WorldWideScience

Sample records for monocytic cell migration

  1. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    Science.gov (United States)

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  2. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    Science.gov (United States)

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  3. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells.

    Science.gov (United States)

    Xiao, Feng; Waldrop, Shar L; Bronk, Steve F; Gores, Gregory J; Davis, Laurie S; Kilic, Gordan

    2015-09-01

    Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

  4. A functional study on the migration of human monocytes to human leukemic cell lines and the role of monocyte chemoattractant protein-1

    NARCIS (Netherlands)

    Legdeur, MCJC; Beelen, RHJ; Schuurhuis, GJ; Broekhoven, MG; vandeLoosdrecht, AA; Tekstra, J; Langenhuijsen, MMAC; Ossenkoppele, GJ

    1997-01-01

    In the present study the migration of human monocytes towards the supernatants of five different human myeloid leukemic cell lines, four different human lymphatic leukemic cell lines and blasts derived from three different patients with acute myeloid leukemia (AML) was studied and the role of monocy

  5. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  6. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  7. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    Science.gov (United States)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  8. [Characteristics of migration of adipose tissue derived mesenchymal stromal cells after co-cultivation with activated monocytes in vitro].

    Science.gov (United States)

    Grigor'eva, O A; Korovina, I V; Gogia, B Sh; Sysoeva, V Iu

    2014-01-01

    Mesenchymal stromal cells (MSC) are considered to be promising tool of regenerative medicine. Migration of MSC toward damaged inflammatory site is essential for physiological tissue reparation. Therefore we studied modifications of migratory features of adipose tissue derived MSC (AT-MSC) after co-cultivation with activated monocytes derived from THP-1 cell line. As a result, we have observed an increased migration rate of AT-MSC in vitro in the absence of chemoattractant gradient as well as toward the gradient of PDGF BB (platelet-derived growth factor BB), which is well known chemoattractant for the cells of mesenchymal origin. Furthermore, the rate of directional AT-MSC migration through fibronectin was also increased. We have established that signaling from PDGFRβ which is activated through binding of integrin receptors with extracellular matrix may be possible way to stimulate cellular migration under simulated inflammatory conditions.

  9. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Rogier M Thurlings

    Full Text Available BACKGROUND: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA, a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man. METHODS/PRINCIPAL FINDINGS: We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT. We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO. Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3 (0.95-5.1 x 10(-3 % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion. CONCLUSIONS/SIGNIFICANCE: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  10. Migration of monocytes after intracerebral injection.

    Science.gov (United States)

    Kaminski, Miriam; Bechmann, Ingo; Kiwit, Jürgen; Glumm, Jana

    2012-01-01

    Recently, we monitored green fluorescent protein (GFP)-expressing monocytes after injection at the entorhinal cortex lesion (ECL) site in mice. We followed their migration out of the central nervous system (CNS) along olfactory nerve fibers penetrating the lamina cribrosa, within the nasal mucosa, and their subsequent appearance within the deep cervical lymph nodes (CLN), with numbers peaking at day 7. This is the same route activated T cells use for reaching the CLN, as we have shown before. Interestingly, GFP cells injected into the brain and subsequently found in the CLN exhibited ramified morphologies, which are typical of microglia and dendritic cells. To gain more insight into immunity and regeneration within the CNS we want to monitor injected monocytes using magnetic resonance imaging (MRI) after labeling with very small superparamagnetic iron oxide particles (VSOP). Due to their small size, nanoparticles have huge potential for magnetic labeling of different cell populations and their MRI tracking in vivo. So far we have verified that incubation with VSOP particles does not alter their migration pattern after ECL.

  11. Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells.

    OpenAIRE

    Navab, M; Hough, G P; Stevenson, L W; Drinkwater, D C; Laks, H; Fogelman, A M

    1988-01-01

    Human aortic endothelial cells (EC) and smooth muscle cells (SMC) were isolated and used to form a multilayer of EC-SMC separated by a layer of collagen. SMC and/or collagen layers exerted minimal effects on Na+ transport but impeded the transport of LDL. The presence of an endothelial monolayer markedly reduced the transport of Na+ and LDL. When monocytes were presented to the complete coculture, in the absence of added chemoattractant, one monocyte entered the subendothelial space for every...

  12. Sinomenine influences capacity for invasion and migration in activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, and CD147

    Institute of Scientific and Technical Information of China (English)

    Yang-qiong OU; Li-hua CHEN; Xue-jun LI; Zhi-bin LIN; Wei-dong LI

    2009-01-01

    Aim: The aim of this study was to investigate the mechanism of the effects of Sinomenine (SIN) on the invasion and migration ability of activated human monocytic THP-1 cells (A-THP-1). Sinomenine is a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum.Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-ac-etate (PMA). Cells were treated with different concentrations of SIN. The invasion and migration ability of cells was tested by in vitro transwell assays. The levels of CD147 and MMPs were evaluated by flow cytometric analysis and zymographic analysis, respectively. The mRNA expression of CD147, MMP-2, and MMP-9 was measured by RT-PCR. Results: The invasion and migration ability of A-THP-1 cells was significantly inhibited by SIN in a concentration-depen-dent fashion; at the same time, the levels of CD147, MMP-2, and MMP-9 were markedly down-regulated. This inhibitory effect was most notable at concentrations of 0.25 mmol/L and 1.00 mmol/L (P<0.01). Conclusion: A possible mechanism of the inhibitory effect of SIN on cell invasion and migration ability is repression of the expression of MMP-2 and MMP-9, which strongly correlates with the inhibition of CD147 activity.

  13. EFFECTS OF BACTERIAL LIGANDS OF PATTERN-RECOGNIZING RECEPTORS (PRR ON MONOCYTE-LIKE THP-1 CELLS UPON THEIR TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    E. P. Starikova

    2008-01-01

    Full Text Available Abstract. The aim of study was to compare the influence of lipopolysaccharide (LPS component from Gram-negative bacteria (E. coli 055:B5, and a lysate of Gram-positive bacterium (Streptococcus pyogenes, type M1, strain 40/58 upon transendothelial migration rates of monocyte-like cells (THP-1 strain. Both LPS and lysate of Streptococcus pyogenes acted as chemoattractants for THP-1 cells. he studied components of Streptococcus pyogenes proved to be more active stimulants of transendothelial THP-1 cell migration, than LPS from E. coli. During spontaneous transmigration of THP-1 cells through a monolayer of endothelial cells, augmented levels of chemokines (RANTES, MCP-1, IL-8, IP-10 were noticed, that were more pronounced in presence of LPS. Upon spontaneous transmigration of THP-1 cells through endothelial monolayer, the levels of proinflammatory cytokines (TNFα, IL-1β and IL-6 in cultural medium were found to be rather low. The transmigration-associated secretion of these cytokines increased in presence of LPS and Streptococcus pyogenes lysate. Incubation with these bacterial constituents did increase cytokine levels both in monoculture of THP-1 cells and in transmigration model. Our results suggest that the levels of THP-1 transendothelial migration depend mainly on activation of monocyte-like cells influenced by PRR-ligands from Streptococcus pyogenes lysate. (Med. Immunol., vol. 10, N 6, pp 571-576.

  14. Growth Factors: Production of Monocyte Chemotactic Protein-1 (MCP-1/JE) by Bone Marrow Stromal Cells: Effect on the Migration and Proliferation of Hematopoietic Progenitor Cells.

    Science.gov (United States)

    Xu, Y. X.; Talati, B. R.; Janakiraman, N.; Chapman, R. A.; Gautam, S. C.

    1999-01-01

    Recombinant chemotactic cytokines (chemokines) have been shown to modulate in vitro proliferation of hematopoietic progenitor cells. Whether bone marrow stromal cells produce chemokines and the physiological role they may have in the regulation of hematopoiesis has largely remained unexamined. We have examined the expression of monocyte chemoattractant protein-1 (MCP-1/JE) in bone marrow stromal cells and its effect on the migration and proliferation of murine hematopoietic progenitor cells. Freshly derived murine bone marrow stromal cells were found to secrete abundant amounts of MCP-1/JE, which was further increased upon stimulation of stromal cells with pro-inflammatory agents LPS, IL1-alpha, IFN-gamma, or TNF-alpha. Although culture supernatant conditioned by stromal cells exhibited chemotactic activity toward hematopoietic progenitor cells, the chemotactic activity was not due to MCP-1/JE. Furthermore, rMCP-1/JE also failed to induce migration of progenitor cells. MCP-1/JE, however, caused 20 to 30% increase in the clonal expansion of progenitor cells. Thus, although MCP-1/JE does not chemoattract hematopoietic progenitor cells it may have a role in their proliferation and clonal expansion.

  15. Human monocyte-derived dendritic cells expressing both chemotactic cytokines IL-8, MCP-1, RANTES and their receptors,and their selective migration to these chemokines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To characterize the mRNA expression of CXC chemokine IL-8, CC chemokine monocyte chemothractant protein-1 (MCP-1) and regulated on activation,normal T cell expressed and secreted (RANTES), and a newly defined DC chemokine DC- CK1 as well as the expression of IL-8 receptor, MCP-1 receptor and RANTES receptor in human monocyte derived dendritic cells (MoDCs).The migratory responsiveness of MoDC to IL-8, MCP-1 and RANTES was alsso studied. Methods In vitro generated MoDCs were obtained by differentiating monocytes in the presence of GM-CSF and IL-4 for 5 days. The time course of RNA expression was analyzed by RT-PCR and migratoly ability was assessed by a micromultiwell chemotaxis chamber assay. Results IL-8, MCP-1, RANTES and their corres ponding receptors were consistently expressed in MoDCs. DC-CK-1 expression was detectable efter 48 hours of differentiation. MoDC selectively migrated in response to MCP-1 and RANTES but not to IL-8 though transcripts of IL-8 receptor were present. Conclusion Because the capacity of dendritic cells to initiate immune responses depends on their specialized migratory and tissue homing properties, the expression of chemokines and their receptors along with the migratory responsiveness to chemokines of MoDC in our study suggests a potential role of chemokines in the interaction between dendritic cells and T cells and the induction of immune responses.

  16. Impaired migration capacity in monocytes derived from patients with Gaucher disease.

    Science.gov (United States)

    Bettman, Noam; Avivi, Irit; Rosenbaum, Hanna; Bisharat, Lina; Katz, Tamar

    2015-08-01

    Gaucher disease (GD) is characterized by glucocerebroside (GC) accumulation due to defective activity of the glucocerebrosidase (GlcCerase) enzyme. Monocytes and macrophages exhibit the highest GlcCerase activity and are most prominently affected by GC engorgement. As GD patients tend to exert various immune system-related changes, this study was designed to investigate potential effects of monocyte dysfunction on these alterations. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of untreated GD patients and healthy volunteers. Monocyte migration capacity towards SDF1α was assessed. The GD patients exhibited reduced numbers of monocytes and decreased capability of SDF1α-dependent monocyte migration. Evaluation of CXCR4, the SDF1α receptor, revealed reduced expression of surface CXCR4 on GD-derived monocytes, despite similar CXCR4 mRNA transcript levels in the monocytes of healthy volunteers and GD patients. Reduction of surface CXCR4 was accompanied by increased intracellular CXCR4 levels in patient monocytes. This elevated intracellular CXCR4 might reflect significantly increased SDF1α concentrations characterizing patients' serum and the lysosomal impairment of GD, resulting in decreased degradation of CXCR4. Different distributions of CXCR4 expression observed in the two groups explain impaired SDF1α-dependent monocyte migration. Reduced numbers and impaired migration capacity of GD-derived monocytes could contribute to abnormal inflammation and GD-associated immune alterations seen in these patients.

  17. Knockdown of p54nrb inhibits migration, invasion and TNF-α release of human acute monocytic leukemia THP1 cells.

    Science.gov (United States)

    Zhang, Xiujuan; Wu, Changli; Xiong, Wei; Chen, Chunling; Li, Rong; Zhou, Guangji

    2016-06-01

    54 kDa nuclear RNA- and DNA-binding protein (p54nrb) which is also called non-POU domain-containing octamer-binding protein (NONO) is known to be multifunctional involved in many nuclear processes. It was shown that p54nrb/NONO was closely related to the occurrence of erythroleukemia. Whether p54nrb/NONO plays a role in progress of human acute monocytic leukemia remains unknown. In the present study, we examined the effects of p54nrb/NONO silencing on the biological characteristics of human acute monocytic leukemia THP1 cells. The results showed that p54nrb was strongly expressed in THP1 cells, and knockdown of p54nrb slightly promoted proliferation and strongly inhibited motility and invasion of THP1 cells. Moreover, knockdown of p54nrb strongly decreased the release of TNF-α from THP1 cells by inhibiting certain process of TNF-α secretion, specially for the release of TNF-α induced by lipopolysaccharide (LPS). Notably, the infection of negative control shRNA-containing lentiviruses promoted the migration and the release of TNF-α induced by LPS in THP1 cells. All the above results demonstrated that p54nrb slightly inhibited THP1 cell proliferation, but significantly promoted migration, invasion and release of TNF-α induced by LPS in THP1 cells. The present study indicates that p54nrb is a powerful molecule involved in the regulation of cell motility and promotes the migration and invasion of THP1 cells, and it is more likely to be involved in the release of inflammatory mediators and the motility of inflammatory cells.

  18. Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow.

    Science.gov (United States)

    Chen, Cheng-Nan; Chang, Shun-Fu; Lee, Pei-Ling; Chang, Kyle; Chen, Li-Jing; Usami, Shunichi; Chien, Shu; Chiu, Jeng-Jiann

    2006-03-01

    Atherosclerosis develops at regions of the arterial tree exposed to disturbed flow. The early stage of atherogenesis involves the adhesion of leukocytes (white blood cells [WBCs]) to and their transmigration across endothelial cells (ECs), which are located in close proximity to smooth muscle cells (SMCs). We investigated the effects of EC/SMC coculture and disturbed flow on the adhesion and transmigration of 3 types of WBCs (neutrophils, peripheral blood lymphocytes [PBLs], and monocytes) using our vertical-step flow (VSF) chamber, in which ECs were cocultured with SMCs in collagen gels. Such coculture significantly increased the adhesion and transmigration of neutrophils, PBLs, and monocytes under VSF, particularly in the reattachment area, where the rolling velocity of WBCs and their transmigration time were decreased, as compared with the other areas. Neutrophils, PBLs, and monocytes showed different subendothelial migration patterns under VSF. Their movements were more random and shorter in distance in the reattachment area. Coculture of ECs and SMCs induced their expressions of adhesion molecules and chemokines, which contributed to the increased WBC adhesion and transmigration. Our findings provide insights into the mechanisms of WBC interaction with the vessel wall (composed of ECs and SMCs) under the complex flow environments found in regions of prevalence for atherogenesis.

  19. Low CCR7-mediated migration of human monocyte derived dendritic cells in response to human respiratory syncytial virus and human metapneumovirus.

    Directory of Open Access Journals (Sweden)

    Cyril Le Nouën

    2011-06-01

    Full Text Available Human respiratory syncytial virus (HRSV and, to a lesser extent, human metapneumovirus (HMPV and human parainfluenza virus type 3 (HPIV3, can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to

  20. A three-dimensional in vitro model to demonstrate the haptotactic effect of monocyte chemoattractant protein-1 on atherosclerosis-associated monocyte migration.

    Science.gov (United States)

    Ghousifam, Neda; Mortazavian, Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D; Gappa-Fahlenkamp, Heather

    2017-04-01

    Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies.

  1. CXCL1 contributes to β-amyloid-induced transendothelial migration of monocytes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    Full Text Available BACKGROUND: Bone marrow-derived microglia that originates in part from hematopoietic cells, and more particularly from monocytes preferentially attach to amyloid deposition in brains of Alzheimer's disease (AD. However, the mechanism of monocytes recruited into the amyloid plaques with an accelerated process in AD is unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we reported that monocytes from AD patients express significantly higher chemokine (C-X-C motif ligand 1 (CXCL1 compared to age-matched controls. AD patient's monocytes or CXCL1-overexpressing THP-1 cells had enhanced ability of β-amyloid (Aβ-induced transendothelial migration and Aβ-induced transendothelial migration for AD patient's monocytes or CXCL1-overexpressing THP-1 cells was almost abrogated by anti-CXCL1 antibody. Furthermore, monocytes derived from a transgenic mouse model of AD also expressed significantly higher CXCL1. CD11b⁺CD45(hi population of cells that were recruited from the peripheral blood were markedly bolcked in APP mouse brain by anti-CXCL1 antibody. Accordingly, in response to Aβ, human brain microvascular endothelial cells (HBMEC significantly up-regulated CXC chemokine receptor 2 (CXCR2 expression, which was the only identified receptor for CXCL1. In addition, a high level expression of CXCR2 in HBMEC significantly promoted the CXCL1-overexpressing THP-1 cells transendothelial migration, which could be was abrogated by anti-CXCR2 antibody. Further examination of possible mechanisms found that CXCL1-overexpressing THP-1 cells induced transendothelial electrical resistance decrease, horseradish peroxidase flux increase, ZO-1 discontinuous and occludin re-distribution from insoluble to soluble fraction through interacting with CXCR2. ROCK inhibitor, Y27632, could block CXCL1-overexpressing THP-1 cells transendothelial migration, whereas other inhibitors had no effects. CONCLUSIONS/SIGNIFICANCE: The present data indicate that monocytes derived from AD

  2. Nomenclature of monocytes and dendritic cells in blood

    NARCIS (Netherlands)

    L. Ziegler-Heitbrock (Loems); P. Ancuta (Petronela); S. Crowe (Suzanne); M. Dalod (Marc); V. Grau (Veronika); D.N. Hart (Derek); P.J. Leenen (Pieter); Y.J. Liu; G. MacPherson (Gordon); G.J. Randolph (Gwendalyn); J. Scherberich (Juergen); J. Schmitz (Juergen); K. Shortman (Ken); S. Sozzani (Silvano); H. Strobl (Herbert); M. Zembala (Marek); J.M. Austyn (Jonathan); M.B. Lutz (Manfred)

    2010-01-01

    textabstractMonocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface mark

  3. Directed migration of human neural progenitor cells to interleukin-1β is promoted by chemokines stromal cell-derived factor-1 and monocyte chemotactic factor-1 in mouse brains

    Directory of Open Access Journals (Sweden)

    Wu Yumei

    2012-07-01

    Full Text Available Abstract Background Neurogenesis, including the proliferation, migration and differentiation of neural progenitor cells (NPCs, is impaired in HIV-1 associated dementia (HAD. We previously demonstrated HIV-1-infected macrophages (HIV-MDM regulate stromal cell-derived factor 1 (SDF-1 production in astrocytes through Interleukin-1β (IL-1β. Chemokines are known to induce NPC migration; however, it remains unclear how chemokines produced in inflammation regulate NPC migration. Methods The secretion of SDF-1 and Monocyte chemotactic preotein-1 (MCP-1 in astrocytes upon IL-1β stimulation was measured by ELISA assay. Human NPCs were injected parallel along with IL-1β, SDF-1 or MCP-1 intracranially into basal ganglion 1 mm apart in SCID mice, and immunofluorescent staining was used to study the survival and migration of injected human NPCs. Results SDF-1 and MCP-1 are secreted by astrocytes upon IL-1β stimulation in a time-dependent manner. Injected human NPCs survived in SCID mice and migrated towards sites of IL-1β, SDF-1 and MCP-1 injection. Conclusions In conclusion, chemokines SDF-1 or MCP-1 secreted by astrocytes in the presence of IL-1β injection are attractive to NPCs injected into SCID mouse brains, suggesting that SDF-1 and MCP-1 play important roles in NPC migration during neuroinflammation.

  4. Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord.

    Science.gov (United States)

    Zhang, Haoqian; Trivedi, Alpa; Lee, Jung-Uek; Lohela, Marja; Lee, Sang Mi; Fandel, Thomas M; Werb, Zena; Noble-Haeusslein, Linda J

    2011-11-01

    The infiltration of monocytes into the lesioned site is a key event in the inflammatory response after spinal cord injury (SCI). We hypothesized that the molecular events governing the infiltration of monocytes into the injured cord involve cooperativity between the upregulation of the chemoattractant stromal cell-derived factor-1 (SDF-1)/CXCL12 in the injured cord and matrix metalloproteinase-9 (MMP-9/gelatinase B), expressed by infiltrating monocytes. SDF-1 and its receptor CXCR4 mRNAs were upregulated in the injured cord, while macrophages immunoexpressed CXCR4. When mice, transplanted with bone marrow cells from green fluorescent protein (GFP) transgenic mice, were subjected to SCI, GFP+ monocytes infiltrated the cord and displayed gelatinolytic activity. In vitro studies confirmed that SDF-1α, acting through CXCR4, expressed on bone marrow-derived macrophages, upregulated MMP-9 and stimulated MMP-9-dependent transmigration across endothelial cell monolayers by 2.6-fold. There was a reduction in F4/80+ macrophages in spinal cord-injured MMP-9 knock-out mice (by 36%) or wild-type mice, treated with the broad-spectrum MMP inhibitor GM6001 (by 30%). Mice were adoptively transferred with myeloid cells and treated with the MMP-9/-2 inhibitor SB-3CT, the CXCR4 antagonist AMD3100, or a combination of both drugs. While either drug resulted in a 28-30% reduction of infiltrated myeloid cells, the combined treatment resulted in a 45% reduction, suggesting that SDF-1 and MMP-9 function independently to promote the trafficking of myeloid cells into the injured cord. Collectively, these observations suggest a synergistic partnership between MMP-9 and SDF-1 in facilitating transmigration of monocytes into the injured spinal cord.

  5. Immune surveillance of the lung by migrating tissue monocytes

    Science.gov (United States)

    Rodero, Mathieu P; Poupel, Lucie; Loyher, Pierre-Louis; Hamon, Pauline; Licata, Fabrice; Pessel, Charlotte; Hume, David A; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI: http://dx.doi.org/10.7554/eLife.07847.001 PMID:26167653

  6. Monocyte-Derived Suppressor Cells in Transplantation.

    Science.gov (United States)

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  7. Monocyte ADAM17 promotes diapedesis during transendothelial migration: identification of steps and substrates targeted by metalloproteinases.

    Science.gov (United States)

    Tsubota, Yoshiaki; Frey, Jeremy M; Tai, Phillip W L; Welikson, Robert E; Raines, Elaine W

    2013-04-15

    Despite expanded definition of the leukocyte adhesion cascade and mechanisms underlying individual steps, very little is known about regulatory mechanisms controlling sequential shifts between steps. We tested the hypothesis that metalloproteinases provide a mechanism to rapidly transition monocytes between different steps. Our study identifies diapedesis as a step targeted by metalloproteinase activity. Time-lapse video microscopy shows that the presence of a metalloproteinase inhibitor results in a doubling of the time required for human monocytes to complete diapedesis on unactivated or inflamed human endothelium, under both static and physiological-flow conditions. Thus, diapedesis is promoted by metalloproteinase activity. In contrast, neither adhesion of monocytes nor their locomotion over the endothelium is altered by metalloproteinase inhibition. We further demonstrate that metalloproteinase inhibition significantly elevates monocyte cell surface levels of integrins CD11b/CD18 (Mac-1), specifically during transendothelial migration. Interestingly, such alterations are not detected for other endothelial- and monocyte-adhesion molecules that are presumed metalloproteinase substrates. Two major transmembrane metalloproteinases, a disintegrin and metalloproteinase (ADAM)17 and ADAM10, are identified as enzymes that control constitutive cleavage of Mac-1. We further establish that knockdown of monocyte ADAM17, but not endothelial ADAM10 or ADAM17 or monocyte ADAM10, reproduces the diapedesis delay observed with metalloproteinase inhibition. Therefore, we conclude that monocyte ADAM17 facilitates the completion of transendothelial migration by accelerating the rate of diapedesis. We propose that the progression of diapedesis may be regulated by spatial and temporal cleavage of Mac-1, which is triggered upon interaction with endothelium.

  8. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    Science.gov (United States)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  9. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice.

    Science.gov (United States)

    Shang, De S; Yang, Yi M; Zhang, Hu; Tian, Li; Jiang, Jiu S; Dong, Yan B; Zhang, Ke; Li, Bo; Zhao, Wei D; Fang, Wen G; Chen, Yu H

    2016-11-01

    Although tight junctions between human brain microvascular endothelial cells in the blood-brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer's disease, peripheral blood monocytes can "open" these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer's disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer's disease model mice. Our results suggest that in Alzheimer's disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood-brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood-brain barrier and into the brain. CSF2RB might be useful as an Alzheimer's disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer's disease pathogenesis.

  10. Olopatadine Suppresses the Migration of THP-1 Monocytes Induced by S100A12 Protein

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Olopatadine hydrochloride (olopatadine is an antiallergic drug with histamine H 1 receptor antagonistic activity. Recently, olopatadine has been shown to bind to S100A12 which is a member of the S100 family of calcium-binding proteins, and exerts multiple proinflammatory activities including chemotaxis for monocytes and neutrophils. In this study, we examined the possibility that the interaction of olopatadine with S100A12 inhibits the proinflammatory effects of S100A12. Pretreatment of olopatadine with S100A12 reduced migration of THP-1, a monocyte cell line, induced by S100A12 alone, but did not affect recombinant human regulated upon activation, normal T cell expressed and secreted (RANTES-induced migration. Amlexanox, which also binds to S100A12, inhibited the THP-1 migration induced by S100A12. However, ketotifen, another histamine H 1 receptor antagonist, had little effect on the activity of S100A12. These results suggest that olopatadine has a new mechanism of action, that is, suppression of the function of S100A12, in addition to histamine H 1 receptor antagonistic activity.

  11. Fucoidan Stimulates Monocyte Migration via ERK/p38 Signaling Pathways and MMP9 Secretion

    OpenAIRE

    Elene Sapharikas; Anna Lokajczyk; Anne-Marie Fischer; Catherine Boisson-Vidal

    2015-01-01

    Critical limb ischemia (CLI) induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacity of peripheral blood monocytes to adhere and migrate. Monocytes negatively isolated with magnetic b...

  12. Fucoidan Stimulates Monocyte Migration via ERK/p38 Signaling Pathways and MMP9 Secretion

    Directory of Open Access Journals (Sweden)

    Elene Sapharikas

    2015-06-01

    Full Text Available Critical limb ischemia (CLI induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacity of peripheral blood monocytes to adhere and migrate. Monocytes negatively isolated with magnetic beads from peripheral blood of healthy donors were treated with fucoidan. Fucoidan induced a 1.5-fold increase in monocyte adhesion to gelatin (p < 0.05 and a five-fold increase in chemotaxis in Boyden chambers (p < 0.05. Fucoidan also enhanced migration 2.5-fold in a transmigration assay (p < 0.05. MMP9 activity in monocyte supernatants was significantly enhanced by fucoidan (p < 0.05. Finally, Western blot analysis of fucoidan-treated monocytes showed upregulation of ERK/p38 phosphorylation. Inhibition of ERK/p38 phosphorylation abrogated fucoidan enhancement of migration (p < 0.01. Fucoidan displays striking biological effects, notably promoting monocyte adhesion and migration. These effects involve the ERK and p38 pathways, and increased MMP9 activity. Fucoidan could improve critical limb ischemia by promoting monocyte recruitment.

  13. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    Science.gov (United States)

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  14. Fucoidan Stimulates Monocyte Migration via ERK/p38 Signaling Pathways and MMP9 Secretion.

    Science.gov (United States)

    Sapharikas, Elene; Lokajczyk, Anna; Fischer, Anne-Marie; Boisson-Vidal, Catherine

    2015-06-30

    Critical limb ischemia (CLI) induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacity of peripheral blood monocytes to adhere and migrate. Monocytes negatively isolated with magnetic beads from peripheral blood of healthy donors were treated with fucoidan. Fucoidan induced a 1.5-fold increase in monocyte adhesion to gelatin (p Fucoidan also enhanced migration 2.5-fold in a transmigration assay (p fucoidan (p fucoidan-treated monocytes showed upregulation of ERK/p38 phosphorylation. Inhibition of ERK/p38 phosphorylation abrogated fucoidan enhancement of migration (p Fucoidan displays striking biological effects, notably promoting monocyte adhesion and migration. These effects involve the ERK and p38 pathways, and increased MMP9 activity. Fucoidan could improve critical limb ischemia by promoting monocyte recruitment.

  15. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models.

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-02-22

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA.

  16. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models

    Science.gov (United States)

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-01-01

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA. PMID:28225075

  17. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques.

    Directory of Open Access Journals (Sweden)

    Paul F Bradfield

    Full Text Available Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.

  18. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques.

    Science.gov (United States)

    Bradfield, Paul F; Menon, Arjun; Miljkovic-Licina, Marijana; Lee, Boris P; Fischer, Nicolas; Fish, Richard J; Kwak, Brenda; Fisher, Edward A; Imhof, Beat A

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.

  19. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  20. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Ni, Yinxing; Chen, Jing

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed...... of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246 ± 14% vs 151 ± 10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased...... compared to normotensive control subjects (221 ± 20% vs 138 ± 18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients...

  1. Interactions of TANGO and leukocyte integrin CD11c/CD18 regulate the migration of human monocytes.

    Science.gov (United States)

    Arndt, Stephanie; Melle, Christian; Mondal, Krishna; Klein, Gerd; von Eggeling, Ferdinand; Bosserhoff, Anja-Katrin

    2007-12-01

    The TANGO gene was originally identified as a new member of the MIA gene family. It codes for a protein of yet unknown function. TANGO revealed a very broad expression pattern in contrast to the highly restricted expression pattern determined for the other family members. The only cells lacking TANGO expression are cells of the hematopoietic system. One of the major differences between mature hematopoietic cells and other tissue cells is the lack of adhesion until these cells leave the bloodstream. In this study, we observed that TANGO expression was induced after adhesion of human monocytic cells to substrate. To understand the mechanism of TANGO function during monocyte adhesion we isolated interacting proteins and found an interaction between TANGO and the leukocyte-specific integrin CD11c. In functional assays, we observed reduced attachment of human monocytic cells to fibrinogen, ICAM-1 and to human microvascular endothelial cells (HMECs) after stimulation with recombinant TANGO protein. Additionally, the migrating capacity of premonocytic cells through fibrinogen or HMECs was increased after stimulation of these cells with recombinant TANGO. Therefore, we suggest that TANGO reduced the attachment to fibrinogen or other cell adhesion molecules. As TANGO does not compete for CD11c ligand binding directly, we hypothesize TANGO function by modulation of integrin activity. Taken together, the results from this study present TANGO as a novel ligand for CD11c, regulating migratory processes of hematopoietic cells.

  2. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, S.D.; Berliner, J.A.; Valente, A.J.; Territo, M.C.; Navab, M.; Parhami, F.; Gerrity, R.; Schwartz, C.J.; Fogelman, A.M.

    1990-07-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human glioma U-105MG cell line. Antibody that had been prepared against cultured baboon smooth muscle cell chemotactic factor (anti-SMCF) did not inhibit monocyte migration induced by the potent bacterial chemotactic factor f-Met-Leu-Phe. However, anti-SMCF completely inhibited the monocyte chemotactic activity found in the media of U-105MG cells, EC, and SMC before and after exposure to MM-LDL. Moreover, monocyte migration into the subendothelial space of a coculture of EC and SMC that had been exposed to MM-LDL was completely inhibited by anti-SMCF. Anti-SMCF specifically immunoprecipitated 10-kDa and 12.5-kDa proteins from EC. Incorporation of (35S)methionine into the immunoprecipitated proteins paralleled the monocyte chemotactic activity found in the medium of MM-LDL stimulated EC and the levels of MCP-1 mRNA found in the EC. We conclude that SMCF is in fact MCP-1 and MCP-1 is induced by MM-LDL.

  3. Trafficking and cell migration.

    Science.gov (United States)

    Ulrich, Florian; Heisenberg, Carl-Philipp

    2009-07-01

    The migration of single cells and epithelial sheets is of great importance for gastrulation and organ formation in developing embryos and, if misregulated, can have dire consequences e.g. during cancer metastasis. A keystone of cell migration is the regulation of adhesive contacts, which are dynamically assembled and disassembled via endocytosis. Here, we discuss some of the basic concepts about the function of endocytic trafficking during cell migration: transport of integrins from the cell rear to the leading edge in fibroblasts; confinement of signalling to the front of single cells by endocytic transport of growth factors; regulation of movement coherence in multicellular sheets by cadherin turnover; and shaping of extracellular chemokine gradients. Taken together, endocytosis enables migrating cells and tissues to dynamically modulate their adhesion and signalling, allowing them to efficiently migrate through their extracellular environment.

  4. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells.

    Directory of Open Access Journals (Sweden)

    Kazuko Ino

    Full Text Available Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP(+CD45(- cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4. Because the vast majority of EGFP(+CD45(- cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs. EGFP(+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1 and angiotensin II (Ang II increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2 and Ang II type 1 receptor (AT1R, were expressed on Ly6C(high monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP(+F4/80(+CCR2(+ monocytic cells and EGFP(+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP(+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP(+ PaSCs in injured mice. We propose that CCR2(+ monocytes migrate into the pancreas possibly via the

  5. Tetraspanins in Cell Migration

    Science.gov (United States)

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  6. Analysing immune cell migration.

    Science.gov (United States)

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  7. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    Full Text Available Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC or human lung microvascular EC (HLMVEC and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during

  8. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Ha-young LEE; Eun-ha SHIN; Yoe-sik BAE

    2006-01-01

    Aim: To investigate the effects of Sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. Methods: Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. Results: We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphin-gosine-1-phosphate (SIP) receptors, we checked the effect of an SIP receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. Conclusion: The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from SIP receptors, is involved in SPC-induced chemotaxis.

  9. Monocyte-derived dendritic cells in bipolar disorder

    NARCIS (Netherlands)

    Knijff, EM; Ruwhof, C; de Wit, HJ; Kupka, RW; Vonk, R; Akkerhuis, GW; Nolen, WA; Drexhage, HA

    2006-01-01

    Background: Dendritic cells (DC) are key regulators of the immune system, which is compromised in patients with bipolar disorder. We sought to study monocyte-derived DC in bipolar disorder. Methods: Monocytes purified from blood collected from DSM-IV bipolar disorder outpatients (n = 53, 12 without

  10. Galectin-3 Binding Protein Secreted by Breast Cancer Cells Inhibits Monocyte-Derived Fibrocyte Differentiation.

    Science.gov (United States)

    White, Michael J V; Roife, David; Gomer, Richard H

    2015-08-15

    To metastasize, tumor cells often need to migrate through a layer of collagen-containing scar tissue which encapsulates the tumor. A key component of scar tissue and fibrosing diseases is the monocyte-derived fibrocyte, a collagen-secreting profibrotic cell. To test the hypothesis that invasive tumor cells may block the formation of the fibrous sheath, we determined whether tumor cells secrete factors that inhibit monocyte-derived fibrocyte differentiation. We found that the human metastatic breast cancer cell line MDA-MB-231 secretes activity that inhibits human monocyte-derived fibrocyte differentiation, whereas less aggressive breast cancer cell lines secrete less of this activity. Purification indicated that Galectin-3 binding protein (LGALS3BP) is the active factor. Recombinant LGALS3BP inhibits monocyte-derived fibrocyte differentiation, and immunodepletion of LGALS3BP from MDA-MB 231 conditioned media removes the monocyte-derived fibrocyte differentiation-inhibiting activity. LGALS3BP inhibits the differentiation of monocyte-derived fibrocytes from wild-type mouse spleen cells, but not from SIGN-R1(-/-) mouse spleen cells, suggesting that CD209/SIGN-R1 is required for the LGALS3BP effect. Galectin-3 and galectin-1, binding partners of LGALS3BP, potentiate monocyte-derived fibrocyte differentiation. In breast cancer biopsies, increased levels of tumor cell-associated LGALS3BP were observed in regions of the tumor that were invading the surrounding stroma. These findings suggest LGALS3BP and galectin-3 as new targets to treat metastatic cancer and fibrosing diseases.

  11. Two-way communication between endometrial stromal cells and monocytes.

    Science.gov (United States)

    Klinkova, Olga; Hansen, Keith A; Winterton, Emily; Mark, Connie J; Eyster, Kathleen M

    2010-02-01

    Immune system cells and cells of the endometrium have long been proposed to interact in both physiological and pathological processes. The current study was undertaken to examine communication between cultured monocytes and endometrial stromal cells and also to assess responses of endometrial stromal cells for treatment with estradiol (E) in the absence and presence of medroxyprogesterone acetate (P). A telomerase-immortalized human endometrial stromal cell (T-HESC) line and the U937 monocyte cell line were used. Telomerase-immortalized human endometrial stromal cells were treated with E +/- P +/- monocyte conditioned medium; U937 were treated +/- T-HESC conditioned medium. Gene expression in response to treatment was examined by DNA microarray. Bidirectional communication, as demonstrated by changes in gene expression, clearly occurred between U937 monocytes and T-HESC.

  12. Mediators of Monocyte Migration in Response to Recovery Modalities following Resistance Exercise

    Directory of Open Access Journals (Sweden)

    Adam R. Jajtner

    2014-01-01

    Full Text Available Mediators of monocyte migration, complement receptor-3 (CR3, and chemokine ligand-4 (CCL4 were measured in response to recovery modalities following resistance exercise. Thirty resistance-trained men (23.1±2.9 y; 175.2±7.1 cm; 82.1±8.4 kg were given neuromuscular electric stimulation (NMES, cold water immersion (CWI, or control (CON treatments immediately following resistance exercise. Blood samples were obtained preexercise (PRE, immediately (IP, 30 minutes (30 P, 24 hours (24 H, and 48 hours (48 H after exercise for measurement of circulating CCL4 and CR3 expression on CD14+ monocytes, by assay and flow cytometry. Circulating CCL4 showed no consistent changes. Inferential analysis indicated that CR3 expression was likely greater in CON at 30 P than NMES (90.0% or CWI (86.8%. NMES was likely lower than CON at 24 H (92.9% and very likely lower at 48 H (98.7%. Expression of CR3 following CWI was very likely greater than CON (96.5% at 24 H. The proportion of CR3+ monocytes was likely greater following CWI than NMES (85.8% or CON (85.2% at 24 H. The change in proportion of CR3+ monocytes was likely (86.4% greater following NMES than CON from IP to 30 P. The increased expression of CR3 and increased proportion of CR3+ monocytes following CWI at 24 H indicate a potentially improved ability for monocyte adhesion to the endothelium, possibly improving phagocytosis of damaged tissues.

  13. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface

    Science.gov (United States)

    Chimen, Myriam; Yates, Clara M.; McGettrick, Helen M.; Ward, Lewis S. C.; Harrison, Matthew J.; Apta, Bonita; Dib, Lea H.; Imhof, Beat A.; Harrison, Paul; Nash, Gerard B.

    2017-01-01

    Two major monocyte subsets, CD14+CD16− (classical) and CD14+/dimCD16+ (nonclassical/intermediate), have been described. Each has different functions ascribed in its interactions with vascular endothelial cells (EC), including migration and promoting inflammation. Although monocyte subpopulations have been studied in isolated systems, their influence on EC and on the course of inflammation has been ignored. In this study, using unstimulated or cytokine-activated EC, we observed significant differences in the recruitment, migration, and reverse migration of human monocyte subsets. Associated with this, and based on their patterns of cytokine secretion, there was a difference in their capacity to activate EC and support the secondary recruitment of flowing neutrophils. High levels of TNF were detected in cocultures with nonclassical/intermediate monocytes, the blockade of which significantly reduced neutrophil recruitment. In contrast, classical monocytes secreted high levels of IL-6, the blockade of which resulted in increased neutrophil recruitment. When cocultures contained both monocyte subsets, or when conditioned supernatant from classical monocytes cocultures (IL-6hi) was added to nonclassical/intermediate monocyte cocultures (TNFhi), the activating effects of TNF were dramatically reduced, implying that when present, the anti-inflammatory activities of IL-6 were dominant over the proinflammatory activities of TNF. These changes in neutrophil recruitment could be explained by regulation of E-selectin on the cocultured EC. This study suggests that recruited human monocyte subsets trigger a regulatory pathway of cytokine-mediated signaling at the EC interface, and we propose that this is a mechanism for limiting the phlogistic activity of newly recruited monocytes. PMID:28193827

  14. An in vitro coculture model of transmigrant monocytes and foam cell formation.

    Science.gov (United States)

    Takaku, M; Wada, Y; Jinnouchi, K; Takeya, M; Takahashi, K; Usuda, H; Naito, M; Kurihara, H; Yazaki, Y; Kumazawa, Y; Okimoto, Y; Umetani, M; Noguchi, N; Niki, E; Hamakubo, T; Kodama, T

    1999-10-01

    To analyze in vitro the migration of monocytes to the subendothelial space, their differentiation into macrophages, and the subsequent formation of foam cells in vitro, we have developed a 2-coculture system with rabbit aortic endothelial cells (AECs), aortic smooth muscle cells (SMCs), and a mixture of matrix proteins on polyethylene filters in chemotaxis chambers. AECs were seeded on a mixture of type I and IV collagen with or without various types of serum lipoproteins (method 1) or on matrix proteins secreted by SMCs (method 2). In these coculture systems, rabbit AECs can maintain a well-preserved monolayer for up to 2 weeks. When human CD14-positive monocytes were added to the upper medium of the system, with monocyte chemotactic protein-1 treatment approximately 60% of the monocytes transmigrated within 24 hours and were retained for up to 7 days, whereas without MCP-1 treatment, monocytes transmigrated. On day 1, transmigrant monocytes were negative for immunostaining of type I and II macrophage scavenger receptors but by day 3, became positive for scavenger receptors as well as other macrophage markers. When oxidized low density lipoprotein was added to the matrix layer of the method I coculture, on day 4 transmigrant cells exhibited lipid deposit droplets, and by day 7, they had the appearance of typical foam cells. Some of the transmigrant cells recovered in the lower medium on day 7 also appeared to be foam cells, indicating foam cell motility and escape from the coculture layer through the filter. In summary, this coculture system is a useful in vitro tool to dissect the cellular and molecular events that make up the process of foam cell formation.

  15. Role of recently migrated monocytes in cigarette smoke-induced lung inflammation in different strain of mice.

    Directory of Open Access Journals (Sweden)

    Sandra Pérez-Rial

    Full Text Available This study investigates the role of proinflammatory monocytes recruited from blood circulation and recovered in bronchoalveolar lavage (BAL fluid in mediating the lung damage in a model of acute cigarette smoke (CS-induced lung inflammation in two strains of mice with different susceptibility to develop emphysema (susceptible -C57BL/6J and non susceptible -129S2/SvHsd. Exposure to whole-body CS for 3 consecutive research cigarettes in one single day induced acute inflammation in the lung of mice. Analysis of BAL fluid showed more influx of recently migrated monocytes at 72 h after CS-exposition in susceptible compared to non susceptible mice. It correlated with an increase in MMP-12 and TNF-α protein levels in the lung tissue, and with an increment of NF-κB translocation to the nucleus measured by electrophoretic mobility shift assay in C57BL/6J mice. To determine the functional role of these proinflammatory monocytes in mediating CS-induced airway inflammation, alveolar macrophages and blood monocytes were transiently removed by pretreatment with intratracheal and intravenous liposome-encapsulated CL2MDP, given 2 and 4 days prior to CS exposure and their repopulation was studied. Monocytes/macrophages were maximally depleted 48 h after last liposome application and subsequently recently migrated monocytes reappeared in BAL fluid of susceptible mice at 72 h after CS exposure. Recently migrated monocytes influx to the lung correlated with an increase in the MMP-12 protein level in the lung tissue, indicating that the increase in proinflammatory monocytes is associated with a major tissue damaging. Therefore our data confirm that the recruitment of proinflammatory recently migrated monocytes from the blood are responsible for the increase in MMP-12 and has an important role in the pathogenesis of lung disease induced by acute lung inflammation. These results could contribute to understanding the different susceptibility to CS of these strains of

  16. Ex vivo foam cell formation is enhanced in monocytes from older individuals by both extrinsic and intrinsic mechanisms.

    Science.gov (United States)

    Angelovich, Thomas A; Shi, Margaret D Y; Zhou, Jingling; Maisa, Anna; Hearps, Anna C; Jaworowski, Anthony

    2016-07-01

    Aging is the strongest predictor of cardiovascular diseases such as atherosclerosis, which are the leading causes of morbidity and mortality in elderly men. Monocytes play an important role in atherosclerosis by differentiating into foam cells (lipid-laden macrophages) and producing atherogenic proinflammatory cytokines. Monocytes from the elderly have an inflammatory phenotype that may promote atherosclerotic plaque development; here we examined whether they are more atherogenic than those from younger individuals. Using an in vitro model of monocyte transmigration and foam cell formation, monocytes from older men (median age [range]: 75 [58-85] years, n=20) formed foam cells more readily than those of younger men (32 [23-46] years, n=20) (PFoam cell formation was enhanced by soluble factors in serum from older men, but did not correlate with plasma lipid levels. Of the three subsets, intermediate monocytes formed the most foam cells. Therefore, both cellular changes to monocytes and soluble plasma factors in older men primes monocytes for foam cell formation following transendothelial migration, which may contribute to enhanced atherosclerosis in this population.

  17. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan

    2011-01-01

    at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...... by IL-4 denaturation or improper epitope presentation induced by the immobilization process, or by biological irresponsiveness of monocytes to IL-4 in immobilized formats....

  18. Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Udsen, Maja S.

    2016-01-01

    Purpose: To determine to which extent inflammatory cytokines affect chemokine secretion by primary human choroidal melanocytes (HCMs), their capacity to attract monocytes, and whether HCMs are able to influence the proliferation of activated T cells. Methods: Primary cultures of HCMs were...... established from eyes of 13 donors. Human choroidal melanocytes were stimulated with IFN-γ and TNF-α or with supernatant from activated T cells (T-cell–conditioned media [TCM]). Gene expression analysis was performed by using microarrays. Protein levels were quantified with ELISA or cytometric bead array....... Supernatants of HCMs were assessed for the capability to attract monocytes in a transwell plate. Proliferation of activated T cells was assessed in a direct coculture with HCMs by a [3H]-thymidine incorporation assay. Results: Stimulation of HCMs with TCM or IFN-γ and TNF-α resulted in increased expression...

  19. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity

    Science.gov (United States)

    Mytar, B; Siedlar, M; Woloszyn, M; Ruggiero, I; Pryjma, J; Zembala, M

    1999-01-01

    The present study examined the ability of human monocytes to produce reactive oxygen intermediates after a contact with tumour cells. Monocytes generated oxygen radicals, as measured by luminol-enhanced chemiluminescence and superoxide anion production, after stimulation with the tumour, but not with untransformed, cells. The use of specific oxygen radical scavengers and inhibitors, superoxide dismutase, catalase, dimethyl sulphoxide and deferoxamine as well as the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide, indicated that chemiluminescence was dependent on the production of superoxide anion and hydroxyl radical and the presence of myeloperoxidase. The tumour cell-induced chemiluminescent response of monocytes showed different kinetics from that seen after activation of monocytes with phorbol ester. These results indicate that human monocytes can be directly stimulated by tumour cells for reactive oxygen intermediate production. Spontaneous monocyte-mediated cytotoxicity towards cancer cells was inhibited by superoxide dismutase, catalase, deferoxamine and hydrazide, implicating the role of superoxide anion, hydrogen peroxide, hydroxyl radical and hypohalite. We wish to suggest that so-called ‘spontaneous’ tumoricidal capacity of freshly isolated human monocytes may in fact be an inducible event associated with generation of reactive oxygen intermediates and perhaps other toxic mediators, resulting from a contact of monocytes with tumour cells. © 1999 Cancer Research Campaign PMID:10070862

  20. Voltage-gated sodium channel Nav1.7 maintains the membrane potential and regulates the activation and chemokine-induced migration of a monocyte-derived dendritic cell subset.

    Science.gov (United States)

    Kis-Toth, Katalin; Hajdu, Peter; Bacskai, Ildiko; Szilagyi, Orsolya; Papp, Ferenc; Szanto, Attila; Posta, Edit; Gogolak, Peter; Panyi, Gyorgy; Rajnavolgyi, Eva

    2011-08-01

    Expression of CD1a protein defines a human dendritic cell (DC) subset with unique functional activities. We aimed to study the expression of the Nav1.7 sodium channel and the functional consequences of its activity in CD1a(-) and CD1a(+) DC. Single-cell electrophysiology (patch-clamp) and quantitative PCR experiments performed on sorted CD1a(-) and CD1a(+) immature DC (IDC) showed that the frequency of cells expressing Na(+) current, current density, and the relative expression of the SCN9A gene encoding Nav1.7 were significantly higher in CD1a(+) cells than in their CD1a(-) counterparts. The activity of Nav1.7 results in a depolarized resting membrane potential (-8.7 ± 1.5 mV) in CD1a(+) IDC as compared with CD1a(-) cells lacking Nav1.7 (-47 ± 6.2 mV). Stimulation of DC by inflammatory signals or by increased intracellular Ca(2+) levels resulted in reduced Nav1.7 expression. Silencing of the SCN9A gene shifted the membrane potential to a hyperpolarizing direction in CD1a(+) IDC, resulting in decreased cell migration, whereas pharmacological inhibition of Nav1.7 by tetrodotoxin sensitized the cells for activation signals. Fine-tuning of IDC functions by a voltage-gated sodium channel emerges as a new regulatory mechanism modulating the migration and cytokine responses of these DC subsets.

  1. Pathogenic bacteria and TNF do not induce production of macrophage migration inhibitory factor (MIF) by human monocytes.

    Science.gov (United States)

    Temple, Suzanna E L; Cheong, Karey Y; Price, Patricia; Waterer, Grant W

    2009-06-01

    Elevated serum macrophage migration inhibitory factor (MIF) is associated with severe sepsis, but it is not clear whether bacteria stimulate synthesis of MIF by blood leukocytes directly or via induction of TNF. Here we assess production of MIF mRNA and protein by blood leukocytes from healthy human subjects (n=28) following exposure to bacteria commonly associated with sepsis (Escherichia coli and Streptococcus pneumoniae). Bacteria did not increase levels of MIF mRNA or secreted protein. CD14(+) monocytes were the main cell type producing MIF before and after stimulation. Exposure of leukocytes to TNF did not induce MIF. Hence elevated levels of serum MIF observed in sepsis may not reflect MIF produced by blood leukocytes stimulated directly by bacteria or TNF.

  2. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein.

    OpenAIRE

    Navab, M; Imes, S S; Hama, S Y; Hough, G P; Ross, L.A.; Bork, R W; Valente, A. J.; Berliner, J A; Drinkwater, D C; Laks, H

    1991-01-01

    Incubation of cocultures of human aortic endothelial (HAEC) and smooth muscle cells (HASMC) with LDL in the presence of 5-10% human serum resulted in a 7.2-fold induction of mRNA for monocyte chemotactic protein 1 (MCP-1), a 2.5-fold increase in the levels of MCP-1 protein in the coculture supernatants, and a 7.1-fold increase in the transmigration of monocytes into the subendothelial space of the cocultures. Monocyte migration was inhibited by 91% by antibody to MCP-1. Media collected from t...

  3. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  4. Substrate curvature regulates cell migration

    Science.gov (United States)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  5. New dimensions in cell migration

    NARCIS (Netherlands)

    Friedl, P.; Sahai, E.; Weiss, S.; Yamada, K.M.

    2012-01-01

    Studies of cell migration in three-dimensional (3D) cell culture systems and in vivo have revealed several differences when compared with cell migration in two dimensions, including their morphology and mechanical and signalling control. Here, researchers assess the contribution of 3D models to our

  6. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    Directory of Open Access Journals (Sweden)

    Katrin Paulsen

    2015-01-01

    Full Text Available Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  7. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    Science.gov (United States)

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  8. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment.

    Science.gov (United States)

    Clark, R A; Wikner, N E; Doherty, D E; Norris, D A

    1988-08-25

    Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell

  9. Comparative Analysis of the Interaction of Helicobacter pylori with Human Dendritic Cells, Macrophages, and Monocytes

    Science.gov (United States)

    Fehlings, Michael; Drobbe, Lea; Moos, Verena; Renner Viveros, Pablo; Hagen, Jana; Beigier-Bompadre, Macarena; Pang, Ervinna; Belogolova, Elena; Churin, Yuri; Schneider, Thomas; Meyer, Thomas F.; Aebischer, Toni

    2012-01-01

    Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and monocyte-derived (classically activated; M1) macrophages with H. pylori and analyzed phenotypic alterations, cytokine secretion, phagocytosis, and immunostimulation. Since we detected CD163+ (alternatively activated; M2) macrophages in gastric biopsy specimens from H. pylori-positive patients, we also included monocyte-derived M2 macrophages in the study. Upon H. pylori infection, monocytes secreted interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70. Infected DCs became activated, as shown by the enhanced expression of CD25, CD80, CD83, PDL-1, and CCR7, and secreted IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, and IL-23. However, infection led to significantly downregulated CD209 and suppressed the constitutive secretion of macrophage migration inhibitory factor (MIF). H. pylori-infected M1 macrophages upregulated CD14 and CD32, downregulated CD11b and HLA-DR, and secreted mainly IL-1β, IL-6, IL-10, IL-12p40, and IL-23. Activation of DCs and M1 macrophages correlated with increased capacity to induce T-cell proliferation and decreased phagocytosis of dextran. M2 macrophages upregulated CD14 and CD206 and secreted IL-10 but produced less of the proinflammatory cytokines than M1 macrophages. Thus, H. pylori affects the functions of human APC subsets differently, which may influence the course and the outcome of H. pylori infection. The suppression of MIF in DCs constitutes a novel immune evasion mechanism exploited by H. pylori. PMID:22615251

  10. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  11. Expression and regulation of Schlafen (SLFN family members in primary human monocytes, monocyte-derived dendritic cells and T cells

    Directory of Open Access Journals (Sweden)

    Alexander Puck

    2015-01-01

    Full Text Available Schlafen (SLFN/Slfn family members have been investigated for their involvement in fundamental cellular processes including growth regulation, differentiation and control of viral replication. However, most research has been focused on the characterization of Slfns within the murine system or in human cell lines. Since little is known about SLFNs in primary human immune cells, we set out to analyze the expression and regulation of the six human SLFN genes in monocytes, monocyte-derived dendritic cells (moDCs and T cells. Comparison of SLFN gene expression across these three cell types showed high mRNA expression of SLFN11 in monocytes and moDCs and high SLFN5 expression in T cells, indicating functional importance within these cell types. Differentiation of monocytes to moDCs leads to the gradual upregulation of SLFN12L and SLFN13 while SLFN12 levels were decreased by differentiation stimuli. Stimulation of moDCs via human rhinovirus, lipopolysaccharide, or IFN-α lead to strong upregulation of SLFN gene expression, while peptidoglycan poorly stimulated regulation of both SLFNs and the classical interferon-stimulated gene MxA. T cell activation was found to downregulate the expression of SLFN5, SLFN12 and SLFN12L, which was reversible upon addition of exogenous IFN-α. In conclusion, we demonstrate, that SLFN gene upregulation is mainly dependent on autocrine type I interferon signaling in primary human immune cells. Rapid decrease of SLFN expression levels following T cell receptor stimulation indicates a role of SLFNs in the regulation of human T cell quiescence.

  12. The role of Januskinases Jak1 and Tyk2 in monocyte-induced growth inhibition of smooth muscle cells

    OpenAIRE

    Schaewen, Markus von

    2010-01-01

    The interaction between monocytes and vascular smooth muscle cells (VSMC) plays an important role in the response of the vessel wall to injury, presumably by modulating VSMC functional behaviour via an interaction of monozytic urokinase plasminogen (uPA) and its uPA receptor (uPAR). The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. This work investigates the underlying molecular mechanisms, which remained not comp...

  13. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    Science.gov (United States)

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  14. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    NARCIS (Netherlands)

    Dekker, E. den; Grefte, S.; Huijs, T.; Dam, G.B. ten; Versteeg, E.M.M.; Berk, L.C.J. van den; Bladergroen, B.A.; Kuppevelt, A.H.M.S.M. van; Figdor, C.G.; Torensma, R.

    2008-01-01

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expr

  15. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection.

    Science.gov (United States)

    Ellis, Gregory T; Davidson, Sophia; Crotta, Stefania; Branzk, Nora; Papayannopoulos, Venizelos; Wack, Andreas

    2015-09-01

    Streptococcus pneumoniae coinfection is a major cause of influenza-associated mortality; however, the mechanisms underlying pathogenesis or protection remain unclear. Using a clinically relevant mouse model, we identify immune-mediated damage early during coinfection as a new mechanism causing susceptibility. Coinfected CCR2(-/-) mice lacking monocytes and monocyte-derived cells control bacterial invasion better, show reduced epithelial damage and are overall more resistant than wild-type controls. In influenza-infected wild-type lungs, monocytes and monocyte-derived cells are the major cell populations expressing the apoptosis-inducing ligand TRAIL. Accordingly, anti-TRAIL treatment reduces bacterial load and protects against coinfection if administered during viral infection, but not following bacterial exposure. Post-influenza bacterial outgrowth induces a strong proinflammatory cytokine response and massive inflammatory cell infiltrate. Depletion of neutrophils or blockade of TNF-α facilitate bacterial outgrowth, leading to increased mortality, demonstrating that these factors aid bacterial control. We conclude that inflammatory monocytes recruited early, during the viral phase of coinfection, induce TRAIL-mediated lung damage, which facilitates bacterial invasion, while TNF-α and neutrophil responses help control subsequent bacterial outgrowth. We thus identify novel determinants of protection versus pathology in influenza-Streptococcus pneumoniae coinfection.

  16. Cell migration in confined environments.

    Science.gov (United States)

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.

  17. Enhanced lentiviral transduction of monocyte-derived dendritic cells in the presence of conditioned medium from dying monocytes.

    Science.gov (United States)

    Masurier, C; Boutin, S; Veron, P; Bernard, J; Danos, O; Davoust, J

    2007-02-01

    Lentiviral vectors (LVs) are attractive vehicles for the transduction of human dendritic cells (DCs) in order to mobilize their endogenous antigen presentation pathways. We analyzed here how to improve the efficiency of LV transduction, which we performed at the initial stages of the differentiation of purified monocytes into dendritic cells (Mo-DCs). Using LVs pseudotyped with the vesicular stomatitis virus envelope G glycoprotein (VSV-G), we found that a conditioned medium derived from dying monocytes (MCM) improved by 2- to 10- fold the proportion of transduced Mo-DCs. This enhanced transduction efficiency requires the presence of MCM during the initial stage of LV transduction and does not affect the phenotype and antigen presentation function of terminally differentiated Mo-DCs. Importantly, we found that MCM derived from a human acute monocytic leukemia cell line, THP-1, was equally effective. The MCM activity was heat stable (56 degrees C) and was present in the soluble fraction after high-speed centrifugation. Altogether our results show that a soluble factor present in dying monocyte cultures can replace advantageously facilitating agents such as Polybrene, to achieve high LV transductions levels. This protocol can be performed with autologous monocytes and is therefore applicable in clinical settings.

  18. Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, Özcan; Larsen, Niels Bent

    2016-01-01

    the effect of autocrine CCL19 on in vitro migration of human DCs toward CCL21. Results. Using human monocyte-derived DCs in a 3D chemotaxis assay, we are the first to demonstrate that CCL19 more potently induces directed migration of human DCs compared with CCL21. When comparing migration of type 1 DCs......Background aims. Maturation of dendritic cells (DCs) induces their homing from peripheral to lymphatic tissues guided by CCL21. However, in vitro matured human monocyte-derived DC cancer vaccines injected intradermally migrate poorly to lymph nodes (LNs). In vitro maturation protocols generate DCs...... and PGE2-DCs, migration of type 1 DCs was strikingly impaired compared with PGE2-DCs, but only toward low concentrations of CCL21. When type 1 DCs were cultured overnight in fresh culture medium (reducing autocrine CCL19 levels), a rescuing effect was observed on migration toward low concentrations of CCL...

  19. In Vitro Brucella suis Infection Prevents the Programmed Cell Death of Human Monocytic Cells

    Science.gov (United States)

    Gross, Antoine; Terraza, Annie; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Dornand, Jacques

    2000-01-01

    During the complex interaction between an infectious agent and a host organism, the pathogen can interfere with the host cell's programmed death to its own benefit. Induction or prevention of host cell apoptosis appears to be a critical step for determining the infection outcome. Members of the gram-negative bacterial genus Brucella are intracellular pathogens which preferentially invade monocytic cells and develop within these cells. We investigated the effect of Brucella suis infection on apoptosis of human monocytic phagocytes. The present study provides evidence that Brucella infection inhibited spontaneously occurring apoptosis in human monocytes. Prevention of monocyte apoptosis was not mediated by Brucella lipopolysaccharide and required bacterial survival within infected cells. Both invaded and noninvaded cells were protected, indicating that soluble mediators released during infection were involved in the phenomenon. Analysis of Brucella-infected monocytes revealed specific overexpression of the A1 gene, a member of the bcl-2 family implicated in the survival of hematopoietic cells. Brucella infection also rendered macrophage-like cells resistant to Fas ligand- or gamma interferon-induced apoptosis, suggesting that Brucella infection protected host cells from several cytotoxic processes occurring at different steps of the immune response. The present data clearly show that Brucella suis modulated the monocyte/macrophage's apoptotic response to the advantage of the pathogen, thus preventing host cell elimination. This might represent a strategy for Brucella development in infected hosts. PMID:10603407

  20. A Discrete Cell Migration Model

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Kruse, Kara L [ORNL; Ward, Richard C [ORNL; O' Quinn, Elizabeth [Wofford College; Woerner, Matthew M [ORNL; Beckerman, Barbara G [ORNL

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  1. Effects of TNF-alpha on Endothelial Cell Collective Migration

    Science.gov (United States)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  2. Interleukin 18 stimulates HIV type 1 in monocytic cells.

    Science.gov (United States)

    Shapiro, L; Puren, A J; Barton, H A; Novick, D; Peskind, R L; Shenkar, R; Gu, Y; Su, M S; Dinarello, C A

    1998-10-13

    The cytokine interleukin (IL) 18 (formerly interferon gamma-inducing factor) induces the T helper type 1 response. In the present studies, IL-18 increased HIV type 1 (HIV-1) production from 5- to 30-fold in the chronically infected U1 monocytic cell line. Inhibition of tumor necrosis factor (TNF) activity by the addition of TNF-binding protein reduced IL-18-stimulated HIV-1 production by 48%. In the same cultures, IL-18-induced IL-8 was inhibited by 96%. Also, a neutralizing anti-IL-6 mAb reduced IL-18-induced HIV-1 by 63%. Stimulation of U1 cells with IL-18 resulted in increased production of IL-6, and exogenous IL-6 added to U1 cells increased HIV-1 production 4-fold over control. A specific inhibitor of the p38 mitogen-activated protein kinase reduced IL-18-induced HIV-1 by 73%, and a 50% inhibition was observed at 0.05 microM. In the same cultures, IL-8 was inhibited by 87%. By gel-shift and supershift analyses, increased binding activity of the transcription factor NF-kappaB was measured in nuclear extracts from U1 cells 1 h after exposure to IL-18. These results demonstrate induction of HIV-1 by IL-18 in a monocyte target associated with an intermediate role for TNF and IL-6, activation of p38 mitogen-activated protein kinase, and nuclear translocation of NF-kappaB.

  3. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... proceeded via anthraquinone photochemistry to introduce amine functionalities at the surface followed by coupling of IL-4 through a bifunctional amine-reactive linker. X-ray photoelectron spectroscopy showed that undesirable multilayer formation of the photoactive compound could be avoided by reaction...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...

  4. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    Science.gov (United States)

    Thanabalasuriar, A; Neupane, A.S; Wang, J; Krummel, M.F; Kubes, P

    2017-01-01

    iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against a variety of bacterial infections including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the potent iNKT cell ligand α-galactosylceramide or during S. pneumoniae infection. In untreated mice the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae, induced CD1d dependent rapid recruitment of neutrophils out of the vasculature. This neutrophil exodus paved the way for extravasation of iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell migration out of the lung vasculature by blocking CCL17 greatly increased susceptibility to S. pneumoniae infection, suggesting a critical role for the secondary wave of iNKT cells in host defense. PMID:27653688

  5. Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells.

    Science.gov (United States)

    Marczin, N; Antonov, A; Papapetropoulos, A; Munn, D H; Virmani, R; Kolodgie, F D; Gerrity, R; Catravas, J D

    1996-09-01

    Since endothelium-dependent vasodilation is altered in atherosclerosis and enhanced monocyte/endothelial interactions are implicated in early atherosclerosis, we evaluated the effects of monocytes on the endothelial nitric oxide (NO) pathway by estimating release of biologically active NO from cultured endothelial cells and levels of constitutive NO synthase (ecNOS). NO release was estimated in a short-term bioassay using endothelial cell-induced cGMP accumulation in vascular smooth muscle (SM) cells. Exposure of SM cells to porcine aortic endothelial cells (PAECs) and human aortic endothelial cells (HAECs) produced large increases in SM cGMP content; this increase was prevented by NG-nitro-L-arginine methyl ester, the inhibitor of endothelial NOS. Confluent monolayers of PAECs and HAECs cocultured with monocytes also stimulated SM cGMP formation; however, NO release from these cultures was attenuated in a coculture time (2 to 48 hours)- and monocyte concentration (20 to 200 x 10(3) per well)-dependent manner. This effect of monocyte adhesion appeared to be selective for NO release since other biochemical pathways, such as atriopeptin-and isoproterenol-induced cyclic nucleotide accumulation within the endothelial cells, were not altered by monocytes. The effects of adherent monocytes on NO release were mimicked by monocyte-derived cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 alpha. Furthermore, the conditioned medium of monocytes contained significant quantities of these cytokines. Conditioned medium, as well as monocytes physically separated from the endothelial cells, attenuated NO release, suggesting that soluble factors may mediate the effects of monocytes. An IL-1 beta neutralizing antibody fully prevented the NO dysfunction in response to directly adherent monocytes. Superoxide dismutase, catalase, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), and exogenous L-arginine failed to improve NO release, suggesting that oxidant stress

  6. Monocyte Activation by Necrotic Cells Is Promoted by Mitochondrial Proteins and Formyl Peptide Receptors

    Science.gov (United States)

    Crouser, Elliott D.; Shao, Guohong; Julian, Mark W.; Macre, Jennifer E.; Shadel, Gerald S.; Tridandapani, Susheela; Huang, Qin; Wewers, Mark D.

    2009-01-01

    Objective Necrotic cells evoke potent innate immune responses through unclear mechanisms. The mitochondrial fraction of the cell retains constituents of its bacterial ancestors, including N-formyl peptides, which are potentially immunogenic. Thus, we hypothesized that the mitochondrial fraction of the cell, particularly N-formyl peptides, contributes significantly to the activation of monocytes by necrotic cells. Design Human peripheral blood monocytes were incubated with necrotic cell fractions and mitochondrial proteins in order to investigate their potential for immune cell activation. Setting University medical center research laboratory. Subjects Healthy human adults served as blood donors. Measurements and Main Results Human blood monocyte activation was measured after treatment with cytosolic, nuclear and mitochondrial fractions of necrotic HepG2 cells or necrotic HepG2 cells depleted of N-formyl peptides [Rho(0) cells]. The specific role of the high affinity formyl peptide receptor (FPR) was then tested using specific pharmacological inhibitors and RNA-silencing. The capacity of mitochondrial N-formyl peptides to activate monocytes was confirmed using a synthetic peptide conforming to the N-terminus of mitochondrial NADH subunit 6. The results demonstrated that mitochondrial cell fractions most potently activated monocytes, and IL-8 was selectively released at low protein concentrations. Mitochondria from Rho(0) cells induced minimal monocyte IL-8 release, and specific pharmacological inhibitors and RNA-silencing confirmed that FPR contributes significantly to monocyte IL-8 responses to both necrotic cells and mitochondrial proteins. N-formyl peptides alone did not induce monocyte IL-8 release; whereas, the combination of mitochondrial N-formyl peptides and mitochondrial transcription factor A (TFAM) dramatically increased IL-8 release from monocytes. Likewise, HMGB1, the nuclear homologue of TFAM, did not induce monocyte IL-8 release unless combined with

  7. Transmission of pseudorabies virus from immune-masked blood monocytes to endothelial cells

    OpenAIRE

    Van de Walle, Gerlinde; Favoreel, Herman; Nauwynck, Hans; Mettenleiter, Thomas C.; Pensaert, Maurice

    2003-01-01

    Pseudorabies virus (PRV) may cause abortion, even in the presence of vaccination-induced immunity. Blood monocytes are essential to transport the virus in these immune animals, including transport to the pregnant uterus. Infected monocytes express viral proteins on their cell surface. Specific antibodies recognize these proteins and should activate antibody-dependent cell lysis. Previous work showed that addition of PRV-specific polyclonal antibodies to PRV-infected monocytes induced internal...

  8. Cell-to-cell contact of human monocytes with infected arterial smooth-muscle cells enhances growth of Chlamydia pneumoniae.

    Science.gov (United States)

    Puolakkainen, Mirja; Campbell, Lee Ann; Lin, Tsun-Mei; Richards, Theresa; Patton, Dorothy L; Kuo, Cho-Chou

    2003-02-01

    Chlamydia pneumoniae can infect arterial cells. It has been shown that coculture of human monocytes (U937) and endothelial cells promotes infection of C. pneumoniae in endothelial cells and that the enhancement was mediated by a soluble factor (insulin-like growth factor 2) secreted by monocytes. In this study, it is shown that coculture of monocytes with C. pneumoniae enhances infection of C. pneumoniae in arterial smooth-muscle cells 5.3-fold at a monocyte-to-smooth-muscle cell ratio of 5. However, unlike endothelial cells, no enhancement was observed if monocytes were placed in cell culture inserts or if conditioned medium from monocyte cultures was used, which suggests that cell-to-cell contact is critical. The addition of mannose 6-phosphate or octyl glucoside, a nonionic detergent containing a sugar group, to cocultures inhibited the enhancement. These findings suggest that the monocyte-smooth-muscle cell interaction may be mediated by mannose 6-phosphate receptors present on monocytes.

  9. MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes

    Directory of Open Access Journals (Sweden)

    Sabine Waigel

    2016-03-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2,3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4,5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist—4-IPP [4,6–9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333 published by Yaddanapudi et al. (2015 in Cancer Immunology Research [10].

  10. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation.

    Science.gov (United States)

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2010-03-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high glucose (HG) or S100B, a ligand of the receptor for advanced glycation end products, exhibited significantly increased binding of THP-1 monocytic cells. Diabetic stimuli increased the expression of the adhesive chemokine fractalkine (FKN) in HVSMCs. Pretreatment of HVSMCs with FKN or monocyte chemoattractant protein-1 (MCP-1) neutralizing antibodies significantly inhibited monocyte-VSMC binding, whereas monocytes treated with FKN showed enhanced binding to VSMC. Mouse aortic VSMCs (MVSMCs) derived from type 2 diabetic db/db mice exhibited significantly increased FKN levels and binding to mouse WEHI78/24 monocytic cells relative to nondiabetic control db/+ cells. The enhanced monocyte binding in db/db cells was abolished by both FKN and MCP-1 antibodies. Endothelium-denuded aortas from db/db mice and streptozotocin-induced diabetic mice also exhibited enhanced FKN expression and monocyte binding, relative to respective controls. Coculture with HVSMCs increased CD36 expression in THP-1 cells, and this was significantly augmented by treatment of HVSMCs with S100B or HG. CD36 mRNA and protein levels were also significantly increased in WEHI78/24 cells after coincubation with db/db MVSMCs relative to control MVSMCs. These results demonstrate that diabetic conditions may accelerate atherosclerosis by inducing key chemokines in the vasculature that promote VSMC-monocyte interactions, subendothelial monocyte retention, and differentiation.

  11. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.

    OpenAIRE

    Cushing, S D; Berliner, J A; Valente, A. J.; Territo, M C; Navab, M; Parhami, F; Gerrity, R; Schwartz, C J; Fogelman, A M

    1990-01-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human ...

  12. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...

  13. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.

    Science.gov (United States)

    Hou, Wanqiu; Gibbs, James S; Lu, Xiuju; Brooke, Christopher B; Roy, Devika; Modlin, Robert L; Bennink, Jack R; Yewdell, Jonathan W

    2012-03-29

    Surprisingly little is known about the interaction of human blood mononuclear cells with viruses. Here, we show that monocytes are the predominant cell type infected when peripheral blood mononuclear cells are exposed to viruses ex vivo. Remarkably, infection with vesicular stomatitis virus, vaccinia virus, and a variety of influenza A viruses (including circulating swine-origin virus) induces monocytes to differentiate within 18 hours into CD16(-)CD83(+) mature dendritic cells with enhanced capacity to activate T cells. Differentiation into dendritic cells does not require cell division and occurs despite the synthesis of viral proteins, which demonstrates that monocytes counteract the capacity of these highly lytic viruses to hijack host cell biosynthetic capacity. Indeed, differentiation requires infectious virus and viral protein synthesis. These findings demonstrate that monocytes are uniquely susceptible to viral infection among blood mononuclear cells, with the likely purpose of generating cells with enhanced capacity to activate innate and acquired antiviral immunity.

  14. SMAC Mimetic BV6 Induces Cell Death in Monocytes and Maturation of Monocyte-Derived Dendritic Cells

    Science.gov (United States)

    Holtz, Philipp; Kapp, Markus; Grigoleit, Götz Ulrich; Schmuck, Carsten; Wajant, Harald; Siegmund, Daniela

    2011-01-01

    Background Compounds mimicking the inhibitory effect of SMAC / DIABLO on X-linked inhibitor of apoptosis (XIAP) have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFκB system and TNF signaling. In view of the overwhelming importance of the NFκB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. Principal Findings BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFκB pathway, but it also diminished the stronger NFκB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. Significance The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies. PMID:21738708

  15. SMAC mimetic BV6 induces cell death in monocytes and maturation of monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Nicole Müller-Sienerth

    Full Text Available BACKGROUND: Compounds mimicking the inhibitory effect of SMAC/DIABLO on X-linked inhibitor of apoptosis (XIAP have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFκB system and TNF signaling. In view of the overwhelming importance of the NFκB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. PRINCIPAL FINDINGS: BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFκB pathway, but it also diminished the stronger NFκB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. SIGNIFICANCE: The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies.

  16. Melleolides induce rapid cell death in human primary monocytes and cancer cells.

    Science.gov (United States)

    Bohnert, Markus; Scherer, Olga; Wiechmann, Katja; König, Stefanie; Dahse, Hans-Martin; Hoffmeister, Dirk; Werz, Oliver

    2014-08-01

    The melleolides are structurally unique and bioactive natural products of the basidiomycete genus Armillaria. Here, we report on cytotoxic effects of melleolides from Armillaria mellea towards non-transformed human primary monocytes and human cancer cell lines, respectively. In contrast to staurosporine or pretubulysin that are less cytotoxic for monocytes, the cytotoxic potency of the active melleolides in primary monocytes is comparable to that in cancer cells. The onset of the cytotoxic effects of melleolides was rapid (within 5 h, each). Side-by-side comparison with the detergent triton X-100 and staurosporine in microscopic and flow cytometric analysis studies as well as analysis of the viability of mitochondria exclude cell lysis and apoptosis as relevant or primary mechanisms. Our results rather point to necrotic features of cell death mediated by an as yet elusive but rapid mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U.; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  18. Reticuloendothelial cell function in autoimmune hemolytic anemia (AIHA: studies on the mechanism of peripheral monocyte activation.

    Directory of Open Access Journals (Sweden)

    Sunada,Mitsutoshi

    1985-10-01

    Full Text Available We examined the activity of peripheral blood monocytes in patients with autoimmune hemolytic anemia (AIHA using an in vitro assay of monocyte-macrophage interaction with erythrocytes and an antibody-dependent cell-mediated cytotoxicity (ADCC assay. The monocytes of AIHA patients in the hemolyzing period phagocytized autologous sensitized red cells and anti-D coated red cells more avidly than normal control monocytes. There was no significant relationship between phagocytic activity and ADCC activity. The activated monocytes phagocytized autologous sensitized red cells, but had no ADCC activity in a short time 51Cr release assay. Phagocytic activity of the patients' monocytes against autologous erythrocytes rapidly decreased after treatment with prednisolone even though the red cell sensitization with antibody remained almost the same as during the hemolyzing period. We postulated that the activation of monocytes in AIHA was due to the "arming" effect of anti-erythrocyte antibody, but we think that other mechanisms may also be involved in the activation of monocytes.

  19. NF-κB Mediated Transcription in Human Monocytic Cells and Endothelial Cells.

    Science.gov (United States)

    Parry, G C; Mackman, N

    1998-04-01

    Monocytes and endothelial cells become activated at sites of inflammation and contribute to the pathology of many diseases, including septic shock and atherosclerosis. In these cells, induction of genes expressing various inflammatory mediators, such as adhesion molecules, cytokines, and growth factors, is regulated by NF-κB/Rel transcription factors. Recent studies have identified components of the signal transduction pathways leading to the activation of NF-κB/Rel proteins. Inhibition of these signaling pathways provides a novel therapeutic approach to prevent inducible gene expression in both monocytes and endothelial cells. (Trends Cardiovasc Med 1998;8:138-142). © 1998, Elsevier Science Inc.

  20. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Science.gov (United States)

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2015-06-01

    A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  1. Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors

    Indian Academy of Sciences (India)

    Kelley Strohacker; Whitney L Breslin; Katie C Carpenter; Brian K McFarlin

    2012-03-01

    The expression of monocyte cell-surface receptors represents one index of immune dysfunction, which is common with aging. Although mouse models of aging are prevalent, monocyte subset assessment is rare. Our purpose was to compare cell receptor expression on classic (CD115+/Gr-1high) and non-classic (CD115+/Gr-1low) monocytes from 80- or 20-week-old CD-1 mice. Three-colour flow cytometry was used to determine the concentration of monocyte subsets and their respective cell-surface expression of TLR2, TLR4, CD80, CD86, MHC II and CD54. These receptors were selected because they have been previously associated with altered monocyte function. Data were analysed with independent -tests; significance was set at < 0.05. Old mice had a greater concentration of both classic (258%, =0.003) and non-classic (70%, =0.026) monocytes. The classic : non-classic monocyte ratio doubled in old as compared with that in young mice (=0.006), indicating a pro-inflammatory shift. TLR4 ($\\downarrow$27%, =0.001) and CD80 ($\\downarrow$37%, =0.004) were decreased on classic monocytes from old as compared with those from young mice. TLR2 ($\\uparrow$24%, =0.002) and MHCII ($\\downarrow$21%, =0.026) were altered on non-classic monocytes from old as compared with those from young mice. The increased classic : non-classic monocyte ratio combined with changes in the cell-surface receptor expression on both monocyte subsets is indicative of immune dysfunction, which may increase age-associated disease risk.

  2. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  3. DYSFUNCTION OF MONOCYTES AND DENDRITIC CELLS IN PATIENTS WITH PREMATURE OVARIAN FAILURE

    NARCIS (Netherlands)

    HOEK, A; VAN KASTEREN, Y; DE HAAN-MEULMAN, M; SCHOEMAKER, J; DREXHAGE, HA

    1993-01-01

    PROBLEM: Due to the presence of ovarian antibodies it has been suggested that premature ovarian failure (POF) belongs to the autoimmune endocrinopathies. Monocytes and the monocyte-derived dendritic cells play a prominent role in the initial stages of endocrine autoimmune reactions: the accumulation

  4. Focal Adhesion-Independent Cell Migration.

    Science.gov (United States)

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  5. A novel approach for the generation of human dendritic cells from blood monocytes in the absence of exogenous factors.

    Science.gov (United States)

    Schanen, Brian C; Drake, Donald R

    2008-06-01

    Human dendritic cells (DCs) for research and clinical applications are typically derived from purified blood monocytes that are cultured in a cocktail of cytokines for a week or more. Because it has been suggested that these cytokine-derived DCs may be deficient in some important immunological functions and might not accurately represent antigen presenting cell (APC) populations found under normal conditions in vivo, there is an interest in developing methods that permit the derivation of DCs in a more physiologically relevant manner in vitro. Here, we describe a simple and reliable technique for generating large numbers of highly purified DCs that is based on a one-way migration of blood monocytes through a layer of human umbilical vein endothelial cells (HUVECs) that are cultured to confluency in the upper chamber of a Transwell device. The resultant APCs, harvested from the lower Transwell chamber, resemble other cultured DC populations in their expression of major histocompatibility (MHC) and costimulatory molecules, ability to phagocytose protein antigens and capacity to trigger primary antigen-specific T cell responses. This technique offers several advantages over the standard method of in vitro cytokine-driven DC development, including: (1) the rapidity of this approach, as DC differentiation occurs in only 2 days, (2) the differentiation process itself, which is more akin to the development of DCs under physiologic conditions and (3) the cost-effectiveness of the system, since no monocyte pre-selection is required and DC development occurs in the absence of expensive recombinant cytokines.

  6. Ly6Clow Monocytes Differentiate into Dendritic Cells and Cross-Tolerize T Cells through PDL-11

    OpenAIRE

    Peng, YuFeng; Latchman, Yvette; Elkon, Keith B.

    2009-01-01

    Monocyte-derived dendritic cells are active participants during the immune response against infection, but whether they play a role in maintaining self-tolerance under steady-state conditions is not known. Here we investigated the differentiation of monocytes, their ability to ingest apoptotic cells, and their potential functionality in vivo. We observed that Ly6C (Gr-1)low mature monocytes up-regulate their MHC II level in the spleen, express high levels of PDL-1 (programmed death ligand 1),...

  7. Migration of Cells in a Social Context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring c...... a test-bed for future studies of collective migration of individual cells.......In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring...... cells on the individual remains poorly understood. Previous work on isolated cells has revealed a stereotypical migratory behavior, however many aspects of the migration characteristics of cells in populations remained unknown exactly because of this lack of characterization of neighbour-cell influence...

  8. Effect of zinc and nitric oxide on monocyte adhesion to endothelial cells under shear stress.

    Science.gov (United States)

    Lee, Sungmun; Eskin, Suzanne G; Shah, Ankit K; Schildmeyer, Lisa A; McIntire, Larry V

    2012-03-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm(2) or 1 dyne/cm(2)) or reversing shear stress (time average 1 dyne/cm(2)) for 24 h. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike other shear stress regimes, reversing shear stress alone enhanced monocyte adhesion, which may be associated with increased H(2)O(2) and superoxide together with relatively low levels of nitric oxide (NO) production. L-N(G)-Nitroarginine methyl ester (L-NAME) treatment increased monocyte adhesion under 15 dynes/cm(2) and under reversing shear stress. After reversing shear stress, monocyte adhesion dramatically increased with heparinase III treatment followed by a zinc scavenger. Static culture experiments supported the reduction of monocyte adhesion by zinc following endothelial cell cytokine activation. These results suggest that endothelial cell zinc levels are important for the inhibition of monocyte adhesion to endothelial cells, and may be one of the key factors in the early stages of atherogenesis.

  9. FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells.

    Science.gov (United States)

    Dauer, Marc; Schad, Katharina; Herten, Jan; Junkmann, Jana; Bauer, Christian; Kiefl, Rosemarie; Endres, Stefan; Eigler, Andreas

    2005-07-01

    Previously, we have shown that dendritic cells (DCs) with full T-cell stimulatory capacity can be derived from human monocytes after 48 h of in vitro culture (FastDC). Compared to a standard 7-day protocol, this new strategy not only reduces the time span and the amount of recombinant cytokines required, but may also resemble DC development in vivo more closely. Using a melanoma antigen model, we show here that FastDC prime CTL responses against tumor antigens as effectively as standard monocyte-derived DCs (moDCs). FastDC and moDCs derived from monocytes of HLA-A2(+) donors were loaded with the melanoma-associated, HLA-A(*)0201-restricted peptide Melan-A and cocultured with autologous CD3(+) T cells. After two weekly restimulations with freshly prepared, peptide-loaded FastDC or moDCs, binding of CD8(+) T cells to fluorescently labeled MHC-I/Melan-A-peptide complexes and intracellular cytokine staining revealed that the two DC preparations had an equal capacity to prime Melan-A-specific, IFN-gamma producing CD8(+) T cells. CTLs derived from cocultures with FastDC lysed Melan-A-loaded T2 cells even more effectively than CTLs primed by moDCs. Comparative analysis also revealed that FastDC possess an equal capacity to migrate in response to the chemokine receptor CCR-7 ligand 6Ckine. Importantly, DCs can be generated with higher yield and purity using the FastDC-protocol. The reliability and efficacy of this new strategy for DC development from monocytes may facilitate clinical investigation of DC-based tumor immunotherapy.

  10. The Neurorepellent Slit2 Inhibits Postadhesion Stabilization of Monocytes Tethered to Vascular Endothelial Cells.

    Science.gov (United States)

    Mukovozov, Ilya; Huang, Yi-Wei; Zhang, Qiuwang; Liu, Guang Ying; Siu, Allan; Sokolskyy, Yaroslav; Patel, Sajedabanu; Hyduk, Sharon J; Kutryk, Michael J B; Cybulsky, Myron I; Robinson, Lisa A

    2015-10-01

    The secreted neurorepellent Slit2, acting through its transmembrane receptor, Roundabout (Robo)-1, inhibits chemotaxis of varied cell types, including leukocytes, endothelial cells, and vascular smooth muscle cells, toward diverse attractants. The role of Slit2 in regulating the steps involved in recruitment of monocytes in vascular inflammation is not well understood. In this study, we showed that Slit2 inhibited adhesion of monocytic cells to activated human endothelial cells, as well as to immobilized ICAM-1 and VCAM-1. Microfluidic live cell imaging showed that Slit2 inhibited the ability of monocytes tethered to endothelial cells to stabilize their actin-associated anchors and to resist detachment in response to increasing shear forces. Transfection of constitutively active plasmids revealed that Slit2 inhibited postadhesion stabilization of monocytes on endothelial cells by preventing activation of Rac1. We further found that Slit2 inhibited chemotaxis of monocytes toward CXCL12 and CCL2. To determine whether Slit2 and Robo-1 modulate pathologic monocyte recruitment associated with vascular inflammation and cardiovascular disease, we tested PBMC from patients with coronary artery disease. PBMC from these patients had reduced surface levels of Robo-1 compared with healthy age- and sex-matched subjects, and Slit2 failed to inhibit chemotaxis of PBMC of affected patients, but not healthy control subjects, toward CCL2. Furthermore, administration of Slit2 to atherosclerosis-prone LDL receptor-deficient mice inhibited monocyte recruitment to nascent atherosclerotic lesions. These results demonstrate that Slit2 inhibits chemotaxis of monocytes, as well as their ability to stabilize adhesions and resist detachment forces. Slit2 may represent a powerful new tool to inhibit pathologic monocyte recruitment in vascular inflammation and atherosclerosis.

  11. Efficient cell migration requires global chromatin condensation.

    Science.gov (United States)

    Gerlitz, Gabi; Bustin, Michael

    2010-07-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes.

  12. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  13. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation.

    Science.gov (United States)

    Singh, Tej Pratap; Zhang, Howard H; Borek, Izabela; Wolf, Peter; Hedrick, Michael N; Singh, Satya P; Kelsall, Brian L; Clausen, Bjorn E; Farber, Joshua M

    2016-12-16

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6C(hi) blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.

  14. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation

    Science.gov (United States)

    Singh, Tej Pratap; Zhang, Howard H.; Borek, Izabela; Wolf, Peter; Hedrick, Michael N.; Singh, Satya P.; Kelsall, Brian L.; Clausen, Bjorn E.; Farber, Joshua M.

    2016-01-01

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells. PMID:27982014

  15. Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations.

    Science.gov (United States)

    Baj-Krzyworzeka, Monika; Baran, Jaroslaw; Weglarczyk, Kazimierz; Szatanek, Rafal; Szaflarska, Anna; Siedlar, Maciej; Zembala, Marek

    2010-09-01

    Monocytes/macrophages may be affected by tumour cells via cell-to-cell contact, soluble factors and by tumour-derived microvesicles (TMV). Previous observations indicate that TMV interact with monocytes and alter their immunophenotype and activity. This study was designed to determine interactions of TMV with subpopulations (CD14(++)CD16(-) and CD14(+)CD16(++)) of human monocytes. Engulfment of TMV by subsets of monocytes was analysed by flow cytometry. Moreover cytokine release and production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) by CD14(++)CD16(-) and CD14(+)CD16(++) cells after TMV stimulation was determined. It was found that TMV are engulfed more efficiently by CD14(++)CD16(-) than CD14(+)CD16(++) cells. TMV-activated CD14(++)CD16(-) cells produce more ROI and interleukin -10 (IL-10) than CD14(++)CD16(+). CD14(+)CD16(++) cells following TMV stimulation showed an increased release of tumour necrosis factor alpha, IL-12p40 and RNI. TMV significantly modulate biological activity of monocyte subsets with a pattern similar to tumour cells. Therefore, TMV mimic the activating effect of tumour cells on monocytes as assessed by release of cytokines, ROI and RNI.

  16. KR-31543 reduces the production of proinflammatory molecules in human endothelial cells and monocytes and attenuates atherosclerosis in mouse model.

    Science.gov (United States)

    Choi, Jae-Hoon; Yoo, Ji-Young; Kim, Sun-Ok; Yoo, Sung-Eun; Oh, Goo Taeg

    2012-12-31

    KR-31543, (2S, 3R, 4S)-6-amino-4-[N-(4-chlorophenyl)- N-(2-methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro- 2-dimethyoxymethyl-3-hydroxy-2-methyl-2H-1-benz opyran is a new neuroprotective agent for ischemiareperfusion damage. It has also been reported that KR-31543 has protective effects on lipid peroxidation and H₂O₂-induced reactive oxygen species production. In this study, we investigated the anti-inflammatory and anti-atherogenic properties of KR-31543. We observed that KR-31543 treatment reduced the production of MCP-1, IL-8, and VCAM-1 in HUVECs, and of MCP-1 and IL-6 in THP-1 human monocytes. We also examined the effect of KR-31543 on monocytes migration in vitro. KR-31543 treatment effectively reduced the migration of THP-1 human monocytes to the HUVEC monolayer in a dose-dependent manner. We next examined the effects of this compound on atherogenesis in LDL receptor deficient (Ldlr ⁻/⁻) mice. After 10 weeks of western diet, the formation of atherosclerotic lesion in aorta was reduced in the KR-31543-treated group compared to the control group. The accumulation of macrophages in lesion was also reduced in KR-31543 treated group. However, the plasma levels of total cholesterol, HDL, LDL, and triglyceride were not affected by KR-31543 treatment. Taken together, these results show that KR-31543 has anti-inflammatory properties on human monocytes and endothelial cells, and inhibits fatty streak lesion formation in mouse model of atherosclerosis, suggesting the potential of KR-31543 for the treatment for atherosclerosis.

  17. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  18. Collective cell migration during inflammatory response

    Science.gov (United States)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  19. Monocyte Chemotactic Protein-1 Promotes the Myocardial Homing of Mesenchymal Stem Cells in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Yunzeng Zou

    2013-04-01

    Full Text Available Dilated cardiomyopathy (DCM is the most common form of non-ischemic cardiomyopathy that leads to heart failure. Mesenchymal stem cells (MSCs are under active investigation currently as a potential therapy for DCM. However, little information is available about the therapeutic potential of intravenous administration of MSCs for DCM. Moreover, how MSCs home to the myocardium in DCM is also unclear. DCM was induced by intraperitoneally administering Doxorubicin and MSCs or vehicles were infused through the internal jugular vein. Cardiac functions including the percentage of fractional shortening, left ventricular diastolic dimension, left ventricular end-diastolic pressure, and left ventricular maximum dp/dt were evaluated by echocardiographic and hemodynamic studies. Fibrosis was determined by Masson’s trichrome staining. The mRNA expression levels of monocyte chemotactic protein-1 (MCP-1, stromal cell-derived factor-1 (SDF-1, macrophage inflammatory protein-1α (MIP-1α, and monocyte chemotactic protein-3 (MCP-3 were determined using real time polymerase chain reactions and the protein expression level of MCP-1 was detected with Western blot. The MSCs expression of C-C chemokine receptor type 2 (CCR2, a MCP-1 receptor, was confirmed by Western blot and flow cytometry analysis. The chemotactic effects of MCP-1/CCR2 were checked by assessing the migration in vitro and in vivo. MSCs transplantation improved the cardiac function and decreased the myocardial fibrosis of mice with DCM. MCP-1 was up-regulated in dilated myocardial tissue both at the mRNA and protein level while SDF-1, MIP-1α and MCP-3 remain unchanged. CCR2 was present in MSCs. MCP-1 promoted MSCs migration in vitro while CCR2 inhibition decreased the migration of MCP-1 to the dilated heart. This study provides direct evidences that peripheral intravenous infusion of MSCs can support the functional recovery of DCM. In addition, novel insights into the myocardial homing factor of MSCs

  20. NK cell-mediated killing of AML blasts. Role of histamine, monocytes and reactive oxygen metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Mellqvist, U.H. [Sahlgren`s Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Hansson, M.; Hermodsson, S.; Hellstrand, K. [Sahlgren`s Univ. Hospital, Dept. of Virology, Goeteborg (Sweden)

    1996-10-01

    Blasts recovered from patients with acute myelogenous leukaemia (AML) were lysed by heterologeous natural killer (NK) cells treated with NK cell-activating cytokine-induced killing of AML blasts was inhibited by monocytes, recovered from peripheral blood by counterflow centrifugal elutriation. Histamine, at concentrations exceeding 0.1 {mu}M, abrogated the monocyte-induced inhibition of NK cells; thereby, histamine and IL-2 or histamine and IFN-{alpha} synergistically induced NK cell-mediated destruction of AML blasts. The effect of histamine was completely blocked by the histamine H2-receptor (H2R) antagonist ranitidine but not by its chemical control AH20399AA. Catalase, a scavenger of reactive oxygen metabolites (ROM), reversed the monocyte-induced inhibition of NK cell-mediated killing of blast cells, indicating that the inhibitory signal was mediated by products of the respiratory burst of monocytes. It is concluded that (i) monocytes inhibit anti-leukemic properties of NK cells, (ii) the inhibition is conveyed by monocyte-derived ROM, and (iii) histamine reverses the inhibitory signal and, thereby, synergizes with NK cell-activating cytokines to induce killing of AML blasts. (au) 19 refs.

  1. Comparative efficiency of HIV-1-infected T cell killing by NK cells, monocytes and neutrophils.

    Science.gov (United States)

    Smalls-Mantey, Adjoa; Connors, Mark; Sattentau, Quentin J

    2013-01-01

    HIV-1 infected cells are eliminated in infected individuals by a variety of cellular mechanisms, the best characterized of which are cytotoxic T cell and NK cell-mediated killing. An additional antiviral mechanism is antibody-dependent cellular cytotoxicity. Here we use primary CD4(+) T cells infected with the BaL clone of HIV-1 as target cells and autologous NK cells, monocytes, and neutrophils as effector cells, to quantify the cytotoxicity mediated by the different effectors. This was carried out in the presence or absence of HIV-1-specific antiserum to assess antibody-dependent cellular cytotoxicity. We show that at the same effector to target ratio, NK cells and monocytes mediate similar levels of both antibody-dependent and antibody-independent killing of HIV-1-infected T cells. Neutrophils mediated significant antibody-dependent killing of targets, but were less effective than monocytes or NK cells. These data have implications for acquisition and control of HIV-1 in natural infection and in the context of vaccination.

  2. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation

    OpenAIRE

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2009-01-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high gluco...

  3. Proteomic profile of human monocytic cells infected with dengue virus

    Institute of Scientific and Technical Information of China (English)

    Viviana Martnez-Betancur; Marlen Martnez-Gutierrez

    2016-01-01

    Objective: To identify the changes in the proteome of U937 cells infected with dengue virus (DENV). Methods: In this study, differentiated U937 cultures were infected with two DENV-2 strains, one of which was associated with dengue (DENV-2/NG) and the other one with severe dengue (DENV-2/16681), with the aim of determining the cellular proteomic profiles under different infection conditions. Cellular proteins were extracted and sepa-rated by two-dimensional electrophoresis, and those proteins with differential expression profiles were identified by mass spectrometry. The obtained results were correlated with cellular viability, the number of infectious viral particles, and the viral DNA/protein quantity. Results: In comparison with non-infected cultures, in the cells infected with the DENV-2/NG strain, nine proteins were expressed differentially (five were upregulated and four were downregulated); in those cultures infected with the DENV-2/16681 strain, six proteins were differentially expressed (two were downregulated and four were upregu-lated). The downregulated proteins included fatty acid-binding protein, heterogeneous nuclear ribonucleoprotein 1, protein disulfide isomerase, enolase 1, heat shock 70 kDa protein 9, phosphotyrosyl phosphatase, and annexin IV. The upregulated proteins included heat shock 90 kDa protein AA1, tubulin beta, enolase 1, pyruvate kinase, transaldolase and phospholipase C-alpha. Conclusions: Because the monocyte/macrophage lineage is critical for disease patho-genicity, additional studies on these proteins could provide a better understanding of the cellular response to DENV infection and could help identify new therapeutic targets against infection.

  4. The role of monocyte-lineage cells in human immuno-deficiency virus persistence: mechanisms and progress

    Institute of Scientific and Technical Information of China (English)

    WU Li

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) persistence is a major barrier to the successful treatment and eradication of acquired immunodeficiency syndrome (AIDS). In addition to resting CD4+ T cells, a significant long-lived compartment of HIV-1 infection in vivo includes blood monocytes and tissue macrophages. Studying HIV-1 persistence in monocyte-lineage cells is critical because these cells are important HIV-1 target cells in vivo. Monocyte-lineage cells, including monocytes, dendritic cells (DCs) and macrophages, play a significant role in HIV-1 infection and transmission. These cells have been implicated as viral reservoirs that facilitate HIV-1 latency and persistence. A better understanding of HIV-1 interactions with monocyte-lineage cells can potentially aid in the development of new approaches for intervention. This minireview highlights the latest advances in understanding the role of monocyte-lineage cells in HIV-1 persistence and emphasizes new insights into the mechanisms underlying viral persistence.

  5. Innate immune interleukin-1 receptor-associated kinase 4 exacerbates viral myocarditis by reducing CCR5(+) CD11b(+) monocyte migration and impairing interferon production.

    Science.gov (United States)

    Valaperti, Alan; Nishii, Mototsugu; Liu, Youan; Naito, Kotaro; Chan, Megan; Zhang, Liyong; Skurk, Carsten; Schultheiss, Heinz-Peter; Wells, George A; Eriksson, Urs; Liu, Peter P

    2013-10-01

    Viral myocarditis follows a fatal course in ≈30% of patients. Interleukin-1 receptor-associated kinase 4 (IRAK4), a major nodal signal transducer in innate immunity, can play a pivotal role in host inflammatory response. We sought to determine how IRAK4 modulates inflammation and outcome in a mouse model of viral myocarditis. Myocarditis was induced after intraperitoneal inoculation of coxsackievirus B3 into C57Bl/6 IRAK4-deficient mice and their littermate controls. Mortality and viral proliferation were markedly reduced in IRAK4(-/-) mice compared with their IRAK4(+/+) littermates. Disease resistance of IRAK4(-/-) mice paralleled increased amounts of protective heart-infiltrating CCR5(+) monocytes/macrophages and enhanced interferon-α and interferon-γ production 2 days after infection. Competitive bone marrow chimera demonstrated that intact IRAK4 function inhibited heart-specific migration of bone marrow-derived CCR5(+) cells. Mechanistically, lack of IRAK4 resulted in interferon regulatory factor 5 homodimerization via reduced melanoma differentiation-associated protein 5 degradation and enhanced Stat1 and Stat5 phosphorylation. Consequently, antiviral interferon-α and interferon-γ production, as well as CCR5(+) cell recruitment, increased, whereas the overall proinflammatory response was drastically reduced in the absence of IRAK4. Innate immunity signal transducer IRAK4 exacerbates viral myocarditis through inhibition of interferon production and reduced mobilization of protective CCR5(+) monocytes/macrophages to the heart. The combination of IRAK4 inhibitors and antiviral adjuvants may become an attractive therapeutic approach against viral myocarditis in the future.

  6. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Ceri A. Roberts

    2015-11-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis. The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation and excessive production of pro-inflammatory mediators, such as TNFα, IFNγ, IL-1β, IL-6 and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages and CD4+ T cells (both pro-inflammatory and regulatory. The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA.

  7. Monocyte differentiation in localized juvenile periodontitis is skewed toward the dendritic cell phenotype.

    Science.gov (United States)

    Barbour, Suzanne E; Ishihara, Yuichi; Fakher, Mohammed; Al-Darmaki, Salma; Caven, Timothy H; Shelburne, C P; Best, Al M; Schenkein, Harvey A; Tew, John G

    2002-06-01

    Several lines of evidence indicate that the monocytes of subjects with localized juvenile periodontitis (LJP) are functionally distinct from cells of age- and race-matched nonperiodontitis (NP) subjects. Among the abnormalities are the propensity to secrete large amounts of prostaglandin E(2) and the induction of immunoglobulin G2 (IgG2) antibodies. The experiments described here were performed to further characterize the LJP monocytes and to determine if these cells mature differently than NP monocytes. When adherent monocytes from LJP subjects were cultured in the presence of human serum, both macrophages and cells with the morphology of immature monocyte-derived dendritic cells (MDDC) were observed. Within 4 days the prevalence of the immature MDDC was approximately twofold higher in LJP cultures than in NP cultures. In addition to their dendritic morphology, these cells were CD11c(+) and CD14(-) or CD14(low) and stimulated potent autologous mixed leukocyte reactions, consistent with differentiation to the MDDC phenotype. Like LJP monocytes, cultures of MDDC generated with interleukin-4 and granulocyte-macrophage colony-stimulating factor selectively induced IgG2 in cultures of pokeweed mitogen-stimulated NP leukocytes. Together, these data suggest that the monocytes of LJP subjects have a propensity to differentiate into MDDC and that this differentiation may be related to the high levels of IgG2 that are observed in the sera of LJP subjects. As high levels of circulating IgG2 are correlated with less severe disease, the propensity of LJP monocytes to differentiate into MDDC may have important implications for both the host response against oral pathogens and the progression of LJP.

  8. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  9. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptor

  10. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph

  11. A human T cell clone that mediates the monocyte procoagulant response to specific sensitizing antigen.

    Science.gov (United States)

    Schwartz, B S; Reitnauer, P J; Hank, J A; Sondel, P M

    1985-09-01

    A panel of human purified protein derivative of the tubercle bacillus (PPD)-reactive T cell clones was derived by cloning out of soft agar followed by cultivation on inactivated feeder cells in the presence of interleukin-2. 1 of 4 clones tested was able to mediate an increase in monocyte procoagulant activity (PCA) in response to PPD. All four clones had identical surface marker phenotypes (T4+, T8-) and proliferated in response to antigen. The reactive T cell clone possessed no PCA of its own, but upon being presented with PPD was able to instruct monocytes to increase their expression of PCA. Antigen presentation could be performed only by autologous monocytes; allogeneic monocytes from donors unrelated to the donor of the reactive clone could not present antigen to cells of the clone in a way that would initiate the procoagulant response. Cells of the reactive clone did not mediate increased monocyte PCA in response to Candida, even though peripheral blood mononuclear cells from the donor demonstrated increased PCA to both Candida and PPD. Thus, the PCA response to specific antigen can be mediated by a single clone of cells that shows specificity in the recognition of both antigen and antigen presenting cell.

  12. A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections.

    Directory of Open Access Journals (Sweden)

    Matthias Eberl

    2009-02-01

    Full Text Available Vgamma9/Vdelta2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vgamma9/Vdelta2 T cells is (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vgamma9/Vdelta2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vgamma9/Vdelta2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL-6, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, and oncostatin M (OSM; the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL. Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4(+ effector alphabeta T cells expressing IFN-gamma and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vgamma9/Vdelta2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe

  13. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells.

    Directory of Open Access Journals (Sweden)

    Noa Henig

    Full Text Available BACKGROUND: Monocytes, which are key players in innate immunity, are outnumbered by neutrophils and lymphocytes among peripheral white blood cells. The cytokine interferon-β (IFN-β is widely used as an immunomodulatory drug for multiple sclerosis and its functional pathways in peripheral blood mononuclear cells (PBMCs have been previously described. The aim of the present study was to identify novel, cell-specific IFN-β functions and pathways in tumor necrosis factor (TNF-α-activated monocytes that may have been missed in studies using PBMCs. METHODOLOGY/PRINCIPAL FINDINGS: Whole genome gene expression profiles of human monocytes and T cells were compared following in vitro priming to TNF-α and overnight exposure to IFN-β. Statistical analyses of the gene expression data revealed a cell-type-specific change of 699 transcripts, 667 monocyte-specific transcripts, 21 T cell-specific transcripts and 11 transcripts with either a difference in the response direction or a difference in the magnitude of response. RT-PCR revealed a set of differentially expressed genes (DEGs, exhibiting responses to IFN-β that are modulated by TNF-α in monocytes, such as RIPK2 and CD83, but not in T cells or PBMCs. Known IFN-β promoter response elements, such as ISRE, were enriched in T cell DEGs but not in monocyte DEGs. The overall directionality of the gene expression regulation by IFN-β was different in T cells and monocytes, with up-regulation more prevalent in T cells, and a similar extent of up and down-regulation recorded in monocytes. CONCLUSIONS: By focusing on the response of distinct cell types and by evaluating the combined effects of two cytokines with pro and anti-inflammatory activities, we were able to present two new findings First, new IFN-β response pathways and genes, some of which were monocytes specific; second, a cell-specific modulation of the IFN-β response transcriptome by TNF-α.

  14. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  15. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function

    Directory of Open Access Journals (Sweden)

    Lau Yu

    2008-07-01

    Full Text Available Abstract Background Previous studies demonstrated Ganoderma lucidum polysaccharides (GL-PS, a form of bioactive β-glucan can stimulate the maturation of monocyte-derived dendritic cells (DC. The question of how leukemic cells especially in monocytic lineage respond to GL-PS stimuli remains unclear. Results In this study, we used in vitro culture model with leukemic monocytic cell-lines THP-1 and U937 as monocytic effectors cells for proliferation responses and DCs induction. We treated the THP-1 and U937 cells with purified GL-PS (100 μg/mL or GL-PS with GM-CSF/IL-4. GL-PS alone induced proliferative response on both THP-1 and U937 cells but only THP-1 transformed into typical DC morphology when stimulated with GL-PS plus GM-CSF/IL-4. The transformed THP-1 DCs had significant increase expression of HLA-DR, CD40, CD80 and CD86 though not as high as the extent of normal monocyte-derived DCs. They had similar antigen-uptake ability as the normal monocyte-derived DCs positive control. However, their potency in inducing allogeneic T cell proliferation was also less than that of normal monocyte-derived DCs. Conclusion Our findings suggested that GL-PS could induce selected monocytic leukemic cell differentiation into DCs with immuno-stimulatory function. The possible clinical impact of using this commonly used medicinal mushroom in patients with monocytic leukemia (AML-M4 and M5 deserved further investigation.

  16. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  17. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells

    Science.gov (United States)

    Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

    1997-01-01

    Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

  18. In-Vitro differentiation of mature dendritic cells from human blood monocytes

    OpenAIRE

    Robert Gieseler; Dirk Heise; Afsaneh Soruri; Peter Schwartz; J. Hinrich Peters

    1998-01-01

    Representing the most potent antigen-presenting cells, dendritic cells (DC) can now be generated from human blood monocytes. We recently presented a novel protocol employing GM-CSF, IL-4, and IFN-γ to differentiate monocyte-derived DC in vitro. Here, such cells are characterized in detail. Cells in culture exhibited both dendritic and veiled morphologies, the former being adherent and the latter suspended. Phenotypically, they were CD1a-/dim, CD11a+, CD11b++, CD11c+, CD14dim/-, CD16a-/dim, CD...

  19. Inducing Maturation of Monocyte-Derived Dendritic Cells on Human Epithelial Cell Feeder Layer

    Directory of Open Access Journals (Sweden)

    Delirezh N

    2012-02-01

    Full Text Available Background: Nowadays, dendritic cells (DCs have a special place in cancer treatment strategies and they have been used for tumor immunotherapy as they can induce immune response against tumor cells. Researchers have been trying to generate efficient dendritic cells in vitro; therefore, this research was done to generate them for use in research and tumor immunotherapy. Methods: This study took place at Urmia University in 2010-2011 years. In this study plastic adherent monocytes were incubated with granulocyte-macrophage colony stimulating factor (GM-CSF and interleukin-4 (IL-4 for five days. Finally, fully matured and stable DCs were generated by 48 hours of incubation in a monocyte conditioned medium (MCM containing tumor necrosis factor-α (TNF-α and epithelial cells. Phenotypic and functional analysis were carried out by using anti-CD14, anti-CD80, anti-CD86, and anti-CD83 monoclonal antibodies, and by determining their phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production, respectively. Results: Dendritic cells were produced with high levels of surface molecule, i.e. of CD80, CD83, CD86, HLA-DR, expression and low levels of CD14 expression. Dendritic cells showed efficient phagocytosis and ability to stimulate T-lymphocytes. Moreover, dendritic cells could secrete high levels of interleukin-12 (IL-12 cytokine which was depictive of their full maturation. Measurement of the produced cytokines showed the generation of type-1 dendritic cells (DC1. Conclusion: Our study showed that skin epithelial cells could induce maturation of monocyte-derived dendritic cells (DCs. This feeder layer led to the production of efficient dendritic cells with the ability to be used for tumor immunotherapy.

  20. Impact of individual intravenous iron preparations on the differentiation of monocytes towards macrophages and dendritic cells

    Science.gov (United States)

    Fell, Lisa H.; Seiler-Mußler, Sarah; Sellier, Alexander B.; Rotter, Björn; Winter, Peter; Sester, Martina; Fliser, Danilo; Heine, Gunnar H.; Zawada, Adam M.

    2016-01-01

    Background Treatment of iron deficiency with intravenous (i.v.) iron is a first-line strategy to improve anaemia of chronic kidney disease. Previous in vitro experiments demonstrated that different i.v. iron preparations inhibit differentiation of haematopoietic stem cells to monocytes, but their effect on monocyte differentiation to macrophages and mature dendritic cells (mDCs) has not been assessed. We investigated substance-specific effects of iron sucrose (IS), sodium ferric gluconate (SFG), ferric carboxymaltose (FCM) and iron isomaltoside 1000 (IIM) on monocytic differentiation to M1/M2 macrophages and mDCs. Methods Via flow cytometry and microRNA (miRNA) expression analysis, we morphologically and functionally characterized monocyte differentiation to M1/M2 macrophages and mDCs after monocyte stimulation with IS, SFG, FCM and IIM (0.133, 0.266 and 0.533 mg/mL, respectively). To assess potential clinical implications, we compared monocytic phagocytosis capacity in dialysis patients who received either 500 mg IS or IIM. Results Phenotypically, IS and SFG dysregulated the expression of macrophage (e.g. CD40, CD163) and mDC (e.g. CD1c, CD141) surface markers. Functionally, IS and SFG impaired macrophage phagocytosis capacity. Phenotypic and functional alterations were less pronounced with FCM, and virtually absent with IIM. In miRNA expression analysis of mDCs, IS dysregulated miRNAs such as miR-146b-5p and miR-155-5p, which are linked to Toll-like receptor and mitogen-activated protein kinase signalling pathways. In vivo, IS reduced monocytic phagocytosis capacity within 1 h after infusion, while IIM did not. Conclusions This study demonstrates that less stable i.v. iron preparations specifically affect monocyte differentiation towards macrophages and mDCs. PMID:27190361

  1. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  2. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    Science.gov (United States)

    Molaeipour, Zahra; Shamsasanjan, Karim; Movassaghpour, Ali Akbari; Akbarzadehlaleh, Parvin; Sabaghi, Fatemeh; Saleh, Mahshid

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line. Methods: U937 cells were cultured in both direct co-culture with MSCs and MSCs conditioned medium (C.M) driven. This study used 1,25-dihydroxyvitamin D3(VitD3) as inductor of monocytic differentiation and U937 cells treated with VitD3 morphology was examined by Wright Giemsa staining. CD14 monocytic differentiation marker was measured by flow cytometry and monocytic gene expression was assessed by real time polymerase chain reaction (RT PCR). Results: The results of flow cytometric analysis showed that CD14 expression of U937 increased. The higher effect of MSCs co-culture on CD14 expression in U937 cells was observed, compared to the conditioned medium. Among ten monocytic related genes which were screened that was observed increase in 5 genes in which CXCR4 and CSF2RA showed significant increase. Conclusion: The results obtained show that MSCs have supportive effect on the monocytic differentiation of U937 cells. However, a distinct mechanism of that remains unclear. PMID:27123414

  3. Primordial Germ Cell Specification and Migration.

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.

  4. Rho GTPases in collective cell migration

    NARCIS (Netherlands)

    Zegers, M.M.; Friedl, P.

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle traffickin

  5. Rho GTPases in collective cell migration

    NARCIS (Netherlands)

    Zegers, M.M.; Friedl, P.

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle

  6. Emergence of oligarchy in collective cell migration

    Science.gov (United States)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  7. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  8. Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro.

    Science.gov (United States)

    Wataha, J C; Lockwood, P E; Marek, M; Ghazi, M

    1999-06-05

    Nickel-containing alloys commonly are used in medical and dental applications that place them into long-term contact with soft tissues. The release of Ni ions from these alloys is disturbing because of the toxic, immunologic, and carcinogenic effects that have been documented for some Ni compounds. In particular, Ni ions in solution recently have been shown to cause expression of inflammatory mediators, such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and intercellular adhesion molecules (ICAMs) from keratinocytes, monocytes, and endothelial cells. However, the ability of the solid alloys themselves to induce these inflammatory effects has not been demonstrated. An in vitro system was used to determine if Ni-containing biomedical alloys could cause secretion of either IL-1beta or TNF-alpha from monocytes or expression of ICAMs on endothelial cells. Pure nickel, titanium, and three biomedical alloys-18-8 stainless steel, NiTi, and Rexillium III-were evaluated. First, it was determined whether or not the alloys or pure metals could cause cytotoxicity to THP-1 human monocytes or human microvascular endothelial cells (HMVECs) by measuring the succinic dehydrogenase (SDH) activity of the cells. Then, using identical conditions of exposure, the secretion of IL-1beta or TNF-alpha from monocytes or ICAM-1 expression on the HMVECs was determined. Only pure nickel suppressed (by 48% compared to Teflon controls) the SDH activity of the HMVECs or THP-1 monocytes. No alloy or metal caused the HMVECs to express ICAM-1, but the NiTi alloy caused a significant (ANOVA/Tukey) secretion of IL-1beta from the THP-1 monocytes. Secretion of TNF-alpha induced by NiTi was detectable but not statistically significant. The levels of IL-1beta secretion from monocytes were sufficient to induce ICAM-1 expression on HMVECs. The release of Ni from the NiTi was a logical suspect in causing the IL-1beta secretion by monocytes, but its role was not confirmed since other

  9. IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4.

    Science.gov (United States)

    Dauer, Marc; Schad, Katharina; Junkmann, Jana; Bauer, Christian; Herten, Jan; Kiefl, Rosemarie; Schnurr, Max; Endres, Stefan; Eigler, Andreas

    2006-08-01

    Dendritic cells (DC) generated in vitro have to be viable and phenotypically mature to be capable of inducing T cell-mediated immunity after in vivo administration. To facilitate optimization of DC-based vaccination protocols, we investigated whether the cytokine environment and the mode of activation affect maturation and survival of DC derived from monocytes by a short-term protocol. Monocytes cultured for 24 h with granulocyte macrophage-colony stimulating factor and interleukin-4 were stimulated with proinflammatory mediators for another 36 h to generate mature DC. Additional activation with CD40 ligand and interferon (IFN)-gamma increased viability of DC and promoted definitive maturation as defined by maintenance of a mature phenotype after withdrawal of cytokines. Addition of IFN-alpha to DC cultures prior to stimulation further enhanced definitive maturation: IFN-alpha-primed DC expressed high levels of costimulatory molecules and CC chemokine receptor 7 (CCR7) up to 5 days after cytokine withdrawal. Compared with unprimed DC, IFN-alpha-primed DC displayed equal capacity to migrate upon CCR7 ligation and to prime antigen-specific T helper cell as well as cytolytic T cell responses. In conclusion, we show that optimal maturation and survival of monocyte-derived DC require multiple activation signals. Furthermore, we identified a novel role for IFN-alpha in DC development: IFN-alpha priming of monocytes promotes definitive maturation of DC upon activation.

  10. Study of the Mechanism of Essential Garlic Oil Inhibiting Interleukin-1α-Induced Monocyte Adhesion to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    葛璐璐; 张薇; 戴云; 臧燕; 黄纯洁

    2001-01-01

    To observe the effects of essential garlic oil (EGO) on vascular cell adhesive molecule-1 (VCAM-1) expression of endothelial cells and monocyte-endothelial cell adhesion rate induced by interleukin-1α (IL-1α). Methods: Human umbilical vein endothelial cells (HUVEC) were isolated by trypsin digestion method and co-cultured with IL-1α or EGO+IL-1α in the absence or presence of U937 monocyte. Monocyte-endothelial cell adhesion rate was examined with reverted microscope. VCAM-1 expression of endothelial cells was measured by ACAS 570 confocal microscope, and the data were presented as mean fluorescent intensity. Results: EGO significantly inhibited IL-1α-induced endothelial expression of VCAM-1, and thus markedly decreased monocyte-endothelial cell adhesion rate. Conclusion: EGO has the effect on antagonizing adhesion of monocyte and vascular endothelial cell, which might be due to its inhibition on adhesive molecular expression on the surface of endothelial cells.

  11. Entropy measures of collective cell migration

    Science.gov (United States)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  12. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937)

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Clausen, H;

    1991-01-01

    . This study therefore investigated the neutralization of HIV in a monocytic cell line (U937) using mAbs against these carbohydrate gp120-epitopes. While antibodies against one of the epitopes (AI) neutralized infection of U937 cells despite binding to the Fc-receptor, one mAb against the sialosyl-Tn epitope...... enhanced infection. This enhancement was independent of complement and could be blocked by mAb Leu3a against the CD4-receptor. The study indicated that enhancement of infection in monocytic cells can occur by the same anti-carbohydrate antibodies that neutralize infection in lymphocytes, and that antibody...

  13. β2-Agonist clenbuterol hinders human monocyte differentiation into dendritic cells.

    Science.gov (United States)

    Giordani, Luciana; Cuzziol, Noemi; Del Pinto, Tamara; Sanchez, Massimo; Maccari, Sonia; Massimi, Alessia; Pietraforte, Donatella; Viora, Marina

    2015-12-10

    Clenbuterol (CLB) is a beta2-adrenergic agonist commonly used in asthma therapy, but is also a non-steroidal anabolic drug often abused in sport doping practices. Here we evaluated the in vitro impact of CLB on the physiology and function of human monocytes and dendritic cells (DCs), instrumental in the development of immune responses. We demonstrate that CLB inhibits the differentiation of monocytes into DCs and this effect is specific and dependent on β2-adrenergic receptor (AR) activation. We found that CLB treatment reduced the percentage of CD1a(+) immature DCs, while increasing the frequency of monocytes retaining CD14 surface expression. Moreover, CLB inhibited tumor necrosis factor-alpha (TNF-alpha) enhanced IL-(interleukin)-10 and IL-6 production. In contrast, CLB did not modulate the phenotypic and functional properties of monocytes and DCs, such as the surface expression of HLA-DR, CD83, CD80 and CD86 molecules, cytokine production, immunostimulatory activity and phagocytic activity. Moreover, we found that CLB did not modulate the activation of NF-kB in DCs. Moreover, we found that the differentiation of monocytes into DCs was associated with a significant decrease of β2-ARs mRNA expression. These results provide new insights on the effect of CLB on monocyte differentiation into DCs. Considering the frequent illegal use of CLB in doping, our work suggests that this drug is potentially harmful to immune responses decreasing the supply of DCs, thus subverting immune surveillance.

  14. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells.

    Science.gov (United States)

    Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R

    2011-02-01

    We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.

  15. Migration of cells in a social context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory b...... and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.......In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory...

  16. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  17. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    Science.gov (United States)

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors.

  18. The activation of monocyte and T cell networks in patients with bipolar disorder

    NARCIS (Netherlands)

    Drexhage, Roosmarijn C.; Hoogenboezem, Thomas H.; Versnel, Marjan A.; Berghout, Arie; Nolen, Willem A.; Drexhage, Hemmo A.

    2011-01-01

    Objectives: We recently described a monocyte pro-inflammatory state in patients with bipolar disorder (BD). We hypothesized that the CD4(+)T cell system is also activated and determined percentages of Th1, Th2, Th17 and CD4(+)CD25(high)FoxP3(+) regulatory T cells. Methods: We carried out a detailed

  19. Stepwise isolation of human peripheral erythrocytes, T lymphocytes, and monocytes for blood cell proteomics.

    Science.gov (United States)

    Brosseron, Frederic; May, Caroline; Schoenebeck, Bodo; Tippler, Bettina; Woitalla, Dirk; Kauth, Marion; Brockmann, Kathrin; Meyer, Helmut E; Berg, Daniela; Bufe, Albrecht; Marcus, Katrin

    2012-10-01

    Density gradient centrifugation and magnetic- or fluorescence-activated cell sorting are common and robust techniques for the isolation of different types of blood cells. In this article, we give detailed description of a stepwise application of these methods as one isolation strategy for enrichment of different cell types from one blood sample. The workflow targeted erythrocytes, monocytes, and T lymphocytes. Pancoll® density gradient centrifugation was used together with subsequent MACS™ isolation. Purity of monocytes and T lymphocytes was controlled by fluorescence-activated cell sorting analysis, and cells were used for carrier-ampholine-based 2D-PAGE to confirm compatibility of the procedure to standard proteomic applications. Gradient centrifugation resulted in an average of 125 μL of packed erythrocytes per milliliter blood. MACS™ sorting reached purities of 90 ± 2% (monocytes) and 93 ± 2% (T lymphocytes), with an average yield of 12 × 10(4) monocytes or T lymphocytes. 2D-PAGE of isolated cells showed well-separated spot patterns. A combined isolation holds substantial advantages especially in clinical studies, as it allows for the comparison of findings not only between individuals, but also between different cell types derived from one donor. Our approach ensured high reproducibility, yields, and purities of cells as required for reliable proteome analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  1. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    OpenAIRE

    Molaeipour, Zahra; Shamsasanjan, karim; Movassaghpour, Ali Akbari; Akbarzadehlaleh, Parvin; Sabaghi, Fatemeh; Saleh, Mahshid

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line.

  2. Visualizing T cell migration in-situ

    Directory of Open Access Journals (Sweden)

    Alexandre P Benechet

    2014-07-01

    Full Text Available Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen specific T cells persist as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in-situ visualization of T cell responses. Here we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naive, effector and memory T cells.

  3. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  4. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation.

    Science.gov (United States)

    Wang, Yu-Shan; Chi, Kwan-Hwa; Liao, Kuang-Wen; Liu, Cheng-Chi; Cheng, Chiao-Lei; Lin, Yi-Chun; Cheng, Chiung-Hsiang; Chu, Rea-Min

    2007-07-01

    For therapeutic purposes, large numbers of dendritic cells (DCs) are essential. In this study, we used 2% autologous canine plasma, granulocyte/macrophage colony-stimulating factor (GM-CSF), fms-like tyrosine kinase 3 ligand (Flt3L), and interleukin 4 (IL-4) in generating monocyte-derived DCs from peripheral blood mononuclear cells of dogs. The plasma enriched the population of CD14-positive monocytes by greatly enhancing the efficiency of monocyte adherence, the proportion of adherent cells increasing from 6.6% with 10% fetal bovine serum to 15.3% with 2% autologous canine plasma. Culturing the adherent monocytes for 6 d with human GM-CSF, canine IL-4, and human Flt3L significantly increased the yield of DCs, more than 90% of which were CD14-negative. Because, in the presence of lipopolysaccharide (LPS), monocytes that were CD14-positive expressed tumor necrosis factor ac much more than DCs with low levels of CD14, it is important to decrease the numbers of CD14-positive cells in generating monocyte-derived DCs. With flow cytometry and real-time reverse-transcriptase-mediated polymerase chain reaction assays, we found that in canine immature DCs (iDCs) the expression of DLA class II molecules, CD1a, CD11c, CD40, and CD86 was high and the expression of CD80, CD83, and CD14 either low or negative. During maturation (stimulated by LPS), the expression of CDla, CD40, CD83, and CD80 was upregulated. However, the expression of DLA class II molecules, CD11c, and CD86 was not increased in mature DCs. Incubating the iDCs with LPS decreased antigen uptake and increased the cells' immunostimulatory capacity (assessed by the allogeneic mixed-lymphocyte reaction), indicating that LPS accelerates the functional maturation of DCs. This protocol may facilitate the use of DCs in cellular immunotherapy.

  5. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  6. Methylene blue modulates transendothelial migration of peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Isabella Werner

    Full Text Available Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1 were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial

  7. Methylene blue modulates transendothelial migration of peripheral blood cells.

    Science.gov (United States)

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V; Stock, Ulrich A; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  8. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    Science.gov (United States)

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  9. Leukoreduction system chambers are an efficient, valid, and economic source of functional monocyte-derived dendritic cells and lymphocytes.

    Science.gov (United States)

    Pfeiffer, Isabell A; Zinser, Elisabeth; Strasser, Erwin; Stein, Marcello F; Dörrie, Jan; Schaft, Niels; Steinkasserer, Alexander; Knippertz, Ilka

    2013-11-01

    The demand for human monocyte-derived dendritic cells (moDCs), as well as for primary human B and T lymphocytes for immunological research purposes has been increased in recent years. Classically, these monocytes are isolated from blood, leukapheresis products or buffy coats of healthy donors by plastic adherence of peripheral blood mononuclear cells (PBMCs), followed by stimulation with granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, while lymphocytes are usually isolated from the non-adherent fraction (NAF) by magnetic cell sorting. However, donor-blood is a limited resource and not every blood bank offers leukapheresis products or buffy coats for laboratory use. Additionally, a leukapheresis is very expensive and also the generation/isolation of cells is time- and cost-intensive. To overcome some of these obstacles, we evaluated if low-cost leukoreduction system chambers (LRSCs), which arise after routine donor plateletpheresis procedures, and are usually discarded, would be an alternative and appropriate source of PBMCs to generate moDCs and to isolate lymphocytes. By analyzing the number and phenotype of immature and mature dendritic cells (DCs), as well as of B and T lymphocytes derived from LRSCs, we found all cells to be of high quantity and quality. Further investigations on DCs comprising transwell migration assays, allogeneic mixed lymphocyte reactions (MLR), cytokine secretion assays, and cytotoxic T cell induction assays revealed high migratory, as well as stimulatory capacity of these cells. In addition, DCs and T cells were efficiently electroporated with mRNA and showed characteristic cytokine production after co-culture, demonstrating LRSCs as an efficient, valid, and economic source for generation of moDCs and lymphocytes for research purposes.

  10. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration.

    Science.gov (United States)

    Vazquez-Mellado, Maria J; Monjaras-Embriz, Victor; Rocha-Zavaleta, Leticia

    2017-01-01

    Cell migration of normal cells is tightly regulated. However, tumor cells are exposed to a modified microenvironment that promotes cell migration. Invasive migration of tumor cells is stimulated by receptor tyrosine kinases (RTKs) and is regulated by growth factors. Erythropoietin (Epo) is a glycoprotein hormone that regulates erythropoiesis and is also known to be a potent chemotactic agent that induces cell migration by binding to its receptor (EpoR). Expression of EpoR has been documented in tumor cells, and the potential of Epo to induce cell migration has been explored. Stem cell factor (SCF) is a cytokine that synergizes the effects of Epo during erythropoiesis. SCF is the ligand of c-Kit, a member of the RTKs family. Molecular activity of RTKs is a primary stimulus of cell motility. Thus, expression of the SCF/c-Kit axis is associated with cell migration. In this chapter, we summarize data describing the potential effect of Epo/EpoR and SCF/c-Kit as promoters of cancer cell migration. We also integrate recent findings on molecular mechanisms of Epo/EpoR- and SCF/c-Kit-mediated migration described in various cancer models. © 2017 Elsevier Inc. All rights reserved.

  11. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  12. Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions.

    Science.gov (United States)

    Klimchenko, Olena; Di Stefano, Antonio; Geoerger, Birgit; Hamidi, Sofiane; Opolon, Paule; Robert, Thomas; Routhier, Mélanie; El-Benna, Jamel; Delezoide, Anne-Lise; Boukour, Siham; Lescure, Bernadette; Solary, Eric; Vainchenker, William; Norol, Françoise

    2011-03-17

    The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.

  13. Chemical and physical effects on the adhesion, maturation, and survival of monocytes, macrophages, and foreign body giant cells

    Science.gov (United States)

    Collier, Terry Odell, III

    Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface

  14. Effect of serum concentration on adhesion of monocytic THP-1 cells onto cultured EC monolayer and EC-SMC Co-culture

    Institute of Scientific and Technical Information of China (English)

    Li-jie FAN; Take-shi KARINO

    2008-01-01

    Background:The adhesion of monocytes to the endothelium following accumulation oflow-density lipoprotein(LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans.However.it iS not well known how serum factors affect the adhesion of monocytes.Methods:We have studied the efrect of fetal calf serum(FCS).which we considered a source of LDL.on the adhesion of monocytes to endothelial cells(Ecs)by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells(EC monoculture)and a co-culture with bovine aortic smooth muscle cells(EC-SMC co-culture).Results:It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells,and the higher the concentration of FCS in the medium,the greater the adhesion of THP-1 cells to endothelial cells.Adhesion of THP-1 cells to an EC-SMC co-culture Was approximately twofold greater than that to an EC monoculture,and after adhering to endothelial cells,many THP-1 cells transmigrated into the layer of smooth muscle cells.Conclusion:The results suggest that the elevation of the LDL(cholesterol)level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytcs to the endothelium and their subsequent migration into subendothelial spaces.

  15. Generation of novel bone forming cells (monoosteophils from the cathelicidin-derived peptide LL-37 treated monocytes.

    Directory of Open Access Journals (Sweden)

    Zhifang Zhang

    Full Text Available BACKGROUND: Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin, which recruits circulating monocytes during injury, may play a role in bone repair. METHODS AND FINDINGS: Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM. In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC, osteonectin (ON, bone sialoprotein II (BSP II, osteopontin (OP, RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP, and cathepsin K (CK. CONCLUSION: Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte

  16. Study of cell migration in microfabricated channels.

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-02-21

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments.

  17. Study of Cell Migration in Microfabricated Channels

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-01-01

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments. PMID:24637569

  18. Monocytes mediate shaving of B-cell-bound anti-CD20 antibodies

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Jungersen, Mette B; Pedersen, Charlotte D

    2011-01-01

    -mediated cytotoxicity and antibody-dependent cellular cytotoxicity. However, in haematological malignancies, such effector mechanisms can be saturated and result in release of malignant B cells with reduced levels of CD20. It has been hypothesized that this is the result of monocyte-mediated shaving of the CD20/RTX...... to mediate partial inhibition. Also, a series of alternative anti-CD20 antibodies representing both type I and type II antibodies were tested for their ability to induce the shaving reaction. These results demonstrate that a monocyte-mediated shaving reaction can lead to complete loss of most anti-CD20...

  19. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  20. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro

    NARCIS (Netherlands)

    Faas, Marijke M.; van Pampus, Maria G.; Anninga, Zwanine A.; Salomons, Jet; Westra, Inge M.; Donker, Rogier B.; Aarnoudse, Jan G.; de Vos, Paul

    2010-01-01

    In this study we tested whether plasma from preeclamptic women contains factors that can activate endothelial cells in the presence of monocytes in vitro. Plasma from preeclamptic women (n = 6), healthy pregnant women (n = 6) and nonpregnant women (n = 6) was incubated with mono-cultures and co-cult

  1. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation

    NARCIS (Netherlands)

    Koffel, R.; Meshcheryakova, A.; Warszawska, J.; Hennig, A.; Wagner, K.; Jorgl, A.; Gubi, D.; Moser, D.; Hladik, A.; Hoffmann, U.; Fischer, M.B.; Berg, W.B. van den; Koenders, M.I.; Scheinecker, C.; Gesslbauer, B.; Knapp, S.; Strobl, H.

    2014-01-01

    During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell s

  2. [Induction of monocyte-derived dendritic cell differentiation by asthmatic serum in a transendothelial trafficking model].

    Science.gov (United States)

    Zhou, Lin-fu; Wang, Wen-lu; Li, Hong-yan; Zhang, Ming-shun; Ji, Xiao-hui; He, Shao-heng; Huang, Mao; Yin, Kai-sheng

    2011-03-01

    To explore the effect of asthmatic and healthy serum on differentiation and function of monocyte-derived dendritic cells (MDDC) in a transendothelial trafficking model. The sera and peripheral blood mononuclear cells (PBMC) were separated from 12 asthmatic patients and 12 healthy volunteers, and monocytes were selected from PBMC using magnetic beads. The trypsin-digested human umbilical vein endothelial cells (HUVEC) at passage 2 from 5 healthy lying-in women were used to construct the transendothelial trafficking model under asthmatic or healthy serum, wherein MDDC were identified by silver nitrate staining and scanning electron microscopy. Nuclear factor κB (NF-κB) activity was determined by electrophoretic mobility shift assay. Flow cytometry, ELISA and mixed leukocyte reaction were relevantly utilized to detect the phenotype, cytokine and T cell proliferation. (1) Monocytes traversed through HUVEC monolayer after 2 h, and reverse-transmigrated to develop into DC 48 h later. (2) The healthy serum stimulated monocytes into immature MDDC with lower CD(14) [(20 ± 5)%] (F = 49.01, P 0.05), higher CD(80) and CD(83) [(49.7 ± 10.2)% and (30.2 ± 6.8)%] (F = 4.01 and 20.68, all P trafficking model, which provides a promising experimental platform for both investigation of immunological mechanisms in asthma and screening of novel anti-asthma drugs in vitro.

  3. Matrix metalloproteinase-1 expression by interaction between monocytes and vascular endothelial cells.

    Science.gov (United States)

    Hojo, Y; Ikeda, U; Takahashi, M; Sakata, Y; Takizawa, T; Okada, K; Saito, T; Shimada, K

    2000-08-01

    There is accumulating evidence of complicated interactions among vascular cells, i.e. endothelial cells, smooth muscle cells and monocytes/macrophages, in the regulation of vascular function and remodeling. We have investigated the mechanisms responsible for matrix metalloproteinase (MMP)-1 expression by interactions between monocytes and vascular endothelial cells. THP-1 cells (human monocytic cell line) and human umbilical vein endothelial cells (HUVECs) were cocultured. MMP-1 levels in the culture medium were measured by enzyme-linked immunosorbent assays. Collagenolytic activity in the culture medium was measured by fluorescence labeled-collagen digestion. Immunohistochemistry using an anti-MMP antibody was carried out to determine which types of cell produce MMP-1. The addition of THP-1 cells to HUVECs for 48 h induced increases in MMP-1 levels and collagenolytic activity, which were 5- and 2-fold relative to those of HUVECs alone, respectively. A separate coculture experiment revealed that direct contact of THP-1 cells and HUVECs contributed to enhanced MMP-1 production in the cocolture. Immunohistochemical analysis revealed that both types of cell produce MMP-1 in the coculture. Neutralizing anti-interleukin-1 beta and tumor necrosis factor- alpha antibodies inhibited MMP-1 production by the coculture. The Src kinase and MEK inhibitors significantly inhibited MMP-1 production by the coculture. Coculture of THP-1 cells and HUVECs induced significant increases in Src and mitogen activated protein (MAP) kinase activities. Enhanced MMP-1 expression induced by monocyte-endothelial cell interactions may play an important role in the pathogenesis of atherosclerosis and plaque rupture.

  4. Abnormal production of pro- and anti-inflammatory cytokines by lupus monocytes in response to apoptotic cells.

    Directory of Open Access Journals (Sweden)

    Sangeeta Sule

    Full Text Available Monocytes are a key component of the innate immune system involved in the regulation of the adaptive immune response. Previous studies have focused on apoptotic cell clearance abnormalities in systemic lupus erythematosus (SLE monocytes. However, whether SLE monocytes might express unique patterns of cytokine secretion in response to apoptotic cells is still unknown. Here, we used monocytes from healthy controls and SLE patients to evaluate the production of TNF-α and TGF-β in response to apoptotic cells. Upon recognition of apoptotic material, monocytes from healthy controls showed prominent TGF-β secretion (mean ± SD: 824.6±144.3 pg/ml and minimal TNF-α production (mean ± SD: 32.6±2.1 pg/ml. In contrast, monocytes from SLE patients had prominent TNF-α production (mean ± SD: 302.2±337.5 pg/ml and diminished TGF-β secretion (mean ± SD: 685.9±615.9 pg/ml, a difference that was statistically significant compared to normal monocytes (p≤10(-6 for TNF-α secretion, and p = 0.0031 for TGF-β, respectively. Interestingly, the unique cytokine response by SLE monocytes was independent of their phagocytic clearance efficiency, opsonizing autoantibodies and disease activity. We further showed that nucleic acids from apoptotic cells play important role in the induction of TNF-α by lupus monocytes. Together, these observations suggest that, in addition to potential clearance defects, monocytes from SLE patients have an abnormal balance in the secretion of anti- and pro-inflammatory cytokines in response to apoptotic cells. Since the abnormal cytokine response to apoptotic material in SLE is not related to disease activity and opsonizing autoantibodies, it is possible that this response might be an intrinsic property of lupus monocytes. The studies focus attention on toll-like receptors (TLRs and their downstream pathways as mediators of this response.

  5. Synergistic Communication between CD4+ T Cells and Monocytes Impacts the Cytokine Environment

    Science.gov (United States)

    Schrier, Sarah B.; Hill, Abby S.; Plana, Deborah; Lauffenburger, Douglas A.

    2016-01-01

    Physiological cytokine environments arise from factors produced by diverse cell types in coordinated concert. Understanding the contributions of each cell type in the context of cell-cell communication is important for effectively designing disease modifying interventions. Here, we present multi-plexed measurement of 48 cytokines from a coculture system of primary human CD4+ T cells and monocytes across a spectrum of stimuli and for a range of relative T cell/monocyte compositions, coupled with corresponding measurements from PBMCs and plasma from the same donors. Computational analysis of the resulting data-sets elucidated communication-independent and communication-dependent contributions, including both positive and negative synergies. We find that cytokines in cell supernatants were uncorrelated to those found in plasma. Additionally, as an example of positive synergy, production levels of CXCR3 cytokines IP-10 and MIG, depend non-linearly on both IFNγ and TNFα levels in cross-talk between T cells and monocytes. Overall, this work demonstrates that communication between cell types can significantly impact the consequent cytokine environment, emphasizing the value of mixed cell population studies. PMID:27721433

  6. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration.

    Science.gov (United States)

    Curreli, Sabrina; Wong, Bin Sheng; Latinovic, Olga; Konstantopoulos, Konstantinos; Stamatos, Nicholas M

    2016-12-01

    Class 3 semaphorins (Semas) are soluble proteins that are well recognized for their role in guiding axonal migration during neuronal development. In the immune system, Sema3A has been shown to influence murine dendritic cell (DC) migration by signaling through a neuropilin (NRP)-1/plexin-A1 coreceptor axis. Potential roles for class 3 Semas in human DCs have yet to be described. We tested the hypothesis that Sema3A, -3C, and -3F, each with a unique NRP-1 and/or NRP-2 binding specificity, influence human DC migration. In this report, we find that although NRP-1 and NRP-2 are expressed in human immature DCs (imDCs), NRP-2 expression increases as cells mature further, whereas expression of NRP-1 declines dramatically. Elevated levels of RNA encoding plexin-A1 and -A3 are present in both imDCs and mature DC (mDCs), supporting the relevance of Sema/NRP/plexin signaling pathways in these cells. Sema3A, -3C, and -3F bind to human DCs, with Sema3F binding predominantly through NRP-2. The binding of these Semas leads to reorganization of actin filaments at the plasma membrane and increased transwell migration in the absence or presence of chemokine CCL19. Microfluidic chamber assays failed to demonstrate consistent changes in speed of Sema3C-treated DCs, suggesting increased cell deformability as a possible explanation for enhanced transwell migration. Although monocytes express RNA encoding Sema3A, -3C, and -3F, only RNA encoding Sema3C increases robustly during DC differentiation. These data suggest that Sema3A, -3C, and -3F, likely with coreceptors NRP-1, NRP-2, and plexin-A1 and/or -A3, promote migration and possibly other activities of human DCs during innate and adaptive immune responses.

  7. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells

    OpenAIRE

    Ricklin Gutzwiller, Meret Elisabeth; Moulin, Hervé Raphaël; Zurbriggen, Andreas; Roosje, Petra; Summerfield, Artur

    2010-01-01

    International audience; Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cel...

  8. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  9. Collective cell migration: a mechanistic perspective.

    Science.gov (United States)

    Vedula, Sri Ram Krishna; Ravasio, Andrea; Lim, Chwee Teck; Ladoux, Benoit

    2013-11-01

    Collective cell migration is fundamental to gaining insights into various important biological processes such as wound healing and cancer metastasis. In particular, recent in vitro studies and in silico simulations suggest that mechanics can explain the social behavior of multicellular clusters to a large extent with minimal knowledge of various cellular signaling pathways. These results suggest that a mechanistic perspective is necessary for a comprehensive and holistic understanding of collective cell migration, and this review aims to provide a broad overview of such a perspective.

  10. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  11. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  12. Interactions of monocyte subpopulations generated from cord blood CD34(+) hematopoietic progenitors with tumor cells: assessment of antitumor potential.

    Science.gov (United States)

    Stec, Malgorzata; Baran, Jaroslaw; Szatanek, Rafal; Mytar, Bozenna; Baj-Krzyworzeka, Monika; Gozdzik, Jolanta; Siedlar, Maciej; Zembala, Marek

    2012-11-01

    Monocytes and their subsets (CD14(++)CD16(+) and CD14(+)CD16(-)) generated from cord blood CD34(+) progenitor cells were used for determination of their capacity to interact with tumor cells in vitro and in vivo. The studies in vitro included adhesion to human umbilical vein endothelial cells, cytotoxicity, production of toxic mediators: reactive oxygen and nitrogen intermediates (ROI and RNI, respectively), and finally their effect on transplantable human tumor growth in nonobese diabetic severe combined immunodeficient mice. The CD14(++)CD16(+) subset exhibited an increased adherence to human umbilical vein endothelial cells and cytotoxicity toward tumor cells in vitro. CD14(+)CD16(-) monocytes showed a higher production of reactive oxygen and nitrogen intermediates after stimulation with tumor cells, and more pronounced inhibition of tumor growth in vivo. The results revealed significant differences in the behavior of CD14(++)CD16(+) and CD14(+)CD16(-) monocyte subsets toward tumor cells, thus providing further evidence that CD34(+) cell-derived monocytes differ in this respect from blood monocytes. The protocol for generation of monocytes with antitumor reactivity described here may be useful to obtain monocytes from CD34(+) progenitor cells of cancer patients. This might offer a basis for a novel approach for various forms of cellular immunotherapy of cancer.

  13. Engineered Models of Confined Cell Migration

    Science.gov (United States)

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  14. Primordial Germ Cell Specification and Migration

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  15. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    OpenAIRE

    Zahra Molaeipour; Karim Shamsasanjan; Ali Akbari Movassaghpour; Parvin Akbarzadehlaleh; Fatemeh Sabaghi; Mahshid Saleh

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-to-cell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line. Methods: U937 cells were cultured in both direct co-culture with...

  16. HIV-1-triggered release of type I IFN by plasmacytoid dendritic cells induces BAFF production in monocytes.

    Science.gov (United States)

    Gomez, Alejandro M; Ouellet, Michel; Tremblay, Michel J

    2015-03-01

    HIV-1 infection leads to numerous B cell abnormalities, including hypergammaglobulinemia, nonspecific B cell activation, nonspecific class switching, increased cell turnover, breakage of tolerance, increased immature/transitional B cells, B cell malignancies, as well as a loss of capacity to generate and maintain memory, all of which contribute to a global impairment of the immune humoral compartment. Several cytokines and soluble factors, which are increased in sera of HIV-1-infected individuals, have been suggested to directly or indirectly contribute to these B cell dysfunctions, and one of these is the B cell-activating factor (BAFF). We report in this study that HIV-1 (X4- and R5-tropic) upregulates BAFF expression and secretion by human monocytes. Moreover, we show that the virus-mediated production of BAFF by monocytes relies on a type I IFN response by a small percentage of plasmacytoid dendritic cells (pDCs) present in the monocyte cultures. HIV-1-induced type I IFN by pDCs triggers BAFF production in both classical and intermediate monocytes, but not in nonclassical monocytes, which nonetheless display a very strong basal BAFF production. We report also that basal BAFF secretion was higher in monocytes obtained from females compared with those from male donors. This study provides a novel mechanistic explanation for the increased BAFF levels observed during HIV-1 infection and highlights the importance of pDC/monocyte crosstalk to drive BAFF secretion. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  18. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  19. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors.

    Science.gov (United States)

    Dauer, Marc; Obermaier, Bianca; Herten, Jan; Haerle, Carola; Pohl, Katrin; Rothenfusser, Simon; Schnurr, Max; Endres, Stefan; Eigler, Andreas

    2003-04-15

    It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.

  20. Perturbations of Monocyte Subsets and Their Association with T Helper Cell Differentiation in Acute and Chronic HIV-1-Infected Patients

    Science.gov (United States)

    Chen, Peng; Su, Bin; Zhang, Tong; Zhu, Xiaojing; Xia, Wei; Fu, Yan; Zhao, Guoxian; Xia, Huan; Dai, Lili; Sun, Lijun; Liu, Lifeng; Wu, Hao

    2017-01-01

    Monocytes have been recently subdivided into three subsets: classical (CD14++CD16−), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) subsets, but phenotypic and functional abnormalities of the three monocyte subsets in HIV-1 infection have not been fully characterized, especially in acute HIV-1 infection (AHI). In the study, we explored the dynamic changes of monocyte subsets and their surface markers, and the association between monocyte subsets and the IFN-γ, interleukin (IL)-4, IL-17, and TNF-α producing CD4+ T cells in acute and chronic HIV-1-infected patients. We found that, in the acute HIV-1-infected individuals, the frequency of the intermediate CD14++CD16+ monocyte subsets, the CD163 density and HLA-DR density on intermediate CD14++CD16+ monocytes, and plasma soluble form of CD163 (sCD163) were significantly higher than that in healthy controls. Intermediate CD14++CD16+ monocyte subsets and their HLA-DR expression levels were inversely correlated with the CD4+ T cell counts, and the intermediate CD14++CD16+ monocytes were positively correlated with plasma sCD163. In contrast to the non-classical CD14+CD16++ and classical CD14++CD16− monocyte subsets, the frequency of the intermediate CD14++CD16+ monocytes was positively associated with the frequency of IFN-γ and IL-4 producing CD4+ T cells in HIV-1-infected patients. Taken together, our observations provide new insight into the roles of the monocyte subsets in HIV pathogenesis, particularly during AHI, and our findings may be helpful for the treatment of HIV-related immune activation.

  1. Monocyte Subpopulations in Angiogenesis

    Science.gov (United States)

    Dalton, Heather J.; Armaiz-Pena, Guillermo; Gonzalez-Villasana, Vianey; Lopez-Berestein, Gabriel; Bar-Eli, Menashe; Sood, Anil K.

    2014-01-01

    Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit. PMID:24556724

  2. Modeling traction forces in collective cell migration

    Science.gov (United States)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  3. Bursts of activity in collective cell migration

    CERN Document Server

    Chepizhko, Oleksandr; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stephane; Alava, Mikko J; Zapperi, Stefano; La Porta, Caterina A M

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.

  4. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders

    Directory of Open Access Journals (Sweden)

    Hohlfeld Reinhard

    2011-10-01

    Full Text Available Abstract Background Clinical trials evaluating anti-CD20-mediated B-cell depletion in multiple sclerosis (MS and neuromyelitis optica (NMO generated encouraging results. Our recent studies in the MS model experimental autoimmune encephalomyelitis (EAE attributed clinical benefit to extinction of activated B-cells, but cautioned that depletion of naïve B-cells may be undesirable. We elucidated the regulatory role of un-activated B-cells in EAE and investigated whether anti-CD20 may collaterally diminish regulatory B-cell properties in treatment of neuroimmunological disorders. Methods Myelin oligodendrocyte glycoprotein (MOG peptide-immunized C57Bl/6 mice were depleted of B-cells. Functional consequences for regulatory T-cells (Treg and cytokine production of CD11b+ antigen presenting cells (APC were assessed. Peripheral blood mononuclear cells from 22 patients receiving anti-CD20 and 23 untreated neuroimmunological patients were evaluated for frequencies of B-cells, T-cells and monocytes; monocytic reactivity was determined by TNF-production and expression of signalling lymphocytic activation molecule (SLAM. Results We observed that EAE-exacerbation upon depletion of un-activated B-cells closely correlated with an enhanced production of pro-inflammatory TNF by CD11b+ APC. Paralleling this pre-clinical finding, anti-CD20 treatment of human neuroimmunological disorders increased the relative frequency of monocytes and accentuated pro-inflammatory monocyte function; when reactivated ex vivo, a higher frequency of monocytes from B-cell depleted patients produced TNF and expressed the activation marker SLAM. Conclusions These data suggest that in neuroimmunological disorders, pro-inflammatory APC activity is controlled by a subset of B-cells which is eliminated concomitantly upon anti-CD20 treatment. While this observation does not conflict with the general concept of B-cell depletion in human autoimmunity, it implies that its safety and

  5. Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells.

    Science.gov (United States)

    Tsubakimoto, Yoshinori; Yamada, Hiroyuki; Yokoi, Hirokazu; Kishida, Sou; Takata, Hiroki; Kawahito, Hiroyuki; Matsui, Akihiro; Urao, Norifumi; Nozawa, Yoshihisa; Hirai, Hideyo; Imanishi, Jiro; Ashihara, Eishi; Maekawa, Taira; Takahashi, Tomosaburo; Okigaki, Mitsuhiko; Matsubara, Hiroaki

    2009-10-01

    The angiotensin II (Ang II) type 1 (AT(1)) receptor is expressed in bone marrow (BM) cells, whereas it remains poorly defined how Ang II regulates differentiation/proliferation of monocyte-lineage cells to exert proatherogenic actions. We generated BM chimeric apoE(-/-) mice repopulated with AT(1)-deficient (Agtr1(-/-)) or wild-type (Agtr1(+/+)) BM cells. The atherosclerotic development was significantly reduced in apoE(-/-)/BM-Agtr1(-/-) mice compared with apoE(-/-)/BM-Agtr1(+/+) mice, accompanied by decreased numbers of BM granulocyte/macrophage progenitors (GMP:c-Kit(+)Sca-1(-)Lin(-)CD34(+)CD16/32(+)) and peripheral blood monocytes. Macrophage-colony-stimulating factor (M-CSF)-induced differentiation from hematopoietic stem cells (HSCs:c-Kit(+)Sca-1(+)Lin(-)) to promonocytes (CD11b(high)Ly-6G(low)) was markedly reduced in HSCs from Agtr1(-/-) mice. The expression of M-CSF receptor c-Fms was decreased in HSCs/promonocytes from Agtr1(-/-) mice, accompanied by a marked inhibition in M-CSF-induced phosphorylation of PKC-delta and JAK2. c-Fms expression in HSCs/promonocytes was mainly regulated by TNF-alpha derived from BM CD45(-)CD34(-) stromal cells, and Ang II specifically regulated the TNF-alpha synthesis and release from BM stromal cells. Ang II regulates the expression of c-Fms in HSCs and monocyte-lineage cells through BM stromal cell-derived TNF-alpha to promote M-CSF-induced differentiation/proliferation of monocyte-lineage cells and contributes to the proatherogenic action.

  6. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  7. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tianying Bian

    2017-01-01

    Full Text Available The aim of this study was to investigate the role of human β-defensin 3 (hBD3 in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs triggered by tumor necrosis factor- (TNF- α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1, and macrophage migration inhibitory factor (MIF in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK in the mitogen-activated protein kinase (MAPK pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  8. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Bian, Tianying; Li, Houxuan; Zhou, Qian; Ni, Can; Zhang, Yangheng

    2017-01-01

    The aim of this study was to investigate the role of human β-defensin 3 (hBD3) in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs) triggered by tumor necrosis factor- (TNF-) α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), and macrophage migration inhibitory factor (MIF) in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS) production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK) in the mitogen-activated protein kinase (MAPK) pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  9. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Science.gov (United States)

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2016-12-06

    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  10. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    Science.gov (United States)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser-tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell’s nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell’s nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely nondestructive fashion that permits discerning differences between cell types and cellular activity. PMID:21984959

  11. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  12. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis.

    Science.gov (United States)

    Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S

    2004-09-01

    Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.

  13. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    Full Text Available DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC. After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  14. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Science.gov (United States)

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  15. Dehydroepiandrosterone (DHEA) inhibition of monocyte binding by vascular endothelium is associated with sialylation of neural cell adhesion molecule.

    Science.gov (United States)

    Curatola, Anna-Maria; Huang, Kui; Naftolin, Frederick

    2012-01-01

    Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P DHEA's inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.

  16. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    Science.gov (United States)

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  17. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production.

    Science.gov (United States)

    Zhu, Y; Hojo, Y; Ikeda, U; Takahashi, M; Shimada, K

    2000-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in atherosclerotic plaque rupture. The purpose of this study was to investigate the expression of MMP-1 by cell-to-cell interactions between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cells) were cocultured. MMP-1 levels were measured by enzyme-linked immunosorbent assay. Collagenolytic activity was determined by fluorescent labeled-collagen digestion. Immunohistochemistry was performed to determine which types of cells produce MMP-1. Adding THP-1 cells to VSMCs markedly increased the MMP-1 levels and activity of the culture media. MMP-1 levels were maximal when the cellular ratio of THP-1 cells/VSMCs was 1.0. Immunohistochemistry revealed that both types of cells in the coculture produced MMP-1. Separated coculture experiments showed that both direct contact and a soluble factor(s) contributed to MMP-1 production. Neutralizing anti-interleukin (IL)-6 and tumor necrosis factor-alpha antibodies inhibited coculture conditioned medium-induced MMP-1 production by VSMCs and THP-1 cells. Protein kinase C inhibitors, tyrosine kinase inhibitors, and a mitogen-activated protein kinase inhibitor significantly inhibited MMP-1 production by cocultures. Direct cell-to-cell interaction between THP-1 cells and VSMCs enhanced MMP-1 synthesis in both types of cells. Increased local MMP-1 production and activity induced by monocyte-VSMC interaction play an important pathogenic role in atherosclerotic plaque rupture.

  18. Elastic Properties of Nematic Liquid Crystals Formed by Living and Migrating Cells

    CERN Document Server

    Kemkemer, R; Kaufmann, D; Gruler, H; Kemkemer, Ralf; Kling, Dieter; Kaufmann, Dieter; Gruler, Hans

    1998-01-01

    In culture migrating and interacting amoeboid cells can form nematic liquid crystal phases. A polar nematic liquid crystal is formed if the interaction has a polar symmetry. One type of white blood cells (granulocytes) form clusters where the cells are oriented towards the center. The core of such an orientational defect (disclination) is either a granulocyte forced to be in an isotropic state or another cell type like a monocyte. An apolar nematic liquid crystal is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (= fat cells) etc., form an apolar nematic liquid crystal. The orientational elastic energy is derived and the orientational defects (disclination) of nematic liquid crystals are investigated. The existence of half-numbered disclinations show that the nematic phase has an apolar symmetry. The density- and order parameter dependence...

  19. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  20. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  1. Piperine impairs the migration and T cell-activating function of dendritic cells.

    Science.gov (United States)

    Rodgers, Gemma; Doucette, Carolyn D; Soutar, David A; Liwski, Robert S; Hoskin, David W

    2016-02-03

    Piperine, a major alkaloid found in the fruits of black and long pepper plants, has anti-inflammatory properties; however, piperine's effect on dendritic cell (DC) migration and T cell-activating function has not been investigated. Bone marrow-derived mouse DCs that were matured in the presence of 100 μM piperine showed reduced in vitro migration in response to CCL21, as well as reduced in vivo migration to lymph nodes. In addition, piperine-treated DCs had reduced CCR7 expression and elevated CCR5 expression, as well as reduced expression of CD40 and class II major histocompatibility complex molecules and decreased nuclear accumulation of RelB. DC production of interleukin (IL)-6, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to lipopolysaccharide stimulation was also reduced following piperine treatment. Exposure to piperine during maturation therefore caused DCs to retain an immature phenotype, which was associated with a reduced capacity to promote T cell activation since co-culture of ovalbumin (OVA323-339)-specific T cells with OVA323-339-pulsed DCs that were previously matured in the presence of piperine showed reduced interferon-γ and IL-2 expression. OVA323-339-specific T cell proliferation was also reduced in vivo in the presence of piperine-treated DCs. Inhibition of DC migration and function by piperine may therefore be a useful strategy to down-regulate potentially harmful DC-driven T cell responses to self-antigens and transplantation antigens.

  2. Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile.

    Directory of Open Access Journals (Sweden)

    Christopher B Guest

    Full Text Available Macrophages are capable of assuming numerous phenotypes in order to adapt to endogenous and exogenous challenges but many of the factors that regulate this process are still unknown. We report that Ca(2+/calmodulin-dependent kinase kinase alpha (CaMKKalpha is expressed in human monocytic cells and demonstrate that its inhibition blocks type-II monocytic cell activation and promotes classical activation. Affinity chromatography with paramagnetic beads isolated an approximately 50 kDa protein from nuclear lysates of U937 human monocytic cells activated with phorbol-12-myristate-13-acetate (PMA. This protein was identified as CaMKKalpha by mass spectrometry and Western analysis. The function of CaMKKalpha in monocyte activation was examined using the CaMKKalpha inhibitors (STO-609 and forskolin and siRNA knockdown. Inhibition of CaMKKalpha, enhanced PMA-dependent CD86 expression and reduced CD11b expression. In addition, inhibition was associated with decreased translocation of CaMKKalpha to the nucleus. Finally, to further examine monocyte activation profiles, TNFalpha and IL-10 secretion were studied. CaMKKalpha inhibition attenuated PMA-dependent IL-10 production and enhanced TNFalpha production indicating a shift from type-II to classical monocyte activation. Taken together, these findings indicate an important new role for CaMKKalpha in the differentiation of monocytic cells.

  3. IGK with conserved IGΚV/IGΚJ repertoire is expressed in acute myeloid leukemia and promotes leukemic cell migration.

    Science.gov (United States)

    Wang, Chong; Xia, Miaoran; Sun, Xiaoping; He, Zhiqiao; Hu, Fanlei; Chen, Lei; Bueso-Ramos, Carlos E; Qiu, Xiaoyan; Yin, C Cameron

    2015-11-17

    We have previously reported that immunoglobulin heavy chain genes were expressed in myeloblasts and mature myeloid cells. In this study, we further demonstrated that rearranged Ig κ light chain was also frequently expressed in acute myeloid leukemia cell lines (6/6), primary myeloblasts from patients with acute myeloid leukemia (17/18), and mature monocytes (11/12) and neutrophils (3/12) from patients with non-hematopoietic neoplasms, but not or only rarely expressed in mature neutrophils (0/8) or monocytes (1/8) from healthy individuals. Interestingly, myeloblasts and mature monocytes/neutrophils shared several restricted IGKV and IGKJ gene usages but with different expression frequency. Surprisingly, almost all of the acute myeloid leukemia-derived IGKV showed somatic hypermutation; in contrast, mature myeloid cells-derived IGKV rarely had somatic hypermutation. More importantly, although IGK expression appeared not to affect cell proliferation, reduced IGK expression led to a decrease in cell migration in acute myeloid leukemia cell lines HL-60 and NB4, whereas increased IGK expression promoted their motility. In summary, IGK is expressed in myeloblasts and mature myeloid cells from patients with non-hematopoietic neoplasms, and is involved in cell migration. These results suggest that myeloid cells-derived IgK may have a role in leukemogenesis and may serve as a novel tumor marker for monitoring minimal residual disease and developing target therapy.

  4. HIV/SIV infection primes monocytes and dendritic cells for apoptosis.

    Directory of Open Access Journals (Sweden)

    Mireille Laforge

    2011-06-01

    Full Text Available Subversion or exacerbation of antigen-presenting cells (APC death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs. We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14(+ from SIV(+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV(+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV(+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection.

  5. Dysfunctional HDL from HIV+ individuals promotes monocyte-derived foam cell formation in vitro.

    Science.gov (United States)

    Angelovich, Thomas A; Hearps, Anna C; Oda, Michael N; Borja, Mark S; Huynh, Diana; Homann, Stefanie; Jaworowski, Anthony; Kelesidis, Theodoros

    2017-09-18

    The role of HDL function in HIV-related atherosclerotic cardiovascular disease (CVD) is unclear. HDLs isolated from HIV+ [HIV(+)HDL] and HIV-uninfected individuals (HDL) were assessed for HDL function and ability to promote monocyte-derived foam cell formation (MDFCF) (a key event in HIV-related CVD) ex vivo. Using an established in vitro model of atherogenesis and plasma samples from an established cross-sectional study of virologically-suppressed HIV+ males on stable effective antiretroviral therapy (ART) and with low CVD risk (median age: 42 years; n = 10), we explored the impact of native HDL [HIV(+)HDL] on MDFCF. In this exploratory study we selected HIV-HDL known to be dysfunctional based on two independent measures of impaired HDL function: a) antioxidant (high HDLox) b) ability of HDL to release apoA-I [low HDL-apoA-I exchange (HAE %)]. Five healthy males matched by age and race to the HIV+ group were included. Given that oxidation of HDL leads to abnormal HDL function, we also compared proatherogenic effects of HIV-HDL versus chemically-derived HDLox. The ex vivo atherogenesis assay was performed using lipoproteins (purchased or isolated from plasma using ultracentrifugation) and monocytes purified via negative selection from healthy donors. HIV(+)HDL known to have reduced antioxidant function and rate of HDL/ApoAI exchange promoted MDFCF to a greater extent than HDL (33.0% vs 26.2% foam cells; p = 0.015). HDL oxidized in vitro also enhanced foam cell formation as compared to non-oxidized HDL (p HDL in virologically suppressed HIV+ individuals may potentiate atherosclerosis in HIV infection by promoting monocyte-derived foam cell formation.The role of HDL function in HIV-related atherosclerotic cardiovascular disease is unclear. HDL isolated from HIV+ [HIV(+)HDL] and HIV-uninfected individuals [HIV(-)HDL] were assessed for HDL function and ability to promote foam cell formation ex vivo. HIV(+)HDL known to have reduced antioxidant function and

  6. Determinants of leader cells in collective cell migration.

    NARCIS (Netherlands)

    Khalil, A.; Friedl, P.H.A.

    2010-01-01

    Collective migration is a basic mechanism of cell translocation during morphogenesis, wound repair and cancer invasion. Collective movement requires cells to retain cell-cell contacts, exhibit group polarization with defined front-rear asymmetry, and consequently move as one multicellular unit. Depe

  7. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice.

    Science.gov (United States)

    Skuljec, Jelena; Cabanski, Maciej; Surdziel, Ewa; Lachmann, Nico; Brennig, Sebastian; Pul, Refik; Jirmo, Adan C; Habener, Anika; Visic, Julia; Dalüge, Kathleen; Hennig, Christian; Moritz, Thomas; Happle, Christine; Hansen, Gesine

    2016-07-01

    Foxp3(+) regulatory T (Treg) cells play a pivotal role in maintaining immunological tolerance. Loss-of-function mutations in the Foxp3 gene result in multiorgan inflammation known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in humans and scurfy (Sf) disease in mice. While the impact of missing Treg cells on adaptive immune cells is well documented, their role in regulation of myeloid cells remains unclear. Here we report that Sf mice exhibit an altered composition of stem and progenitor cells, characterized by increased numbers of myeloid precursors and higher efficiency of macrophage generation ex vivo. The proportion of monocytes/macrophages in the bone marrow, blood, and spleen was significantly elevated in Sf mice, which was accompanied with tissue-specific monocyte expression of homing receptor and phagocytic activity. Sf mice displayed high levels of M-CSF and other inflammatory cytokines, including monocyte-recruiting chemokines. Adoptive transfer of WT CD4(+) cells and in vivo neutralization of M-CSF normalized frequencies of monocyte subsets and their progenitors and reduced high levels of monocyte-related cytokines in Sf mice, while Treg cell transfer to RAG2(-/-) mice had no effect on myelopoiesis and monocyte/macrophage counts. Our findings illustrate that deregulated myelopoiesis in Sf mice is mainly caused by the inflammatory reaction resulting from the lack of Treg cells.

  8. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    DEFF Research Database (Denmark)

    Svane, I M; Nikolajsen, K; Walter, M R;

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required......, maturation with IFN-alpha has only a small effect on induction of autologous T-cell stimulatory capacity of the DC. However, an increase in DC allogeneic T-cell stimulatory capacity was observed. These data suggest that IFN-alpha has a potential as a maturation agent used in DC-based cancer vaccine trials...

  9. Phagocytic activity of monocytes, their subpopulations and granulocytes during post-transplant adverse events after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Döring, Michaela; Cabanillas Stanchi, Karin Melanie; Erbacher, Annika; Haufe, Susanne; Schwarze, Carl Philipp; Handgretinger, Rupert; Hofbeck, Michael; Kerst, Gunter

    2015-05-01

    Phagocytosis of granulocytes and monocytes presents a major mechanism that contributes to the clearance of pathogens and cell debris. We analyzed the phagocytic activity of the peripheral blood cell monocytes, three monocyte subpopulations and granulocytes before and up to one year after hematopoietic stem cell transplantation, as well as during transplant-related adverse events. 25 pediatric patients and young adults (median age of 11.0 years) with hemato-oncological malignancies and non malignancies were enrolled in the prospective study. Ingestion of fluorescence-labeled Escherichia coli bacteria was used to assess the phagocytic activity of monocytes and their subpopulations and granulocytes by means of flow cytometry in the patient group as well as in a control group (n=36). During sepsis, a significant increase of phagocytic activity of monocytes (P=0.0003) and a significant decrease of the phagocytic activity of granulocytes (P=0.0003) and the CD14+ CD16++ monocyte subpopulation (P=0.0020) occurred. At the onset of a veno-occlusive disease, a significant increase of phagocytic activity in the CD14++ CD16+ monocyte subpopulation (P=0.001) and a significant decrease in the phagocytic activity of the CD14++ CD16- monocyte subpopulation (P=0.0048) were observed. In conclusion, the phagocytic activity of monocytes, their subpopulations and granulocytes might be a useful and easy determinable parameter that enables identification of post-transplant complications after hematopoietic stem cell transplantation. The alterations of phagocytic activity contribute to the altered immune response that accompanies adverse events after hematopoietic stem cell transplantation.

  10. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    Science.gov (United States)

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  11. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  12. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+ T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+ T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+ T-cells in PBMC cultures required 'classical' CD14(+ monocytes, which enhanced T-cell activation. CD3(+ T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+ T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  13. Optimal chemotaxis in animal cell intermittent migration

    CERN Document Server

    Romanczuk, Pawel

    2015-01-01

    Animal cells can sense chemical gradients without moving, and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing a persistent random walk during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time, and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  14. Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan-dependent monocyte binding.

    Science.gov (United States)

    Jokela, Tiina A; Kuokkanen, Jukka; Kärnä, Riikka; Pasonen-Seppänen, Sanna; Rilla, Kirsi; Kössi, Jyrki; Laato, Matti; Tammi, Raija H; Tammi, Markku I

    2013-01-01

    Wound healing is a highly regulated process starting from coagulation and ending in tissue remodeling. The end result varies from perfectly restored tissue, such as in early fetal skin, to scars in adults. The balanced repair process is frequently disturbed by local or systemic factors, like infections and diabetes. A rapid increase of hyaluronan is an inherent feature of wounds and is associated with tissue swelling, epithelial and mesenchymal cell migration and proliferation, and induction of cytokine signaling. Hyaluronan extending from cell surface into structures called cables can trap leukocytes and platelets and change their functions. All these features of hyaluronan modulate inflammation. The present data show that mannose, a recently described inhibitor of hyaluronan synthesis, inhibits dermal fibroblast invasion and prevents the enhanced leukocyte binding to hyaluronan that takes place in cells treated with an inflammatory mediator interleukin-1β. Mannose also reduced hyaluronan in subcutaneous sponge granulation tissue, a model of skin wound, and suppressed its leukocyte recruitment and tissue growth. Mannose thus seems to suppress wounding-induced inflammation in skin by attenuating hyaluronan synthesis.

  15. Properties of monocytes generated from haematopoietic CD34(+) stem cells from bone marrow of colon cancer patients.

    Science.gov (United States)

    Stec, Malgorzata; Baran, Jarosław; Szatanek, Rafał; Mytar, Bożenna; Lenart, Marzena; Czupryna, Antoni; Szczepanik, Antoni; Siedlar, Maciej; Zembala, Marek

    2013-04-01

    Monocytes exhibit direct and indirect antitumour activities and may be potentially useful for various forms of adoptive cellular immunotherapy of cancer. However, blood is a limited source of them. This study explored whether monocytes can be obtained from bone marrow haematopoietic CD34(+) stem cells of colon cancer patients, using previously described protocol of expansion and differentiation to monocytes of cord blood-derived CD34(+) haematopoietic progenitors. Data show that in two-step cultures, the yield of cells was increased approximately 200-fold, and among these cells, up to 60 % of CD14(+) monocytes were found. They consisted of two subpopulations: CD14(++)CD16(+) and CD14(+)CD16(-), at approximately 1:1 ratio, that differed in HLA-DR expression, being higher on the former. No differences in expression of costimulatory molecules were observed, as CD80 was not detected, while CD86 expression was comparable. These CD14(+) monocytes showed the ability to present recall antigens (PPD, Candida albicans) and neoantigens expressed on tumour cells and tumour-derived microvesicles (TMV) to autologous CD3(+) T cells isolated from the peripheral blood. Monocytes also efficiently presented the immunodominant HER-2/neu369-377 peptide (KIFGSLAFL), resulting in the generation of specific cytotoxic CD8(+) T lymphocytes (CTL). The CD14(++)CD16(+) subset exhibited enhanced cytotoxicity, though nonsignificant, towards tumour cells in vitro. These observations indicate that generation of monocytes from CD34(+) stem cells of cancer patients is feasible. To our knowledge, it is the first demonstration of such approach that may open a way to obtain autologous monocytes for alternative forms of adaptive and adoptive cellular immunotherapy of cancer.

  16. Maturation of human dendritic cells by monocyte-conditioned medium is dependent upon trace amounts of lipopolysaccharide inducing tumour necrosis factor alpha

    DEFF Research Database (Denmark)

    Nersting, Jacob; Svenson, Morten; Andersen, Vagn

    2003-01-01

    We investigated the ability of monocyte-conditioned medium (MCM), generated by monocytes cultured on plastic-immobilised immunoglobulin, to stimulate maturation of human monocyte-derived dendritic cells (DC). Earlier reports suggest that MCM is a strong inducer of irreversible DC maturation......-stimulatory potency of LPS. Maturation by this procedure is mediated mainly by tumour necrosis factor alpha secreted from monocytes during the medium-conditioning period....

  17. Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway

    Directory of Open Access Journals (Sweden)

    Mohamed Mona M

    2012-02-01

    Full Text Available Abstract Background Inflammatory breast cancer (IBC is the most aggressive form of breast cancer characterized by invasion of carcinoma cells into dermal lymphatic vessels where they form tumor emboli over expressing adhesion molecule E-cadherin. Although invasion and metastasis are dynamic processes controlled by complex interaction between tumor cells and microenvironment the mechanisms by which soluble mediators may regulate motility and invasion of IBC cells are poorly understood. The present study investigated the effect of media conditioned by human monocytes U937 secreted cytokines, chemokines and growth factors on the expression of adhesion molecules E-cadherin and fibronectin of human IBC cell line SUM149. Furthermore, cytokines signaling pathway involved were also identified. Results U937 secreted cytokines, chemokines and growth factors were characterized by cytokine antibody array. The major U937 secreted cytokines/chemokines were interleukin-8 (IL-8 and monocyte chemotactic protein-1 (MCP-1/CCL2. When SUM149 cells were seeded in three dimensional (3D models with media conditioned by U937 secreted cytokines, chemokines and growth factors; results showed: 1 changes in the morphology of IBC cells from epithelial to migratory spindle shape branched like structures; 2 Over-expression of adhesion molecule fibronectin and not E-cadherin. Further analysis revealed that over-expression of fibronectin may be mediated by IL-8 via PI3K/Akt signaling pathway. Conclusion The present results suggested that cytokines secreted by human monocytes may promote chemotactic migration and spreading of IBC cell lines. Results also indicated that IL-8 the major secreted cytokine by U937 cells may play essential role in fibronectin expression by SUM149 cells via interaction with IL-8 specific receptors and stimulation of PI3K/Akt signaling pathway.

  18. A human T cell clone that mediates the monocyte procoagulant response to specific sensitizing antigen.

    OpenAIRE

    Schwartz, B S; Reitnauer, P J; Hank, J A; Sondel, P M

    1985-01-01

    A panel of human purified protein derivative of the tubercle bacillus (PPD)-reactive T cell clones was derived by cloning out of soft agar followed by cultivation on inactivated feeder cells in the presence of interleukin-2. 1 of 4 clones tested was able to mediate an increase in monocyte procoagulant activity (PCA) in response to PPD. All four clones had identical surface marker phenotypes (T4+, T8-) and proliferated in response to antigen. The reactive T cell clone possessed no PCA of its o...

  19. Methamphetamine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells

    OpenAIRE

    2008-01-01

    The US is currently experiencing an epidemic of methamphetamine (Meth) use as a recreational drug. Recent studies also show a high prevalence of HIV-1 infection among Meth users. We report that Meth enhances HIV-1 infectivity of dendritic cells as measured by multinuclear activation of a galactosidase indicator (MAGI) cell assay, p24 assay, and LTR-RU5 amplification. Meth induces increased HIV-1 infection in association with an increase in the HIV-1 coreceptors, CXCR4 and CCR5, and infection ...

  20. Taking Aim at Moving Targets in Computational Cell Migration.

    Science.gov (United States)

    Masuzzo, Paola; Van Troys, Marleen; Ampe, Christophe; Martens, Lennart

    2016-02-01

    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs.

  1. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  2. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    Science.gov (United States)

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  3. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  4. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  5. Bryostatin 5 induces apoptosis in acute monocytic leukemia cells by activating PUMA and caspases.

    Science.gov (United States)

    Wang, Yiwei; Zhang, Jinbao; Wang, Qixia; Zhang, Tao; Yang, Yang; Yi, Yanghua; Gao, Guangxun; Dong, Hongjuan; Zhu, Huafeng; Li, Yue; Lin, Houwen; Tang, Haifeng; Chen, Xiequn

    2013-10-15

    Acute leukemia is a malignant clonal hematopoietic stem cell disease. In the current study, we examined the effects of bryostatin 5 on acute monocytic leukemia cells in vitro and in vivo. We also explored the mechanisms and pathways underlying the increase in apoptosis induced by bryostatin 5. Bryostatin 5 inhibited the growth of primary acute monocytic leukemia cells and U937 cells in a dose- and time-dependent manners. Bryostatin 5 also induced an increase in apoptosis and a decrease in the mitochondrial membrane potential (MMP) in U937 cells. Transmission electron microscopy (TEM) revealed that bryostatin 5-treated cells displayed typical apoptotic characteristics (chromatin condensation, karyopyknosis and formation of crescents and apoptotic bodies). In addition, bryostatin 5 increased the expression of P53 upregulated modulator of apoptosis (PUMA) and slightly increased P53 expression. Bryostatin 5 also significantly decreased Bcl-XL expression and significantly increased the expression levels of Bak, Bax, cleaved caspase 9 and cleaved caspase 3. The pro-apoptotic activity of bryostatin 5 in U937 cells was inhibited by PUMA siRNA and z-LEHD-fmk (a specific caspase 9 inhibitor). In addition, the PUMA siRNA significantly affected the expression of cleaved caspase 9, whereas z-LEHD-fmk had little effect on the expression of PUMA. The results suggest that PUMA is located upstream of caspase 9 in this apoptotic signaling pathway. These novel findings provide mechanistic insight into the induction of apoptosis by bryostatin 5 and might facilitate the development of clinical strategies to enhance the therapeutic efficacy of treatments for acute monocytic leukemia. © 2013 Elsevier B.V. All rights reserved.

  6. Rho family proteins in cell adhesion and cell migration.

    Science.gov (United States)

    Evers, E E; Zondag, G C; Malliri, A; Price, L S; ten Klooster, J P; van der Kammen, R A; Collard, J G

    2000-06-01

    Cell migration and the regulation of cadherin-mediated homotypic cell-cell interactions are critical events during development, morphogenesis and wound healing. Aberrations in signalling pathways involved in the regulation of cell migration and cadherin-mediated cell-cell adhesion contribute to tumour invasion and metastasis. The rho family proteins, including cdc42, rac1 and rhoA, regulate signalling pathways that mediate the distinct actin cytoskeleton changes required for both cellular motility and cell-cell adhesion. Recent studies indicate that rac directly influences rho activity at the GTPase level and that the reciprocal balance between rac and rho activity can determine epithelial or mesenchymal cell morphology and migratory behaviour of epithelial (tumour) cells.

  7. Large-scale monocyte enrichment coupled with a closed culture system for the generation of human dendritic cells.

    Science.gov (United States)

    Pullarkat, Vinod; Lau, Roy; Lee, Sun-Min; Bender, James G; Weber, Jeffrey S

    2002-09-15

    Conventional methods for generating monocyte-derived dendritic cells (DC) for clinical trials utilize the property of plastic adherence to select monocytes from leukapheresis samples. This method is labor-intensive and has the potential for contamination at various steps. We evaluated a large-scale monocyte enrichment procedure using a cell selector (Isolex 300i(R)) followed by culture in a sterile bag system (Stericell(R)) for generation of DC. DC generated in tissue culture flasks after monocyte selection by plastic adherence were compared to those generated in Stericell(R) bags after monocyte enrichment by negative selection with the Isolex(R) 300i. DC were matured with lipopolysaccharide and pulsed with a peptide derived from the melanoma antigen gp100. Peptide-pulsed DC cultured by the two techniques were evaluated for phenotype, viability, ability to induce allogeneic and peptide-specific autologous proliferative responses as well as peptide-specific cytotoxic T-cell responses. The mean monocyte yield from leukapheresis collections was 17+/-2.4%, which increased to 52+/-11% after Isolex(R) selection. The DC yield of plated mononuclear cells from flasks or bags was 2.7+/-0.96% and 4.84+/-2.65%, respectively. DC cultured by both methods expressed high levels of CD86, CD80, CD40, CD83, CD44, CD11c and CD58, and was comparable in their ability to induce allogeneic and peptide-specific autologous proliferative responses as well as gp100 peptide-specific cytotoxic T-cell responses. These results indicate that potent monocyte-derived DC can be generated in a closed culture bag system after monocyte enrichment by immunomagnetic negative selection. Due to the closed nature of the enrichment and culture systems, the potential for contamination is minimized. This protocol is well suited for culturing large numbers of DC for clinical immunotherapy trials.

  8. Interaction of vascular smooth muscle cells and monocytes by soluble factors synergistically enhances IL-6 and MCP-1 production.

    Science.gov (United States)

    Chen, Li; Frister, Adrian; Wang, Song; Ludwig, Andreas; Behr, Hagen; Pippig, Susanna; Li, Beibei; Simm, Andreas; Hofmann, Britt; Pilowski, Claudia; Koch, Susanne; Buerke, Michael; Rose-John, Stefan; Werdan, Karl; Loppnow, Harald

    2009-04-01

    Inflammatory mechanisms contribute to atherogenesis. Monocyte chemoattractant protein (MCP)-1 and IL-6 are potent mediators of inflammation. Both contribute to early atherogenesis by luring monocytes and regulating cell functions in the vessel wall. MCP-1 and IL-6 production resulting from the interaction of invading monocytes with local vessel wall cells may accelerate atherosclerosis. We investigated the influence of the interaction of human vascular smooth muscle cells (SMCs) with human mononuclear cells (MNCs) or monocytes on IL-6 and MCP-1 production in a coculture model. Interaction synergistically enhanced IL-6 and MCP-1 production (up to 30- and 10-fold, respectively) compared with separately cultured cells. This enhancement was mediated by CD14-positive monocytes. It was dependent on the SMC-to-MNC/monocyte ratio, and as few as 0.2 monocytes/SMC induced the synergism. Synergistic IL-6 production was observed at the protein, mRNA, and functional level. It was mediated by soluble factors, and simultaneous inhibition of IL-1, TNF-alpha, and IL-6 completely blocked the synergism. IL-1, TNF-alpha, and IL-6 were present in the cultures. Blockade of the synergism by soluble glycoprotein 130Fc/soluble IL-6 receptor, as well as the induction of synergistic IL-6 production by costimulation of SMCs with IL-1, TNF-alpha, and hyper-IL-6, suggested the involvement of IL-6 trans-signaling. The contribution of IL-6 was consistent with enhanced STAT3 phosphorylation. The present data suggest that SMC/monocyte interactions may augment the proinflammatory status in the tissue, contributing to the acceleration of early atherogenesis.

  9. Phospholipase D from Loxosceles laeta Spider Venom Induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 Production in Human Skin Fibroblasts and Stimulates Monocytes Migration

    Directory of Open Access Journals (Sweden)

    José M. Rojas

    2017-04-01

    Full Text Available Cutaneous loxoscelism envenomation by Loxosceles spiders is characterized by the development of a dermonecrotic lesion, strong inflammatory response, the production of pro-inflammatory mediators, and leukocyte migration to the bite site. The role of phospholipase D (PLD from Loxosceles in the recruitment and migration of monocytes to the envenomation site has not yet been described. This study reports on the expression and production profiles of cytokines and chemokines in human skin fibroblasts treated with catalytically active and inactive recombinant PLDs from Loxosceles laeta (rLlPLD and lipid inflammatory mediators ceramide 1-phosphate (C1P and lysophosphatidic acid (LPA, and the evaluation of their roles in monocyte migration. Recombinant rLlPLD1 (active and rLlPLD2 (inactive isoforms induce interleukin (IL-6, IL-8, CXCL1/GRO-α, and CCL2/monocyte chemoattractant protein-1 (MCP-1 expression and secretion in fibroblasts. Meanwhile, C1P and LPA only exhibited a minor effect on the expression and secretion of these cytokines and chemokines. Moreover, neutralization of both enzymes with anti-rLlPLD1 antibodies completely inhibited the secretion of these cytokines and chemokines. Importantly, conditioned media from fibroblasts, treated with rLlPLDs, stimulated the transmigration of THP-1 monocytes. Our data demonstrate the direct role of PLDs in chemotactic mediator synthesis for monocytes in human skin fibroblasts and indicate that inflammatory processes play an important role during loxoscelism.

  10. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells.

    Science.gov (United States)

    Ricklin Gutzwiller, Meret Elisabeth; Moulin, Hervé Raphaël; Zurbriggen, Andreas; Roosje, Petra; Summerfield, Artur

    2010-01-01

    Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.

  11. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  12. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis.

    Science.gov (United States)

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-09-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells.

  13. Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin, Chi-Jr Liao, Ying-Chu Lee, Keng-Hsun Hu, Hsien-Wei Meng, Sin-Tak Chu

    2011-01-01

    Full Text Available Lipocalin-2 (Lcn-2 is an acute-phase protein that has been implicated in diverse physiological processes in mice, including: apoptosis, ion transport, inflammation, cell survival, and tumorigenesis. This study characterized the biological activity of Lcn-2 in human endometrial carcinoma cells (RL95-2. Exposure of RL95-2 cells to Lcn-2 for >24 h reduced Lcn-2-induced cell apoptosis, changed the cell proliferation and up-regulated cytokine secretions, including: interleukin-8 (IL-8, inteleukin-6 (IL-6, monocyte chemotatic protein-1 (MCP-1 and growth-related oncogene (GRO. However, IL-8 mRNA and protein levels were dramatically increased in Lcn-2-treated RL95-2 cells. To determine the IL-8 effect on Lcn-2-treated RL95-2 cells was our major focus. Adding recombinant IL-8 (rIL-8 resulted in decreased caspase-3 activity in Lcn-2-treated cells, whereas the addition of IL-8 antibodies resulted in significantly increased caspase-3 activity and decreased cell migration. Data indicate that IL-8 plays a crucial role in the induction of cell migration. Interestingly, Lcn-2-induced cytokines, secretion from RL95-2 cells, could not show the potent cell migration ability with the exception of IL-8. We conclude that Lcn-2 triggered cytokine secretions to prevent RL95-2 cells from undergoing apoptosis and subsequently increased cell migration. We hypothesize that Lcn-2 increased cytokine secretion by RL95-2 cells, which in turn activated a cellular defense system. This study suggests that Lcn-2 may play a role in the human female reproductive system or in endometrial cancer.

  14. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes

    OpenAIRE

    Obermaier Bianca; Dauer Marc; Herten Jan; Schad Katharina; Endres Stefan; Eigler Andreas

    2003-01-01

    We developed a new 2-day protocol for the generation of dendritic cells (DCs) from human monocytes in vitro. First, we demonstrated that 24 hours of culture with GM-CSF and IL-4 are sufficient to generate immature DCs capable of antigen uptake. We then compared two different strategies for DC maturation: proinflammatory mediators were either added together with GM-CSF and IL-4 from the beginning of cell culture or added after 24 hours of differentiation with GM-CSF and IL-4. After 48 hours of...

  15. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937)

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Clausen, H

    1991-01-01

    Monoclonal antibodies (mAbs) against carbohydrate epitopes of gp120 have recently been found to inhibit HIV infection of lymphocytes in vitro thereby opening new possibilities for vaccine considerations. Antibody-dependent enhancement of infection has however come increasingly into focus....... This study therefore investigated the neutralization of HIV in a monocytic cell line (U937) using mAbs against these carbohydrate gp120-epitopes. While antibodies against one of the epitopes (AI) neutralized infection of U937 cells despite binding to the Fc-receptor, one mAb against the sialosyl-Tn epitope...

  16. Prognostic significance of peripheral monocyte count in patients with extranodal natural killer/T-cell lymphoma.

    Science.gov (United States)

    Huang, Jia-Jia; Li, Ya-Jun; Xia, Yi; Wang, Yu; Wei, Wen-Xiao; Zhu, Ying-Jie; Lin, Tong-Yu; Huang, Hui-Qiang; Jiang, Wen-Qi; Li, Zhi-Ming

    2013-05-03

    Extranodal natural killer/T-cell lymphoma (ENKL) has heterogeneous clinical manifestations and prognosis. This study aims to evaluate the prognostic impact of absolute monocyte count (AMC) in ENKL, and provide some immunologically relevant information for better risk stratification in patients with ENKL. Retrospective data from 163 patients newly diagnosed with ENKL were analyzed. The absolute monocyte count (AMC) at diagnosis was analyzed as continuous and dichotomized variables. Independent prognostic factors of survival were determined by Cox regression analysis. The AMC at diagnosis were related to overall survival (OS) and progression-free survival (PFS) in patients with ENKL. Multivariate analysis identified AMC as independent prognostic factors of survival, independent of International Prognostic Index (IPI) and Korean prognostic index (KPI). The prognostic index incorporating AMC and absolute lymphocyte count (ALC), another surrogate factor of immune status, could be used to stratify all 163 patients with ENKL into different prognostic groups. For patients who received chemotherapy followed by radiotherapy (102 cases), the three AMC/ALC index categories identified patients with significantly different survivals. When superimposed on IPI or KPI categories, the AMC/ALC index was better able to identify high-risk patients in the low-risk IPI or KPI category. The baseline peripheral monocyte count is shown to be an effective prognostic indicator of survival in ENKL patients. The prognostic index related to tumor microenvironment might be helpful to identify high-risk patients with ENKL.

  17. T cell migration in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Mario eMellado

    2015-07-01

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response.In this review we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.

  18. Cell shape dynamics: from waves to migration.

    Directory of Open Access Journals (Sweden)

    Meghan K Driscoll

    Full Text Available We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at -35 µm/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography.

  19. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  20. Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes

    Institute of Scientific and Technical Information of China (English)

    TANG Ling-ling; ZHANG Zhe; ZHENG Jie-sheng; SHENG Ji-fang; LIU Ke-zhou

    2005-01-01

    Objective: This study is aimed at developing a simple and easy way to generate dendritic cells (DCs) from human peripheral blood monocytes (PBMCs) in vitro. Methods: PBMCs were isolated directly from white blood cell rather than whole blood and purified by patching methods (collecting the attached cell and removing the suspension cell). DCs were then generated by culturing PBMCs for six days with 30 ng/ml recombinant human granulocyte-macrophage stimulating factor (rhGM-CSF) and 20 ng/ml recombinant human interleukin-4 (rhIL-4) in vitro. On the sixth day, TNF-alpha (TNFα) 30 ng/ml was added into some DC cultures, which were then incubated for two additional days. The morphology was monitored by light microscopy and transmission electronic microscopy, and the phenotypes were determined by flow cytometry. Autologous mixed leukocyte reactions (MLR) were used to characterize DC function after TNFα or lipopolysaccharide (LPS) stimulations for 24 h. Results: After six days of culture, the monocytes developed significant dendritic morphology and a portion of cells expressed CD 1 a, CD80 and CD86, features of DCs. TNFα treatment induced DCs maturation and up-regulation of CD80, CD86 and CD83. Autologous MLR demonstrated that these DCs possess potent T-cell stimulatory capacity. Conclusion: This study developed a simple and easy way to generate DCs from PBMCs exposed to rhGM-CSF and rhIL-4. The DCs produced by this method acquired morphologic and antigenic characteristics of DCs.

  1. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  2. Host-derived smooth muscle cells accumulate in cardiac allografts: role of inflammation and monocyte chemoattractant protein 1.

    Directory of Open Access Journals (Sweden)

    Piotr Religa

    Full Text Available Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35+/-2.3% of cells in arterioles (range, 0.08-12.51%. As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41+/-1.03, p = 0.034 and the number of leukocytes (19.1+/-12.7 per 20 high-power fields, p = 0.01. The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1 released from leukocytes was crucial for SMC migration. After heart allotransplantation, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts.

  3. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    Science.gov (United States)

    Bojakowski, Krzysztof; Soin, Joanna; Nozynski, Jerzy; Zakliczynski, Michal; Gaciong, Zbigniew; Zembala, Marian; Söderberg-Nauclér, Cecilia

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts. PMID:19142231

  4. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  5. CHI3L1 nuclear localization in monocyte derived dendritic cells.

    Science.gov (United States)

    Di Rosa, Michelino; Tibullo, Daniele; Saccone, Salvatore; Distefano, Gisella; Basile, Maria Sofia; Di Raimondo, Francesco; Malaguarnera, Lucia

    2016-02-01

    Chitinase-3-like-1 protein (CHI3L1) is a glycosyl hydrolase (GH) highly expressed in a variety of inflammatory diseases at infectious and non-infectious etiology. CHI3L1 is produced by a wide variety of cells including monocyte-derived macrophages cell lines such as polarized M1 and M2 type macrophages, osteoclasts and Kupffer cells. In this study we have examined the expression of CHI3L1 during the differentiation and maturation of dendritic cells. Magnetically-isolated peripheral blood monocytes were differentiated toward immature DCs (iDC) and mature DCs (mDCs) through a combination of factors and cytokines. Our result showed, for the first time, that CHI3L1 is expressed during the process of differentiation and maturation of dendritic cells in time dependent manner. Furthermore, the CHI3L1 is evenly distributed in cytoplasm and in the nucleus of both the iDCs and mDCs. These results suggest that CHI3L1 may play crucial role in the DCs immunoresponse.

  6. Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9-expressing dendritic cells.

    Science.gov (United States)

    Pahne-Zeppenfeld, Jennifer; Schröer, Nadine; Walch-Rückheim, Barbara; Oldak, Monika; Gorter, Arko; Hegde, Subramanya; Smola, Sigrun

    2014-05-01

    Cervical carcinogenesis is a consequence of persistent infection with high-risk human papillomaviruses (HPVs). Recent studies indicate that HPV-transformed cells actively instruct their microenvironment to promote carcinogenesis. Here, we demonstrate that cervical cancer cells activate monocytes to produce their own CCL2 for further monocyte recruitment and reprogram their function during differentiation and maturation to dendritic cells (DCs). Our data show that cervical cancer cells suppress the induction of the chemokine receptor CCR7 in phenotypically mature DCs and impair their migration toward a lymph node homing chemokine, required to initiate adaptive immune responses. We confirmed the presence of CD83(+)CCR7(low) DCs in cancer biopsies. The second factor essential for DC migration, matrix-metalloproteinase MMP-9, which also has vasculogenic and protumorigenic properties, is not suppressed but upregulated in immature as well as mature DCs. We identified interleukin-6 (IL-6) as a crucial cervical cancer cell-derived mediator and nuclear factor kappaB (NF-jB) as the central signaling pathway targeted in DCs. Anti-IL-6 antibodies reverted not only NF-jB inhibition and restored CCR7-dependent migration but also blocked MMP-9 induction. This is the first report demonstrating the dissociation of CCR7 and MMP-9 expression in phenotypically mature CD83(+) DCs by cancer cells. Our results show that cervical cancer cells actively shape the local microenvironment. They induce the accumulation of myeloid cells and skew their function from immune activation to local production of protumorigenic MMP-9. Neutralizing anti-IL-6 antibodies can counteract this functional dysbalance and should therefore be considered for adjuvant cervical cancer therapy.

  7. Ascorbic acid modulates cell migration in differentiated HL-60 cells and peripheral blood leukocytes.

    Science.gov (United States)

    Schwager, Joseph; Bompard, Albine; Weber, Peter; Raederstorff, Daniel

    2015-08-01

    The impact of L-ascorbic acid (L-AA) on the chemokinesis (CK) and chemotaxis (CT) of HL-60 cells and polymorphonuclear cells (PMN) was investigated. HL-60 cells were differentiated with DMSO, retinoic acid (RA), vitamin D, or L-AA. Chemokinesis and chemotaxis of differentiated HL-cells were assayed. Vitamin D3-treated HL-60 cells (dHL-60vitD3 cells) and RA-treated cells (dHL-60RA cells) acquired monocyte/macrophage-like and neutrophil-like phenotypes, respectively. DMSO induced the differentiation of an intermediate phenotype (dHL-60DMSO cells), whereas L-AA downregulated neutrophil markers (dHL-60L-AA cells). dHL-60DMSO cells had increased CK and potent CT in gradients of IL-8 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). dHL-60RA cells and dHL-60L-AA cells migrated less toward IL-8 and fMLP; dHL-60vitD3 cells preferably responded to fMLP. L-AA enhanced CK of dHL-60DMSO cells and was a weak chemo-attractant. In human leukocytes, IL-8 and fMLP triggered receptor-mediated chemotaxis. CXCR2 and fMLPR were downregulated by IL-8 and fMLP, respectively. L-AA stimulated chemotaxis although significantly less than IL-8 and fMLP. IL-8 targeted chemotaxis was enhanced both in HL-60 cells and leukocytes when cells were incubated with L-AA. L-AA modulated chemokinesis and had significant chemo-attractant properties, which were independent on fMLP or IL-8 receptors. The results suggest that L-AA improves leukocyte function in innate immune responses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  9. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    Science.gov (United States)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  10. In vitro generation of dendritic cells from human blood monocytes in experimental conditions compatible for in vivo cell therapy.

    Science.gov (United States)

    Cao, H; Vergé, V; Baron, C; Martinache, C; Leon, A; Scholl, S; Gorin, N C; Salamero, J; Assari, S; Bernard, J; Lopez, M

    2000-04-01

    DC are professional APC that are promising adjuvants for clinical immunotherapy. Methods to generate in vitro large numbers of functional human DC using either peripheral blood monocytes or CD34+ pluripotent HPC have been developed recently. However, the various steps of their in vitro production for further clinical use need to fit good manufacturing practice (GMP) conditions. Our study focused on setting up such a full procedure, including collection of mononuclear cells (MNC) by apheresis, separation of monocytes by elutriation, and culture of monocytes with GM-CSF + IL-13 + autologous serum (SAuto) in sterile Teflon bags. The procedure was first developed with apheresis products from 7 healthy donors. Its clinical feasibility was then tested on 7 patients with breast cancer. The characteristics of monocyte-derived DC grown with SAuto (or in some instances with a pooled AB serum) were compared with those obtained in the presence of FBS by evaluation of their phenotype, their morphology in confocal microscopy, and their capacity to phagocytize latex particles and to stimulate allogeneic (MLR) or autologous lymphocytes (antigen-presentation tests). The results obtained demonstrate that the experimental conditions we set up are easily applicable in clinical trials and lead to large numbers of well-defined SAuto-derived DC as efficient as those derived with FBS.

  11. Microfluidic device with dual mechanical cues for cell migration investigation.

    Science.gov (United States)

    Tsai, Chin-Hsiung; Kuo, Po-Ling

    2013-01-01

    Cell migration plays an important role in numerous physiological and pathological conditions, such as angiogenesis, wound healing and cancer metastasis. Understanding the fundamental mechanisms of cell migration is crucial to develop strategies for disease treatment and regenerative medicine. Several biomechanical cues have been well studied about their effects on guiding cell migration. However, the effects of dual or multiple cues on cell migration are barely addressed. In this work, we developed a microfluidic-based device to study the combinatory effects of osmotic and stiffness gradient on cell migration. Computer simulation and experimental validation showed that the device was capable of providing stable osmotic and stiffness gradient to cultured cells at the same time. Preliminary results suggest that our device has a valuable potential in studying cell migration in complex conditions which better recapitulate the complex environmental conditions in vivo.

  12. Human breast cancer cells share antigens with the myeloid monocyte lineage.

    OpenAIRE

    F. Calvo; Martin, P M; Jabrane, N.; de Cremoux, P; Magdelenat, H.

    1987-01-01

    We have examined the expression of several myeloid cell associated antigens, some of which are involved in myelomonocyte adhesion, in seven well characterized human breast cancer cell lines, since common properties of adhesiveness and migration are found in haemopoietic cells and epithelial cancer cells. Five of these cell lines were of metastatic origin and two were derived from primary breast carcinoma. Antigenic expression was evaluated by immunofluorescence (IF), flow cytometry (FCM), rad...

  13. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  14. Phenotype and Function of Monocyte-Derived Dendritic Cells from Chinese Rhesus Macaques

    Institute of Scientific and Technical Information of China (English)

    Houjun Xia; Hongliang Liu; Gaohong Zhang; Yongtang Zheng

    2009-01-01

    Dendritic cells (DCs) play a pivotal role in linking the innate immunity and acquired immunity in responses to pathogen. Non-human primates such as Chinese Rhesus Macaque (CRM) are the favorable models for preclinical study of potential therapeutic drugs, vaccines and mechanisms of human diseases. However, the phenotypicai characterization of monocyte-derived dendritic cells (MDDCs) from CRM has not been elucidated. Monocytes from CRM were cultured with GM-CSF and IL-4 in RPMI-1640. Six days later, these cells were differentiated with typical dendritical morphology. CDllc and DC-SIGN were highly expressed. The immature MDDCs expressed the low levels of CD25, CD80, CD83, moderate CD40, CD86, and high MHC. After stimulation, the mature MDDCs increased expression of mature molecules CD25 and CD83, co-stimulatory molecules such as CD80, CD86 and CD40, and kept a high level of MHC. The capacity of endocytosis decreased with maturation. The mature MDDCs have strong ability of inducing allogeneic T cell proliferation and producing IL-12. In conclusion, we have characterized the phenotype and ultimate function of MDDCs from CRM for the first time. Cellular & Molecular Immunology. 2009;6(3):159-165.

  15. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages.

    Science.gov (United States)

    Hizir, Zoheir; Bottini, Silvia; Grandjean, Valerie; Trabucchi, Michele; Repetto, Emanuela

    2017-01-05

    The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.

  16. Treatment with dexamethasone and monophosphoryl lipid A removes disease-associated transcriptional signatures in monocyte-derived dendritic cells from rheumatoid arthritis patients and confers tolerogenic features

    Directory of Open Access Journals (Sweden)

    Paulina Andrea García-González

    2016-10-01

    Full Text Available Tolerogenic dendritic cells (TolDCs are promising tools for therapy of autoimmune diseases such as rheumatoid arthritis (RA. Here we characterise monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA, referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties and T cell-stimulatory capacity, in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of costimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating towards the lymphoid chemokines CXCL12 and CCL19. These MPLA-tDCs induced hyporesponsiveness of autologous CD4+ T cells specific for synovial antigens in vitro. Global transcriptome analysis confirmed a unique transcriptional profile of MPLA-tDCs and revealed that RA-associated genes, which were upregulated in untreated DCs from RA patients, returned to expression levels of healthy donor-derived DCs after treatment with dexamethasone and MPLA. Thus, monocyte-derived DCs from RA patients have the capacity to develop tolerogenic features at transcriptional as well as at translational level, when modulated with dexamethasone and MPLA, overcoming disease-related effects. Furthermore, the ability of MPLA-tDCs to impair T cell responses to synovial antigens validates their potential as cellular treatment for RA.

  17. Macrophage migration inhibitory factor stimulated by Helicobacter pyloriincreases proliferation of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Harry Hua-Xiang Xia; Shiu Kum Lam; Annie O.O. Chan; Marie Chia Mi Lin; Hsiang Fu Kung; Keiji Ogura; Douglas E. Berg; Benjamin Chun-Yu Wong

    2005-01-01

    AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cay pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro.METHODS: A cytotoxic wild-type H pylori strain (TN2),its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45,were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of 3H-thymidine, and the levels of incorporation of 3H-thymidine were measured with a liquid scintillation counter.RESULTS: The wild-type strain and the isogenic mutants,TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios.3H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared.CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H pylori

  18. Stimulation of the Angiotensin II AT2 Receptor is Anti-inflammatory in Human Lipopolysaccharide-Activated Monocytic Cells

    DEFF Research Database (Denmark)

    Menk, Mario; Graw, Jan Adriaan; von Haefen, Clarissa

    2015-01-01

    in these cells. Human monocytic THP-1 and U937 cells were stimulated with lipopolysaccharide (LPS) and the selective AT2 receptor agonist Compound 21 (C21). Expression of pro- and anti-inflammatory cytokines IL-6, IL-10, tumor necrosis factor-α (TNFα), and IL-1β were analyzed on both the transcriptional...... and the translational level over course of time. Treatment with C21 attenuated the expression of TNFα, IL-6, and IL-10 after LPS challenge in both cell lines in a time- and dose-dependent manner. We conclude that selective AT2 receptor stimulation acts anti-inflammatory in human monocytes. Modulation of cytokine......Recently, AT2 receptors have been discovered on the surface of human immunocompetent cells such as monocytes. Data on regulative properties of this receptor on the cellular immune response are poor. We hypothesized that direct stimulation of the AT2 receptor mediates anti-inflammatory responses...

  19. Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases

    Science.gov (United States)

    Theodorou, K.

    2017-01-01

    Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity. PMID:28260841

  20. Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases.

    Science.gov (United States)

    Dreymueller, D; Theodorou, K; Donners, M; Ludwig, A

    2017-01-01

    Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.

  1. Differentiation and function of human monocyte-derived dendritic cells under the influence of leflunomide

    Directory of Open Access Journals (Sweden)

    Stojić-Vukanić Z.

    2011-01-01

    Full Text Available Leflunomide is an immunosuppressive drug effective in experimental models of transplantation and autoimmune diseases and in the treatment of active rheumatoid arthritis (RA. Having in mind that it has been shown that some other immunosuppressive drugs (glucocorticoids, mycophenolate mofetil, sirolimus etc. impair dendritic cell (DC phenotype and function, we investigated the effect of A77 1726, an active metabolite of leflunomide, on the differentiation and function of human monocyte-derived dendritic cells (MDDC in vitro. Immature MDDC were generated by cultivating monocytes in medium supplemented with GM-CSF and IL-4. To induce maturation, immature MDDC were cultured for 2 additional days with LPS. A77 1726 (100 μM was added at the beginning of cultivation. Flow cytometric analysis showed that MDDC differentiated in the presence of A77 1726 exhibited an altered phenotype, with a down-regulated surface expression of CD80, CD86, CD54 and CD40 molecules. Furthermore, the continuous presence of A77 1726 during differentiation and maturation prevented successful maturation, judging by the decreased expression of maturation marker CD83, costimulatory and adhesive molecules on A77 1726-treated mature MDDC. In addition, A77 1726-pretreated MDDC exhibited a poor stimulatory capacity of the allogeneic T cells and a low production of IL-10 and IL-18. These data suggest that leflunomide impairs the differentiation, maturation and function of human MDDC in vitro, which is an additional mechanism of its immunosuppressive effect.

  2. EFFECTS OF SECRETABLE PLACENTAL FACTORS UPON SECRETION OF CYTOKINES BY THP-1 MONOCYTE-LIKE CELLS

    Directory of Open Access Journals (Sweden)

    Ya. S. Onokhina

    2013-01-01

    Full Text Available Abstract. Мonocytes in feto-placental circulation are exposed to factors secreted by placental tissue. These factors influence monocyte functions in pregnancy. In present study, an in vitro model (monocyte-like THP-1 cells was used for assessing effects of soluble placental factors obtained from women with physiological pregnancies, or preeclampsia cases. The following effects of placental factors were revealed: increased secretion of VEGF by THP-1 cells along with decreased secretion of IL-6, IL-8 and MCP-1 under the influence of placental factors from the I. trimester of pregnancy in comparison with III. trimester. Secretion of IL-6 and MCP-1 by THP-1 cells was increased, and secretion of soluble TNFRII was decreased upon co-cultivation with soluble placental factors from the women with preeclampsia, as compared with placental products from physiological pregnancies.The work is supported by grants ГК № 02.740.11.0711 from Ministry of Education and Science, and НШ-3594.2010.7 grant from the President of Russian Federation.

  3. Cytokine expression in CD4(+) cells exposed to the monocyte locomotion inhibitory factor produced by Entamoeba histolytica.

    Science.gov (United States)

    Rojas-Dotor, Sara; Rico, Guadalupe; Pérez, Julia; Velázquez, Juan; Silva, Raúl; Morales, Esther; Kretschmer, Roberto

    2006-04-01

    Entamoeba histolytica produces monocyte locomotion inhibitory factor (MLIF), a pentapeptide with in vitro and in vivo anti-inflammatory properties. MLIF may interfere with leukocyte migration, disturbing the balance of pro- and anti-inflammatory cytokines secreted by CD4(+) T lymphocytes. We evaluated the effect of MLIF on expression of pro- and anti-inflammatory cytokines in human CD4(+) T lymphocytes. Regulatory cytokines [interleukin-1 beta (IL-1beta), IL-2, interferon gamma (IFN-gamma), IL-5, IL-6, and IL-10] were studied by enzyme-linked immunosorbent assay method in CD4(+)-cell supernatant fluids. Proinflammatory cytokines were produced per se by MLIF (IL-1beta, IL-2, and IFN-gamma) and also anti-inflammatory cytokines (IL-5, IL-6, and IL-10) with 1-phorbol-12 myristate-13 acetate + MLIF; the IL-1beta, IFN-gamma, IL-5 and IL-6 production was inhibited but not that of IL-10 which disclosed increase in its expression. MLIF disturbs the pro- and anti-inflammatory balance, and it induces inhibition of IL-1beta (principal proinflammatory cytokine) and increases IL-10 (prototype of an anti-inflammatory cytokine).

  4. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen presenting cell compartment

    Directory of Open Access Journals (Sweden)

    Laura eJardine

    2013-12-01

    Full Text Available Dendritic cells (DCs and monocytes are critical regulators and effectors of innate and adaptive immune responses. Monocyte expansion has been described in many pathological states while monocyte and DC deficiency syndromes are relatively recent additions to the catalogue of human primary immunodeficiency disorders. Clinically applicable screening tests to diagnose and monitor these conditions are lacking. Conventional strategies for identifying human DCs and monocytes have been based on the use of a lineage gate to exclude lymphocytes, thus preventing simultaneous detection of DCs, monocytes and lymphocyte subsets. Here we demonstrate that CD4 is a reliable lineage marker for the human peripheral blood antigen presenting cell compartment that can be used to identify DCs and monocytes in parallel with lymphocytes. Based on this principle, simple modification of a standard lymphocyte phenotyping assay permits simultaneous enumeration of four lymphocyte and five DC/monocyte populations from a single sample. This approach is applicable to clinical samples and facilitates the diagnosis of DC and monocyte disorders in a wide range of clinical settings, including genetic deficiency, neoplasia and inflammation.

  5. Infection of U937 monocytic cells with Chlamydia pneumoniae induces extensive changes in host cell gene expression.

    Science.gov (United States)

    Virok, Dezso; Loboda, Andrey; Kari, Laszlo; Nebozhyn, Michael; Chang, Celia; Nichols, Calen; Endresz, Valeria; Gonczol, Eva; Berencsi, Klara; Showe, Michael K; Showe, Louise C

    2003-11-01

    The effect of infection with Chlamydia pneumoniae on host messenger RNA expression in human monocytic cells with complement DNA microarrays was studied. The data chronicle a cascade of transcriptional events affecting 128 genes, many of which have not previously been reported to be affected by C. pneumoniae infection. Down-regulated genes are primarily associated with RNA and DNA metabolism, chromosomal stability, and cell-cycle regulation. Up-regulated messages include those for a variety of genes with important proinflammatory functions. Many of the up-regulated genes-including the hyaluron receptor CD44, vasoconstrictor endothelin-1, smooth muscle growth factor heparin-binding EGF-like growth factor, and fatty acid binding protein-4-had been previously described as linked to the development of atherosclerosis and other chronic inflammatory diseases. C. pneumoniae-infected monocytes can contribute to the development and progression of diseases for which acute or chronic inflammation has been shown to be important, such as atherosclerosis.

  6. Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration.

    Science.gov (United States)

    Lampron, Antoine; Pimentel-Coelho, Pedro M; Rivest, Serge

    2013-12-01

    Microglia are the brain-resident macrophages tasked with the defense and maintenance of the central nervous system (CNS). The hematopoietic origin of microglia has warranted a therapeutic potential for the hematopoietic system in treating diseases of the CNS. However, migration of bone marrow-derived cells (BMDC) into the CNS is a marginal event under normal, healthy conditions. A busulfan-based chemotherapy regimen was used for bone marrow transplantation in wild-type mice before subjecting them to a hypoxic-ischemic brain injury or in APP/PS1 mice prior to the formation of amyloid plaques. The cells were tracked and analyzed throughout the development of the pathology. The efficacy of a preventive macrophage colony-stimulating factor (M-CSF) treatment was also studied to highlight the effects of circulating monocytes in hypoxic-ischemic brain injury. Such an injury induces a strong migration of BMDC into the CNS, without the need for irradiation. These migrating cells do not replace the entire microglial pool but rather are confined to the sites of injury for several weeks, suggesting that they could perform specific functions. M-CSF showed neuroprotective effects as a preventive treatment. In APP/PS1 mice, the formation of amyloid plaques was sufficient to induce the entry of cells into the parenchyma, though in low numbers. This study confirms that BMDC infiltrate the CNS in animal models for stroke and Alzheimer's disease and that peripheral cells can be targeted to treat affected regions of the CNS.

  7. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    Science.gov (United States)

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types.

  8. Cell surface expression and function of the macromolecular C1 complex on the surface of human monocytes

    Directory of Open Access Journals (Sweden)

    Kinga K Hosszu

    2012-03-01

    Full Text Available The synthesis of the subunits of the C1 complex (C1q, C1s, C1r, and its regulator C1 inhibitor (C1-Inh by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture ELISA, we show here for the first time that, in addition to C1q, PB monocytes and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, DC and T cell activities, and its implications in host defense and tolerance.

  9. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.

    Science.gov (United States)

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-Ok; Choi, Hosoon; Prockop, Darwin J; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α-stimulated gene/protein (TSG)-6-dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell-suppressive activities independently of FoxP3(+) regulatory T cells. Adoptive transfer of MSC-induced B220(+)CD11b(+) monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II(+)B220(+)CD11b(+) cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages.

  10. Characterization of the role of RILP in cell migration

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2017-05-01

    Full Text Available Rab-interacting lysosomal protein (RILP is a regulator of late stages of endocytosis. Recent work proved that depletion of RILP promotes migration of breast cancer cells in wound healing assay, whereas its overexpression influences re-arrangements of actin cytoskeleton. Here, we further characterized the role of RILP in cell migration by analyzing several aspects of this process. We showed that RILP is fundamental also for migration of lung cancer cells regulating cell velocity. RILP silencing did not affect Golgi apparatus nor microtubules reorientation during migration. However, both RILP over-expression and expression of its mutated form, RILP-C33, impair cell adhesion and spreading. In conclusion, our results demonstrate that RILP has important regulatory roles in cell motility affecting migration velocity but also in cell adhesion and cell spreading.

  11. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  12. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes.

    Science.gov (United States)

    Hof-Nahor, Irit; Leshansky, Lucy; Shivtiel, Shoham; Eldor, Liron; Aberdam, Daniel; Itskovitz-Eldor, Joseph; Berrih-Aknin, Sonia

    2012-10-01

    The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.

  13. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1.

    Science.gov (United States)

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon; Jeon, Byeong Hwa

    2013-02-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis.

  14. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  15. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes.

    Science.gov (United States)

    Obermaier, Bianca; Dauer, Marc; Herten, Jan; Schad, Katharina; Endres, Stefan; Eigler, Andreas

    2003-01-01

    We developed a new 2-day protocol for the generation of dendritic cells (DCs) from human monocytes in vitro. First, we demonstrated that 24 hours of culture with GM-CSF and IL-4 are sufficient to generate immature DCs capable of antigen uptake. We then compared two different strategies for DC maturation: proinflammatory mediators were either added together with GM-CSF and IL-4 from the beginning of cell culture or added after 24 hours of differentiation with GM-CSF and IL-4. After 48 hours of total culture period, expression of activation markers was more pronounced in cells generated by the 2-step differentiation and activation method. Our new protocol for 2-day DC differentiation reduces labor, cost and time and also reliably renders high numbers of mature and viable DCs.

  16. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes

    Directory of Open Access Journals (Sweden)

    Obermaier Bianca

    2003-01-01

    Full Text Available We developed a new 2-day protocol for the generation of dendritic cells (DCs from human monocytes in vitro. First, we demonstrated that 24 hours of culture with GM-CSF and IL-4 are sufficient to generate immature DCs capable of antigen uptake. We then compared two different strategies for DC maturation: proinflammatory mediators were either added together with GM-CSF and IL-4 from the beginning of cell culture or added after 24 hours of differentiation with GM-CSF and IL-4. After 48 hours of total culture period, expression of activation markers was more pronounced in cells generated by the 2-step differentiation and activation method. Our new protocol for 2-day DC differentiation reduces labor, cost and time and also reliably renders high numbers of mature and viable DCs.

  17. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells.

    Science.gov (United States)

    Mills, Shirley C; Goh, Poh Hui; Kudatsih, Jossie; Ncube, Sithembile; Gurung, Renu; Maxwell, Will; Mueller, Anja

    2016-04-01

    Chemotaxis or directed cell migration is mediated by signalling events initiated by binding of chemokines to their cognate receptors and the activation of a complex signalling cascade. The molecular signalling pathways involved in cell migration are important to understand cancer cell metastasis. Therefore, we investigated the molecular mechanisms of CXCL12 induced cell migration and the importance of different signalling cascades that become activated by CXCR4 in leukemic cells versus breast cancer cells. We identified Src kinase as being essential for cell migration in both cancer types, with strong involvement of the Raf/MEK/ERK1/2 pathway. We did not detect any involvement of Ras or JAK2/STAT3 in CXCL12 induced migration in Jurkat cells. Preventing PKC activation with inhibitors does not affect migration in Jurkat cells at all, unlike in the adherent breast cancer cell line MCF-7 cells. However, in both cell lines, knock down of PKCα prevents migration towards CXCL12, whereas the expression of PKCζ is less crucial for migration. PI3K activation is essential in both cell types, however LY294002 usage in MCF-7 cells does not block migration significantly. These results highlight the importance of verifying specific signalling pathways in different cell settings and with different approaches.

  18. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-01-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B2KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4+ T cells in a B2KR-dependent manner. Collectively, our results suggest that captopril might interfere with host–parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. PMID:20964644

  19. Whole-blood culture is a valid low-cost method to measure monocytic cytokines - A comparison of cytokine production in cultures of human whole-blood, mononuclear cells and monocytes

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Lauritzen, Lotte; Calder, Philip C.

    2009-01-01

    assessed the intra- and inter-individual variation in cytokine production. In 64 healthy men (age 19-40 years) IL-6, TNF and IL-10 were measured by enzyme-linked immunosorbent assay in supernatants from whole-blood, PBMC and monocytes cultured 24 h with lipopolysaccharide (LPS) or UV-killed L acidophilus......Whole-blood and peripheral blood mononuclear cell (PBMC) cultures are used as non-validated surrogate measures of monocytic cytokine production. The aim of this investigation was to compare ex vivo cytokine production from human whole-blood and PBMC with that from isolated monocytes. We also...

  20. Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis

    Directory of Open Access Journals (Sweden)

    Czibere Akos

    2007-09-01

    Full Text Available Abstract Background Dendritic cell (DC vaccines can induce antitumor immune responses in patients with malignant diseases, while the most suitable DC culture conditions have not been established yet. In this study we compared monocyte derived human DC from conventional cultures containing GM-CSF and IL-4/TNF-α (IL-4/TNF-DC with DC generated by the novel protocol using GM-CSF and IFN-α (IFN-DC. Methods To characterise the molecular differences of both DC preparations, gene expression profiling was performed using Affymetrix microarrays. The data were conformed on a protein level by immunophenotyping, and functional tests for T cell stimulation, migration and cytolytic activity were performed. Results Both methods resulted in CD11c+ CD86+ HLA-DR+ cells with a typical DC morphology that could efficiently stimulate T cells. But gene expression profiling revealed two distinct DC populations. Whereas IL-4/TNF-DC showed a higher expression of genes envolved in phagocytosis IFN-DC had higher RNA levels for markers of DC maturity and migration to the lymph nodes like DCLAMP, CCR7 and CD49d. This different orientation of both DC populations was confined by a 2.3 fold greater migration in transwell experiments (p = 0.01. Most interestingly, IFN-DC also showed higher RNA levels for markers of NK cells such as TRAIL, granzymes, KLRs and other NK cell receptors. On a protein level, intracytoplasmatic TRAIL and granzyme B were observed in 90% of IFN-DC. This translated into a cytolytic activity against K562 cells with a median specific lysis of 26% at high effector cell numbers as determined by propidium iodide uptake, whereas IL-4/TNF-DC did not induce any tumor cell lysis (p = 0.006. Thus, IFN-DC combined characteristics of mature DC and natural killer cells. Conclusion Our results suggest that IFN-DC not only stimulate adaptive but also mediate innate antitumor immune responses. Therefore, IFN-DC should be evaluated in clinical vaccination trials. In

  1. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  2. HIF-1α Promotes A Hypoxia-Independent Cell Migration.

    Science.gov (United States)

    Li, Liyuan; Madu, Chikezie O; Lu, Andrew; Lu, Yi

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.

  3. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  4. Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line.

    Science.gov (United States)

    Mold, Matthew; Eriksson, Håkan; Siesjö, Peter; Darabi, Anna; Shardlow, Emma; Exley, Christopher

    2014-09-05

    Aluminium-based adjuvants (ABA) are the predominant adjuvants used in human vaccinations. While a consensus is yet to be reached on the aetiology of the biological activities of ABA several studies have identified shape, crystallinity and size as critical factors affecting their adjuvanticity. In spite of recent advances, the fate of ABA following their administration remains unclear. Few if any studies have demonstrated the unequivocal presence of intracellular ABA. Herein we demonstrate for the first time the unequivocal identification of ABA within a monocytic T helper 1 (THP-1) cell line, using lumogallion as a fluorescent molecular probe for aluminium. Use of these new methods revealed that particulate ABA was only found in the cell cytoplasm. Transmission electron microscopy revealed that ABA were contained within vesicle-like structures of approximately 0.5-1 μm in diameter.

  5. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    Science.gov (United States)

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  6. Inhibition of Monocyte Adhesion to Brain-Derived Endothelial Cells by Dual Functional RNA Chimeras

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2014-01-01

    Full Text Available Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR on the murine brain-derived endothelial cells (bEND5 to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1. Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α–stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.

  7. Glycation of extracellular matrix proteins impairs migration of immune cells.

    Science.gov (United States)

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells.

  8. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  9. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts

    Science.gov (United States)

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal–placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN+CD14+CD1a− phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4+CD25+Foxp3+ Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal–fetal interface. PMID:26857012

  10. Early activation of MyD88-mediated autophagy sustains HSV-1 replication in human monocytic THP-1 cells

    Science.gov (United States)

    Siracusano, Gabriel; Venuti, Assunta; Lombardo, Daniele; Mastino, Antonio; Esclatine, Audrey; Sciortino, Maria Teresa

    2016-01-01

    Autophagy is a cellular degradation pathway that exerts numerous functions in vital biological processes. Among these, it contributes to both innate and adaptive immunity. On the other hand, pathogens have evolved strategies to manipulate autophagy for their own advantage. By monitoring autophagic markers, we showed that HSV-1 transiently induced autophagosome formation during early times of the infection of monocytic THP-1 cells and human monocytes. Autophagy is induced in THP-1 cells by a mechanism independent of viral gene expression or viral DNA accumulation. We found that the MyD88 signaling pathway is required for HSV-1-mediated autophagy, and it is linked to the toll-like receptor 2 (TLR2). Interestingly, autophagy inhibition by pharmacological modulators or siRNA knockdown impaired viral replication in both THP-1 cells and human monocytes, suggest that the virus exploits the autophagic machinery to its own benefit in these cells. Taken together, these findings indicate that the early autophagic response induced by HSV-1 exerts a proviral role, improving viral production in a semi-permissive model such as THP-1 cells and human monocytes. PMID:27509841

  11. Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.

    Science.gov (United States)

    Liu, Jun; Simmons, Steve O; Pei, Ruoting

    2014-01-01

    Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.

  12. Monocytic differentiation of K562 cells induced by proanthocyanidins from grape seeds.

    Science.gov (United States)

    Wang, Min; Wang, Li; Pan, Xiao-Jing; Zhang, Hong

    2012-01-01

    Grape seeds procyanidins can inhibit the proliferation of some cancer cell lines and have strong antioxidant activity. The purpose of this study was to investigate whether grape seeds procyanidins affect the proliferation and redifferentiation in K562 cells. The sulforhodamine B colorimetric assay and trypan blue staining were used to measure cell proliferation and survival. Morphological changes, NBT reductive activity, and surface antigens were used to detect redifferentiation of K562 cells. Intracellular reactive oxygen species (iROS) were detected by a fluorescent probe. Grape seeds procyanidins inhibited cell proliferation but the treatment did not appreciably increase lethality. After treatment with grape seeds procyanidins, a typical differentiated morphology was observed. The positive rate of CD11b and CD14 cells and NBT reductive activities increased significantly. As antioxidants, grape seeds procyanidins can induce arrest in the phase G1 and decrease iROS formation. All results indicate that the antioxidant grape seeds procyanidins are likely to induce monocytic differentiation in leukemia cells, mostly through decreasing iROS formation and inducing phase G1 arrest.

  13. Collective dynamics of cell migration and cell rearrangements

    Science.gov (United States)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics. Geometrical confinement is one of the key external factors influencing large scale coordination during collective migration. Using a combination of in vitro experiments and numerical simulations, we show that the velocity correlation length, measured in unconfined conditions, provides a convenient length scale to predict the dynamic response under confinement. The same length scale can also be used to quantify the influence range of directional cues within the cell population. Heterogeneity within motile cell populations is frequently associated with an increase in their invasive capability and appears to play an important role during cancer metastasis. Using in silico experiments, we studied the way cell invasion is influenced by both the degree of cell coordination and the amount of variability in the motile force of the invading cells. Results suggest that mechanical heterogeneity dramatically enhances the invasion rate through an emerging cooperative process between the stronger and weaker cells, accounting for a number of observed invasion phenotypes. Effective convergent extension requires on a consistent orientation of cell intercalation at the tissue scale, most often in relation with planar cell polarity mechanisms to define the primary axes of deformation. Using a novel modelling approach for cells mechanical interactions, we studied the dynamics of substrate free motile cell populations. Ongoing work shows in particular that nematic order emerges

  14. Functional transcriptomics of a migrating cell in Caenorhabditis elegans.

    Science.gov (United States)

    Schwarz, Erich M; Kato, Mihoko; Sternberg, Paul W

    2012-10-02

    In both metazoan development and metastatic cancer, migrating cells must carry out a detailed, complex program of sensing cues, binding substrates, and moving their cytoskeletons. The linker cell in Caenorhabditis elegans males undergoes a stereotyped migration that guides gonad organogenesis, occurs with precise timing, and requires the nuclear hormone receptor NHR-67. To better understand how this occurs, we performed RNA-seq of individually staged and dissected linker cells, comparing transcriptomes from linker cells of third-stage (L3) larvae, fourth-stage (L4) larvae, and nhr-67-RNAi-treated L4 larvae. We observed expression of 8,000-10,000 genes in the linker cell, 22-25% of which were up- or down-regulated 20-fold during development by NHR-67. Of genes that we tested by RNAi, 22% (45 of 204) were required for normal shape and migration, suggesting that many NHR-67-dependent, linker cell-enriched genes play roles in this migration. One unexpected class of genes up-regulated by NHR-67 was tandem pore potassium channels, which are required for normal linker-cell migration. We also found phenotypes for genes with human orthologs but no previously described migratory function. Our results provide an extensive catalog of genes that act in a migrating cell, identify unique molecular functions involved in nematode cell migration, and suggest similar functions in humans.

  15. Asymmetric division coordinates collective cell migration in angiogenesis.

    Science.gov (United States)

    Costa, Guilherme; Harrington, Kyle I; Lovegrove, Holly E; Page, Donna J; Chakravartula, Shilpa; Bentley, Katie; Herbert, Shane P

    2016-12-01

    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.

  16. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  17. Effect of cyclosporin A on inflammatory cytokine production by U937 monocyte-like cells

    Directory of Open Access Journals (Sweden)

    Juan E. Losa Garcia

    2000-01-01

    Full Text Available Cyclosporin A (CsA is an immunosuppresor drug that has been used in the treatment of several types of inflammatory diseases. In some of them the inhibition of T-lymphocyte activation does not suitably account for the observed beneficial effect, suggesting that CsA could act on other types of cells. The present study was undertaken to determine the effect of CsA on inflammatory cytokine secretion by U937 monocyte cells. Undifferentiated and dimethylsulfoxide (DMSO differentiated U937 cells were incubated with different concentrations of CsA (200, 20 and 2 ng/mL in the presence or absence of phorbol-myristateacetate (PMA. Interleukin-1g (IL-1β, tumor necrosis factor-α (TNF-α, IL-6 and IL-8 levels were measured in supernatants using specific enzyme-linked immunosorbent assays. At the highest concentration used (200 ng/mL CsA decreased the basal and stimulated secretion of all the inflammatory cytokines studied in both undifferentiated and differentiated cells, with the only exception of PMA-stim ulated IL-1 secretion by undifferentiated cells. However, only basal secretion of interleukin-8 in both undifferentiated and DMSO-differentiated U937 cells was significantly reduced by CsA at the highest concentration (200 ng/ mL. At therapeutic concentrations in vivo, CsA exerts a predominant effect on IL-8 secretion by human mononuclear phagocytes.

  18. Environmentally relevant dose of arsenic interferes in functions of human monocytes derived dendritic cells.

    Science.gov (United States)

    Bahari, Abbas; Salmani, Vahid

    2017-06-05

    Arsenic is a major environmental pollutant and highly hazardous toxin to human health, which well established as carcinogen and immune deregulatory properties. Dendritic cells (DCs) have a pivotal role in cell-mediated immunity for T-cell activation and antigen presentation. In this study, T cell activation, some key functional genes expression, cell stability and phagocytosis capacity of human monocytes derived DCs (MDDCs) were analyzed after in vitro exposure to very low dose of arsenic for 12 and 24h. Arsenic decreased continually phagocytosis capacity of MDDCs. Furthermore, down-regulation of the cell-surface expression of the co-stimulatory molecule CD40 after 24h post treatment with arsenic, confirmed arsenic interferers in the phagocytosis process. Pro inflammatory cytokines, IL1β and TNFα were more expressed in arsenic-treated MDDCs while IL6 transiently was down regulated. In general, our novel findings here strongly suggest that low level of arsenic dysregulates four fundamental immune processes of DCs. Mechanistically; this could explain the observed immunodeficiency activity of Arsenic, and give direction for comprehension the pathogenesis of Arsenic-induced diseases. Copyright © 2017. Published by Elsevier B.V.

  19. Isolation of IL-12p70-competent human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Pedersen, Susanne Brix

    2012-01-01

    that moDCs generated under standard conditions develop into two subsets based on CD1a-expression with the CD1a+ moDCs being the main IL-12p70 producers. This has however not been generally accepted, which we show here because the subset described as CD1a-negative does express CD1a, but at a lower level......Diverse methodologies ranging from experimental immunological studies to immunotherapy involve the application of human monocyte-derived dendritic cells (moDCs). Considerable donor-dependent variations in the moDC production of IL-12p70 affect the outcome of these methodologies. It has been shown...

  20. In vitro interaction of Stenotrophomonas maltophilia with human monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Emanuela eRoscetto

    2015-07-01

    Full Text Available Stenotrophomonas maltophilia is increasingly identified as an opportunistic pathogen in immunocompromised, cancer and cystic fibrosis (CF patients. Knowledge on innate immune responses to S. maltophilia and its potential modulation is poor. The present work investigated the ability of 12 clinical S. maltophilia strains (5 from CF patients, 7 from non-CF patients and one environmental strain to survive inside human monocyte-derived dendritic cells (DCs. The effects of the bacteria on maturation of and cytokine secretion by DCs were also measured. S. maltophilia strains presented a high degree of heterogeneity in internalization and intracellular replication efficiencies as well as in the ability of S. maltophilia to interfere with normal DCs maturation. By contrast, all S. maltophilia strains were able to activate DCs, as measured by increase in the expression of surface maturation markers and proinflammatory cytokines secretion.

  1. An improved protocol for generation of immuno-potent dendritic cells through direct electroporation of CD14+monocytes

    NARCIS (Netherlands)

    Milano, Francesca; van Baal, Jantine W. P. M.; Rygiel, Agnieszka M.; Bergman, Jacques J. G. H. M.; Van Deventer, Sander J. H.; Kapsenberg, Martien L.; Peppelenbosch, Maikel P.; Krishnadath, Kausilia K.

    2007-01-01

    In this study we demonstrate a novel protocol showing that electroporation of CD14+ monocytes directly isolated from blood with green fluorescent protein (GFP) RNA results in a 3-fold higher yield of antigen presenting dendritic cells (DCs) when compared to conventional methods employing immature DC

  2. Increased frequency of CD16+monocytes and the presence of activated dendritic cells in salivary glands in primary Sjogren syndrome

    NARCIS (Netherlands)

    Wildenberg, M. E.; Welzen-Coppens, J. M. C.; van Helden-Meeuwsen, C. G.; Bootsma, H.; Vissink, A.; van Rooijen, N.; de Merwe, J. P. van; Drexhage, H. A.; Versnel, M. A.

    2009-01-01

    Objectives: In the salivary glands of patients with primary Sjogren Syndrome (pSjS) an accumulation of dendritic cells (DCs) is seen, which is thought to play a role in stimulating local inflammation. Aberrancies in subsets of monocytes, generally considered the blood precursors for DCs, may play a

  3. Cancer cell motility: lessons from migration in confined spaces

    Science.gov (United States)

    Paul, Colin D.; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-01-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis. PMID:27909339

  4. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  5. Clinical grade isolation of regulatory T cells from G-CSF mobilized peripheral blood improves with initial depletion of monocytes

    Science.gov (United States)

    Patel, Pritesh; Mahmud, Dolores; Park, Youngmin; Yoshinaga, Kazumi; Mahmud, Nadim; Rondelli, Damiano

    2015-01-01

    Clinical isolation of circulating CD4+CD25+ regulatory T cells (Tregs) from peripheral blood mononuclear cells is usually performed by CD4+ cell negative selection followed by CD25+ cell positive selection. Although G-CSF mobilized peripheral blood (G-PBSC) contains a high number of Tregs, a high number of monocytes in G-PBSC limits Treg isolation. Using a small scale device (MidiMACS, Miltenyi) we initially demonstrated that an initial depletion of monocytes would be necessary to obtaina separation of CD4+CD25+FoxP3+CD127- cells from G-PBSC (G-Tregs) with a consistent purity >70% and inhibitory activity of T cell alloreactivity in-vitro. We then validated the same approach in a clinical scale setting by separating G-Tregs with clinically available antibodies to perform a CD8+CD19+CD14+ cell depletion followed by CD25+ cell selection (2-step process) or by adding an initial CD14+ cell depletion (3-step process) using a CliniMACS column. The 3-step approach resulted in a better purity (81±12% vs. 35±33%) and yield (66% vs. 39%). Clinically isolated G-Tregs were also FoxP3+CD127dim and functionally suppressive in-vitro. Our findings suggest that a better and more consistent purity of Tregs can be achieved from G-PBSC by an initial single depletion of monocytes prior to selection of CD4+CD25+ cells. PMID:27069755

  6. Clinical grade isolation of regulatory T cells from G-CSF mobilized peripheral blood improves with initial depletion of monocytes.

    Science.gov (United States)

    Patel, Pritesh; Mahmud, Dolores; Park, Youngmin; Yoshinaga, Kazumi; Mahmud, Nadim; Rondelli, Damiano

    2015-01-01

    Clinical isolation of circulating CD4(+)CD25(+) regulatory T cells (Tregs) from peripheral blood mononuclear cells is usually performed by CD4(+) cell negative selection followed by CD25(+) cell positive selection. Although G-CSF mobilized peripheral blood (G-PBSC) contains a high number of Tregs, a high number of monocytes in G-PBSC limits Treg isolation. Using a small scale device (MidiMACS, Miltenyi) we initially demonstrated that an initial depletion of monocytes would be necessary to obtaina separation of CD4(+)CD25(+)FoxP3(+)CD127(-) cells from G-PBSC (G-Tregs) with a consistent purity >70% and inhibitory activity of T cell alloreactivity in-vitro. We then validated the same approach in a clinical scale setting by separating G-Tregs with clinically available antibodies to perform a CD8(+)CD19(+)CD14(+) cell depletion followed by CD25(+) cell selection (2-step process) or by adding an initial CD14(+) cell depletion (3-step process) using a CliniMACS column. The 3-step approach resulted in a better purity (81±12% vs. 35±33%) and yield (66% vs. 39%). Clinically isolated G-Tregs were also FoxP3(+)CD127(dim) and functionally suppressive in-vitro. Our findings suggest that a better and more consistent purity of Tregs can be achieved from G-PBSC by an initial single depletion of monocytes prior to selection of CD4(+)CD25(+) cells.

  7. Bole of macrophage colony-stimulating factor in the differentiation and expansion of monocytes and dendritic cells from CD34(+) progenitor cells

    NARCIS (Netherlands)

    Kamps, AWA; Smit, JW; Vellenga, E

    1999-01-01

    The present study focused on whether it is possible to expand monocytic cells from CD34(+) progenitor cells by using macrophage colony-stimulating factor (M-CSF) in the absence and presence of mast cell growth factor (MGF) and IL-6. It was demonstrated that CD34(+) cells differentiate without expans

  8. Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation.

    Science.gov (United States)

    Patro, Sean C; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G; Sierra-Madero, Juan G; Rassool, Mohammed S; Sanne, Ian; Montaner, Luis J

    2016-07-01

    Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14(++)CD16(+) intermediate monocytes (P CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease.

  9. Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats.

    Science.gov (United States)

    Hattori, Hidenori; Suzuki, Shigeaki; Okazaki, Yuka; Suzuki, Norihiro; Kuwana, Masataka

    2012-02-01

    Cell transplantation has emerged as a potential therapy to reduce the neurological deficits caused by ischemic stroke. We previously reported a primitive cell population, monocyte-derived multipotential cells (MOMCs), which can differentiate into mesenchymal, neuronal, and endothelial lineages. In this study, MOMCs and macrophages were prepared from rat peripheral blood and transplanted intracranially into the ischemic core of syngeneic rats that had undergone a left middle cerebral artery occlusion procedure. Neurological deficits, as evaluated by the corner test, were less severe in the MOMC-transplanted rats than in macrophage-transplanted or mock-treated rats. Histological evaluations revealed that the number of microvessels that had formed in the ischemic boundary area by 4 weeks after transplantation was significantly greater in the MOMC-transplanted rats than in the control groups. The blood vessel formation was preceded by the appearance of round CD31(+) cells, which we confirmed were derived from the transplanted MOMCs. Small numbers of bloodvessels incorporating MOMC-derived endothelial cells expressing a mature endothelial marker RECA-1 were detected at 4 weeks after transplantation. In addition, MOMCs expressed a series of angiogenic factors, including vascular endothelial growth factor, angiopoetin-1, and placenta growth factor (PlGF). These findings provide evidence that the intracranial delivery of MOMCs enhances functional recovery by promoting neovascularization in a rat model for ischemic stroke.

  10. The Immuno-Regulatory Effects of Schisandra chinensis and Its Constituents on Human Monocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Mei-Hsien Lee

    2011-06-01

    Full Text Available Many diseases occur when the immune system is weakened. Intracellular signals activate immuno-responsive cells to produce cytokines that modulate the immune response. Schisandra chinensis has been used traditionally to treat general fatigue, neurasthenia, and spontaneous sweating. In the present study, the effect of constituents of S. chinensis on cytokine release by human monocytic leukemia cells (THP-1 was tested using microparticle-based flow cytometric analysis. Two major lignans, schizandrin (Sch and gomisin A (Gom A, were identified and shown to induce interleukin (IL-8, macrophage inflammatory protein-1β (MIP-1β, and granulocyte-macrophage-colony stimulating factor (GM-CSF release by THP-1 cells. By reverse transcription polymerase chain reaction (RT-PCR or quantitative real-time PCR, there was a dose-dependent increase of IL-8, MIP-1β and GM-CSF mRNA levels. Thus, Sch and Gom A from S. chinensis enhance cytokine release by THP-1 cells and this effect occurs through mRNA upregulation. Upregulation of MIP-1β and GM-CSF in particular may have clinical applications. Therefore, S. chinensis may be therapeutically beneficial by promoting humoral and cell-mediated immune responses.

  11. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

    Science.gov (United States)

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-01-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  12. Regulator of calcineurin 1 modulates cancer cell migration in vitro

    OpenAIRE

    Espinosa, Allan V.; Shinohara, Motoo; Porchia,Leonardo M; Chung, Yun Jae; McCarty, Samantha; Saji, Motoyasu; Ringel, Matthew D.

    2009-01-01

    Metastasis suppressors and other regulators of cell motility play an important role in tumor invasion and metastases. We previously identified that activation of the G protein coupled receptor 54 (GPR54) by the metastasis suppressor metastin inhibits cell migration in association with overexpression of Regulator of calcineurin 1 (RCAN1), an endogenous regulator of calcineurin. Calcineurin inhibitors also blocked cell migration in vitro and RCAN1 protein levels were reduced in nodal metastases...

  13. Nuclear stiffening inhibits migration of invasive melanoma cells

    OpenAIRE

    Ribeiro, Alexandre J. S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals....

  14. Migration of dendritic cell based cancer vaccines: in vivo veritas?

    NARCIS (Netherlands)

    Adema, G.J.; Vries, I.J.M. de; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Ex vivo generated cancer vaccines based on dendritic cells (DCs) are currently applied in the clinic. The migration of DCs from the tissues to the lymph nodes is tightly controlled and involves many different mediators and their receptors. A recent study demonstrated that the rate of migration of

  15. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht;

    2013-01-01

    Early studies of migrating fibroblasts showed that primary cilia orient in front of the nucleus and point toward the leading edge. Recent work has shown that primary cilia coordinate a series of signaling pathways critical to fibroblast cell migration during development and in wound healing. In p...

  16. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells.

    Science.gov (United States)

    González, Fermín E; Ortiz, Carolina; Reyes, Montserrat; Dutzan, Nicolás; Patel, Vyomesh; Pereda, Cristián; Gleisner, Maria A; López, Mercedes N; Gutkind, J Silvio; Salazar-Onfray, Flavio

    2014-07-01

    We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.

  17. Staphylococcus aureus from atopic dermatitis skin alters cytokine production triggered by monocyte-derived Langerhans cell.

    Science.gov (United States)

    Iwamoto, Kazumasa; Moriwaki, Masaya; Niitsu, Yoshie; Saino, Masachika; Takahagi, Shunsuke; Hisatsune, Junzo; Sugai, Motoyuki; Hide, Michihiro

    2017-08-05

    Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. The skin of patients with AD presents as a disbalance of the microbiome with a strong colonization by Staphylococcus aureus, which positively correlates with the severity of the disease. However, the effect of colonized S. aureus on the skin immune system has not been fully elucidated. The aim of this study is to explore whether S. aureus isolated from AD skin is able to skew T cell responses via Langerhans cells (LC) as compared to a standard strain of S. aureus and S. epidermidis. We prepared monocyte-derived LC (MoLC) from healthy controls and patients with AD, and stimulated MoLC with a standard strain of S. aureus NCTC8325, S. aureus TF3378 isolated from AD skin, or S. epidermidis. Stimulated MoLC were co-cultured with autologous CD4(pos) T cells and then T cell responses were analyzed by T cell polarization assays, cytokine analysis and real-time PCR. MoLC stimulated by S. aureus TF3378 induced significantly high and rapid proliferation of T cells as compared to those by S. aureus NCTC8325 and S. epidermidis. Cytokine productions from T cells cultured with S. aureus TF3378-stimulated MoLC showed significantly high amounts of IL-2 and less IFN-γ production with imbalanced Th1/Th2 (decreased TBX21/GATA3 ratio) mRNA expression. The T cell proliferation with increased IL-2 production via S. aureus TF3378-stimulated MoLC was diminished by treatment of proteinase K. S. aureus TF3378 on AD skin can skew T cell responses via LC toward imbalanced Th1/Th2 skin immunity. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  18. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    Science.gov (United States)

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  19. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat

    2015-11-01

    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  20. Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ

    Science.gov (United States)

    Sun, Aijun; Liu, Hongying; Wang, Shijun; Shi, Dazhuo; Xu, Lei; Cheng, Yong; Wang, Keqiang; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2011-01-01

    BACKGROUND AND PURPOSE Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is known to be effective in the prevention of atherosclerosis. Here, we tested the hypothesis that the anti-atherosclerotic effect of Sal B might be mediated by suppressing maturation of human monocyte-derived dendritic cells (h-monDC). EXPERIMENTAL APPROACH h-monDC were derived by incubating purified human monocytes with GM-CSF and IL-4. h-monDC were pre-incubated with or without Sal B and stimulated by oxidized low-density lipoprotein (ox-LDL) in the presence or absence of PPARγ siRNA. Expression of h-monDC membrane molecules (CD40, CD86, CD1a, HLA-DR) were analysed by FACS, cytokines were measured by elisa and the TLR4-associated signalling pathway was determined by Western blotting. KEY RESULTS Ox-LDL promoted h-monDC maturation, stimulated CD40, CD86, CD1a, HLA-DR expression and IL-12, IL-10, TNF-α production; and up-regulated TLR4 signalling. These effects were inhibited by Sal B. Sal B also triggered PPARγ activation and promoted PPARγ nuclear translocation, attenuated ox-LDL-induced up-regulation of TLR4 and myeloid differentiation primary-response protein 88 and inhibited the downstream p38-MAPK signalling cascade. Knocking down PPARγ with the corresponding siRNA blocked these effects of Sal B. CONCLUSIONS AND IMPLICATIONS Our data suggested that Sal B effectively suppressed maturation of h-monDC induced by ox-LDL through PPARγ activation. PMID:21649636

  1. Changes of cell-surface thiols and intracellular signaling in human monocytic cell line THP-1 treated with diphenylcyclopropenone.

    Science.gov (United States)

    Hirota, Morihiko; Motoyama, Akira; Suzuki, Mie; Yanagi, Masashi; Kitagaki, Masato; Kouzuki, Hirokazu; Hagino, Shigenobu; Itagaki, Hiroshi; Sasa, Hitoshi; Kagatani, Saori; Aiba, Setsuya

    2010-12-01

    Changes of cell-surface thiols induced by chemical treatment may affect the conformations of membrane proteins and intracellular signaling mechanisms. In our previous study, we found that a non-toxic dose of diphenylcyclopropene (DPCP), which is a potent skin sensitizer, induced an increase of cell-surface thiols in cells of a human monocytic cell line, THP-1. Here, we examined the influence of DPCP on intracellular signaling. First, we confirmed that DPCP induced an increase of cell-surface thiols not only in THP-1 cells, but also in primary monocytes. The intracellular reduced-form glutathione/oxidized-form glutathione ratio (GSH/GSSG ratio) was not affected by DPCP treatment. By means of labeling with a membrane-impermeable thiol-reactive compound, Alexa Fluor 488 C5 maleimide (AFM), followed by two-dimensional gel electrophoresis and analysis by liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), we identified several proteins whose thiol contents were modified in response to DPCP. These proteins included cell membrane components, such as actin and β-tubulin, molecular chaperones, such as heat shock protein 27A and 70, and endoplasmic reticulum (ER) stress-inducible proteins. Next, we confirmed the expression in DPCP-treated cells of spliced XBP1, a known marker of ER stress. We also detected the phosphorylation of SAPK/JNK and p38 MAPK, which are downstream signaling molecules in the IRE1α-ASK1 pathway, which is activated by ER stress. These data suggested that increase of cell-surface thiols might be associated with activation of ER stress-mediated signaling.

  2. PGE2 confers survivin-dependent apoptosis resistance in human monocyte-derived dendritic cells.

    Science.gov (United States)

    Baratelli, Felicita; Krysan, Kostyantyn; Heuzé-Vourc'h, Nathalie; Zhu, Li; Escuadro, Brian; Sharma, Sherven; Reckamp, Karen; Dohadwala, Mariam; Dubinett, Steven M

    2005-08-01

    Control of apoptosis is fundamental for dendritic cell (DC) homeostasis. Numerous factors maintain DC viability throughout their lifespan, including inhibitor of apoptosis proteins. Among them, survivin is overexpressed in many human malignancies, but its physiological function in normal cells has not been fully delineated. Prostaglandin E2 (PGE2), also overproduced in several malignancies, has shown to induce proapoptotic and antiapoptotic effects in different cell types, including immune cells. In DC, PGE2 predominantly affects maturation and modulates immune functions. Here, we show that exposure of monocyte-derived DC to PGE2 (10(-5) M) for 72 h significantly increased DC survivin mRNA and protein expression. In contrast, DC, matured with lipopolysaccharide or tumor necrosis factor alpha, did not reveal survivin induction in response to PGE2. Following exposure to apoptotic stimuli, DC treated with PGE2 exhibited an overall increased viability compared with control DC, and this effect was correlated inversely with caspase-3 activation. Moreover, PGE2-treated, survivin-deficient DC demonstrated reduced viability in response to apoptotic stimuli. Further analysis indicated that PGE2 induced DC survivin expression in an E prostanoid (EP)2/EP4 receptor and phosphatidylinositol-3 kinase-dependent manner. These findings suggest that PGE2-dependent regulation of survivin is important in modulating apoptosis resistance in human DC.

  3. CD1c-Expression by Monocytes - Implications for the Use of Commercial CD1c+ Dendritic Cell Isolation Kits.

    Directory of Open Access Journals (Sweden)

    Martine Schrøder

    Full Text Available Conventional dendritic cells (cDCs comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14- cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.

  4. A pilgrim's progress: Seeking meaning in primordial germ cell migration.

    Science.gov (United States)

    Cantú, Andrea V; Laird, Diana J

    2017-07-18

    Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis.

    Directory of Open Access Journals (Sweden)

    Milena Karina Colo Brunialti

    Full Text Available BACKGROUND: A shift from Th1 to Th2 as well as an increase in Treg CD4+T cell subsets has been reported in septic patients (SP. Furthermore, these patients display modulation of monocyte function, with reduced production of pro-inflammatory cytokines upon LPS stimulus, which resembles the phenotype of alternatively activated macrophages. In this study, we evaluated the percentages of T cells differentiated into Th1, Th17 and Treg subsets, as well as the percentage of monocytes expressing markers of alternatively activated monocytes/macrophages (AAM in SP. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMC were obtained from 32 healthy volunteers (HV and from SP at admission (D0, n = 67 and after 7 days of therapy (D7, n = 33. Th1 and Th17 (CD3+CD8- lymphocytes were identified by the intracellular detection of IFN-γ and IL-17, respectively, spontaneously and after PMA/Io stimulation, and Treg cells were identified by Foxp3+CD127- expression. Monocytes were evaluated for CD206 and CD163 expression. Absolute numbers of CD4+T lymphocytes were measured in whole blood samples by flow cytometry. The Mann-Whitney or Wilcoxon test was applied, as appropriate. The percentage of Th1 cells was lower in SP than in HV at admission after PMA/Io stimulation, whereas the percentage of Th17 cells was higher. In patients' follow-up samples, a higher percentage of Th1 cells and a lower percentage of Th17 cells were observed on D7 compared with the D0 samples. Treg cells remained unchanged. Septic patients showed a markedly increased proportion of monocytes expressing CD163 and CD206. CONCLUSIONS/SIGNIFICANCE: Upon in vitro stimulus, the percentage of T helper lymphocytes producing IL-17 was higher in SP than in HV at admission, and the percentage producing IFN-γ was lower, a pattern that was reversed during follow-up. The increased expression of CD163 and CD206 indicates that monocytes may acquire the AAM phenotype during sepsis.

  6. The histone demethylase UTX regulates stem cell migration and hematopoiesis.

    Science.gov (United States)

    Thieme, Sebastian; Gyárfás, Tobias; Richter, Cornelia; Özhan, Günes; Fu, Jun; Alexopoulou, Dimitra; Muders, Michael H; Michalk, Irene; Jakob, Christiane; Dahl, Andreas; Klink, Barbara; Bandola, Joanna; Bachmann, Michael; Schröck, Evelin; Buchholz, Frank; Stewart, A Francis; Weidinger, Gilbert; Anastassiadis, Konstantinos; Brenner, Sebastian

    2013-03-28

    Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis.

  7. Migration

    NARCIS (Netherlands)

    Gienapp, P.; Candolin, Ulrika; Wong, Bob

    2012-01-01

    This chapter examines how human-induced environmental changes affect migration. It explores how such changes affect conditions along the migration route, as well as the cues that are used in the timing of migration such as the celestial bodies and the planet's magnetic field. It emphasizes the effec

  8. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  9. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  10. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    Science.gov (United States)

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  11. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  12. Generation of feline dendritic cells derived from peripheral blood monocytes for in vivo use.

    Science.gov (United States)

    Freer, Giulia; Matteucci, Donatella; Mazzetti, Paola; Bozzacco, Leonia; Bendinelli, Mauro

    2005-10-01

    Dendritic cells (DCs) are professional antigen-presenting cells that can prime T cells and polarize the cellular immune response. Because Th1-type immune responses have been connected to success in combating viral infection, a promising therapeutic application of DCs would be their differentiation in vitro and injection back into the host to boost an immune response in infected animals. This study was aimed both at developing a protocol to cultivate feline DCs in the absence of exogenous proteins for their use in vivo and at investigating what might be the most appropriate stimulus to induce their maturation in vitro and finding correlates of maturation. We generated DCs from peripheral blood monocytes in the presence of feline interleukin-4 and granulocyte-macrophage colony stimulating factor, and after 5 days their maturation was induced with either lipopolysaccharide, human recombinant tumor necrosis factor alpha, poly(I:C), or activated feline platelets. After 48 h, their CD14, CD1a, major histocompatibility complex class II, and B7.1 surface expression was analyzed in parallel with their ability to uptake antigen or prime a mixed leukocyte reaction. The results presented show that feline DCs cultured in autologous plasma differentiate and are able to mature in the presence of stimuli similar to the ones currently used for other species. The present work sets the grounds for future use of DCs obtained by the protocol described for in vivo vaccination and immunotherapy of feline immunodeficiency virus-infected cats.

  13. Effect of ovarian hormones on maturation of dendritic cells from peripheral blood monocytes in dogs

    Science.gov (United States)

    WIJEWARDANA, Viskam; SUGIURA, Kikuya; WIJESEKERA, Daluthgamage Patsy H.; HATOYA, Shingo; NISHIMURA, Toshiya; KANEGI, Ryoji; USHIGUSA, Takahiro; INABA, Toshio

    2015-01-01

    Previously, we reported that ovarian hormones affect the immune response against E. coli isolated from the dogs affected with pyometra. In order to investigate mechanisms underlying the immune modulation, we examined the effects of ovarian hormones on the generation of dendritic cells (DCs), the most potent antigen presenting cell. DCs were differentiated from peripheral blood monocytes (PBMOs) using a cytokine cocktail. Both estrogen receptor and progesterone receptors were expressed by the PBMOs and immature DCs. When various ovarian hormones were added to the culture for the DC differentiation, progesterone significantly decreased the expression of DC maturation markers, such as CD1a, CD80 and CD86, on mature DCs. Conversely, the addition of estrogen to the cultures increased the expression of CD86, but not other maturation makers. Furthermore, DCs differentiated in the presence of progesterone did not stimulate allogeneic mononuclear cells in PB. Taken together, these results indicate that progesterone diminishes the maturation of DCs, leading to decreased immune responses against invading pathogens. PMID:25715707

  14. Lobohedleolide induces interleukin-8 production in LPS-stimulated human monocytic cell line THP-1

    Directory of Open Access Journals (Sweden)

    T Oda

    2011-09-01

    Full Text Available Summary: Lobohedleolide (1 has been isolated from a soft coral, Sarcophyton sp., as one of three responsible substances for observed inhibitory activity against TNF-a production in lipopolysaccharide (LPS-stimulated murine macrophage-like RAW 264.7 cells. During the examination of other inflammatory cytokines, we found that only 1 induced the production of interleukin (IL-8 in LPS-stimulated human monocytic THP-1 cells, while the other two compounds did not affect the production of IL-8. Although 1 showed an inhibitory effect on nuclear factor-kappaB (NF-kB activation, this compound induced IL-8 promoter activity, which led to the induction of IL-8 production in LPS-stimulated THP-1 cells. Industrial Relevance: Marine organisms are a rich resource of biologically active secondary metabolites. Two marine natural products and two derivatives of marine sponge compounds have been utilized for medical treatment, and marked numbers of marine natural products and their derivatives are now in clinical and pre-clinical trials. Therefore, marine natural products are attractive sources of medicines and their lead compounds, and elucidation of new bioactivity and the mechanism of action of marine natural products are also a very important study for drug discovery. This report describes a new bioactivity of a diterpene previously obtained from an Indonesian soft corral.

  15. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  16. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  17. An open data ecosystem for cell migration research

    NARCIS (Netherlands)

    Masuzzo, P.; Martens, L.; Ampe, C.; Anderson, K.I.; Barry, J.; Wever, O. De; Debeir, O.; Decaestecker, C.; Dolznig, H.; Friedl, P.H.A.; Gaggioli, C.; Geiger, B.; Goldberg, I.G.; Horn, E.; Horwitz, R.; Kam, Z.; Devedec, S.E. Le; Vignjevic, D.M.; Moore, J.; Olivo-Marin, J.C.; Sahai, E.; Sansone, S.A.; Sanz-Moreno, V.; Stromblad, S.; Swedlow, J.; Textor, J.C.; Troys, M. Van; Zantl, R.

    2015-01-01

    Cell migration research has recently become both a high content and a high throughput field thanks to technological, computational, and methodological advances. Simultaneously, however, urgent bioinformatics needs regarding data management, standardization, and dissemination have emerged. To address

  18. An open data ecosystem for cell migration research

    NARCIS (Netherlands)

    Masuzzo, P.; Martens, L.; Ampe, C.; Anderson, K.I.; Barry, J.; Wever, O. De; Debeir, O.; Decaestecker, C.; Dolznig, H.; Friedl, P.H.A.; Gaggioli, C.; Geiger, B.; Goldberg, I.G.; Horn, E.; Horwitz, R.; Kam, Z.; Devedec, S.E. Le; Vignjevic, D.M.; Moore, J.; Olivo-Marin, J.C.; Sahai, E.; Sansone, S.A.; Sanz-Moreno, V.; Stromblad, S.; Swedlow, J.; Textor, J.C.; Troys, M. Van; Zantl, R.

    2015-01-01

    Cell migration research has recently become both a high content and a high throughput field thanks to technological, computational, and methodological advances. Simultaneously, however, urgent bioinformatics needs regarding data management, standardization, and dissemination have emerged. To address

  19. Cotinine inhibits the pro-inflammatory response initiated by multiple cell surface Toll-like receptors in monocytic THP cells

    Directory of Open Access Journals (Sweden)

    Bagaitkar Juhi

    2012-11-01

    Full Text Available Abstract Background The primary, stable metabolite of nicotine [(S-3-(1-methyl-2-pyrrolidinyl pyridine] in humans is cotinine [(S-1-methyl-5-(3-pyridinyl-2-pyrrolidinone]. We have previously shown that cotinine exposure induces convergence and amplification of the GSK3β-dependent PI3 kinase and cholinergic anti-inflammatory systems. The consequence is reduced pro-inflammatory cytokine secretion by human monocytes responding to bacteria or LPS, a TLR4 agonist. Findings Here we show that cotinine-induced inflammatory suppression may not be restricted to individual Toll-like receptors (TLRs. Indeed, in monocytic cells, cotinine suppresses the cytokine production that is normally resultant upon agonist-specific engagement of all of the major surface exposed TLRs (TLR 2/1; 2/6; 4 and 5, although the degree of suppression varies by TLR. Conclusions These results provide further mechanistic insight into the increased susceptibility to multiple bacterial infections known to occur in smokers. They also establish THP-1 cells as a potentially suitable model with which to study the influence of tobacco components and metabolites on TLR-initiated inflammatory events.

  20. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  1. Migration of epithelial cells on laminins: RhoA antagonizes directionally persistent migration.

    Science.gov (United States)

    Zhang, Zhigang; Chometon, Gretel; Wen, Tingting; Qu, Haiyan; Mauch, Cornelia; Krieg, Thomas; Aumailley, Monique

    2011-01-01

    Spatial and temporal expression of laminin isoforms is assumed to provide specific local information to neighboring cells. Here, we report the remarkably selective presence of LM-111 at the very tip of hair follicles where LM-332 is absent, suggesting that epithelial cells lining the dermal-epidermal junction at this location may receive different signals from the two laminins. This hypothesis was tested in vitro by characterizing with functional and molecular assays the comportment of keratinocytes exposed to LM-111 and LM-332. The two laminins induced morphologically distinct focal adhesions, and LM-332, but not LM-111, elicited persistent migration of keratinocytes. The different impact on cellular behavior was associated with distinct activation patterns of Rho GTPases and other signaling intermediates. In particular, while LM-111 triggered a robust activation of Cdc42, LM-332 provoked a strong and sustained activation of FAK. Interestingly, activation of Rac1 was necessary but not sufficient to promote migration because there was no directed migration on LM-111 despite Rac1 activation. In contrast, RhoA antagonized directional migration, since silencing of RhoA by RNA interference boosted unidirectional migration on LM-332. Molecular analysis of the role of RhoA strongly suggested that the mechanisms involve disassembly of cell-cell contacts, loss of the cortical actin network, mobilization of α6β4 integrin out of stable adhesions, and displacement of the integrin from its association with the insoluble pool of intermediate filaments.

  2. Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli.

    Science.gov (United States)

    Duell, Benjamin L; Carey, Alison J; Dando, Samantha J; Schembri, Mark A; Ulett, Glen C

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

  3. Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Benjamin L Duell

    Full Text Available Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10 in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

  4. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    Directory of Open Access Journals (Sweden)

    Germison Silva Lopes

    2014-07-01

    Full Text Available Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure.

  5. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  6. Phosphorylation of actopaxin regulates cell spreading and migration

    Science.gov (United States)

    Clarke, Dominic M.; Brown, Michael C.; LaLonde, David P.; Turner, Christopher E.

    2004-01-01

    Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration. PMID:15353548

  7. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-08-18

    The study aimed to investigate the effects of SOX15 on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low-expression SOX15 Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were performed to examine expression of SOX15 mRNA and SOX15 protein respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low-expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while downregulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell cycle arrest in G1 stage. In addition, transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also downregulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and upregulation of SOX15 could be valuable for EC treatment. ©2017 The Author(s).

  8. Identifying Cell Type-Specific Transcription Factors by Integrating ChIP-seq and eQTL Data-Application to Monocyte Gene Regulation.

    Science.gov (United States)

    Choudhury, Mudra; Ramsey, Stephen A

    2016-01-01

    We describe a novel computational approach to identify transcription factors (TFs) that are candidate regulators in a human cell type of interest. Our approach involves integrating cell type-specific expression quantitative trait locus (eQTL) data and TF data from chromatin immunoprecipitation-to-tag-sequencing (ChIP-seq) experiments in cell lines. To test the method, we used eQTL data from human monocytes in order to screen for TFs. Using a list of known monocyte-regulating TFs, we tested the hypothesis that the binding sites of cell type-specific TF regulators would be concentrated in the vicinity of monocyte eQTLs. For each of 397 ChIP-seq data sets, we obtained an enrichment ratio for the number of ChIP-seq peaks that are located within monocyte eQTLs. We ranked ChIP-seq data sets according to their statistical significances for eQTL overlap, and from this ranking, we observed that monocyte-regulating TFs are more highly ranked than would be expected by chance. We identified 27 TFs that had significant monocyte enrichment scores and mapped them into a protein interaction network. Our analysis uncovered two novel candidate monocyte-regulating TFs, BCLAF1 and SIN3A. Our approach is an efficient method to identify candidate TFs that can be used for any cell/tissue type for which eQTL data are available.

  9. 3D printing of biomimetic microstructures for cancer cell migration

    Science.gov (United States)

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2013-01-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies PMID:24150602

  10. Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2005-12-01

    Full Text Available Abstract We have recently developed a candidate HIV-1 vaccine model based on HIV-1 Pr55gag Virus-Like Particles (HIV-VLPs, produced in a baculovirus expression system and presenting a gp120 molecule from an Ugandan HIV-1 isolate of the clade A (HIV-VLPAs. The HIV-VLPAs induce in Balb/c mice systemic and mucosal neutralizing Antibodies as well as cytotoxic T lymphocytes, by intra-peritoneal as well as intra-nasal administration. Moreover, we have recently shown that the baculovirus-expressed HIV-VLPs induce maturation and activation of monocyte-derived dendritic cells (MDDCs which, in turn, produce Th1- and Th2-specific cytokines and stimulate in vitro a primary and secondary response in autologous CD4+ T cells. In the present manuscript, the effects of the baculovirus-expressed HIV-VLPAs on the genomic transcriptional profile of MDDCs obtained from normal healthy donors have been evaluated. The HIV-VLPA stimulation, compared to both PBS and LPS treatment, modulate the expression of genes involved in the morphological and functional changes characterizing the MDDCs activation and maturation. The results of gene profiling analysis here presented are highly informative on the global pattern of gene expression alteration underlying the activation of MDDCs by HIV-VLPAs at the early stages of the immune response and may be extremely helpful for the identification of exclusive activation markers.

  11. Effect of monocyte chemoattractant protein-1 on chemotactic gene expression by macrophage cell line U937

    Institute of Scientific and Technical Information of China (English)

    BIAN Guang-xing; GUO Bao-yu; MIAO Hong; QIU Lei; CAO Dong-mei; DAO Shu-yan; ZHANG Ran

    2004-01-01

    Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage line U937 (as control) and U937 with MCP-1 was extracted, made reverse transcript to cDNA and tested with gene expression chip HO2 human. Results: Some chemotactic-related gene expressions were changed in all analyzed genes. Regulated upon activation, normal T cell expressed and secreted (RANTES) was up-regulated over 2-fold and 7 chemotactic-related genes (CCR2, CCR5, CCL16, GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2) were down-regulated over 2-fold inMCP-1 treated U937 cells at mRNA level. Conclusion: MCP-1 can influence some chemokines and receptors expression in macrophage in vitro, in which MCP-1 mainly down-regulates the chemotactic genes expression of those influencing neutrophilic granulocyte (GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2). Another novel finding is that it can also down-regulate the mRNA level of CCR5, which plays a critical role in many disorders and illnesses.

  12. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available BACKGROUND: HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. CONCLUSIONS/SIGNIFICANCE: Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  13. Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes.

    Science.gov (United States)

    Mortara, Lorenzo; Ploquin, Mickaël J-Y; Faye, Abdourahmane; Scott-Algara, Daniel; Vaslin, Bruno; Butor, Cécile; Hosmalin, Anne; Barré-Sinoussi, Françoise; Diop, Ousmane M; Müller-Trutwin, Michaela C

    2006-01-20

    Myeloid dendritic cells probably play an important role in the immune response against HIV and SIV, and in the enhancement of CD4+ T cell infection. Here, we have investigated phenotypic and functional features of myeloid monocyte-derived DC (MDDC) from African green monkeys (AGMs). AGMs are natural hosts of SIV and exhibit no signs of abnormal T cell activation despite high SIV plasma viremia. We identified mAbs that cross-react specifically with homologous molecules expressed on AGM DC. We adapted a protocol to derive AGM MDDC by culture in the presence of GM-CSF and IL-4. The differentiated cells possessed a typical dendritic morphology and the majority were CD11c+ DC-SIGN+. AGM MDDC displayed a high expression of typical maturation markers, such as CD83, CD86 and DC-LAMP, and moderate immunostimulatory capacity, suggesting that the cells were in a semi-mature state. Stimulation resulted in further maturation, as shown by up-regulation of CD80 and decrease of endocytosis ability. However, neither increase of HLA-DR or CD40 expression nor enhanced immunostimulatory capacity was observed. The latter was associated with a low pro-inflammatory cytokine production during mixed lymphocyte reactions and a cytokine balance in favour of IL-10 in contrast to human MDDC. This is the first characterization of AGM MDDC. The tools described here are a crucial step for future studies in vivo or in vitro on the function of myeloid DC using the AGM animal model.

  14. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  15. Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury.

    Science.gov (United States)

    Guetta, E; Guetta, V; Shibutani, T; Epstein, S E

    1997-07-01

    Cytomegalovirus (CMV) infection and its periodic reactivation from latency may contribute to atherogenesis and restenosis. It is unknown how CMV is delivered to the vessel wall and is reactivated. We examined the following hypothesis: CMV, present in monocytes recruited to sites of vascular injury, is activated by endothelial cell (EC) or smooth muscle cell (SMC) contact and by oxidized low-density lipoproteins (oxLDLs). The CMV major immediate-early promoter (MIEP) controls immediate-early (IE) gene expression, and thereby viral replication. To determine whether elements of the vessel wall can activate CMV present in monocytes, we transiently transfected the promonocytic cell line HL-60 with a chloramphenicol acetyltransferase reporter gene construct driven by MIEP. MIEP activity increased 1.7 +/- 0.5-fold (P = .02) when the transfected HL-60 cells were cocultured with ECs, 4.5 +/- 1.5-fold when cocultured with SMCs (P = .03), and 2.0 +/- 0.5-fold (P = .01) when exposed to oxLDL. The combination of oxLDL and EC coculture increased MIEP activity over 7-fold. We also found that freshly isolated human monocytes, infected with endothelium-passaged CMV, were capable of transmitting infectious virus to cocultured ECs or SMCs. CMV-related progression of atherosclerosis or restenosis may, at least in part, involve monocyte delivery of the virus to the site of vascular injury, where the vascular milieu, ie, contact with ECs, SMCs, and oxLDL, can contribute to viral reactivation and/or replication by enhancing CMV IE gene expression. The virus may then infect neighboring ECs or SMCs, initiating a cascade of events predisposing to the development of atherogenesis-related processes.

  16. Effects of cholesterol and lipoproteins on endocytosis by a monocyte-like cell line.

    Science.gov (United States)

    Esfahani, M; Scerbo, L; Lund-Katz, S; DePace, D M; Maniglia, R; Alexander, J K; Phillips, M C

    1986-12-19

    The human monocyte/macrophage-like cell line U937 is a cholesterol auxotroph. Incubation of these cells in the growth medium in which delipidated fetal calf serum has been substituted for fetal calf serum depletes cellular cholesterol and inhibits growth. The cholesterol requirement of these cells for growth can be satisfied by human low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL), but not by high-density lipoprotein (HDL). U937 cells can bind and degrade LDL via a high-affinity site and this recognition is altered by acetylation of LDL. This indicates that these cells express relatively high LDL receptor activity and low levels of the acetyl-LDL receptor. The cells were used to study the role of cholesterol in lectin-mediated and fluid-phase endocytosis. Growth of the cells in the medium containing delipidated fetal calf serum results in impairment of both concanavalin A-mediated endocytosis of horseradish peroxidase and concanavalin A-independent endocytosis of Lucifer Yellow. Supplementation of the medium with cholesterol prevents cellular cholesterol depletion, supports growth and stimulates Lucifer Yellow endocytosis but fails to restore horseradish peroxidase endocytosis. However, if the cells are incubated in the presence of no less than 40 micrograms LDL protein/ml to maintain normal cell cholesterol levels, concanavalin A-mediated endocytosis of horseradish peroxidase is activated. The effect of LDL is specific since neither VLDL nor HDL3 at the same protein concentration activates horseradish peroxidase uptake by the cells. Furthermore, the activation of endocytosis by LDL is not inhibited by the inclusion of heparin or acetylation of the LDL indicating that binding of LDL to the LDL receptor is not required for these effects. The mediation of activation of horseradish peroxidase endocytosis by the lectin is presumed to involve binding of LDL to concanavalin A associated with the cell surface which in turn stimulates horseradish

  17. Modelling Rho GTPase biochemistry to predict collective cell migration

    Science.gov (United States)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  18. [Chemokines and their participation in leukemic cells migration].

    Science.gov (United States)

    Parfieńczyk, Adam; Kiersnowska-Rogowska, Beata; Rogowski, Franciszek

    2003-11-01

    Impaired migration of leukocytes is characteristic feature of leukaemias. Knowledge of the mechanisms of leukaemia cells migration has expanded greatly in recent years. Leukocytes infiltrates are formed in surrounding tissues due to changes in chemokines and adhesion molecules concentrations. The adhesive interactions of cells with other cells and between cells and with the extracellular matrix are started by activation leukaemic leukocytes by specific chemokines. There are four groups of chemokines receptors: CXC, CC, C and CX3C. Unfortunately pathological processes of cells activation in the curse of leukaemias have not been fully explained yet. The paper presents current opinions about structure and role of some chemokines and their receptors in leukaemic cells migration.

  19. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    Science.gov (United States)

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  20. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann; Zucker, Daniel; Parhamifar, Ladan;

    2015-01-01

    Objectives: Monocytes are one of the major phagocytic cells that patrol for invading pathogens, and upon activation, differentiate into macrophages or antigen-presenting dendritic cells (DCs) capable of migrating to lymph nodes eliciting an adaptive immune response. The key role in regulating ada...... cytokines. We envision this technology as a promising tool in future cancer immunotherapy....

  1. Identification of biological markers of liver X receptor (LXR activation at the cell surface of human monocytes.

    Directory of Open Access Journals (Sweden)

    Cédric Rébé

    Full Text Available BACKGROUND: Liver X receptor (LXR α and LXR β (NR1H3 and NR1H2 are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping. METHODOLOGY/PRINCIPAL FINDINGS: By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment. CONCLUSIONS/SIGNIFICANCE: We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.

  2. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy.

    Science.gov (United States)

    Sasso, Maria Stella; Lollo, Giovanna; Pitorre, Marion; Solito, Samantha; Pinton, Laura; Valpione, Sara; Bastiat, Guillaume; Mandruzzato, Susanna; Bronte, Vincenzo; Marigo, Ilaria; Benoit, Jean-Pierre

    2016-07-01

    Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.

  3. Involvement of superoxide generated by NADPH oxidase in the shedding of procoagulant vesicles from human monocytic cells exposed to bupivacaine.

    Science.gov (United States)

    Azma, Toshiharu; Ogawa, Saori; Nishioka, Akira; Kinoshita, Hiroyuki; Kawahito, Shinji; Nagasaka, Hiroshi; Matsumoto, Nobuyuki

    2017-08-17

    It is known that a variety of sized procoagulant vesicles that express tissue factor are released from several types of cells including monocytes by mechanisms related to the induction of apoptosis, while it has not yet been evaluated whether superoxide is involved in the production of such vesicles. Here, we report that a local anesthetic bupivacaine induces apoptosis in human monocytic cells THP-1 within a short observation period, where the shedding of procoagulant vesicles is associated. The property as procoagulant vesicles was evaluated using flow cytometry by the binding of FITC-conjugated fibrinogen to vesicles in the presence of fresh frozen plasma and the suppression of this binding by heparin. Bupivacaine (1 mg/ml) increased the apoptotic cells and procoagulant vesicles. LY294002 (100 µM), that inhibits the recruiting of intracellular component of NADPH oxidase to construct the activated form of this enzyme complex, or superoxide dismutase (1500 unit/ml) suppressed bupivacaine-provoked induction of apoptosis and the increase of procoagulant vesicles. We suggest that this simple experimental system is useful to explore the molecular mechanisms of action of superoxide in the shedding of procoagulant vesicles from human monocytic cells.

  4. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells

    Directory of Open Access Journals (Sweden)

    Bertin Jonathan

    2012-03-01

    Full Text Available Abstract Background Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS. Leukotriene B4 (LTB4 and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs in HIV-1 infection of microglial cells. Methods To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2 or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR. Results We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5 surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. Conclusions These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  5. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells.

    Science.gov (United States)

    Bertin, Jonathan; Barat, Corinne; Bélanger, Dave; Tremblay, Michel J

    2012-03-16

    Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  6. The role of monocytes and T cells in 1,25-dihydroxyvitamin D3 mediated inhibition of B cell function in vitro

    DEFF Research Database (Denmark)

    Müller, K; Heilmann, C; Poulsen, L K;

    1991-01-01

    PWM stimulation, but not after Epstein-Barr virus stimulation which activates B cells independently of T cells and monocytes. Second, 1,25-(OH)2D3 was not effective in T cell and monocyte-depleted cultures. Third, the effect of 1,25-(OH)2D3 on PWM driven MNC was reversed by addition of the recombinant......1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) inhibits immunoglobulin production by human mononuclear cells (MNC) in vitro. The present study was undertaken to evaluate the role of T cells and monocytes in 1,25-(OH)2D3 induced suppression of B cell functions. The synthetic vitamin D3 analogue MC 903...... was examined in parallel. 1,25-(OH)2D3 and MC 903 showed a dose-related inhibition of IgM, IgG and IgA plaque-forming cells in poke-weed mitogen (PWM) activated cultures of MNC. This effect was most likely mediated through impairment of T cell and monocyte functions. First, the inhibitory effect was seen after...

  7. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  8. Commensal bacteria promote migration of mast cells into the intestine.

    Science.gov (United States)

    Kunii, Junichi; Takahashi, Kyoko; Kasakura, Kazumi; Tsuda, Masato; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-06-01

    Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.

  9. Hematopoietic Pyk2 regulates migration of differentiated HL-60 cells

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2010-05-01

    Full Text Available Abstract Background Pyk2 is a non-receptor cytoplasmic tyrosine kinase that belongs to the focal adhesion kinase family and has been implicated in neutrophil spreading and respiratory burst activity caused by TNF-α. However, the role of Pyk2 in neutrophil migration is incompletely defined. In this study, we tested the hypothesis that Pyk2 regulates the migration of neutrophil-like differentiated HL-60 cells subsequent to β2-integrin mediated cell adhesion. Methods HL-60 cells were induced to differentiate into neutrophil-like cells (dHL60 by incubation in medium containing 1.25% DMSO for up to 4 days. Pyk2 expression and tyrosine phosphorylation was measured by Western blot analysis. Adhesion of dHL60 cells to plated fibrinogen was measured by residual myeloperoxidase activity. dHL60 cell migration was evaluated using a 96-well chemoTx chamber. Results Western blot analysis demonstrated that hematopoietic Pyk2 was predominantly expressed after HL60 cell differentiation. Pyk2 was tyrosine phosphorylated upon adhesion of dHL60 cells to plated fibrinogen in the presence of fMLP. By contrast, tyrosine phosphorylation of Pyk2 was insignificant in dHL60 cells treated in suspension with fMLP. Antibodies against CD18 blocked both phosphorylation of Pyk2 and adhesion of dHL60 cells to fibrinogen, demonstrating that phosphorylation of Pyk2 was β2-integrin dependent. TAT-Pyk2-CT, a dominant negative fusion protein in which the TAT protein transduction domain was fused to the c-terminal Pyk2, attenuated fMLP-stimulated spreading, migration and phosphorylation of endogenous Pyk2 without blocking adhesion of dHL-60 cells to fibrinogen. Similarly, silencing of Pyk2 expression by siRNA in dHL60 cells also attenuated dHL60 cell migration caused by fMLP. Phospho-Pyk2 was evenly distributed around cell membrane circumferentially in unstimulated dHL-60 cells adherent to plated fibrinogen. In dHL60 cells treated with fMLP to cause cell spreading and polarization

  10. Multiscale mechanisms of cell migration during development: theory and experiment.

    Science.gov (United States)

    McLennan, Rebecca; Dyson, Louise; Prather, Katherine W; Morrison, Jason A; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M

    2012-08-01

    Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.

  11. A novel, specific pro-urokinase complex on monocyte-like cells, detected by transglutaminase-catalyzed cross-linking

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1993-01-01

    Radiolabeled pro-urokinase plasminogen activator (pro-uPA) was cross-linked to a specific protein on the surface of human monocyte-like U937 cells in a reaction catalyzed by tissue transglutaminase. The conjugate formed with this unknown component had a much higher molecular weight (apparent M(r)...... antibody abolished the formation of the conjugate, thus showing a role of uPAR in this process....

  12. Development of a standardized protocol for reproducible generation of matured monocyte-derived dendritic cells suitable for clinical application

    OpenAIRE

    Bohnenkamp, H.R.; Noll, T.

    2003-01-01

    There is increasing interest in the generation of dendritic cells (DC) for cancer immunotherapy. In order to utilize DC in clinical trials it is necessary to have standardized, reproducible and easy to use protocols. We describe here the process development for the generation of DC as the result of investigation of culture conditions as well as consumption rates of medium and cytokines. Our studies demonstrate that highly viable DC (93 ± 2%) can be produced from CD14+ enriched monocytes via i...

  13. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    Directory of Open Access Journals (Sweden)

    Anna S Sahlberg

    Full Text Available OBJECTIVE: To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP Embryonic Lethal Abnormal Vision (ELAV L1/Human antigen R (HuR expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα important in inflammatory response. METHODS: U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock, wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2 were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. RESULTS: Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC. Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. CONCLUSION: Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  14. Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration.

    Science.gov (United States)

    Nikolovska, Katerina; Spillmann, Dorothe; Seidler, Daniela G

    2015-02-01

    Fibroblast growth factor 2 (Fgf2) is involved in several biological functions. Fgf2 requires glycosaminoglycans, like chondroitin and dermatan sulfates (hereafter denoted CS/DS) as co-receptors. CS/DS are linear polysaccharides composed of repeating disaccharide units [-4GlcUAb1-3-GalNAc-b1-] and [-4IdoUAa1-3-GalNAc-b1-],which can be sulfated. Uronyl 2-O-sulfotransferase (Ust)introduces sulfation at the C2 of IdoUA and GlcUA resulting inover-sulfated units. Here, we investigated the role of Ust-mediated CS/DS 2-O sulfation in Fgf2-induced cell migration. We found that CHO-K1 cells overexpressing Ust contain significantly more CS/DS2-O sulfated units, whereas Ust knockdown abolished CS/DS 2-O sulfation. These structural differences in CS/DS resulted in altered Fgf2 binding and increased phosphorylation of ERK1/2 (also known as MAPK3 and MAPK1, respectively). As a functional consequence of CS/DS 2-O sulfation and altered Fgf2 binding, cell migration and paxillin activation were increased. Inhibition of sulfation, knockdown of Ust and inhibition of FgfR resulted in reduced migration. Similarly, in 3T3 cells Fgf2 treatment increased migration, which was abolished by Ust knockdown. The proteoglycan controlling the CHO migration was syndecan 1. Knockdown of Sdc1 in CHO-K1 cells overexpressing Ust abolished cell migration.We conclude that the presence of distinctly sulfated CS/DS can tune the Fgf2 effect on cell migration.

  15. Insulin promotes cell migration by regulating PSA-NCAM.

    Science.gov (United States)

    Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Directory of Open Access Journals (Sweden)

    Andrew S Brown

    2016-06-01

    Full Text Available Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC, which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  17. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Science.gov (United States)

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  18. Gene expression profiling of human monocyte-derived dendritic cells - Searching for molecular regulators of tolerogenicity

    Directory of Open Access Journals (Sweden)

    Katina eSchinnerling

    2015-10-01

    Full Text Available The ability of dendritic cells (DCs to initiate and modulate antigen-specific immune responses has made them attractive targets for immunotherapy. Since DC research in humans is limited by the scarcity of DC populations in the blood circulation, most of our knowledge about DC biology and function has been obtained in vitro from monocyte-derived DCs (moDCs, which can be readily generated in sufficient numbers and are able to differentiate into distinct functional subsets depending on the nature of stimulus. In particular, moDCs with tolerogenic properties (tolDCs possess great therapeutic potential for the treatment of autoimmune diseases. Several protocols have been developed to generate tolDCs in vitro, able to reinstruct auto-reactive T cells and to promote regulatory cells. While ligands and soluble mediators, by which DCs shape immune responses, have been vastly studied, the intracellular pathways and transcriptional regulators that govern tolDC differentiation and function are poorly understood. Whole-genome microarrays and proteomics provide useful strategies to dissect the complex molecular processes that promote tolerogenicity. Only few attempts have been made to understand tolDC biology through a global view on ‘omics’ profiles. So far, the identification of a common regulator of tolerogenicity has been hampered by the fact that each protocol, used for tolDC generation, targets distinct signaling pathways. Here we review the progress in understanding the transcriptional regulation of moDC differentiation, with a special focus on tolDCs, and highlight candidate molecules that might be associated with DC tolerogenicity.

  19. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

    Science.gov (United States)

    Barrientos, Lorena; Bignon, Alexandre; Gueguen, Claire; de Chaisemartin, Luc; Gorges, Roseline; Sandré, Catherine; Mascarell, Laurent; Balabanian, Karl; Kerdine-Römer, Saadia; Pallardy, Marc; Marin-Esteban, Viviana; Chollet-Martin, Sylvie

    2014-12-01

    Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

  20. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  1. Cell collectivity regulation within migrating cell cluster during Kupffer’s vesicle formation in zebrafish

    Directory of Open Access Journals (Sweden)

    Takaaki eMatsui

    2015-05-01

    Full Text Available Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called collective cell migration, is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as cell collectivity, remain largely unknown. During the formation of Kupffer’s vesicle (KV, an organ of laterality in zebrafish, KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration.

  2. Migration and keratinization of cells in wool follicles.

    Science.gov (United States)

    Chapman, R E; Downes, A M; Wilson, P A

    1980-10-01

    Migration of cells in wool follicles of an adult Merino sheep was studied autoradiographically in skin samples taken at intervals after an intravenous injection of [3H]thymidine. Fibre and inner root sheath cells incorporated [3H]thymidine in a cone-shape region of the follicle bulb. Labelled inner sheath cells migrated out of the bulb ahead of contemporaneous cells in the fibre and remained in advance, although to a progressively lesser extent, until the inner sheath cells sloughed into the follicle lumen. Outer root sheath cells incorporated [3H]thymidine along the length of the follicle. Cells in the proximal half of the outer sheath migrated inwards and distally and sloughed into the follicle lumen before contemporaneous inner sheath cells. Other cells in the distal half of the outer sheath migrated past the level where cells from the proximal population were shed and also sloughed into the lumen. In the most distal part of the outer sheath, which formed the epidermis-like lining of the follicle canal, little migration of cells was observed during 8 days of observation. The specific activity of tritium in fibres plucked from the same sheep at intervals after the intravenous injection of [3H]thymidine was determined by scintillation counting and assessed in terms of cell migration and hardening of the fibres. The time which the specific activity of solvent-degreased fibres reached a maximum was found to give an estimate of the time for cells in the fibre to migrate to the upper limit of the keratogenous zone. When the plucked fibres were extracted with 8 M urea the times of the maximum specific activities of the urea-dispersible and urea-insoluble material provided respectively estimates of the times at which hardening of the fibres began and ended. The effects of different planes of nutrition were examined in two other Merino sheep by radioassay of fibres plucked after intravenous injections of [3H]thymidine given after equilibration period of at least 2 months

  3. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells

    Directory of Open Access Journals (Sweden)

    Masatada Watanabe

    2017-02-01

    Full Text Available Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA and facilitation of the (hypothalamus–sympathetic–adrenomedullary system (SAM attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex, the synthetic β-agonist isoproterenol (Iso and the β-antagonist propranolol (Pro. Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

  4. Effect of Bacterial Lipopolysaccharide Contamination on Gutta Percha- versus Resilon-Induced Human Monocyte Cell Line Toxicity.

    Directory of Open Access Journals (Sweden)

    Jamshid Hadjati

    2015-04-01

    Full Text Available Cytotoxic effects of obturation materials were tested in presence and absence of endotoxin on human monocytes in vitro.Human monocytes from THP-1 cell line were cultured. Three millimeters from the tip of each Resilon and gutta percha points were cut and directly placed at the bottom of the culture wells. Cultured cells were exposed to gutta percha (groups G1 and G2 and Resilon (R1 and R2. Ten μg/ml bacterial lipopolysaccharide (LPS was added to the culture wells in groups G1 and R1. Positive control included the bacterial LPS without the root canal filling material and the negative control contained the cells in culture medium only. Viability of cells was tested in all groups after 24, 48, and 72 hours using the methylthiazolyldiphenyl-tetrazolium bromide (MTT assay for at least 3 times to obtain reproducible results. Optical density values were read and the data were analyzed using three-way ANOVA and post hoc statistical test.The results showed that cells in G2 had the lowest rate of viability at 24 hours, but the lowest rate of viable cells was recorded in G1 at 48 and 72 hours. The effect of LPS treatment was not statistically significant. Resilon groups showed cell viability values higher than those of gutta percha groups, although statistically non-significant (P=0.105. Cell viability values were lower in gutta percha than Resilon groups when LPS-treated and LPS-untreated groups were compared independently at each time point.It could be concluded that none of the tested root canal filling materials had toxic effects on cultured human monocyte cells whether in presence or absence of LPS contamination.

  5. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA and 1,25-dihydroxyvitamin D3 (VD(3 are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM. Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.

  6. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    Science.gov (United States)

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-02-18

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  7. Loss of Gadkin Affects Dendritic Cell Migration In Vitro.

    Directory of Open Access Journals (Sweden)

    Hannah Schachtner

    Full Text Available Migration is crucial for the function of dendritic cells (DCs, which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3 complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms.

  8. Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Looi, Chung Yeng; Fernandez, Keith Conrad; Vadivelu, Jamuna; Loke, Mun Fai; Wong, Won Fen

    2015-06-16

    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.

  9. Cobalt protoporphyrin induces differentiation of monocytic THP-1 cells through regulation of cytoplasmic Ref-1-related NADPH oxidase activity.

    Science.gov (United States)

    Song, Ju Dong; Lee, Sang Kwon; Park, Si Eun; Kim, Kang Mi; Kim, Koanhoi; Park, Yeong Min; Park, Young Chul

    2011-11-01

    Cobalt protoporphyrin (CoPP) is a potent and effective metalloporphyrin inducer of heme oxygenase-1 (HO-1) activity in many tissues. Here, we report that CoPP induces differentiation of monocytic THP-1 cells into macrophage-like cells. CoPP induced a marked growth inhibition with a slight reduction in viability, and increased adhesion and spreading of THP-1 cells. However, other protoporphyrins did not. CoPP also resulted in expression of CD11b, MMP9, MSR1, CD14 and ICAM-1, which are differentiation markers for macrophages. Interestingly, we observed a decrease of cytoplasmic redox factor-1 (Ref-1) levels in the process of CoPP-induced differentiation of THP-1 cells. In addition, knockdown of Ref-1 by siRNA enhanced cell adhesion induced by CoPP. Furthermore, an inhibitor of NADPH oxidase, diphenyleneiodonium (DPI), completely abolished CoPP-induced adhesion of Ref-1-deficient cells using an siRNA. A cytosolic factor for NADPH oxidase activity, p47phox, was significantly increased in THP-1 cells by CoPP treatment. Κnockdown of Ref-1 increased CoPP-induced p47phox expression in THP-1 cells. Taken together, these results suggest that CoPP induces differentiation of monocytic THP-1 cells, and that the CoPP-induced differentiation is associated with cytoplasmic Ref-1-related NADPH oxidase activity.

  10. Cereus sinensis Polysaccharide and Its Immunomodulatory Properties in Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Junwen Wu

    2017-05-01

    Full Text Available In this study, the extraction conditions of the crude polysaccharide from Cereus sinensis were optimized by response surface methodology. The optimum extraction conditions were: a ratio of raw material to water volume of 1:80 (g/mL; an extraction temperature of 72 °C; and an extraction time of 3 h. Then, a purified polysaccharide named Cereus sinensis polysaccharide-1 (CSP-1 was obtained from the crude polysaccharide by the Diethylaminoethyl cellulose-52 (DEAE-52 cellulose chromatography column and Sephadex G-100 column. The molecular weight and monosaccharide composition of CSP-1 was determined through Gel Permeation Chromatography (GPC and Gas Chromatography–Mass Spectrometer (GS–MS, respectively. The results showed that CSP-1 with an average molecular weight of 56,335 Da was composed of l-(−-Fucose, d-(+-Mannose, d-Glucose and mainly possessed 1→2, 1→2, 6, 1→4, and 1→4, 6 of glycosyl linkages. The immunomodulatory activities of CSP-1 were also evaluated using lipopolysaccharide (LPS-induced human monocytic (THP-1 cells. The results demonstrated that CSP-1 dose-dependently protected against LPS-induced toxicity, and CSP-1 significantly inhibited the Toll-like receptor 4 (TLR-4 mRNA, myeloid differentiation factor 88 (MyD88 mRNA and tumour necrosis factor receptor-associated factor-6 (TRAF-6 mRNA expression of the LPS-induced THP-1 cells, as well as suppressing reactive oxygen species (ROS generation.

  11. A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines.

    Science.gov (United States)

    Mu, L J; Gaudernack, G; Saebøe-Larssen, S; Hammerstad, H; Tierens, A; Kvalheim, G

    2003-11-01

    With the aim of producing large quantities of mRNA-transfected monocyte-derived dendritic cells (DCs) to be used as cancer vaccines, a new clinical grade procedure has been developed. Peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis were enriched for monocytes by immunomagnetic depletion of CD19+ B cells and CD2+ T cells employing the ISOLEX 300i device. After 5 days of culture of enriched monocytes in gas permeable Teflon bags, using serum-free medium supplemented with granulocyte/macrophage-colony stimulating factor and interleukin-4 (IL-4), immature DCs were generated. Following transfection with mRNA from three human prostate cancer cell lines (DU145, LNCaP and PC-3), employing a newly developed square wave electroporation procedure, the immature DCs were immediately transferred to Teflon bags and matured for 48 h, using serum-free medium supplemented with IL-1alpha, IL-6, tumour necrosis factor-alpha and PGE2. The electroporation procedure efficiently transferred mRNA into the DCs with minor effect on the viability of the cells. The generated matured transfected DCs show high expression of the antigens CD83, CD80, CD86 and human leucocyte antigen-DR. Freezing and thawing of the transfected matured DCs had minor effect on cell viability and the phenotype. From 4 x 109 PBMCs, about 1 x 108 transfected matured DCs are produced. The thawed transfected DCs were able to elicit primary T-cell responses in vitro against antigens encoded by the prostate cancer mRNA as shown by enzyme-linked immunospot assay using mock-transfected DCs as control. Based on these results, clinical trials in cancer patients have been initiated.

  12. Heparin inhibits human coronary artery smooth muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Minami, M; Kano, H; Mandal, A K; Yoshikawa, J

    1998-09-01

    Heparin, an anticoagulant, has been shown to reduce neointimal proliferation and restenosis following vascular injury in experimental studies, but the clinical trials of heparin in coronary balloon angioplasty have been negative. The current study, therefore, examined the effect of heparin on basal or stimulated migration by serum and platelet-derived growth factor (PDGF)-BB in cultured human coronary artery smooth muscle cells (SMCs) by Boyden's chamber method. In addition, the reversibility of the heparin effect on human coronary artery SMC migration was examined. Fetal calf serum (FCS) and PDGF-BB stimulated SMC migration in a concentration-dependent manner. Heparin in moderate to high concentration (10 to 100 U/mL) exhibited concentration-related inhibition of FCS- and PDGF-BB-stimulated SMC migration; however, a low concentration (1 U/mL) of heparin had no inhibitory effects. Heparin also had weak inhibitory effects on nonstimulated SMC migration. The SMCs that were exposed to a high concentration (100 U/mL) of heparin for 6 hours were capable of migrating after a short lag period of removal of heparin from the culture medium. These SMCs also showed recovery of responses to FCS and PDGF-BB by migrating significantly greater than the nonstimulated level. Furthermore, heparin-containing medium did not contain detached cells. These results indicate that heparin inhibits human coronary artery SMC migration, especially when stimulated by FCS or PDGF-BB, and that this inhibitory effect of heparin is reversible and not simply a function of killing cells.

  13. Monocyte chemoattractant protein-1 induces endothelial cell apoptosis in vitro through a p53-dependent mitochondrial pathway

    Institute of Scientific and Technical Information of China (English)

    Xuan Zhang; Xiping Liu; Huifeng Shang; Yan Xu; Minzhang Qian

    2011-01-01

    The cystine-cystine (CC) chemokine monocyte chemoattractant protein-1 (MCP-1) has been established playing a pathogenic role in the development of atherosclerosis due to its chemotactic ability of leading monocytes to locate to subendothelia.Recent studies have revealed more MCP-1 functions other than chemotaxis.Here we reported that various concentrations (0.1-100 ng/ml) of MCP-1 induced human umbilical vein endothelial cell (HUVEC) strain CRL-1730 apoptosis,caspase-9 activation,and a couple of mitochondrial alterations.Moreover,MCP-1 upregulated p53 expression of HUVECs and the p53-specific inhibitor pifithrin-α(PFTα) rescued the MCP-1-induced apoptosis of HUVECs.Furthermore,PKC (protein kinase C) activation or inhibition might also affect HUVECs apoptosis induced by MCP-1.These findings together demonstrate that MCP-1 exerts direct proapoptotic effects on HUVECs in vitro via a p53-dependent mitochondrial pathway.

  14. Rhein lysinate inhibits monocyte adhesion to human umbilical vein endothelial cells by blocking p38 signaling pathway.

    Science.gov (United States)

    Lin, Yajun; Zhen, Yongzhan; Liu, Jiang; Wei, Jie; Tu, Ping; Hu, Gang

    2013-11-01

    The objective of this study was to investigate the effect of rhein lysinate (RHL) on monocyte adhesion and its mechanism. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the growth inhibition by drugs. The monocyte chemoattractant protein (MCP)-1 levels were assayed using MCP-1 ELISA. The expression of proteins was detected by Western blotting analysis. The results indicated that RHL inhibited monocyte adhesion in a dose- and time-dependent manner. RHL (<20 μmol/L) and lipopolysaccharide (LPS) had no effect on viability of human umbilical vein endothelial cells. Therefore, 20 μmol/L RHL was selected for this study. RHL inhibited secretion of MCP-1 induced by LPS and expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1. In the meantime, both RHL and p38 inhibitor (SB203580) inhibited phosphorylation of p38 and mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK-2) and transcription and expression of ICAM-1 and VCAM-1. In conclusion, RHL inhibits the transcription and expression of ICAM-1 and VCAM-1 by the p38/MAPKAPK-2 signaling pathway, and the effect of RHL on transcription and expression of ICAM-1 and VCAM-1 is similar to p38 inhibitor. RHL could be a prophylactic drug for atherosclerosis.

  15. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication.

    Science.gov (United States)

    Schmid, Michael A; Harris, Eva

    2014-12-01

    Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/β receptor (Ifnar(-/-)), which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103(+) classical dendritic cells (cDCs), Ly6C(-) CD11b(+) cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6C(high) monocytes from wild-type and Ifnar(-/-) origin to the DENV-infected dermis and differentiation to Ly6C(+) CD11b(+) monocyte-derived DCs (moDCs), which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6C(high) monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that ∼ 100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.

  16. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication.

    Directory of Open Access Journals (Sweden)

    Michael A Schmid

    2014-12-01

    Full Text Available Dengue virus (DENV causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/β receptor (Ifnar(-/-, which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103(+ classical dendritic cells (cDCs, Ly6C(- CD11b(+ cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6C(high monocytes from wild-type and Ifnar(-/- origin to the DENV-infected dermis and differentiation to Ly6C(+ CD11b(+ monocyte-derived DCs (moDCs, which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6C(high monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that ∼ 100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.

  17. Comparison The Effects of Two Monocyte Isolation Methods,Plastic Adherence and Magnetic Activated Cell Sorting Methods,on Phagocytic Activity of Generated Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Behnaz Asadi

    2013-01-01

    Full Text Available Objective: It is believed that monocyte isolation methods and maturation factors affect the phenotypic and functional characteristics of resultant dendritic cells (DC. In the present study, we compared two monocyte isolation methods, including plastic adherence-dendritic cells (Adh-DC and magnetic activated cell sorting- dendritic cells (MACS-DC, and their effects on phagocytic activity of differentiated immature DCs (immDCs.Materials and Methods: In this experimental study, immDCs were generated from plastic adherence and MACS isolated monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin 4 (IL-4 in five days. The phagocytic activity of immDCs was analyzed by fluorescein isothiocyanate (FITC-conjugated latex bead using flow cytometry. One way ANOVA test was used for statistical analysis of differences among experimental groups, including Adh-DC and MACS-DC groups.Results: We found that phagocytic activity of Adh-DC was higher than MACS-DC, whereas the mean fluorescence intensity (MFI of phagocytic cells was higher in MACS-DC (p<0.05.Conclusion: We concluded that it would be important to consider phagocytosis parameters of generated DCs before making any decision about monocyte isolation methods to have fully functional DCs.

  18. Expression of aquaporin-1 in SMMC-7221 liver carcinoma cells promotes cell migration

    Institute of Scientific and Technical Information of China (English)

    LI Yongming; FENG Xuechao; YANG Hong; MA Tonghui

    2006-01-01

    Migration of tumor cells is a crucial step in tumor invasion and metastasis. Here we provide evidence that aquaporin expression is involved in tumor cell migration. RT-PCR, immunofluorescence and Western blot analysis demonstrated the AQP1 protein expression on the plasma membrane of SMMC-7221 human hepatoma cells. SMMC-7221 cell clones with high (SMMC-7221hPf) and low (SMMC-7221/Pf) water permeability were identified by functional assays with corresponding high and low AQP1 expression. Cell migration rate was remarkably higher in SMMC-7221hPf cells than SMMC-7221/Pf cells, assessed by Boyden chamber and wound healing assays, whereas cell growth and adhesion were not different. Adenovirus-mediated AQP1 expression in SMMC-7221/Pf cells increased their water permeability and migration rate. These results provide the first evidence that aquaporin-mediated membrane water permeability enhances tumor cell migration and may be associated with tumor invasion and metastasis.

  19. Monocyte functions in diabetes mellitus.

    Science.gov (United States)

    Geisler, C; Almdal, T; Bennedsen, J; Rhodes, J M; Kølendorf, K

    1982-02-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from the healthy individuals. Phagocytosis of Candida albicans was decreased in the monocytes from the patients, whereas pinocytosis of acridine and phagocytosis of latex and sheep red blood cells were normal. The chemotactic response towards casein was enhanced. The possible consequences of these findings for the elucidation of concomitant infections in diabetic patients are discussed.

  20. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    Science.gov (United States)

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-07-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the

  1. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    Directory of Open Access Journals (Sweden)

    Tourkina Elena

    2011-07-01

    Full Text Available Abstract Interstitial lung disease (ILD is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc. Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+/collagen I-positive (ColI+, CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12, are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and

  2. Leukotrienes induce the migration of Th17 cells.

    Science.gov (United States)

    Lee, Wonyong; Su Kim, Hyeong; Lee, Gap Ryol

    2015-01-01

    Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells.

  3. Subventricular zone cell migration: lessons from quantitative 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Rachel eJames

    2011-03-01

    Full Text Available Neuroblasts born in the adult subventricular zone (SVZ migrate long distances in the rostral migratory stream (RMS to the olfactory bulbs where they integrate into circuitry as functional interneurons. As very little was known about the dynamic parameters of SVZ neuroblast migration, we used two-photon time-lapse microscopy to analyze migration in acute slices. This involved analyzing 3-dimensional stacks of images over time and uncovered several novel aspects of SVZ migration: chains remain stable, cells can be immotile for extensive periods, morphology does not necessarily correlate with motility, neuroblasts exhibit local exploratory motility, dorsoventral migration occurs throughout the striatal SVZ and neuroblasts turn at distinctive angles. We investigated these novel findings in the SVZ and RMS from the population to the single cell level. In this review we also discuss some technical considerations when setting up a two-photon microscopic imaging system. Throughout the review we identify several unsolved questions about SVZ neuroblast migration that might be addressed with current or emerging techniques.

  4. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    Science.gov (United States)

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  5. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  6. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  7. Collisions of deformable cells lead to collective migration

    Science.gov (United States)

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.

  8. CD16+ Monocyte Subsets Are Increased in Large Abdominal Aortic Aneurysms and Are Differentially Related with Circulating and Cell-Associated Biochemical and Inflammatory Biomarkers

    Directory of Open Access Journals (Sweden)

    Giorgio Ghigliotti

    2013-01-01

    Full Text Available Proinflammatory components are present in abdominal aortic aneurysm (AAA. Circulating monocytes display heterogeneity, and three subsets have been identified, based on the differential expression for CD14 and CD16 receptors: CD14+CD16-, classical, CD14+CD16+, intermediate and CD14dim CD16+, non-classical monocytes. Increased proinflammatory CD16+ monocytes with high expression of CD143 are present in CKD patients. D-dimer is increased in AAA patients, and might contribute to the pro-inflammatory response associated to circulating monocytes. We aimed to investigate the frequency of CD14+CD16+, CD14dim CD16+ monocytes and monocyte CD143 expression in AAA patients, and their relationship with D-dimer, eGFR and other inflammatory parameters. Blood from 74 AAA patients and 30 healthy controls was analyzed to determine the frequency of CD14+, CD16+, CD14dim CD16+ monocytes and the monocyte CD143 expression by means of flow-cytometry. AAA patients had expanded CD16+ SUPsets (CD14+CD16+: 7.66 ± 0.31% vs 5.42 ± 0.27%; CD14dim CD16+: 7.43 ± 0.48% vs 5.54 ± 0.38%, AAA vs controls, mean ± SE, both p<0.05. CD14+ CD16+ cells were associated to D-dimer and age, and to reduced eGFR. CD14dim CD16+ cells were associated to uric acid, surface CD143, and reduced count of total leukocytes and neutrophils. Within AAA patients, the two CD16+ supsets and the monocyte CD143 expression display different relationships with D-dimer, parameters of renal function and circulating biochemical and inflammatory biomarkers.

  9. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  10. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines.

    Science.gov (United States)

    Yan, Yan; Gause, Katelyn T; Kamphuis, Marloes M J; Ang, Ching-Seng; O'Brien-Simpson, Neil M; Lenzo, Jason C; Reynolds, Eric C; Nice, Edouard C; Caruso, Frank

    2013-12-23

    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities.

  11. Helicobacter pylori outer membrane vesicles inhibit human T cell responses via induction of monocyte COX-2 expression.

    Science.gov (United States)

    Hock, Barry D; McKenzie, Judith L; Keenan, Jacqueline I

    2017-06-01

    The modulation of T cell responses by Helicobacter pylori is thought to potentiate both H. pylori persistence and development of gastric pathologies including cancer. Release of outer membrane vesicles (OMV) by H. pylori provides a potential vehicle for modulation of the immune system. Although OMV are thought to have T cell suppressive activity, this has not yet been demonstrated. Their suppressive activity was investigated in this study using the responses of peripheral blood mononuclear cells (PBMC) to T cell stimuli as a readout. We demonstrate that addition of OMV to PBMC significantly inhibits subsequent T cell proliferation in a cyclo-oxygenase-2 (COX-2)-dependent manner. Addition of OMV did not significantly modulate PBMC apoptosis, but induced strong expression of COX-2 by the monocytes present and significantly increased levels of PGE2 and IL-10. These effects were independent of vacuolating cytotoxin expression. Together, these findings demonstrate that OMV can suppress human T cell responses and that the predominant mechanism is not through a direct effect on the T cells but results from the induction of COX-2 expression in monocytes. This increased COX-2 activity may modulate not only H. pylori-directed immune responses but also wider immune responses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Institute of Scientific and Technical Information of China (English)

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  13. Evidence for existence of a close association between CD14 and CXCR4 on monocytic cell line U937

    Institute of Scientific and Technical