application of porous concrete products in the process of the housing construction. The preference is given to the products made of autoclave cellular concrete and cement hydrophobisized cement perlite concrete.

  7. Constitutive model for porous materials

    International Nuclear Information System (INIS)

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments

  8. Additively manufactured porous tantalum implants

    NARCIS (Netherlands)

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of

  9. Toxicity of inhaled 238PuO2 in Beagle dogs: A. Monodisperse 1.5 μm AMAD particles. B. Monodisperse 3.0 μm particles. XV

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Gillett, N.A.; Muggenburg, B.A.; Hahn, F.F.; Diel, J.H.; Mauderly, J.L.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs inhaled one of two sizes of monodisperse aerosols of 238 PuO 2 that resulted in graded levels of 238 Pu in the lung. All dogs are being studied for their life span. One hundred and thirty-seven dogs that had initial lung burdens ranging from 0.01 to 1.5 μCi 238 Pu/kg body weight (0.37 to 56 kBq/kg) have died, 8 with radiation pneumonitis and pulmonary fibrosis, 8 with lung tumors, 88 with bone tumors, 10 with liver tumors, and 25 of miscellaneous causes. Eighteen control dogs have died. Observations are being continued on 8 exposed and 6 control dogs alive at 4577-5274 days after exposure. (author)

  10. Toxicity of inhaled {sup 238}PuO{sub 2} in Beagle dogs: A. Monodisperse 1.5 {mu}m AMAD particles. B. Monodisperse 3.0 {mu}m particles. XV

    Energy Technology Data Exchange (ETDEWEB)

    Mewhinney, J A; Gillett, N A; Muggenburg, B A; Hahn, F F; Diel, J H; Mauderly, J L; Boecker, B B; McClellan, R O

    1988-12-01

    Beagle dogs inhaled one of two sizes of monodisperse aerosols of {sup 238}PuO{sub 2} that resulted in graded levels of {sup 238}Pu in the lung. All dogs are being studied for their life span. One hundred and thirty-seven dogs that had initial lung burdens ranging from 0.01 to 1.5 {mu}Ci {sup 238}Pu/kg body weight (0.37 to 56 kBq/kg) have died, 8 with radiation pneumonitis and pulmonary fibrosis, 8 with lung tumors, 88 with bone tumors, 10 with liver tumors, and 25 of miscellaneous causes. Eighteen control dogs have died. Observations are being continued on 8 exposed and 6 control dogs alive at 4577-5274 days after exposure. (author)

  11. Écoulement polyphasique dans un milieu poreux stratifié. Résultats expérimentaux et interprétation par la méthode de prise de moyenne à grande échelle Multiphase Flow in Stratified Porous Media Experimental Results and Interpretation by the Large-Scale Averaging Method

    Directory of Open Access Journals (Sweden)

    Bertin H.

    2006-11-01

    Full Text Available Nous abordons l'étude des écoulements polyphasiques en milieu poreux hétérogène d'un point de vue théorique (méthodologie de la prise de moyenne à grande échelle et expérimental. Dans une première partie nous présentons la méthodologie permettant d'obtenir les équations à grande échelle. Le point de départ de l'étude est les équations locales, analogues aux équations de Darcy généralisées obtenues par prise de moyenne des équations de Stokes à l'échelle du pore. La prise de moyenne à grande échelle de ces équations permet d'écrire un système d'équations où les coefficients de transport équivalents sont calculés à partir des données locales, par la résolution d'un problème de fermeture explicité dans le cas quasi-statique (effets capillaires dominants. La seconde partie de notre travail concerne l'étude expérimentale d'un écoulement eau-huile dans un milieu poreux stratifié constitué de deux régions de caractéristiques physiques différentes. Les champs de saturation bidimensionnels sont mesurés tout au long de l'imbibition par absorption d'un rayonnement gamma. Les résultats expérimentaux, évolution de la fraction volumique moyenne par section en fonction du temps, sont comparés aux résultats d'une simulation numérique des équations de transport où les coefficients utilisés ont été déterminés par la méthode de prise de moyenne à grande échelle. Two-phase flow in heterogeneous porous media is studied from a theoretical point of view (the large-scale averaging method and experimentally. In the first part, we present the methodology leading to the large-scale equations. The starting point of the study is the local equation, analogous to the generalized Darcy's law obtained by averaging the Stokes equation at the pore level. The large-scale averaging of these equations leads to a system where the equivalent transport coefficients are computed from the local data by solving a closure

  12. Influence of the vibration source location on the modes of jet disintegration in the priller and on monodispersity of the finished product

    OpenAIRE

    Skydanenko, Maksym; Kononenko, Mykola; Kurdes, Yuliia

    2017-01-01

    Influence of the vibration source location on the modes of liquid jets disintegration and obtaining monodisperse droplets and granules of the finished product is theoretically grounded and experimentally confirmed. The experiment was conducted on an experimental stand of industrial granulation equipment.

  13. Monodisperse Water-in-Oil-in-Water (W/O/W Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2013-12-01

    Full Text Available Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.

  14. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  15. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  16. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  17. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  18. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  19. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

    International Nuclear Information System (INIS)

    Koebel, Matthias M.; Jones, Louis C.; Somorjai, Gabor A.

    2008-01-01

    We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 o C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  20. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  1. Direct electron transfer of Cytochrome c at mono-dispersed and negatively charged perylene-graphene matrix.

    Science.gov (United States)

    Zhang, Nan; Lv, Xiangyu; Ma, Weiguang; Hu, Yuwei; Li, Fenghua; Han, Dongxue; Niu, Li

    2013-03-30

    Mono-dispersed 3,4,9,10-perylene tetracarboxylic acid (PTCA) functionalized graphene sheets (PTCA-graphene) were fabricated by a chemical route and dispersed well in aqueous solution. PTCA-graphene with plenty of -COOH groups as electrostatic absorbing sites were beneficial to the loading of Cytochrome c (Cyt c). Cyt c, which was tightly immobilized on the PTCA-graphene modified glassy carbon electrode, maintained its natural conformation. Direct electron transfer of Cyt c and the electro-catalytic activity towards the reduction of H2O2 were also achieved. It has been substantiated that PTCA-graphene is a preferable biocompatible matrix for Cyt c. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    Science.gov (United States)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  3. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization.

    Science.gov (United States)

    Tuttolomondo, Maria Victoria; Villanueva, Maria Emilia; Alvarez, Gisela Solange; Desimone, Martín Federico; Díaz, Luis Eduardo

    2013-10-01

    The synthesis of monodispersed magnetic silica nanoparticles (MSN) is described using a water-in-oil reverse microemulsion system that does not require the use of co-surfactants. Sodium silicate, Tween 20 as a neutral surfactant and 1-butanol as the organic phase were used. There are several advantages of the proposed method including a saturation magnetization value of 10 emu/g for the particles obtained, uniformity of size and that they are easily functionalized to bind urease covalently. Moreover, the intra-day, inter-day and long-term stability results confirm that the procedure was successful and the enzyme-linked MSNs were stable over repeated uses and storage retaining more than 75% activity after 4 months.

  4. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  5. Upscaling of Constitutive Relations In Unsaturated Heterogeneous Porous Media

    International Nuclear Information System (INIS)

    Liu, H. H.; Bodvarsson, G. S.

    2001-01-01

    When numerical model are used for modeling field scale flow and transport processes in the subsurface, the problem of ''upscaling'' arises. Typical scales, corresponding to spatial resolutions of subsurface heterogeneity in numerical models, are generally much larger than the measurement scale of the parameters and physical processes involved. The upscaling problems is, then, one of assigning parameters to gridblock scale based on parameter values measured on small scales. The focus of this study is to develop an approach to determine large-scale (upscaled) constitutive relations (relationships among relative permeability, capillary pressure and saturation) from small-scale measurements for porous media for a range of air entry values that are typical for the tuff matrix in the unsaturated zone of Yucca Mountain. For porous media with large air entry values, capillary forces play a key role in determining spatial water distribution at large-scales. Therefore, a relatively uniform capillary pressure approximately exists even for a large gridblock scale under steady state flow conditions. Based on these reasoning, we developed formulations that relate upscaled constitutive relations to ones measured at core-scale. Numerical experiments with stochastically generated heterogeneous porous media were used to evaluate the upscaling formulations

  6. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  7. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  8. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  9. Engineering evaluation of porous-dike intake screening systems

    International Nuclear Information System (INIS)

    Roberge, J.C.

    1978-01-01

    As one of many concepts currently under investigation for use in screening fish and larvae from power plant intakes, the porous-dike system presents unique challenges to the designer and constructor. A complete understanding of the hydraulic losses through such a structure is necessary to properly size and locate the intake and to ensure proper pump selection and performance. In the study described in this report, an analogy with frictional losses in conduits was employed, and empirical data on losses were determined for three sizes of filter stone typical of the types used in the construction of a porous-dike intake system. These empirical data were compared with additional information from the literature. The dependence of hydraulic losses through large-diameter media on stone shape and porosity were demonstrated although no empirical expression of this dependence was developed. A hypothetical porous-dike intake installation was developed, demonstrating the fundamental design considerations which must be made for such a structure. Finally, a cursory economic comparison of various intake screening systems demonstrated that the porous-dike intake concept was economically competitive with all others

  10. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    Science.gov (United States)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  11. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    Science.gov (United States)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  12. Wavelength tuning of porous silicon microcavities

    International Nuclear Information System (INIS)

    Mulders, J.; Reece, P.; Zheng, W.H.; Lerondel, G.; Sun, B.; Gal, M.

    2002-01-01

    Full text: In the last decade much attention has been given to porous silicon (PS) for optoelectronic applications, which include efficient room temperature light emission as well as microcavity formation. Due to the large specific surface area, the use of porous silicon microcavities (PSMs) has been proposed for chemical sensing. Large wavelength shifts have indicated that the optical properties of PSMs are indeed strongly dependent on the environment. In this paper, we report the shifting of the resonance frequency of high quality PSMs, with the aim of tuning a future PS device to a certain required wavelength. The PSM samples were prepared by anodically etching p + -doped (5mΩcm) bulk silicon wafer in a solution (25%) of aqueous HF and ethanol. The device structure consisted of a PS layer sandwiched between 2 stacks of thin PS layers with alternating high and low effective refractive indices (RI), i.e. distributed Bragg mirrors (DBM). The layer thickness depends on the etch time while the porosity and hence refractive index is determined by the current density as the Si is etched. The position and the width of the stop-band can be fully controlled by the design of the DBMs, with the microcavity resonance mode sitting within the stop-band. We achieved tuning of the microcavity resonance by a number of methods, including temperature dependent tuning. The temperature induced wavelength shift was found to be of the order of 10 -15 nm. Computer modeling of these changes in the reflectivity spectra allowed us to quantify the changes of the effective refractive index and the respective layer thicknesses

  13. Flow in porous media under the influence of thermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bories, S; Thirriot, C

    1970-01-01

    Fluid flow in porous media, including natural convection caused by temperature fields, is of particular importance in the exploitation of petroleum deposits. Laboratory experiments with a horizontal Hele-Shaw model in which the convection currents can be visually observed, are reported. The main observations are concerned with fairly stable flow regime cells and the velocity distribution. Photos of the flow, and graphs of the temperature distribution measured by interferometric methods, are given. The essential elements observed are well-represented by a simplified theory; at large Reynolds numbers, large temperature gradients have been observed in the vicinity of the isothermal boundaries. The temperature distribution can be expressed by a dimensionless law, and it seems possible to generalize the observations from the Hele-Shaw model to flow in porous media.

  14. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  15. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  16. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  17. Microwave absorption enhancement, magnetic coupling and ab initio electronic structure of monodispersed (Mn1-xCox)3O4 nanoparticles

    Science.gov (United States)

    Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao

    2013-08-01

    100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials. Electronic supplementary information (ESI) available: Fig. S1. A digital photo showing the large-scale synthesis of our monodispersed (Mn1-xCox)3O4 Fig. S2. Microwave absorption measurements; Fig. S3. Schematic diagram of the microwave absorption mechanism of the (Mn1-xCox)3O4. See DOI: 10.1039/c3nr02287k

  18. Geometry and topology of porous materials

    International Nuclear Information System (INIS)

    Cohen, M.H.

    1985-01-01

    A very general definition of porous materials is given. The method of Lin and Cohen for the simple but exact description of the topology of porous materials is reviewed. The method leads to a precise definition of chambers, channels, and throats in the pore space. The power and utility of the method is illustrated via a discussion of the remarkable morphological features of porous rocks. These are enumerated and explained

  19. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  20. A study of positron irradiated porous silicon

    International Nuclear Information System (INIS)

    Huang Yuanming; Xue Qing; Zhai Baogai; Xu Aijun; Liu Shewen; Yu Weizhong

    1998-01-01

    The effect of positron irradiation on photoluminescence (PL) of porous silicon has been studied. After four hour positron irradiation, the red PL spectrum of porous silicon blue shifts into greenish spectral region, and a higher energy luminescence band is introduced into this blueshifted spectrum. The fourier transform infrared absorption experiment shows that the positron irradiation can cause further oxidization of porous silicon. A possible mechanism causing this change of PL spectra after positron irradiation is suggested

  1. Film condensation on a porous vertical surface in a porous media

    International Nuclear Information System (INIS)

    Ebinuma, C.D.; Liu, C.Y.; Ismail, K.A.R.

    1983-01-01

    The problem of dry saturated steam film condensation by natural convection on a porous surface in a porous medium is presented. Through the classical Darcy law for flow in porous medium and the approximations considered in the Boundary layer theory, it is shown that the analytical solution exists only when the normal velocity to the porous wall is inversly proportional to the square root of the distance along the plate. (E.G.) [pt

  2. Toxicity of inhaled 238PuO2 in beagle dogs. A. Monodisperse 1.5 μm 238PuO2. B. Monodisperse 3.0 μm 238PuO2 particles. III

    International Nuclear Information System (INIS)

    Lustgarten, C.S.; Mewhinney, J.A.; Hobbs, C.H.; Halliwell, W.H.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Mo, T.; Pickrell, J.A.

    1976-01-01

    To obtain essential information on the importance of the homogeneity or non-homogeneity of the radiation dose to lung (the hot particle question), Beagle dogs have been exposed to monodisperse aerosols (sigma/sub g/ 238 PuO 2 of either 1.5 μm or 3.0 μm aerodynamic diameter (AD). By using monodisperse particles of these two sizes, the average dose to lung is held constant for a given initial lung burden, but the local alpha dose around the two sizes of particles varies by a factor of about ten. All exposures have been completed with 72 days exposed to each of the two particle sizes of 238 PuO 2 (total of 144 dogs) resulting in graded initial lung burdens which range from .005 to 2.2 μCi/kg of body weight. Twenty-four dogs exposed to the diluent aerosol are serving as controls. The animals will be studied over their total life span. Two exposed dogs have died from pulmonary injury: Dog 710C (with an initial lung burden of 2.0 μCi/kg) died at 631 days after inhalation of 3.0 μm AD aerosol. The cause of death was radiation pneumonitis and pulmonary fibrosis, Dog 746B (with an initial lung burden of 1.3 μCi/kg) died at 791 days after inhalation of 1.5 μm AD aerosol. Death was attributed to intrapulmonic hemorrhage resulting from a degenerative vasculitis. One control dog (721A) was euthanized at 820 days after exposure due to a meningitis and encephalomalacia that caused a severe central nervous system disorder that made the dog difficult to handle.A leukopenia in exposed dogs to date has occurred earlier and to a greater degree in dogs exposed to 3.0 μm AD particles than in dogs that recevied 1.5 μm AD particles. One hundred forty-two exposed and 23 control dogs are surviving at 175 to 1024 days after exposure

  3. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  4. Modelling of Emulsion Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [UAE University (United Arab Emirates); Farouq Ali, S.M. [UAE University (United Arab Emirates)

    1995-06-01

    Oil recovery methods predominantly involve emulsion formation. Oil recovery simulation requires the incorporation of emulsion characteristics and flow in porous media, in order to optimize oil recovery from petroleum reservoirs. This paper explored the nature and rheology of emulsions, and evaluated several models of flow of Newtonian and non-Newtonian fluids in porous media. It also summarized in situ emulsion formation in porous media. A model for both Newtonian and non-Newtonian emulsion fluid flow was proposed, with special emphasis on pore size, and tortuosity in the porous media.

  5. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  6. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  7. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  8. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  9. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  10. Particle transport in porous media

    Science.gov (United States)

    Corapcioglu, M. Yavuz; Hunt, James R.

    The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.

  11. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Foti, G.; Nagy, L.G.; Moravcsik, G.; Schay, G.

    1981-01-01

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22 Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  12. Porous ceramics achievement by soybean and corn agricultural waste insertion

    International Nuclear Information System (INIS)

    Valdameri, C.Z.; Ank, A.; Zatta, L.; Anaissi, F.J.

    2014-01-01

    Porous ceramic materials are produced by incorporating organic particles and stable foams. Generally it improves low thermal conductivity, which gives thermal comfort for buildings. The southwest region of Parana state is one of the largest producers of grains in Brazil, this causes the disposal of a large amount of waste in the agricultural processing. This paper presents the characterization of porous ceramics produced from clay minerals and agricultural waste (soybeans and corn). The precursor was characterized by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) techniques. For the ceramic materials produced, characterizations about density, water absorption, tensile strength by diametrical compression strength and flexural strength curves was performed. The results showed high possibility of industrial/commercial application because the ceramic materials were produced from low costs precursors leading to ceramic products with properties of interest in construction. (author)

  13. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Science.gov (United States)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  14. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  15. Analysis of physical mechanisms underlying density-dependent transport in porous media

    NARCIS (Netherlands)

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste.

  16. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  17. Single layer porous gold films grown at different temperatures

    International Nuclear Information System (INIS)

    Zhang Renyun; Hummelgard, Magnus; Olin, Hakan

    2010-01-01

    Large area porous gold films can be used in several areas including electrochemical electrodes, as an essential component in sensors, or as a conducting material in electronics. Here, we report on evaporation induced crystal growth of large area porous gold films at 20, 40 and 60 deg. C. The gold films were grown on liquid surface at 20 deg. C, while the films were grown on the wall of beakers when temperature increased to 40 and 60 deg. C. The porous gold films consisted of a dense network of gold nanowires as characterized by TEM and SEM. TEM diffraction results indicated that higher temperature formed larger crystallites of gold wires. An in situ TEM imaging of the coalescence of gold nanoparticles mimicked the process of the growth of these porous films, and a plotting of the coalescence time and the neck radius showed a diffusion process. The densities of these gold films were also characterized by transmittance, and the results showed film grown at 20 deg. C had the highest density, while the film grown at 60 deg. C had the lowest consistent with SEM and TEM characterization. Electrical measurements of these gold films showed that the most conductive films were the ones grown at 40 deg. C. The conductivities of the gold films were related to the amount of contamination, density and the diameter of the gold nanowires in the films. In addition, a gold film/gold nanoparticle hybrid was made, which showed a 10% decrease in transmittance during hybridization, pointing to applications as chemical and biological sensors.

  18. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  19. Induction Healing of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Liu, Q.

    2012-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  20. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    Science.gov (United States)

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  2. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Facile synthesis of monodisperse superparamagnetic Fe{sub 3}O{sub 4}/PMMA composite nanospheres with high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lan Fang; Liu Kexia; Jiang Wen; Zeng Xiaobo; Wu Yao; Gu Zhongwei, E-mail: Yaowu_amanda@126.com, E-mail: zwgu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2011-06-03

    Monodisperse superparamagnetic Fe{sub 3}O{sub 4}/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe{sub 3}O{sub 4}/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe{sub 3}O{sub 4} nanoparticles. VSM and TGA showed that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g{sup -1} (total mass), which was only decreased by 17% compared with the initial bare Fe{sub 3}O{sub 4} nanoparticles.

  4. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    International Nuclear Information System (INIS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-01-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO 2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO 2 -VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO 2 nanoparticles serve two purposes, namely to prevent the TiO 2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO 2 -VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO 2 -VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  5. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    Science.gov (United States)

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  6. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    Science.gov (United States)

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of {sup 211}At-labelled monodisperse polymer particles in vivo: comparison of different specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.; Hoff, Per; Alstad, Jorolf [Oslo Univ., Chemistry Dept., Oslo (Norway); Varaas, Tone; De Vos, L.N.; Nustad, Kjell [Norwegian Radium Hospital, Central Lab., Oslo (Norway); Vergote, I.B. [Norwegian Radium Hospital, Gynecologic Oncology Dept., Oslo (Norway)

    1996-09-01

    The {alpha}-particle emitter {sup 211}At was covalently coupled to 1.8 {mu}m aminated monodisperse polymer particles (MDPP) and used to irradiate the intraperitoneal cavity in mice with disseminated tumour cells. Specific activity has previously been shown to influence the therapeutic efficacy of {alpha}-particle emitting compounds and the therapeutic efficacy of {sup 211}At-MDPP with various specific activity was therefore investigated. Groups of mice (10 animals per group) were treated with intraperitoneal injections of 100 kBq of {sup 211}At-MDPP with specific activities of 0.19, 0.55, 1.7, 5.0, 15, and 45 MBq/mg. A significantly prolonged survival was observed in the treated groups compared to the control group (from 19 to 26 days vs. 12 days, median). The difference in survival between the {sup 211}At-MDPP treated groups was not significant, but some animals with short survival were observed in the groups that had received the 0.19, 15 and 45 MBq/mg preparations. K13 monoclonal antibody values, which are an indicator of tumour growth, were high in some animals in the 15 and 45 MBq/mg groups (day 7 values). (author).

  8. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  9. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  10. Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    We performed first-principles based calculations to investigate the electronic structure and the potential catalytic performance of Pt atoms monodispersed on N-doped graphene in CO oxidation. We showed that N-doping can introduce localized defect states in the vicinity of the Fermi level of graphene which will effectively stabilize the deposited Pt atoms. The binding energy of a single Pt atom onto a stable cluster of 3 pyridinic N (PtN3) is up to -4.47 eV, making the diffusion and aggregation of anchored Pt atoms difficult. Both the reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the Langmuir-Hinshelwood mechanism. The reaction barriers for the formation and dissociation of the peroxide-like intermediate are determined to be as low as 0.01 and 0.08 eV, respectively, while that for the regeneration is only 0.15 eV, proving the potential high catalytic performance of PtN3 in CO oxidation, especially at low temperatures. The Pt-d states that are up-shifted by the Pt-N interaction account for the enhanced activation of O2 and the efficient formation and dissociation of the peroxide-like intermediate.

  11. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    Science.gov (United States)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  12. Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198.

    Science.gov (United States)

    Li, Xuan; Wu, Zhansheng; He, Yanhui; Ye, Bang-Ce; Wang, Jun

    2017-10-01

    This paper evaluated the external gelation technique for preparing microcapsules. The microcapsules were consisted of Pseudomonas putida Rs-198 (Rs-198) core and sodium alginate (NaAlg)-bentonite (Bent) shell. Different emulsification rotation speeds and core/shell ratios were used to prepare the microcapsules of each formulation. The near-spherical microcapsules were monodisperse with a mean diameter of 25-100 μm and wrinkled surfaces. Fourier transform infrared spectrophotometry (FTIR) and thermogravimetric analysis (TGA) revealed the physical mixture of the wall material and the superior thermal stability of the microcapsules. Percentage yield, water content, and encapsulation efficiency were evaluated and correlated with the changes in emulsification rotation speed and core/shell ratio. In vitro release experiments demonstrated that 60% of the bacteria were released from the NaAlg-Bent microcapsules within three days. Considerably better survival was observed for encapsulated cells compared to free cells, especially in pH 4.0 and 10.0. In summary, the desired properties of microcapsules can be obtained by external gelation technique and the microcapsules on the bacteria had a good protective effect.

  13. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  15. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  16. Manufactured Porous Ambient Surface Simulants

    Science.gov (United States)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  17. Microelectromechanical pump utilizing porous silicon

    Science.gov (United States)

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  18. Capacitance effects in porous media

    International Nuclear Information System (INIS)

    Jasti, J.K.; Vaidya, R.N.; Fogler, H.S.

    1987-01-01

    The velocity dependence of the parameters in the Coats-Smith model for tracer dispersion and tailing in porous media was investigated in this study. Numerical simulations show that eddies with recirculation flow are formed in the pockets due to flow separation. The tracer transport between the eddies in the dead zones and the main channel was found to be diffusion limited. The simulations reveal that in the Stokes' flow regime the mass transfer coefficient between the two regions is independent of interstitial velocity. Core flood experiments were performed using radioactive tracers to verify the hypothesis that the capcitance effects are not due to a change in flowing fraction. The experimental results confirm that racer tailing is a function of the ratio of the molecular diffusivity to the flow rate. In light of these findings, the authors investigated the validity of the Coats-Smith model to predict dispersion and tailing in porous medium. Their studies indicate that the Coats-Smith model may be used, however, certain restrictions apply to the procedure for estimation of parameters and are described in this paper

  19. A new procedure for the purification of monodisperse highly active cytochrome c oxidase from bovine heart.

    OpenAIRE

    Li, Y; Naqui, A; Frey, T G; Chance, B

    1987-01-01

    A simple and rapid method for the isolation of a large quantity of cytochrome c oxidase from bovine heart mitochondria was developed, based on selective solubilization of mitochondrial protein with first Triton and then lauryl maltoside. Gel filtration shows that the lauryl maltoside-solubilized oxidase preparation is in a hydrodynamically homogeneous state with a Stokes radius of 7.5 +/- 0.2 nm. It contains 8.0 mumol of haem (with an a/a3 ratio of 1)/g of protein. The catalytic constant (max...

  20. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract

    Science.gov (United States)

    Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.

    2015-12-01

    Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.

  1. Positron annihilation lifetime spectroscopy (PALS) application in metal barrier layer integrity for porous low- k materials

    CERN Document Server

    Simon, Lin; Gidley, D W; Wetzel, J T; Monnig, K A; Ryan, E T; Simon, Jang; Douglas, Yu; Liang, M S; En, W G; Jones, E C; Sturm, J C; Chan, M J; Tiwari, S C; Hirose, M

    2002-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) is a useful tool to pre-screen metal barrier integrity for Si-based porous low-k dielectrics. Pore size of low-k, thickness of metal barrier Ta, positronium (Ps) leakage from PALS, trench sidewall morphology, electrical test from one level metal (1LM) pattern wafer and Cu diffusion analysis were all correlated. Macro-porous low-k (pore size >=200 AA) and large scale meso-porous low-k (>50~200 AA) encounter both Ps leakage and Cu diffusion into low-k dielectric in the 0.25 mu mL/0.3 mu mS structures when using SEMATECH in-house PVD Ta 250 AA as barrier layer. For small scale meso-porous (>20~50 AA) and micro- porous (<=20 AA) low-k, no Ps leakage and no Cu diffusion into low-k were observed even with PVD Ta 50 AA, which is proved also owing to sidewall densification to seal all sidewall pores due to plasma etch and ash. For future technology, smaller pore size of porous Si-based low-k (=<50 AA) will be preferential for dense low-k like trench sidewall to...

  2. Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film

    Directory of Open Access Journals (Sweden)

    Li Qiu-ye

    2014-01-01

    Full Text Available Anatase TiO2 nanosheet porous films were prepared by calcination of the orthorhombic titanic acid films at 400°C. They showed an excellent photocatalytic activity for CO2 photoreduction to methane, which should be related to their special porous structure and large Brunauer-Emmett-Teller (BET surface area. In order to further improve the photocatalytic activity, Pt nanoparticles were loaded uniformly with the average size of 3-4 nm on TiO2 porous films by the photoreduction method. It was found that the loading of Pt expanded the light absorption ability of the porous film and improved the transformation efficiency of CO2 to methane. The conversion yield of CO2 to methane on Pt/TiO2 film reached 20.51 ppm/h·cm2. The Pt/TiO2 nanosheet porous film was characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscope (TEM, and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS. Moreover, the transient photocurrent-time curves showed that the Pt/TiO2 nanosheet porous film exhibited higher photocurrent, indicating that the higher separation efficiency of the photogenerated charge carriers was achieved.

  3. Gamma-irradiation synthesis of silver nanoparticles fixing in porous ceramic for application in water treatment

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Quoc Hien; Nguyen Thuy Ai Trinh; Bui Duy Du

    2013-01-01

    The Ag nanoparticles in polyvinylpyrrolidone solution with concentration of 500 mg/L and their diameter of 10-15 nm were synthesized on a large scale up to 100 L/batch by gamma irradiation route. Porous ceramic candle samples were functionalized by treatment with a 3-amino-propyltriethoxysilane coupling agent and then impregnated in Ag nanoparticles solution for fixing Ag nanoparticles. The load Ag nanoparticles content on porous ceramic was of about 200-250 mg/kg. The average pore size of porous ceramic/Ag nanoparticles was about 48.2 Å. Owing to strong bonding of silver atoms to the wall of porous ceramic functionalized by 3-amino-propyltriethoxysilane, the contents of silver released from porous ceramic/Ag nanoparticles into filtrated water by test at a flow rate of about 5 L/h were less than 10 μg/L and was far below the required standard limit (<100 μg/L) for drinking water. Thus, porous ceramic/Ag nanoparticles candles can be potentially applied for point-of-use drinking water treatment. (author)

  4. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  6. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AD particles. B. Monodisperse 1.5 μm AD particles. C. Monodisperse 3.0 μm AD particles. II

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; McClellan, R.O.; Mauderly, J.L.; Mewhinney, J.A.; Pickrell, J.A.; Boecker, B.B.

    1978-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 have been initiated in Beagle dogs. To obtain information on the relative importance of homogeneity of radiation doses to the lung, dogs have been exposed to particles of monodisperse aerosols (sigma/sub g/ 239 PuO 2 ; 40 dogs to the 0.75 μm AD particles, 72 dogs to the 1.5 μm AD particles and 60 dogs to the 3.0 μm AD particles. The exposures have resulted in graded ILB's, which range from 0.0002 to 2.6 μCi/kg body weight. Twenty-nine dogs were exposed to the aerosol diluent and serve as controls. Five dogs have died 336 to 561 days after exposure in the 1.5 μm AD study. Four dogs have died 116 to 589 days after exposure in the 3.0 μm AD study. These dogs had radiation pneumonitis and pulmonary fibrosis at death. The remaining dogs have survived up to 634 days after exposure. It is anticipated that the other dogs planned for these studies will be exposed over the next 12 months

  7. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AMAD particles. B. Monodisperse 1.5 μm AMAD particles. C. Monodisperse 3.0 μm AMAD particles. V

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.; Mauderly, J.L.; Pickrell, J.A.

    1982-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 in Beagle dogs are in progress. To obtain information on the relative importance of homogeneity versus nonhomogeneity of radiation doses to the lung, dogs have been exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5 or 3.0 μm activity median aerodynamic diameter (AMAD). The exposures have resulted in graded initial lung burdens ranging from 0.0002 to 2.6 μCi 239 Pu per kilogram body weight. Other dogs were exposed to the aerosol diluent to serve as controls. Ten dogs have died in the study with 0.75 μm AMAD particles, 40 dogs have died in the study with 1.5 μm AMAD particles and 35 dogs have died in the study with 3.0 μm AMAD particles of 239 PuO 2 . Dogs have died with radiation pneumonitis and pulmonary fibrosis and carcinomas of the lung. The remaining dogs have survived up to 2100 days after inhalation exposure and are being observed for the remainder of their life span

  8. Toxicity of inhaled 239PuO2 in Beagle dogs: A. Monodisperse 0.75-μm AMAD particles. B. Monodisperse 1.5-μm AMAD particles. C. Monodisperse 3.0--μm AMAD particles. XI

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs were exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5, or 30 μm activity median aerodynamic diameter (AMAD) to obtain information on the relative importance of homogeneity of alpha irradiation doses to the lung in producing biological effects. The dogs' initial pulmonary burdens (IPB) ranged from 0.0002-2.0 μCi (0.0074 to 74 kBq) 239 Pu/kg of body mass. Thirty-six dogs were exposed to the aerosol diluent as controls. Forty-two of 48 dogs exposed to 0.75 μm AMAD particles have died; 67 of 96 have died in the study involving 1.5 μm AMAD particles; and 62 of 72 have died in the study involving the 3.0 μm AMAD particles. Seven of 36 control dogs have died. Most dogs exposed to 239 Pu that have failed to survive have died with radiation pneumonitis and fibrosis and/or lung cancer. Surviving dogs have lived up to 4300 days after exposure. The data obtained to date indicate that the degree of uniformity of dose to the lung does not significantly modify the risk of lung cancer. (author)

  9. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  10. SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head

    International Nuclear Information System (INIS)

    Siefken, L. J.

    1998-01-01

    Designs are described for implementing models for calculating the movement of melted material through the interstices in a matrix of porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head during a severe accident in a Light Water Reactor. Currently, the COUPLE model has no capability to model the movement of material that melts within a matrix of porous material. The COUPLE model also does not have the capability to model the movement of liquefied core plate material that slumps onto a porous debris bed in the lower head. In order to advance beyond the assumption the liquefied material always remains stationary, designs are developed for calculations of the movement of liquefied material through the interstices in a matrix of porous material. Correlations are identified for calculating the permeability of the porous debris and for calculating the rate of flow of liquefied material through the interstices in the debris bed. Correlations are also identified for calculating the relocation of solid debris that has a large amount of cavities due to the flowing away of melted material. Equations are defined for calculating the effect on the temperature distribution in the debris bed of heat transported by moving material and for changes in effective thermal conductivity and heat capacity due to the movement of material. The implementation of these models is expected to improve the calculation of the material distribution and temperature distribution of debris in the lower head for cases in which the debris is porous and liquefied material is present within the porous debris

  11. Modified porous silicon for electrochemical sensor of para-nitrophenol

    International Nuclear Information System (INIS)

    Belhousse, S.; Belhaneche-Bensemra, N.; Lasmi, K.; Mezaache, I.; Sedrati, T.; Sam, S.; Tighilt, F.-Z.; Gabouze, N.

    2014-01-01

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10 −8 M to the 3 × 10 −4 M

  12. Modified porous silicon for electrochemical sensor of para-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Belhousse, S., E-mail: all_samia_b@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Belhaneche-Bensemra, N., E-mail: nbelhaneche@yahoo.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Lasmi, K., E-mail: kahinalasmi@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Mezaache, I., E-mail: lyeso_44@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sedrati, T., E-mail: tarek_1990m@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Tighilt, F.-Z., E-mail: mli_zola@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2014-11-15

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10{sup −8} M to the 3 × 10{sup −4}M.

  13. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  15. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance

    International Nuclear Information System (INIS)

    Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu

    2016-01-01

    Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.

  16. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  17. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  18. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    pressure and weight data can be "translated" to pore geometry by known physical relationships. In this context, analytical descriptions are important which can relate moisture condensation in pore structures to ambient vapor pressure. Such a description, the extended BET-relation, is presented...... physical parameters, the so-called BET-parameters: The heat property factor, C, and the pore surface, SBET (derived from the so-called uni-molecular moisture content uBET). A software ‘SORP07’ has been developed to handle any calculations made in the paper. For readers who have a special interest...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  19. Flow in fissured porous media

    International Nuclear Information System (INIS)

    Stichel, Sabine

    2014-01-01

    The flow simulation in fissured porous media is of importance for hydro-geological applications like ground water contamination in the neighborhood of waste disposal sites, radioactive waste repositories, fossil fuel mining or underground CO2 storage facilities. The permeability within the fissures - that are preferred transport paths - could influence the flow profile. The anisotropic geometry and the excursive parameter changes produce enormous challenges to numerical methods. A low-dimensional approach is used to model then processes within the fissures, acceptable results were reached. Based on the properties of the fissure and flow parameters a criterion was defined that allows to judge whether the application of the low-dimensional approach is sufficient. A dimension-adapting approach is presented that allow the change tp a full-dimensional model according to the criterion.

  20. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  1. Thermal flow in porous media

    International Nuclear Information System (INIS)

    Ene, H.I.; Poliwevski, D.

    1987-01-01

    Thermal flows in porous media are important in a wide range of areas: oil recovery, geothermal development, chemical and nuclear industry, civil engineering, energy storage and energy conversion. This book uses a systematic, rigorous and unified treatment to provide a general understanding of the phenomena involved. General equations for single- or multiphase flows (including an arbitrary number of components inside each phase), diffusion and chemical reactions are presented. The boundary conditions which may be imposed, the non-dimensional para meters, the structures of the solutions, the stability of the finite amplitude solutions and many other related topics ae also studied. Although the treatment is basically mathematical, specific physical problems are also dealt with. There are two major fields of applications: natural convection and underground combustion. Both are discussed in detail. Various examples with exact or numerical solutions, for the case of bounded or unbounded domains, are presented, accompanied by extensive comment

  2. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  3. Formation and properties of porous silicon layers

    International Nuclear Information System (INIS)

    Vitanov, P.; Kamenova, M.; Dimova-Malinovska, D.

    1993-01-01

    Preparation, properties and application of porous silicon films are investigated. Porous silicon structures were formed by an electrochemical etching process resulting in selective dissolution of the silicon substrate. The silicon wafers used with a resistivity of 5-10Ω.cm were doped with B to concentrations 6x10 18 -1x10 19 Ω.cm -3 in the temperature region 950 o C-1050 o C. The density of each porous films was determined from the weight loss during the anodization and it depends on the surface resistivity of the Si wafer. The density decreases with decreasing of the surface resistivity. The surface of the porous silicon layers was studied by X-ray photoelectron spectroscopy which indicates the presence of SiF 4 . The kinetic dependence of the anode potential and the porous layer thickness on the time of anodization in a galvanostatic regime for the electrolytes with various HF concentration were studied. In order to compare the properties of the resulting porous layers and to establish the dependence of the porosity on the electrolyte, three types of electrolytes were used: concentrated HF, diluted HF:H 2 O=1:1 and ethanol-hydrofluoric solutions HF:C 2 H 5 OH:H 2 O=2:1:1. High quality uniform and reproducible layers were formed using aqueous-ethanol-hydrofluoric electrolyte. Both Kikuchi's line and ring patterns were observed by TEM. The porous silicon layer was single crystal with the same orientation as the substrate. The surface shows a polycrystalline structure only. The porous silicon layers exhibit visible photoluminescence (PL) at room temperature under 480 nm Ar + laser line excitation. The peak of PL was observed at about 730 nm with FWHM about 90 nm. Photodiodes was made with a W-porous silicon junction. The current voltage and capacity voltage characteristics were similar to those of an isotype heterojunction diode. (orig.)

  4. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  5. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  6. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  7. METHOD OF IMPREGNATING A POROUS MATERIAL

    Science.gov (United States)

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  8. Preparation of monodispersed Pd nanoparticles by laser ablation at air-suspension interface

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Teppei, E-mail: e1481@mosk.tytlabs.co.jp; Suzuki, Noritomo; Takahashi, Naoko; Yano, Kazuhisa [Toyota Central R and D Labs., Inc. (Japan)

    2013-04-15

    A novel route to produce nanocolloid of single nano-sized particles was developed. Pd particles are stirred in water. Then laser ablation was conducted using a second harmonic light from Nd:YAG laser system focused on the air-liquid interface. We could obtain yellow nanocolloid. Pd nanoparticles have been stably dispersed in water without any chemical reagents for >1 year. Large absorption below 500 nm could be confirmed. The surface condition of colloidal particles was analyzed by X-ray photoelectron spectroscopy (XPS) of dried particles on Si wafer and pH measurement of nanocolloid. The range of pH value of nanocolloid was from 2 to 3. On the other hand, NO{sub 3} and NO{sub 2} were detected on the dried sample by XPS spectrum. In addition, transmission electron microscopy and dynamic light scattering (DLS) methods revealed a very narrow size distribution. The size distribution in the range from 0.5 to 1.5 nm was confirmed by DLS method. The size distribution and stability of Pd nanocolloid could be explained by chemical reaction between air, water, and Pd target due to excitation by pulsed laser irradiation and production of active particles in the laser-induced plasma.

  9. Preparation of monodispersed Pd nanoparticles by laser ablation at air–suspension interface

    International Nuclear Information System (INIS)

    Nishi, Teppei; Suzuki, Noritomo; Takahashi, Naoko; Yano, Kazuhisa

    2013-01-01

    A novel route to produce nanocolloid of single nano-sized particles was developed. Pd particles are stirred in water. Then laser ablation was conducted using a second harmonic light from Nd:YAG laser system focused on the air–liquid interface. We could obtain yellow nanocolloid. Pd nanoparticles have been stably dispersed in water without any chemical reagents for >1 year. Large absorption below 500 nm could be confirmed. The surface condition of colloidal particles was analyzed by X-ray photoelectron spectroscopy (XPS) of dried particles on Si wafer and pH measurement of nanocolloid. The range of pH value of nanocolloid was from 2 to 3. On the other hand, NO 3 and NO 2 were detected on the dried sample by XPS spectrum. In addition, transmission electron microscopy and dynamic light scattering (DLS) methods revealed a very narrow size distribution. The size distribution in the range from 0.5 to 1.5 nm was confirmed by DLS method. The size distribution and stability of Pd nanocolloid could be explained by chemical reaction between air, water, and Pd target due to excitation by pulsed laser irradiation and production of active particles in the laser-induced plasma.

  10. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Science.gov (United States)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  12. Review of porous silicon preparation and its application for lithium-ion battery anodes

    International Nuclear Information System (INIS)

    Ge, M; Fang, X; Rong, J; Zhou, C

    2013-01-01

    Silicon is of great interest for use as the anode material in lithium-ion batteries due to its high capacity. However, certain properties of silicon, such as a large volume expansion during the lithiation process and the low diffusion rate of lithium in silicon, result in fast capacity degradation in limited charge/discharge cycles, especially at high current rate. Therefore, the use of silicon in real battery applications is limited. The idea of using porous silicon, to a large extent, addresses the above-mentioned issues simultaneously. In this review, we discuss the merits of using porous silicon for anodes through both theoretical and experimental study. Recent progress in the preparation of porous silicon through the template-assisted approach and the non-template approach have been highlighted. The battery performance in terms of capacity and cyclability of each structure is evaluated. (topical review)

  13. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  14. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  15. Simulating microtransport in realistic porous media

    NARCIS (Netherlands)

    Lopez Penha, D.J.

    2012-01-01

    Simulations in porous media widely adopt macroscopic models of transport phenomena. These models are computationally efficient as not all geometrical details at the pore scale are accounted for. Generally, these models require closure relations for effective transport parameters, where the

  16. Ab initio model of porous periclase

    International Nuclear Information System (INIS)

    Drummond, Neil D.; Swift, Damian C.; Ackland, Graeme J.

    2004-01-01

    A two-phase equilibrium equation of state (EOS) for periclase (MgO) was constructed using ab initio quantum mechanics, including a rigorous calculation of quasiharmonic phonon modes. Much of the shock wave data reported for periclase is on porous material. We compared the theoretical EOS with porous data using a simple 'snowplough' treatment and also a model using finite equilibration rates suitable for continuum mechanics simulations. (This model has been applied previously to various heterogeneous explosives as well as other porous materials.) The results were consistent and matched the data well at pressures above the regime affected by strength - and ramp-wave formation - during compaction. Ab initio predictions of the response of porous material have been cited recently as a novel and advanced capability; we feel that this is a fairly routine extension to established ab initio techniques

  17. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-01-01

    to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs

  18. Simulation of impaction filtration of aerosol droplets in porous media

    OpenAIRE

    Ghazaryan, L.; Lopez Penha, D.J.; Geurts, Bernardus J.; Stolz, S.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F; Sequeira, A.; Pereira, J.M.C.

    2010-01-01

    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar flow and quantify the role of inertial effects on the filtration of an ensemble of particles. We adopt the Euler-Lagrange approach, distinguishing a flow field in which the motion of a large numbe...

  19. Porous Silicon Sensors- Elusive and Erudite

    OpenAIRE

    H. Saha, Prof.

    2017-01-01

    Porous Silicon Sensors have been fabricated and tested successfully over the last few years as humidity sensors, vapour sensors, gas sensors, piezoresistive pressure sensors and bio- sensors. In each case it has displayed remarkably sensitivity, relatively low temperature operation and ease of fabrication. Brief description of fabrication and properties of all these types of different sensors is reported in this paper. The barriers of porous silicon like contact, non- uniformity, instability ...

  20. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  1. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  2. Numerical simulations of flows through fixed networks of monodispersed and bi-dispersed spheres, for moderate Reynolds numbers; Simulations numeriques d'ecoulements a travers des reseaux fixes de spheres monodisperses et bidisperses, pour des nombres de Reynolds moderes

    Energy Technology Data Exchange (ETDEWEB)

    Massol, A.

    2004-02-15

    The application of statistically averaged two-fluid models for the simulation of complex indus- trial two-phase flows requires the development of adequate models for the drag force exerted on the inclusions and the interfacial heat exchange. This task becomes problematic at high volume fractions of the dispersed phase. The quality of the simulation strongly depends upon the inter- facial exchange terms, starting with the steady drag force. For example, an accurate modelling of the drag force is therefore a crucial point to simulate the expansion of dense fluidized beds. Most models used to study the exchange terms between particles and fluids are based on the interaction between an isolated particle and a surrounding gas. Those models are clearly not adequate in cases where the volume fraction of particles increases and particle-particle interactions become important. Studying such cases is a complex task because of the multiple possible configurations. While the interaction between an isolated sphere and a gas depends only on the particle size and the slip velocity between gas and particles, the interaction between a cloud of particles and a gas depends on many more parameters: size and velocity distribution of particles, relative position of particles. Even if the particles keep relative fixed positions, there is an infinite number of combinations to construct such an array. The objective of the present work is to perform steady and unsteady simulations of the flow in regular arrays of fixed particles in order to analyze the influence of the size and distributions of spheres on drag force and heat transfer (the array of spheres can be either monodispersed, either bi-dispersed). Several authors have studied the drag exerted on the spheres, but only for low Reynolds numbers and/or solid volume fractions close to the packed limit. Moreover some discrepancies are observed between the different studies. On top of that, all existing studies are limited to steady flows

  3. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  4. Mass Transfer and Porous Media (MTPM)

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B

    2007-07-01

    This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo

  5. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting

    Science.gov (United States)

    Roscow, J. I.; Zhang, Y.; Kraśny, M. J.; Lewis, R. W. C.; Taylor, J.; Bowen, C. R.

    2018-06-01

    Energy harvesting is an important developing technology for a new generation of self-powered sensor networks. This paper demonstrates the significant improvement in the piezoelectric energy harvesting performance of barium titanate by forming highly aligned porosity using freeze casting. Firstly, a finite element model demonstrating the effect of pore morphology and angle with respect to poling field on the poling behaviour of porous ferroelectrics was developed. A second model was then developed to understand the influence of microstructure-property relationships on the poling behaviour of porous freeze cast ferroelectric materials and their resultant piezoelectric and energy harvesting properties. To compare with model predictions, porous barium titanate was fabricated using freeze casting to form highly aligned microstructures with excellent longitudinal piezoelectric strain coefficients, d 33. The freeze cast barium titanate with 45 vol.% porosity had a d 33  =  134.5 pC N‑1 compared to d 33  =  144.5 pC N‑1 for dense barium titanate. The d 33 coefficients of the freeze cast materials were also higher than materials with uniformly distributed spherical porosity due to improved poling of the aligned microstructures, as predicted by the models. Both model and experimental data indicated that introducing porosity provides a large reduction in the permittivity () of barium titanate, which leads to a substantial increase in energy harvesting figure of merit, , with a maximum of 3.79 pm2 N‑1 for barium titanate with 45 vol.% porosity, compared to only 1.40 pm2 N‑1 for dense barium titanate. Dense and porous barium titanate materials were then used to harvest energy from a mechanical excitation by rectification and storage of the piezoelectric charge on a capacitor. The porous barium titanate charged the capacitor to a voltage of 234 mV compared to 96 mV for the dense material, indicating a 2.4-fold increase that was similar to that

  6. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    Science.gov (United States)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  7. Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Nykanen, A; Toivanen, M; ten Brinke, G; Ruokolainen, J; Ikkala, O; Nykänen, Antti

    2006-01-01

    Porous materials with controlled pore size and large surface area (see Figure) have been prepared by crosslinking phenolic resin in the presence of a self-assembled block-copolymer template, followed by pyrolysis. Many phenolic hydroxyl groups remain at the matrix and pore walls, which can be used

  8. On POD-based Deflation Vectors for DPCG applied to porous media problems

    NARCIS (Netherlands)

    Diaz Cortes, G.B.; Vuik, C.; Jansen, J.D.

    2018-01-01

    We study fast and robust iterative solvers for large systems of linear equations resulting from simulation of flow trough strongly heterogeneous porous media. We propose the use of preconditioning and deflation techniques, based on information obtained frfrom the system, to reduce the time spent in

  9. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Hosseini-Toudeshky, H; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly

  10. Facile synthesis of porous Co3O4 nanoplates for supercapacitor ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Porous tricobalt tetraoxide (Co3O4) nanoplates with large aspect ratio have been obtained by annealing Co(OH)2 precursor nanoplates synthesized by a facile reflux method without the need for any template or surfactant. After the heat treatment, the as-obtained phase-pure Co3O4 nanoplates with a well- retained ...

  11. Molecular simulation strategy for mechanical modeling of amorphous/porous low-dielectric constant materials

    NARCIS (Netherlands)

    Yuan, C.A.; Sluis, van der O.; Zhang, G.Q.; Ernst, L.J.; Driel, van W.D.; Flower, A.E.; Silfhout, van R.B.R.

    2008-01-01

    We propose an amorphous/porous molecular connection network generation algorithm for simulating the material stiffness of a low-k material (SiOC:H). Based on a given concentration of the basic building blocks, this algorithm will generate an approximate and large amorphous network. The molecular

  12. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  13. Colloid migration in porous media

    International Nuclear Information System (INIS)

    Hunt, J.R.; McDowell-Boyer; Sitar, N.

    1985-01-01

    Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability

  14. Homogenization of complex flows in porous media and applications

    International Nuclear Information System (INIS)

    Hutridurga-Ramaiah, Harsha

    2013-01-01

    Our work is a contribution to the understanding of transport of solutes in a porous medium. It has applications in groundwater contaminant transport, CO 2 sequestration, underground storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Taylor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous medium and reaction phenomena. Microscopic phenomena at the pore scale are up-scaled to obtain effective behaviour at the observation scale. Method of two-scale convergence with drift from the theory of homogenization is employed as an up-scaling technique. In the first part of our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid interface of the porous medium. Starting with coupled convection-diffusion equations for bulk and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic scale we derive effective equations at the macroscopic scale. We consider the microscopic system with highly oscillating coefficients in a strong convection regime i.e., large Peclet regime. The presence of strong convection in the microscopic model leads to the induction of a large drift in the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and the results are compared. In the second part of our work we generalize our results on single component flow to multicomponent flow in a linear setting. In the latter case, the effective parameters are obtained using Factorization principle and two-scale convergence with drift. The behaviour of effective parameters with respect to Peclet number and Damkohler number are numerically studied. Freefem++ is used to perform numerical tests in two dimensions. (author)

  15. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Lloyd A. [Iowa State Univ., Ames, IA (United States)

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu+/65Cu+ is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr+/53Cr+ (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr+ signal to 0.12% for the ratio of 51V+ to 52Cr+. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li+ signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  16. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    Science.gov (United States)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  17. Analysis of the resistive force in fluid flow through porous media

    International Nuclear Information System (INIS)

    Thirriot, C.; Cohen, A.M.S.; Massarani, G.; Cohen, B.M.S.

    1976-01-01

    The resistive term appearing in the equation of motion for a fluid flowing through a porous medium is analyzed. This term represents the interactive force between the fluid and the solid mesh. The analysis was done starting with a simple constitutive equation with the help of large number of experimental data points, both with consolidated and non-consolidated porous media. It was found that in almost all cases the resistive term can be adequately expressed in the vetorial from of Forchheimer's quadratic equation [pt

  18. On the stability of a radiating fluid in a porous spherical shell

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1987-09-01

    The onset of thermal instability in a fluid filled porous spherical shell is investigated when the temperatures of the walls are large enough for thermal radiation to be significant. Assuming that the gravitational field is radially symmetric and the porous medium consists of fluid which is optically thin, non-grey and near equilibrium, the problem is reduced to the determination of the eigenvalues for a set of linear homogeneous equations with variable coefficients. The effect of porosity and radiation on the stability parameter is discussed quantitatively. (author). 6 refs, 1 tab

  19. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha

    2015-05-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  20. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha; Katsiev, Habib; AlYami, Noktan; Anjum, Dalaver H.; Khan, Waheed S.; Hussain, Irshad

    2015-01-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  1. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-01-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  2. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  3. Large-area photonic crystals

    Science.gov (United States)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  4. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  5. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance.

    Science.gov (United States)

    Zhao, Yufeng; Ran, Wei; He, Jing; Song, Yanfang; Zhang, Chunming; Xiong, Ding-Bang; Gao, Faming; Wu, Jinsong; Xia, Yongyao

    2015-01-21

    In this study, three-dimensional (3D) hierarchical porous carbon with abundant functional groups is produced through a very simple low-cost carbonization of Artemia cyst shells. The unique hierarchical porous structure of this material, combining large numbers of micropores and macropores, as well as reasonable amount of mesopores, is proven favorable to capacitive behavior. The abundant oxygen functional groups from the natural carbon precursor contribute stable pseudocapacitance. As-prepared sample exhibits high specific capacitance (369 F g(-1) in 1 M H2SO4 and 349 F g(-1) in 6 M KOH), excellent cycling stability with capacitance retention of 100% over 10 000 cycles, and promising rate performance. This work not only describes a simple way to produce high-performance carbon electrode materials for practical application, but also inspires an idea for future structure design of porous carbon.

  6. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water

    KAUST Repository

    Ding, Baojun

    2016-01-13

    A class of hierarchically porous carbons were prepared by a facile dual-templating approach. The obtained samples were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Brunaner-Emmett-Teller measurement and electrochemical work station, respectively. The porous carbons could possess large specific surface area, interconnected pore structures, high conductivity and graphitizing degree. The resulting materials were used to prepare integrated modified electrodes. Based on the experimental results, the as-prepared hierarchically porous graphite (HPG) modified electrode showed the best electroactive performances toward the detection of nitrite with a detection limit of 8.1 × 10-3 mM. This HPG electrode was also repeatable and stable for 6 weeks. Moreover, this electrode was used for the determination of nitrite in drinkable water, and had acceptable recoveries. © The Royal Society of Chemistry 2016.

  7. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Augmenting the osseointegration of endoprostheses using laser-sintered porous collars: an in vivo study.

    Science.gov (United States)

    Mumith, A; Coathup, M; Chimutengwende-Gordon, M; Aston, W; Briggs, T; Blunn, G

    2017-02-01

    Massive endoprostheses rely on extra-cortical bone bridging (ECBB) to enhance fixation. The aim of this study was to investigate the role of selective laser sintered (SLS) porous collars in augmenting the osseointegration of these prostheses. The two novel designs of porous SLS collars, one with small pores (Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared in an ovine tibial diaphyseal model. Osseointegration of these collars was compared with that of a clinically used solid, grooved design (G). At six months post-operatively, the ovine tibias were retrieved and underwent radiological and histological analysis. Porous collars provided a significantly greater surface (p direct ingrowth of more bone and are better than current designs which rely on surface ongrowth and ECBB. Cite this article: Bone Joint J 2017;99-B:276-82. ©2017 The British Editorial Society of Bone & Joint Surgery.

  9. Cost-Effective Fabrication of Inner-Porous Micro/Nano Carbon Structures.

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Tang, Zirong; Xi, Shuang

    2018-03-01

    This paper reports the fabrication of a new micro/nano carbon architecture array which owns the characteristics of inner-porous, desired conductivity and large effective surface area. The micro/nano inner-porous carbon structures were fabricated for the first time, with ordinary and cost-effective processes, including photolithography, oxygen plasma etching and pyrolysis. Firstly, micro/nano hierarchical photoresist structures array was generated through photolithography and oxygen plasma etching processes. By introducing a critical thin-film spin-coating step, and followed with carefully pyrolyzing process, the micro/nano photoresist structures were converted into innerporous carbon architectures with good electric connection which connected the carbon structures array together. Probably the inner-porous property can be attributed to the shrinkage difference between positive thin film and negative photoresist structures during pyrolyzing process. It is demonstrated that the simple method is effective to fabricate inner-porous carbon structures with good electric connection and the carbon structures can be used as electrochemical electrodes directly and without the addition of other pyrolysis or film coating processes. The electrochemical property of the carbon structures has been explored by cyclic voltammetric measurement. Compared with solid carbon microstructures array, the cyclic voltammetry curve of inner-porous carbon structures shows greatly enhanced current and improved charge-storage capability, indicating great potential in micro energy storage devices and bio-devices.

  10. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  11. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3.

    Science.gov (United States)

    Roscow, James I; Topolov, Vitaly Yu; Bowen, Christopher R; Taylor, John; Panich, Anatoly E

    2016-01-01

    This work demonstrates the potential of porous BaTiO 3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO 3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α  = 0.30-0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3-0 composite and a 'composite in composite' model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients [Formula: see text]. It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy [Formula: see text] at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit [Formula: see text] [Formula: see text]. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties.

  12. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    Science.gov (United States)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  13. Electroless porous silicon formation applied to fabrication of boron–silica–glass cantilevers

    International Nuclear Information System (INIS)

    Teva, J; Davis, Z J; Hansen, O

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5–1 mm 3 ) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron–silica–glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution

  14. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    Science.gov (United States)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  15. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  16. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  17. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  18. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  19. High lithium storage capacity achieved by regulating monodisperse C/In{sub 2}O{sub 3} nanosheet composite with double phases

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Lu; Pan, Xueqian; Chen, Shangqian; Song, Jialing; Liu, Cheng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Luo, Gaixia [Department of Physics, Yancheng Institute of Technology, Jiangsu, 224051 (China); Guan, Rongfeng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Zhang, Wenhui, E-mail: zwhuizi000@sina.com [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China)

    2017-06-01

    Monodisperse C/In{sub 2}O{sub 3} nanosheet composites are prepared by D-fructose-assisted solvothermal approach. The effects of carbon content on the morphological evolution and electrochemical performance of C/In{sub 2}O{sub 3} nanosheet composites are investigated. The SEM and TEM are used to study the morphological evolution. C/In{sub 2}O{sub 3} nanosheet composite electrode with 17.3% carbon content exhibits the highest reversible capacity of 1639 mAh g{sup -1} over 100 cycles at a current density of 100 mA g{sup -1} and maintains the best discharge capacity of 782 mAh g{sup -1} over 400 cycles at a current density of 400 mA g{sup -1} for reported In{sub 2}O{sub 3} based anode materials to date. - Highlights: • Monodisperse carbon/In{sub 2}O{sub 3} nanosheet composites have been synthesized via D-fructose-assisted solvothermal approach. • The prepared electrode exhibited high reversible discharge capacity of 1639 mAh g{sup -1} over 100 cycles. • The prepared electrode maintained the discharge capacity of 782 mAh g{sup -1} over 400 cycles at 400 mA g{sup -1}.

  20. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  1. Monodisperse colloidal spheres for (Y,Eu2O3 red-emitting phosphors: establishment of processing window and size-dependent luminescence behavior

    Directory of Open Access Journals (Sweden)

    Qi Zhu, Ji-Guang Li, Xiaodong Li, Xudong Sun and Yoshio Sakka

    2011-01-01

    Full Text Available The urea-based homogeneous precipitation method was introduced in the preparation of monodisperse colloidal spheres for (Y0.95Eu0.052O3 red-emitting phosphors, and the processing window was defined. Particle size and shape are significantly affected by the ion concentration and the urea/RE3+ molar ratio R (RE3+=Y3++Eu3+. A low ion concentration is beneficial in forming monodisperse spheres and extending their formation domain. Increasing R results in a gradual change in the composition of spherical particles from the core-shell Eu(OHCO3@Y(OHCO3 structure to a homogeneous solid solution, thereby significantly lowering the calcination temperature at which precursors convert to oxides. Upon UV excitation into the charge-transfer band at 254 nm, the uniform phosphor spheres of (Y0.95Eu0.052O3 exhibit typical red emissions at 613 nm; the emission is stronger from larger particles mainly because of their smaller surface area. Both the luminescence intensity and quantum efficiency of the oxide phosphors increase with elevated calcination temperatures. The spherical shape and excellent dispersion of the precursor particles (~450 nm in diameter have been well retained after calcination at 1000 circleC for 4 h, and the resultant oxide phosphors exhibit external and internal quantum efficiencies of 50 and 82%, respectively.

  2. A novel monodisperse SiO2@C-dot for the rapid and facile identification of latent fingermarks using self-quenching resistant solid-state fluorescence.

    Science.gov (United States)

    Peng, Di; Liu, Xiang; Huang, Mengjun; Wang, Dan; Liu, Renlong

    2018-04-24

    Solid powder fluorescence shows great potential for application in medicine, biology, and engineering, especially in the identification of latent fingermarks in forensic science. However, conventional developing methods suffer from some drawbacks, such as low contrast, low sensitivity, low selectivity, and high toxicity. To conquer these challenges, novel SiO2@C-dot microspheres were prepared via a facile one-pot hydrothermal method by using citric acid as a carbon source and aminosilane as a nitrogen source. Interestingly, the results showed that the resultant powders possess good monodispersity, high fluorescence emission, and resistance to self-quenching. Additionally, the mechanism for the solid-state fluorescence of SiO2@C-dot compounds was also investigated. More importantly, the fingermarks on various surfaces, including transparent glasses, ceramic tiles, transparent plastics, aluminum alloys, plastic cards, painted woods, artificial leathers, and Chinese paper money, developed by the powders have indicated well-defined papillary ridges under a 365 nm UV lamp. The novel strategy of using monodisperse SiO2@C-dot microspheres as a fluorescent label for developing latent fingermarks showed greater advantages compared to conventional methods, which was also demonstrated using the automatic fingerprint identification system. It is simple, rapid, low-cost, nontoxic, and effective, and is expected to be a promising alternative for the development of latent fingerprints in forensic science.

  3. From red cells to soft porous lubrication.

    Science.gov (United States)

    Wu, Qianhong; Zhu, Zenghao; Nathan, Rungun

    2017-11-01

    In this paper, we report a novel experimental study to examine the lubrication theory for highly compressible porous media (Feng & Weinbaum, JFM, 422, 282, 2000), which was applied to the frictionless motion of red cells over the endothelial surface layer (ESL). The experimental setup consists of a running conveyer belt covered with a porous sheet, and an upper planar board, i.e. planing surface. The pore pressure generation was captured when the planing surface glides over the porous sheet. If the lateral leakage was eliminated, we found that the overall pore pressure's contribution to the total lift, fair 80%, and the friction coefficient η = 0.0981, when U =5 m/s, L =0.381 m, λ = h2/h0 = 1 and k =h2/h1 = 3, where U is the velocity of the conveyor belt; L is the planing surface length; h0, h1 and h2 are the undeformed, leading and trailing edge porous layer thickness, respectively. fair increases with the increase in U, λ and L, while decreases with the increase in k. η decreases with the increase in fair. If lateral pressure leakage exists, the pore pressure generation is reduced by nearly 90%. All the results agreed well with the theoretical predictions. The study here lays the foundation for applying soft porous media for new type of bearing with significantly reduced friction. This research was supported by the National Science Foundation (NSF CBET) under Award No. 1511096.

  4. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  5. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N

    1996-04-19

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  6. Effect of ionic strength on barium transport in porous media

    Science.gov (United States)

    Ye, Zi; Prigiobbe, Valentina

    2018-02-01

    Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface. However, the transport behaviour of Ra2+ through a reactive porous medium under conditions typical of a brine, i.e., high salinity, is not well understood, yet. Here, a study on the transport behaviour of barium (Ba2+, congener of radium) through a porous medium containing a common mineral such as goethite (FeO(OH)) is presented. Batch and column flood tests were carried out at conditions resembling the produced brine, i.e., large values of ionic strength (I), namely, 1 to 3 mol/kg. The measurements were described with the triple layer surface complexation model coupled with the Pitzer activity coefficient method and a reactive transport model, in the case of the transport tests. The experimental results show that the adsorption of Ba2+ onto FeO(OH) increases with pH but decreases with I and it becomes negligible at the brine conditions. Moreover, even if isotherms show adsorption at large I, at the same conditions during transport, Ba2+ travels without retardation through the FeO(OH) porous medium. The triple layer model agrees very well with all batch data but it does not describe well the transport tests in all cases. In particular, the model cannot match the pH measurements at large I values. This suggests that the chemical reactions at the solid-liquid interface do not capture the mechanism of Ba2+ adsorption onto FeO(OH) at large salinity. Finally, this study suggests that barium, and potentially its congeners, namely, radium

  7. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of water radiolysis in porous media

    International Nuclear Information System (INIS)

    Rotureau, Patricia

    2001-08-01

    The understanding of the production of H 2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author) [fr

  9. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  10. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  11. Fluid dynamics in porous media with Sailfish

    International Nuclear Information System (INIS)

    Coelho, Rodrigo C V; Neumann, Rodrigo F

    2016-01-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples. (paper)

  12. Fluid dynamics in porous media with Sailfish

    Science.gov (United States)

    Coelho, Rodrigo C. V.; Neumann, Rodrigo F.

    2016-09-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.

  13. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  14. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  15. Positron annihilation spectroscopy study of porous silicon

    International Nuclear Information System (INIS)

    Britkov, O.M.; Gavrilov, S.A.; Kalugin, V.V.; Timoshenkov, S.P.; Grafutin, V.I.; Ilyukhina, O.V.; Myasishcheva, G.G.; Prokop'ev, E.P.; Funtikov, Yu.V.

    2007-01-01

    Experimental studies of porous silicon by means of a standard positron annihilation technique based on measuring the angular distribution of annihilation photons, are reported. It was shown that the spectra of angular correlation of annihilation radiation in porous silicon are approximated well by a parabola (I p ) and two Gaussians (I g1 , I g2 ). The narrow Gaussian component I g1 is most likely due to the annihilation of localized para-positronium in pores. The full width at half maximum is on the order of 0.8 mrad, a value that corresponds to the kinetic energy of an annihilating positron-electron pair (0.079 ± 0.012 eV), and its intensity is about 1.5%. The total positronium yield in porous silicon reaches 6% in this case. The particle radius determined in the study is about 10-20 A [ru

  16. Formulation of similarity porous media systems

    International Nuclear Information System (INIS)

    Anderson, R.M.; Ford, W.T.; Ruttan, A.; Strauss, M.J.

    1982-01-01

    The mathematical formulation of the Porous Media System (PMS) describing two-phase, immiscible, compressible fluid flow in linear, homogeneous porous media is reviewed and expanded. It is shown that families of common vertex, coaxial parabolas and families of parallel lines are the only families of curves on which solutions of the PMS may be constant. A coordinate transformation is used to change the partial differential equations of the PMS to a system of ordinary differential equations, referred to as a similarity Porous Media System (SPMS), in which the independent variable denotes movement from curve to curve in a selected family of curves. Properties of solutions of the first boundary value problem are developed for the SPMS

  17. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad

    2015-07-13

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  18. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-01-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  19. Modeling of heat transfer within porous multi-constituent materials

    International Nuclear Information System (INIS)

    Niezgoda, M.

    2012-01-01

    The CEA works a great deal with porous materials - carbon composites, ceramics - and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous. The identification of the diffusivity of porous and/or semi-transparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multi-constituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions. (author) [fr

  20. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  1. Fluid flows of mixed regimes in porous media

    Science.gov (United States)

    Celik, Emine; Hoang, Luan; Ibragimov, Akif; Kieu, Thinh

    2017-02-01

    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy, and post-Darcy. Because of their different natures, these are usually treated separately in the literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data and the structural stability for the equation are established.

  2. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  3. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  5. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  6. Investigation of beam effect on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kotai, E. E-mail: kotai@rmki.kfki.hu; Paszti, F.; Szilagyi, E

    2000-03-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction.

  7. Investigation of beam effect on porous silicon

    International Nuclear Information System (INIS)

    Kotai, E.; Paszti, F.; Szilagyi, E.

    2000-01-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction

  8. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  9. Making Porous Luminescent Regions In Silicon Wafers

    Science.gov (United States)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  10. Element depth profiles of porous silicon

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Nikonov, O.A.; Kulik, M.; Zuk, J.; Krzyzanowska, H.; Ochalski, T.J.

    1997-01-01

    Element depth profiles of porous silicon were measured on the Van-de-Graaff accelerator in the energy range of 4 He + ions from 2 to 3.2 MeV. Application of complementary RBS, ERD and 16 O(α,α) 16 O nuclear reaction methods permits us to obtain: 1) the exact silicon, oxygen and hydrogen distribution in the samples, 2) the distribution of partial pore concentrations. The oxygen concentration in porous silicon reaches 30%, which allows one to assume the presence of silicon oxide in the pores and to explain the spectrum shift of luminescence into the blue area

  11. Porous Silicon for Enhanced Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — The very large surface area to volume ratio, and tunable thermal and optical properties provides a unique and adaptable material to push the performance of next...

  12. Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins

    International Nuclear Information System (INIS)

    Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice; Brunori, Maurizio; Arceci, Massimo; Bozzoni, Irene; Laneve, Pietro; Caffarelli, Elisa

    2006-01-01

    Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potential drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3 1 21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution

  13. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  14. Porous silicon nanoparticles for target drag delivery: structure and morphology

    International Nuclear Information System (INIS)

    Spivak, Yu M; Belorus, A O; Somov, P A; Bespalova, K A; Moshnikov, V A; Tulenin, S S

    2015-01-01

    Nanoparticles of porous silicon were obtained by electrochemical anodic etching. Morphology and structure of the particles was investigated by means dynamic light scattering and scanning electron microscopy. The influence of technological conditions of preparation on geometrical parameters of the porous silicon particles (particle size distribution, pore shape and size, the specific surface area of the porous silicon) is discussed. (paper)

  15. Influence of surface wettability on cathode electroluminescence of porous silicon

    International Nuclear Information System (INIS)

    Goryachev, D.N.; Sreseli, O.M.; Belyakov, L.V.

    1997-01-01

    Influence of porous silicon wettability on efficiency of its cathode electroluminescence in electrolytes was investigated. It was revealed that increase of porous silicon wettability by electrolyte improved contact with a sublayer and provided generation of sufficient quantity of charge carriers. Diffusion - ionic, not electronic mechanism of charge transfer to the centers of micro crystallite electroluminescence is observed in porous silicon - electrolyte systems

  16. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  17. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Science.gov (United States)

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  18. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  19. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  20. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses